初一数学竞赛系列讲座(2)特殊的正整数
初中数学竞赛讲座——数论部分1(进位制)
第一讲正整数的表示及进位制一、基础知识:1.我们通常接触的整数都是“十进制”整数,十进制计数法就是用0,1,2…9十个数码,采用“逢十进一”的法则进行计数的方法。
例如1999就是一个一千,9个一百,9个十,9个1组成的,故1999这个数也可以表示为:1999=1×1000+9×100+9×10+9底数为10的各整数次幂,恰好是十进制数的各个位数:100=1(个位上的数—第1位), 101=10(十位上的数---第2位),102=100(百位上的数---第3位),…10n(第n+1位上的数)故1999=1×103+9×102+9×101+9×1003na记作:3na=10n-1+…+102a n-2+10其中最高位a1≠0,即,其它则是0≤a1,a.各位上的数字相同的正整数记法:999=1000-1104-1,∴999n个=10n-1111n个=1019n-,333n个=103n555n个=5(101)9n-解答有关十进制数的问题,常遇到所列方程,少于未知数的个数,这时需要根据示0到9的整数这一性质进行讨论。
.二进制及其它进制二进制即计数法就是用0,1两个数码,采用“逢二进一”的法则进行计数的方法。
例如二进制中的111记为(111)2111=1×22+1×2+1=73na )2记作:3na=2n-1××a3+…+22×a其中最高位a1≠0,,其它则是0≤a1,a2,位数(n为正整数3na )b记作:3na=b n-1××a3+…+b2×a其中最高位a1≠0,,其它则是0≤a1,(一)十进制转二进制(整数部分)辗转相除直到结果为,将余数和最后的60/2 = 30 余 0 30/2 = 15 余 0 15/2 = 7 余 1 7/2 = 3 余 1 3/2 = 1 余 1所以十进制数60转为二进制数即为 (11100)2 (二)十进制小数转换为二进制小数 方法:乘2取整,顺次排列。
人教七年级上学期竞赛入门辅导讲义,共十讲,很实用
又如7007700-14=686,68-12=56(能被7整除)
能被11整除的数的特征:
①抹去个位数②减去原个位数③其差能被11整除
如1001100-1=99(能11整除)
又如102851028-5=1023102-3=99(能11整除)
二、例题
例1已知两个三位数328和2x9的和仍是三位数5y7且能被9整除.求x,y
第一讲数的整除
一、内容提要:
如果整数A除以整数(B≠0)所得的商A/B是整数,那么叫做A被B整除.
0能被所有非零的整数整除.
一些数的整除特征
除数
2或5
4或25
8或125
3或9
11
能被整除的数的特征
末位数能被2或5整除
末两位数能被4或25整除
末三位数能被8或125整除
各位上的数字和被3或9整除(如771,54324)
数和最犬的公约数.
6.公约数只有1的两个正整数叫做互质数(例如15与28互质).
7.在有余数的除法中,
被除数=除数×商数+余数若用字母表示可记作:
A=BQ+R,当A,B,Q,R都是整数且B≠0时,A-R能被B整除
例如23=3×7+2则23-2能被3整除.
二、例题
例1写出下列各正整数的正约数,并统计其个数,从中总结出规律加以应用:
9从1到100这100个自然数中,能同时被2和3整除的共_____个,
能被3整除但不是5的倍数的共______个.
10由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不
能被3整除的数共有几个?为什么?
11己知五位数1234A能被15整除,试求A的值.
整数整除的概念和性质
整数整除的概念和性质对于整数和不为零的整数b,总存在整数m,n使得a=bm+n(0≤n<b),其中m称为商,n称为余数,特别地,n=0时,即a=bm,便称a被被b整除(也称a是b的倍数或的约数),记为b|a.整除有以下基本性质:1.若a|b,a|c,则a|(b c);2.若a|b,b|c,则a|c;3.若a| b c,且(a,c)=1,则a|b,特别地,若质数p|b c,则必有p|b或p|c;4.若b|a,c|a,且(b,c) =1,则b c|a.解整除有关问题常用到数的整除性常见特征:1.被2整除的数:个位数字是偶数;2.被5整除的数:个位数字是0或5;3.被4整除的数:末两位组成的数被4整除;被25整除的数,末两位组成的数被25整除;4.被8整除的数:末三位组成的数被8整除;被125整除的数,末三位组成的数被125整除;5.被3整除的数:数字和被3整除;6.被9整除的数:数字和被9整除;7.被11整除的数:奇数位数字和与偶数位数字和的差被11整除.【例1】一个自然数与13的和是5的倍数,与13的差是6的倍数,则满足条件的最小自然数是.思路点拨略(重庆市竞赛题)注:确定已知条件来确定自然数,是数学活动中常见的一类问题,解这类问题时往往用到下列知识方法:(1)运用整除性质;(2)确定首位数字;(3)利用末位数字;(4)代数化;(5)不等式估算;(6)分类讨论求解等.【例2】有三个正整数a、b、c其中a与b互质且b与c也互质,给出下面四个判断:①(a+c)2不能被b整除,②a2+c2不能被b整除:③(a+b)2不能被c整除;④a2+b2不能被c整除,其中,不正确的判断有( ).A.4个B.3个 C 2个D.1个思路点拨举例验证.(“希望杯”邀请赛试题)【例3】已知7位数61287xy是72的倍数,求出所有的符合条件的7位数.(江苏省竞赛题)思路点拨7位数61287xy能被8,9整除,运用整数能被8、9整除的性质求出x,y的值.【例4】(1)若a、b、c、d是互不相等的整数,且整数x满足等式(x一a)(x一b)(x一c)(x一d)一9=0,求证;4︳(a+b+c+d).(2)已知两个三位数abc与def的和abc+def能被37整除,证明:六位数abcdef也能被37整除.思路点拨 (1)x 一a ,x 一b ,x 一c ,x 一d 是互不相等的整数,且它们的乘积等于9,于是必须把9分解为4个互不相等的因数的积;(2)因已知条件的数是三位数,故应设法把六位数abcdef 用三位数的形式表示,以沟通已知与求证结论的联系.注:运用整除的概念与性质,建立关于数字谜中字母的方程、方程组,是解数学谜问题的重要技巧.华罗庚曾说:“善于‘退’,足够地,‘退’,‘退’到最原始而不失去重要性的地方,是学好数学的一个诀窍.”从一般退到特殊,从多维退到低维,从空间退到平面,从抽象退到具体……只要不影响问题的求解,对于许多复杂的问题,以退求进是一种重要的解题思想.【例5】 (1)一个自然数N 被10除余9,被9除余8,被8除余7,被7除余6,被6除余5,被5除余4,被3除余2,被2除余1,则N 的最小值是 .(北京市竞赛题)(2)若1059、1417、2312分别被自然数x 除时,所得的余数都是y ,则x —y 的值等于( ).A .15B .1C .164D .174(“五羊杯”竞赛题)(3)设N=个1990111,试问N 被7除余几?并证明你的结论. (安徽省竞赛题) 思路点拨 运用余数公式,余数性质,化不整除问题为整除问题.(1)N+1能分别被2,3,4,5,6,7,8,9,10整除,(2)建立关于x ,y 的方程组,通过解方程组求解,(3)从考察11,111,…111111被7除的余数人手.【例6】盒中原有7个球,一位魔术师从中任取几个球,把每一个小球都变成了7个小球,将其放回盒中,他又从盒中任取一些小球,把每一个小球又都变成了7个小球后放回盒中,如此进行,到某一时刻魔术师停止取球变魔术时,盒中球的总数可能是( )A .1990个B .1991个C 1992个D .1993个思路点拨 无论魔术师如何变,盒中球的总数为6k+7个,其中k 为自然数,经验证,1993=331×6+7符合要求.故选D .【例7】在100以内同时被2、3、5整除的正整数有多少个?思路点拨 由于2与3互质,3与5互质,5与2互质(这种特性我们也称为2、3、5两两互质),所以同时被2、3、5整除的整数必然被2×3×5=30整除;另—方面,被30整除的正整数必然可同时被2、3、5整除,因此,在100以内同时被2、3、5整除的正整数就是在100以内被30整除的正整数,显然只有30、60、90三个.【例8】某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号,如果号码的前两位数字之和等于后两位数字之和,则称这张购物券为“幸运券”.证明:这个商场所发放的购物券中,所有的幸运券的号码之和能被101整除. 思路点拨 显然,号码为9999是幸运券,除这张外,如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券,由于9是奇数,所以m ≠n .由于m+n=9999相加时不出现进位,这就是说,除去号码9999这张幸运券外,其余所有幸运券可全部两两配对,而每一对两个号码之和均为9999,即所有幸运券号码之和是9999的整倍数,而101│9999,故知所有幸运券号码之和也能被101整除思考:“如果某个号码n 是幸运券,那么号m=9999—n 也是幸运券”,这是解决问题的关键,请你考虑这句话合理性. 若六位数9381ab 是99的倍数,求整数a 、b 的值.∵9381ab能被9整除,∴8+1+a+b+9+3=21+a+b能被9整除,得3+a+b=9k l(k1为整数).①又9381ab能被11整除,∴8—1+a—b+9—3=13+a—b能被11整除,得2+a—b=11k2(k2为整数).②∵0≤a,b≤9 ∴0≤a+b≤18,-9≤a-b≤9.由①、②两式,得3≤<9k1≤21,-7≤11k2≤1l,知k1=1,或k1=2;k2=0,或,而3+a+b与2+a—b的奇偶性相异,而k1=2,k2=1不符合题意.故把k1=1,k2=0代人①、②两式,解方程组可求得a=2,b=4.【例9】写出都是合数的13个连续自然数.思路点拨方法一:直接寻找从2开始,在自然数2,3,4,5,6,…中把质数全部划去,若划去的两个质数之间的自然数个数不小于13个,则从中取13个连续的自然数,就是符合要求的一组解,例如:自然数114,115,116,…,126就是符合题意的一组解.方法二:构造法我们知道,若一个自然数a是2的倍数,则a+2也是2的倍数,若是3的倍数,则a+3也是3的倍数,…,若a是14的倍数,则a+14也母14的倍数,所以只要取a为2,3,…,14的倍数,则a+2,a+3,…a+14分别为2,3,…,14的倍数,从而它们是13个连续的自然.所以,取a=2×3×4×…×14,则a+2,a+3,…,a+14必为13个都是合数的连续的自然数.【例10】已知定由“若大于3的三个质数a、b、c满足关系式20+5b=c,则a+b+c是整数n的倍数”.试问:这个定理中的整数n的最大可能值是多少?请证明你的结论.思路点拨先将a+b+c化为3(a+2b)的形式,说明a+b+c是3的倍数,然后利用整除的性质对a、b被3整除后的余数加以讨论得出a+2b也为3的倍数.∵=a+b+2a+5b=3(a+2b),显然,3│a+b+c若设a、b被3整除后的余数分别为r a、r b,则r a≠0,r b≠0.若r a≠r b,则r a=2,r b=1或r a=1,r b=2,则2a+5b =2(3m+2)+5(3n+1)=3(2m+5n+3),或者2a+5b=2(3p+1)+5(3q+2);3(2P+59+4),即2a+5b为合数与已知c为质数矛盾.∴只有r a=r b,则r a=r b=1或r a=r b=2.于是a+2b必是3的倍数,从而a+b+c是9的倍数.又2a+5b=2×11十5×5=47时,=a+b+c=11+5+47=63,2a+5b =2×13十5×7=61时,a+b+c =13+7+61=81,而(63,81)=9,故9为最大可能值.注:由余数切入进行讨论,是解决整除问题的重要方法.【例11】一个正整数N的各位数字不全相等,如果将N的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N,则称N为“新生数”,试求所有的三位“新生数”.思路点拨将所有的三位“新生数”写出来,然后设出最大数、最小数,求差后分析求出所有三位“新生数”的可能值,再进行筛选确定.【例12】设N 是所求的三位“新生数”,它的各位数字分别为a 、b 、c (a 、b 、c 不全相等),将其各位数字重新排列后,连同原数共得6个三位数:cba cab bca bac acb abc ,,,,,,不妨设其中的最大数为abc ,则最小数为cba .由“新生数”的定义,得N=abc —cba =(100a+l0b+c)一(100c+l0b+d)=99(a —c).由上式知N 为99的整数倍,这样的三位数可能为:198,297,396,495,594,693,792,891,990.这九个数中,只有954-459=495符合条件,故495是唯一的三位‘新生数”. 注:本题主要应用“新生数”的定义和整数性质,先将三位“新生数”进行预选,然后再从中筛选出符合题意的数。
初中数学竞赛教程21整数的性质
初中数学竞赛教程21整数的性质整数是数学中非常基本且重要的概念之一、它是全体正整数、负整数和零的集合,用整数集表示为Z,数学符号为Z={...,-3,-2,-1,0,1,2,3,...}。
整数的性质涉及到整数的四则运算、整数的大小比较以及整数的奇偶性等方面。
下面就对整数的性质进行详细介绍。
一、整数的四则运算1.加法:对于整数a和b,它们的和a+b也是一个整数。
加法满足交换律,即a+b=b+a;加法还满足结合律,即(a+b)+c=a+(b+c)。
2.减法:对于整数a和b,它们的差a-b也是一个整数。
3.乘法:对于整数a和b,它们的积a×b也是一个整数。
乘法满足交换律,即a×b=b×a;乘法还满足结合律,即(a×b)×c=a×(b×c)。
4.除法:对于整数a和b,其中b不等于0,a/b的商可能是一个整数,也可能是一个带有小数部分的数。
二、整数的大小比较1.大小关系:对于两个整数a和b,如果a<b,称a小于b;如果a>b,称a大于b;如果a=b,称a等于b。
2.大于0和小于0:正整数都大于零;负整数都小于零。
三、整数的奇偶性1.奇数:整数中,除了能被2整除的数字外,其他的数字都是奇数。
奇数可以表示为2k+1的形式,其中k为任意整数。
2.偶数:能被2整除的数字为偶数。
偶数可以表示为2k的形式,其中k为任意整数。
3.奇数和奇数的和是偶数,奇数和偶数的和是奇数,偶数和偶数的和是偶数。
四、整数的性质定理1.整数的加法性质:对于任意整数a和b,有a+b=b+a,即整数的加法满足交换律。
2.整数的减法性质:对于任意整数a和b,有a-b=a+(-b),即整数的减法可以转化为加法运算。
3.整数的乘法性质:对于任意整数a、b和c,有(a+b)×c=a×c+b×c,即整数的乘法满足分配律。
4.整数的除法性质:对于任意整数a、b和c,如果a=b×c,且b不等于0,则a除以b的余数为0。
数学竞赛专题讲座七年级第5讲-计算—工具与算法的变迁(包含答案)
第五讲 计算——工具与算法的变迁研究数学、学习数学总离不开计算,随着时代的变迁,计算工具在不断地改变,从中国古老的算盘、纸笔运算发展到利用计算器、计算机运算.初中代数中运算贯穿于始终,运算能力是运算技能与逻辑能力的结合,它体现在对算理算律的理解与使用,综合运算的能力及选择简捷合理的运算路径上,这要求我们要善于观察问题的结构特点,灵活选用算法和技巧,有理数的计算常用的方法与技巧有: 1.巧用运算律; 2.用字母代数; 3.分解相约; 4.裂项相消; 5.利用公式; 6.加强估算等.“当今科学活动可以分成理论、实验和计算三大类,科学计算已经与理论研究、科学实验一起,成为第三种科学方法.——威尔逊注:威尔逊,著名计算物理学家,20世纪80年代诺贝尔奖获得者.【例1】 现有四个有理数3,4,6-,l0,将这4个数(每个数用且只用一次)进行加、减、乘、除四则运算,使其结果等于24,其三种本质不同的运算式有:(1) ;(2) ;(3) . (浙江省杭州市中考题) 思路点拨 从24最简单的不同表达式人手,逆推,拼凑.链接: 今天,计算机泛应用于社会生活各个方面,计算机技术在数学上的应用,不但使许多繁难计算变得简单程序化,而且还日益改变着我们的观念与思维. 著名的计算机专家沃斯说过:“程序=算法十数据结构”. 有理数的计算与算术的计算有很大的不同,主要体现在: (1)有理数的计算每一步要确定符号; (2)有理数计算常常是符号演算;(3)运算的观念得以改变,如两个有理数相加,其和不一定大于任一加数;两个有理数相减,其差不一定小于被减数.程序框图是一种用规定、指向线及文字说明来准确、直观地表示算法的图形,能清晰地展现算法的逻辑结构,常见的逻辑结构有:顺序结构、条件结构和循环结构.【例2】 如果4个不同的正整数q p n m 、、、满足4)7)(7)(7)(7(=----q p n m ,那么,q p n m +++等于( ).A .10B .2lC .24D .26E .28 (新加坡数学竞赛题) 思路点拨 解题的关键是把4表示成4个不同整数的形式. 【例3】 计算: (1)100321132112111+++++++++++; (“祖冲之杯”邀请赛试题) (2)19492—19502+19512—19522+…+19972—19982+19992(北京市竞赛题) (3)5+52+53+…十52002.思路点拨 对于(1),首先计算每个分母值,则易掩盖问题的实质,不妨先从考察一般情形人手;(2)式使人易联想到平方差公式,对于(3),由于相邻的后一项与前一项的比都是5,可从用字母表示和式着手.链接:裂项常用到以下关系式: (1)ba ab b a 11+=+; (2)111)1(1+-=+a a a a ;(3)ba ab a a b +-=+11)(.运用某些公式,能使计算获得巧解,常用的公式有: (1)))((22b a b a b a -+=-; (2)2)1(321+=++++n n n . 错位相减、倒序相加也是计算中常用的技巧.【例4】(1)若按奇偶分类,则22004+32004+72004+92004是 数;(2)设553=a ,444=b ,335=c ,则c b a 、、的大小关系是 (用“>”号连接); (3)求证:32002+42002是5的倍数.思路点拨 乘方运算是一种特殊的乘法运算,解与乘方运算相关问题常用到以下知识:①乘方意义;②乘方法则;③02≥na;④n a 与a 的奇偶性相同;⑤在r k n +4中(k ,r 为非负整数,0≠n ,0≤r <4),当r =0时,rk n +4的个位数字与n 4的个位数字相同;当0≠r 时,?r k n +4的个位数字与r n 的个位数字相同.【例5】有人编了一个程序:从1开始,交替地做加法或乘法(第一次可以是加法,也可以是乘法),每次加法,将上次运算结果加2或加3;每次乘法,将上次运算结果乘2或乘3,例如,30可以这样得到:(1)证明:可以得到22; (2)证明;可以得到22297100-+.思路点拨 (1)试值可以得到22,从计算中观察得数的规律性,为(2)做准备;(2)连续地运用同一种运算以获得高次,在进行适当的变换可以求解.【例6】(1)已知a 、b 互为倒数,c 、d 互为相反数,0<e 且1=e ,那么200520042003)()(e d c ab -+--的值为__________. (第19届江苏省竞赛题)(2)已知20062005122006220052)1(164834121-++-++-+-=+ k k k S ,则小于S 的最大整数是______. (第11届“华杯赛“试题)思路点拨 对于(1)从倒数、相反数的概念入手;(2)通过对数式的分组,估算S 的值的范围.【例7】按下面的程序计算,若开始输入的值x为正数,最后输出的结果为656,则满足条件的x的不同值最多有().A.2个 B.3个 C.4个 D.5个(义乌市中考题)思路点拨看懂程序图,循环运算是解本题的关键.【例8】如图所示是一33⨯的幻方,当空格填上适当的数后,每行、每列及对角线上的和都是相等的,求k的值.(两岸四地少年数学邀请赛试题)思路点拨为充分利用条件,需增设字母,运用关系式求出k的值.K=231121右边的数为X则右上角= 110+X121的对角线和K的列相等去掉中心项121+110+X=K+X所以K=231基础训练一、基础夯实1.(1)计算:211×(-455)+365×455-211×545+545×365=_________;(2)若a= -20042003,b=-20032002,c=-20022001,则a、b、c的大小关系是___________(用“〈”号连接〉.2.计算:(1)0.7×149+234×(-15)+0.7×59+14×(-15)=________;(第15届江苏省竞赛题)(2) 191919767676-76761919=________. (第12届“希望杯”邀请赛试题)(3)135⨯+157⨯+…+119971999⨯=________; (天津市竞赛题)(4)(13.672×125+136.72×12.25-1367.2×1.875)÷17.09=________.(第14届“五羊杯”竞赛题)3.在下式的每个方框内各填入一个四则运算符号(不再添加括号),•使得等式成立:6□3□2□12=24. (第17届江苏省竞赛题)4.1999加上它的12得到一个数,再加上所得的数的13又得到一个数,再加上这次得数的14又得到一个数,……,依此类推,一直加到上一次得数的11999,那么最后得到的数是_________.输出结果5.根据图所示的程序计算,若输入的x 值为32,则输出的结果为( ). A.72 B.94 C.12 D.92(2002年北京市海淀区中考题) y=-x+21<x ≤2y=x 2-1<x ≤1y=x+2-2≤x ≤-1输出y 值输入x 值6.已知a=-199919991999199819981998⨯-⨯+,b=-200020002000199919991999⨯-⨯+,c=-200120012001200020002000⨯-⨯+,则abc=( ).A.-1B.3C.-3D.1 (第11届“希望杯”邀请赛试题) 7.如果有理数a 、b 、c 满足关系a<b<0<c,那么代数式23bc acab c-的值( ). A.必为正数 B.必为负数 C.可正可负 D.可能为0 8.将322、414、910、810由大到小的排序是( ).A.322、910、810、414B.322、910、414、810C.910、810、414、322D.322、414、910、810 (美国犹他州竞赛题) 9.阅读下列一段话,并解决后面的问题:观察下面一列数:1,2,4,8,…,我们发现,这一列数从第2项起,•每一项与它前一项的比都等于2.一般地,如果一列数从第二项起,每一项与它前一项的比都等于同一个常数,•这一列数就叫做等比数列,这个常数叫做等比数列的公比. (1)等比数列5,-15,45,…的第4项是________;(2)如果一列数a 1,a 2,a 3,a 4,…是等比数列,且公比为q,那么根据上述的规定,有 •21a a =q, 32a a =q, 43aa =q,…, 所以a 2=a 1q,a 3=a 2q=(a 1q)q=a 1q 2,a 4=a 3q=a 1q 3,…,a n =_______(用a 1与q 的代数式表示). (3)一个等比数列的第2项是10,第3项是20,求它的第1项与第4项. (2003年广西省中考题)10.(1)已知a 、b 、c 都不等于零,且||a a +||b b +||c c +||abcabc 的最大值是m,最小值为n,求m n mn的值.(2)求证:5353-3333是10的倍数.二、能力拓展11.计算:(1) 2200340042003200240082003200422003300520032003200520053005-⨯+⨯-⨯-⨯-⨯+⨯=_________.(第15届“希望杯”邀请赛试题)(2)2-22-23-24-25-26-27-28-29+210=___________;(3) 123369510157142113539155152572135⨯⨯+⨯⨯+⨯⨯+⨯⨯⨯⨯+⨯⨯+⨯⨯+⨯⨯=_______________.(4)98+998+9998+…+5099998⋅⋅⋅个=_________.(2003年“信利杯”竞赛题)12.(1)32001×72002×132003所得积的末位数字是________;(第17届江苏省竞赛题) 13.若a 、b 、c 、d 是互不相等的整数(a<b<c<d),且abcd=121,则a c +b d =________. 14.你能比较20012002与20022001的大小吗?为了解决这个问题,我们先写出它的一般形式,即比较n n+1与(n+1)n 的大小(n 是自然数),然后,我们从分析n=1,n=2,n=3,……中发现规律,经归纳、猜想得出结论. (1)通过计算,比较下列各组中两数的大小(在空格中填写“)”、“=”、•“〈”号〉. ①12_____21; ②23______32; ③34______43; ④45______54; ⑤56_____65;…… (2)从第(1)题的结果经过归纳,可以猜想出n n+1和(n+1)n 的大小关系是_______.(3)根据上面归纳猜想得到的一般结论,试比较下列两个数的大小20012002___20022001. (江苏省常州市中考题) 15.如果11||t t +22||tt +33||t t =1,则123123||t t t t t t 的值为( ). A.-1 B.1 C.±1 D.不确定 (2003河北省竞赛题) 16.如果ac<0,那么下面的不等式ac<0,a c 2<0,a 2c<0,c 3a<0,ca 3<0中必定成立的有( • ). A.1个 B.2个 C.3个 D.4个17.设S=213⨯+2235⨯+3257⨯+…4929799⨯,T=13+25+227+…48299,则S-T=( ).A.49299B.1-49299C.49299-1D.49299+1 (第14届“五羊杯”竞赛题)18.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为( ).A.12 B. 1118C. 76D. 59 (第11届江苏省竞赛题) 19.图中显示的填数“魔方”只填了一部分,将下列9个数: 14,12,1,2,4,8,•16,•32,64填入方格中,使得所有行、列及对角线上各数相乘的积相等,求x的值. (上海市竞赛题)64x3220.设三个互不相等的有理数,既可分别表示为1,a+b,a的形式,又可分别表示为0, ab,b的形式,求a2002+b2001的值.三、综合创新21.(1)三个2,不用运算符号,写出尽可能大的数;(2)三个4,不用运算符号,写出尽可能大的数.(3)用相同的3个数字(1~9),不用运算符号,写出最大的数.22.如图,是一个计算装置示意图,J1、J2是数据输入口,C是计算输出口,计算过程是由J1、J2分别输入自然数m和n,经计算后得自然数K由C输出,此种计算装置完成的计算满足以下三个性质:(1)若J1、J=2分别输入1,则输出结果为1;(2)若J=1输入任何固定的自然数不变,J2输入自然数增大1,则输出结果比原来增大2;(3)若J2输入1,J1输入自然数增大1,则输出结果为原来的2倍.试问:(1)若J1输入1,J2输入自然数n,输出结果为多少?(2)若J2输入1,J1输入自然数m,输出结果为多少?(3)若J1输入自然数m,J2输入自然数n,输出的结果为多少?(2002年扬州中学招生试题)Cn m j 2j 1答案:1.(1)154000,(2)a>b>c.2.(1)-43.6;(2)-334;(3) 9985997; (4)•48,•注意13672=•8•×1709. 3.略 4.1999000 提示:原式=1999×(1+12)(1+13)×…×(1+11999) 5.C 6.A 7.B 8.A 9.(1)-135;(2)a n =a 1q n-1;(3)a 1=5,a 4=40. 10.(1)-16 提示:||xx =±1,m=4,n=-4;(2)5353与3333的个位数字相同. 11.(1)667668;(2)6 提示:2n+1-2n =2n ;(3)25; (4) 111000491⋅⋅⋅个 12.(1)9;(2)115200 13.-1214.(1)略;(2)当n<3时,n n+1<(n+1)n ;当n ≥3时,n n+1>(n+1)n ;(3)>. 15.A 16.C 17.B 提示:1111()(2)22n n n n =-++ 18.A 19.这9个数的积为14×12×1×2×4×8×16×32×64=643, 所以,每行、每列、每条对角线上三个数字积为64, 得ac=1,ef=1,ax=2,a,c,e,f 分别为14,12, 2,4中的某个数,推得x=8. fed c b a 64x 3220.2 提示:这两个三数组在适当的顺序下对应相等,于是可以断定,a+b 与a•中有一个为0,ba与b 中有一个为1,再讨论得a=-1,b=1. 21.(1)222;(2)444=4256>444;(3)设所用数字为a,可得下面4种写法:①当a=1时,111最大;②当a=2时,222最大;③当a=3时,333最大;④当a ≥4时,a 最大. 22.由题意设输出数,设C(m,n)为k,则C(1,1)=1,C(m,n)=c(m,n-1)+2,C(m,•1)•=2C(m-1,1).(1)C(1,n)=C(1,n-1)+2=C(1,n-2)+2×2=…= C(1,1)+2(n-1)=1+2(n-1)=2n-1 (2)C(m,1)=2C(m-1,1)=22·C(m-2,1)=…=2m-1C(1,1)=2m-1.(3)C(m,n)=C(m,n-1)+2=C(m,n-2)+2×2=…=C(m-1)+2(n-1)=22C(m-2,1)+2(n-1)=…=2m-1C(1,1)+2n-2=2m-1+2n-2.提高训练1.若1+=m m ,则2004)14(+m =______. (“希望杯”邀请赛试题)2.符号“f ”表示一种运算,他对一些数的运算结果是: (1)0)1(=f ,1)2(=f ,2)3(=f ,3)4(=f ,… (2)2)21(=f ,3)31(=f ,4)41(=f ,5)51(=f ,…利用以上规律计算:=-)2008()20081(f f ______. (贵阳市中考题)3.3028864215144321-+-+-+-+-+-+- 等于( ).A .41B .41-C .21D .21- (“希望杯”邀请赛试题)4.20032004)2(3)2(-⨯+- 的值为( ).A .20032- B .20032 C .20042- D .20042(江苏省竞赛题)5.自然数d c b a 、、、满足111112222=+++d c b a ,则65431111d c b a +++等于( ). A .81 B .163 C .327 D .6415 (北京市竞赛题)6.d c b a 、、、是互不相等的正整数,且441=abcd ,那么d c b a +++的值是( ).A .30B .32C .34D .36 (“希望杯”邀请赛试题) 7.已知55)(2+=+++b b b a ,且012=--b a .求ab 的值.(北京市迎春杯竞赛题) 8.已知a 、b 、c 都不等于0,且abcabcc c b b a a +++的最大值为m ,最小值为n ,则=+2005)(n m ______. (重庆市竞赛题)9.从下面每组数中各取一个数,将它们相乘,那么所有这样的乘积的总和是______. 第一组:5-,313,4.25,5.75;第二组:312-,151; 第三组:2.25,125,4-. (“华杯赛”试题)10.计算:20066423100864231006642310046423++++++++++++++++++++ 的值是( ). A .10033 B .10043 C .3341D .10001 (第18届五羊杯竞赛题) 11.已知有理数x 、y 、z 两两不相等,则z y y x --,x z z y --,yx xz --中负数的个数是( ). A .1个 B .2个 C .3个 D .4个 (重庆市竞赛题) 12.若有理数x 、y 使得y x +、y x -、xy 、yx这四个数中的三个数相等,则x y -的值是( ). A .21-B .0C .21D .23(天津市竞赛题)13.已知05432<e d c ab ,下列判断正确的是( ).A .0<abcdeB .042<e cd ab C .02<cde ab D .04<e abcd (江苏省竞赛题) 14.已知m ,n 都是正整数,并且)11)(11()311)(311)(211)(211(mm A +-+-+-= ,)11)(11()311)(311)(211)(211(n n B +-+-+-= .证明:(1)m m A 21+=,nn B 21+=;(2)若261=-B A ,求m 和n 的值. (华杯赛试题)。
初中数学竞赛专题选讲-数的整除(二)
初中数学竞赛专题选讲数的整除(二)一、内容提要在初一部分的我们介绍了能被2,3,4,5,7,8,9,11,13,25整除的自然数的特征,本讲将介绍用因式分解方法解答数的整除问题.几个常用的定理,公式,法则:⑴ n 个连续正整数的积能被n !整除.(n 的阶乘:n !=1×2×3×…×n ).例如:a 为整数时,2a(a+1), 6a(a+1)(a+2), 24a(a+1)(a+2)(a+3),…… ⑵ 若a b 且a c, 则 a (b c).⑶ 若a, b 互质,且a c, b c , 则ab c .反过来也成立:a, b 互质, ab c , 则a c, b c.例如:8和15互质,8|a, 15|a , 则120|a.反过来也成立: 若120|a. 则 8|a, 15|a.⑷由乘法公式(n 为正整数)推得:由(a -b)(a n-1+a n-2b+……+ab n-2+b n-1)=a n -b n . 得 (a -b)|(a n -b n ).(a+b)(a 2n -a 2n -1b+……ab 2n -1+b 2n )=a 2n+1+b 2n+1 . (a+b)|(a 2n+1+b 2n+1).(a+b)(a 2n -1-a 2n -2b+……+ab 2n -2-b 2n -1)=a 2n -b 2n . (a+b)|(a 2n -b 2n ).概括起来:齐偶数次幂的差式a 2n -b 2n 含有因式a +b 和a -b.齐奇数次幂的和或差式a 2n+1+b 2n+1或a 2n+1-b 2n+1只分别含有因式a +b 或a -b. 例如(a+b )| (a 6-b 6), (a -b)| (a 8-b 8);(a+b)|(a 5+b 5), (a -b)|(a 5-b 5).二、例题例1. 已知:整数n>2. 求证:n 5-5n 3+4n 能被120整除..证明:n 5-5n 3+4n =n(n 4-5n 2+4)=n(n -1)(n+1)(n+2)(n -2).∵(n -2) (n -1)n(n+1) (n +2)是五个连续整数,能被n!整除,∴ 120|n 5-5n 3+4n.例2. 已知:n 为正整数. 求证:n 3+23n 2+21n 是3的倍数.证明:n 3+23n 2+21n =21n (2n 2+3n+1) =21n(n+1)(2n+1)=21n(n+1)(n+2+n -1) = 21n(n+1)(n+2)+ 21n(n+1)(n -1).∵ 3!|n(n+1)(n+2), 且3!|n(n+1)(n -1)..∴ 3|21n(n+1)(n+2)+ 21n(n+1)(n -1). 即n 3+23n 2+21n 是3的倍数. (上两例关鍵在于创造连续整数)例3. 求证:⑴ 33|255+1; ⑵ 1989|(19901990-19881988).证明:⑴ 255+1=25×11+111=3211+111.∵(32+1)|(3211+111 ) , 即33|255+1.⑵ 19901990-19881988=19901990-19881990+19881990-19881988.(添两项)∵(1990+1988)|(19901990-19881990).即1989×2|(19901990-19881990).∵ 19881990-19881988=19881988(19882-1)=19881988(1988+1)(1988-1).即 19901990-19881988=1989×2N +1989×19881988×1987. (N 是整数)∴ 1989|19901990-19881988.例4 设n 是正整数, 求证:7|(32n+1+2n+2).证明:32n+1+2n+2=3×32n +4×2n =3×9 n +4×2 n +3×2 n -3×2 n (添两项)=(4×2 n +3×2 n )+(3×9 n -3×2 n )=(4+3)+3(9 n -2 n )=7×2 n +3(9-2)N . (N 是整数)∴7|(32n+1+2n+2)(例3,4是设法利用乘法公式)例5. 已知8719xy 能被33整除,求x, y 的值.解:∵33=3×11,∴1+9+x+y+8+7其和是3的倍数, 即x+y=3K -25 (k 为整数).又(1+x+8)-(9+y+7)其差是11的倍数,即x -y=11h+7(h 是整数).∵0≤x ≤9, 0≤y ≤9,∴0≤x +y ≤18,9≤x -y ≤9,x+y>x -y, 且 x+y 和x -y 同是奇数或偶数.符合条件的有⎩⎨⎧-==⎩⎨⎧-==⎩⎨⎧==48414711y x y x y x 或或 . 解得⎩⎨⎧==⎩⎨⎧==⎩⎨⎧==629529y x y x y x 或或 . 例6.设N =782x ,且17|N, 求 x..解:N =2078+100x=17×122+4+17×6x -2x=17×(122+6x )+4-2x.∵ 17|N ,∴17|4-2x ,当 4-2x=0.∴ x=2.三、练习1.要使2n+1能被3整除,整数n应取___,若6|(5 n-1), 则整数n应取___.2.求证:①4!|(n4+2n3-n2-2n);②24|n(n2-1)(3n+2);③6|(n3+11n);④30|(n 5-n).3.求证:①100|9910-1);②57|(23333+72222);③995|(996996-994994);④1992|(997997+995995).4.设n是正整数,求证3 n+3n+2+62n能被33整除.5.求证:六位数abcabc能被7,11,13,整除.3xy能被77整除,求x,y的值.6.已知:五位数987.已知:a,b,c都是正整数,且6|(a+b+c).求证:6|(a3+b3+c3).练习题参考答案1.正奇数;正偶数2.①,②分解为4个连续整数③n(n-1)(n+1)+12n ④n(n-1)(n+1)(n2-4+5)3.②81111+491111③添项-1,1④添项995997-9959974.化为3n(1+32)+36n=11×3n+36 n-3n=……5.7×11×13=1001六位数105a+104b+103c+102a+10b+c=……6.仿例57.由6|(a+b+c)可知a,b,c中至少有一个是偶数,且a3+b3+c3-3abc含有因式a+b+c [文章来源:教学视频网/转载请保留出处。
初中数学竞赛讲座——数论部分2(整数的整除性)
第二讲 整数的整除性一、基础知识:1.整除的基本概念与性质所谓整除,就是一个整数被另一个整数除尽,其数学定义如下.定义: 设a ,b 是整数,b ≠0.如果有一个整数q ,使得a=bq ,那么称a 能被b 整除,或称b 整除a ,并记作b |a .也称b 是a 的约数,a 是b 的倍数。
如果不存在这样的整数q ,使得a=bq ,则称a 不能被b 整除,或称b 不整除a ,记作b |a .关于整数的整除,有如下一些基本性质:性质1若c b b a |,|,则c a |证明:∵c b b a |,|,∴bq c ap b ==,(q p ,是整数),∴a pq q ap c )()(==,∴c a |性质2 若a |b ,b |a ,则 |a |=|b |.性质3 若c |a ,c |b ,则c |(a ±b ),且对任意整数m ,n ,有c |(m a ±n b ).证明:∵c a b a |,|,∴aq c ap b ==,q b ,(是整数),∴)(q p a aq ap c b ±=±=±,∴|()a b c ±性质4 若b |a ,d |c ,则bd |ac .特别地,对于任意的非零整数m ,有b m |a m性质5 若a =b +c ,且m |a ,m |b ,则m |c .性质6 若b |a ,c |a ,则[b ,c ]|a .特别地,当(b ,c )=1时,bc |a【此处[b ,c ]为b ,c 的最小公倍数;(b ,c )为b ,c 的最大公约数】.性质7 若c |ab ,且(c ,a )=1,则c |b .特别地,若p 是质数,且p |ab ,则p |a 或p |b .性质8 n 个连续整数中,必有一个能被n 整除.【特别地:两个连续整数必有一偶数;三个连续整数必有一个被3整除,如11,12,13中有3 | 12;41,42,43,44中有4 |44;77,78,79,80,81中5 | 80.】二.证明整除的基本方法证明整除常用下列几种方法:(1)利用基本性质法;(2)分解因式法;(3)按模分类法;(4)反证法等.下面举例说明.例1若a |n ,b |n ,且存在整数x ,y ,使得ax +b y=1,证明:ab |n .证明:由条件,可设n=au,n=b v,u,v为整数,于是n=n(ax+b y)= nax+nb y=abvx+abu y= ab(vx+u y)所以n|ab例2证明:三个连续奇数的平方和加1,能被12整除,但不能被24整除.分析要证明一个数能被12整除但不能被24整除,只需证明此数等于12乘上一个奇数即可.证明:设三个连续的奇数分别为2n-1,2n+1,2n+3(其中n是整数),于是(2n-1)2+(2n+1)2+(2n+3)2+1=12(n2+n+1).所以12|[(2n-1)2+(2n+1)2+(2n+3)2].又n2+n+1=n(n+1)+1,而n,n+1是相邻的两个整数,必定一奇一偶,所以n(n+1)是偶数,从而n2+n+1是奇数,故24 |[(2n-1)2+(2n+1)2+(2n+3)2].例3若整数a不被2和3整除,求证:24|(a2-1).分析因为a既不能被2整除,也不能被3整除,所以,按模2分类与按模3分类都是不合适的.较好的想法是按模6分类,把整数分成6k,6k+1,6k+2,6k+3,6k+4,6k+5这六类.由于6k,6k+2,6k +4是2的倍数,6k+3是3的倍数,所以a只能具有6k+1或6k+5的形式,有时候为了方便起见,也常把6k+5写成6k-1(它们除以6余数均为5).证明因为a不被2和3整除,故a具有6k±1的形式,其中k是自然数,所以a2-1=(6k±1)2-1=36k2±12k=12k(3k±1).由于k与3k±1为一奇一偶(若k为奇数,则3k±1为偶数,若k为偶数,则3k±1为奇数),所以2|k(3k±1),于是便有24|(a2-1).例4若x,y为整数,且2x+3y,9x+5y之一能被17整除,那么另一个也能被17整除.证明:设u=2x+3y,v=9x+5y.若17|u,从上面两式中消去y,得3v-5u=17x.①所以17|3v.因为(17,3)=1,所以17|v,即17|9x+5y.若17|v,同样从①式可知17|5u.因为(17,5)=1,所以17|u,即17|2x+3y.例5已知a,b是自然数,13a+8b能被7整除,求证:9a+5b都能被7整除.分析:考虑13a+8b的若干倍与9a+5b的若干倍的和能被7整除,证明13a+8b+4(9a+5b)=7(7a+4b)是7的倍数,又已知13a+8b是7的倍数,所以4(9a+5b)是7的倍数,因为4与7互质,由性质7|(9a+5b)例6已知a,b是整数,a2+b2能被3整除,求证:a和b都能被3整除.证明 用反证法.如果a ,b 不都能被3整除,那么有如下两种情况:(1) a ,b 两数中恰有一个能被3整除,不妨设3|a ,3b .令a =3m ,b =3n±1(m ,n 都是整数),于是a 2+b 2=9m 2+9n 2±6n+1=3(3m 2+3n 2±2n)+1,不是3的倍数,矛盾.(2) a ,b 两数都不能被3整除.令a =3m±1,b =3n±1,则a 2+b 2=(3m±1)2+(3n±1)2=9m 2±6m+1+9n 2±6n +1=3(3m2+3n2±2m±2n)+2,不能被3整除,矛盾.由此可知,a ,b 都是3的倍数.例7 已知a ,b 是正整数,并且a 2+b 2能被ab 整除,求证:a =b .先考虑a ,b 互质的情况,再考虑一般情况。
初一数学竞赛系列讲座 全套
初一数学竞赛讲座(三)数字、数位及数谜问题一、一、知识要点1、整数的十进位数码表示一般地,任何一个n 位的自然数都可以表示成:122321*********a a a a a n n n n +⨯+⨯++⨯+⨯---其中,a i (i=1,2,…,n)表示数码,且0≢a i ≢9,a n ≠0.对于确定的自然数N ,它的表示是唯一的,常将这个数记为N=121a a a a n n -2、正整数指数幂的末两位数字(1) (1) 设m 、n 都是正整数,a 是m 的末位数字,则m n 的末位数字就是a n 的末位数字。
(2) (2) 设p 、q 都是正整数,m 是任意正整数,则m 4p+q 的末位数字与m q 的末位数字相同。
3、在与整数有关的数学问题中,有不少问题涉及到求符合一定条件的整数是多少的问题,这类问题称为数迷问题。
这类问题不需要过多的计算,只需要认真细致地分析,有时可以用“凑”、“猜”的方法求解,是一种有趣的数学游戏。
二、二、例题精讲例1、有一个四位数,已知其十位数字减去2等于个位数字,其个位数字加上2等于其百位数字,把这个四位数的四个数字反着次序排列所成的数与原数之和等于9988,求这个四位数。
分析:将这个四位数用十进位数码表示,以便利用它和它的反序数的关系列式来解决问题。
解:设所求的四位数为a ⨯103+b ⨯102+c ⨯10+d ,依题意得:(a ⨯103+b ⨯102+c ⨯10+d)+( d ⨯103+c ⨯102+b ⨯10+a)=9988∴ (a+d) ⨯103+(b+c) ⨯102+(b+c) ⨯10+ (a+d)=9988比较等式两边首、末两位数字,得 a+d=8,于是b+c18又∵c-2=d ,d+2=b ,∴b-c=0从而解得:a=1,b=9,c=9,d=7故所求的四位数为1997评注:将整数用十进位数码表示,有助于将已知条件转化为等式,从而解决问题。
例2 一个正整数N 的各位数字不全相等,如果将N 的各位数字重新排列,必可得到一个最大数和一个最小数,若最大数与最小数的差正好等于原来的数N ,则称N 为“新生数”,试求所有的三位“新生数”。
七年级数学竞赛讲座02特殊的正整数
七年级数学竞赛讲座02特殊的正整数七年级数学竞赛讲座(二)特殊的正整数一、一、知识要点1、 1、完全平方数及其性质定义1 如果一个数是一个整数的平方,则称这个数是完全平方数。
如:1、4、9、…等都是完全平方数,完全平方数有下列性质:性质1 任何完全平方数的个位数只能是0,1,4,5,6,9中的一个。
性质2 奇完全平方数的十位数一定是偶数。
性质3 偶完全平方数是4的倍数。
性质4 完全平方数有奇数个不同的正约数。
性质5 完全平方数与完全平方数的积仍是完全平方数,完全平方数与非完全平方数的积是非完全平方数。
2、 2、质数与合数定义2 一个大于1的整数a,如果只有1和a 这两个约数,那么a 叫做质数。
定义3 一个大于1的整数a,如果只有1和a 这两个约数外,还有其他正约数,那么a 叫做合数。
1既不是质数也不是合数。
3、 3、质数与合数的有关性质(1) (1) 质数有无数多个(2) (2) 2是唯一的既是质数,又是偶数的整数,即是唯一的偶质数。
大于2的质数必为奇数。
(3) (3) 若质数p ∣a ?b ,则必有p ∣a 或p ∣b 。
(4) (4) 若正整数a 、b 的积是质数p ,则必有a=p 或b=p.(5) (5) 唯一分解定理:任何整数n(n>1)可以唯一地分解为:k a k a a p p p n 2121=,其中p 1二、二、例题精讲例1 有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是解设所求的四位数为m 2,它的百位数字为a ,则有m2=1000(a+1)+100a+10(a+2)+(a+3)=1111a+1023=11(101a+93) 因为11是质数,所以11∣(101a+93),而101a+93=11(9a+8)+(2a+5),所以11∣(2a+5),由题意a+3≤9,故a ≤6,从而a=3于是所求的四位数为4356例2 一个四位数有这样的性质:用它的后两位数去除这个四位数得到一个完全平方数(如果它的十位数是0,就只用个位数去除),且这个平方数正好是前两位数加1的平方。
初一数学竞赛讲座 2 初一数学竞赛讲座⑴数论的方法与技巧
初一数学竞赛讲座 2 初一数学竞赛讲座⑴数论的方法与技巧导读:就爱阅读网友为您分享以下“初一数学竞赛讲座⑴数论的方法与技巧”的资讯,希望对您有所帮助,感谢您对的支持!(1)将左边第一个数码移到数字串的最右边;(2)从左到右两位一节组成若干个两位数;(3)划去这些两位数中的合数;(4)所剩的两位质数中有相同者,保留左边的一个,其余划去;(5)所余的两位质数保持数码次序又组成一个新的数字串。
问:经过1999次操作,所得的数字串是什么?解:第1次操作得数字串711131131737;第2次操作得数字串11133173;第3次操作得数字串111731;第4次操作得数字串1173;第5次操作得数字串1731;第6次操作得数字串7311;第7次操作得数字串3117;第8次操作得数字串1173。
不难看出,后面以4次为周期循环,1999=4×499+3,所以第1999次操作所得数字串与第7次相同,是3117。
例11 有100张的一摞卡片,玲玲拿着它们,从最上面的一张开始按如下的顺序进行操作:把最上面的第一张卡片舍去,把下一张卡片放在这一摞卡片的最下面。
再把原来的第三张卡片舍去,把下一张卡片放在最下面。
反复这样做,直到手中只剩下一张卡片,那么剩下的这张卡片是原来那一摞卡片的第几张?分析与解:可以从简单的不失题目性质的问题入手,寻找规律。
列表如下:设这一摞卡片的张数为N,观察上表可知:(1)当N=2(a=0,1,2,3,?)时,剩下的这张卡片是原来那一摞卡片的最后一张,即第2张;(2)当N=2+m(m<2)时,剩下的这张卡片是原来那一摞卡片的第2m张。
取N=100,因为100=2+36,2×36=72,所以剩下这张卡片是原来那一摞卡片的第72张。
说明:此题实质上是著名的约瑟夫斯问题:传说古代有一批人被蛮族俘虏了,敌人命令他们排成圆圈,编上号码1,2,3,?然后把1号杀了,把3号杀了,总之每隔一个人杀一个人,最后剩下一个人,这个人就是约瑟夫斯。
初中数学竞赛讲座——数论部分3(素数与合数)
第三讲素数与合数一、基础知识:对于任意正整数n>1,如果除1和n本身以外,没有其它的因数,那么称n 为素数,否则n称为合数。
这样,我们将正整数分为了三类:1,素数,合数。
例如:2,3,5,7,11,…都是质数。
1既不是质数也不是和数。
1之所以要摒于质数之外,是因为它完全没有质数所具备的那些重要的数论性质。
质数p和a互质,必要而且只要p|\a事实上,若p|a,则p和a除±1外还有公因数±p,故二者不互质。
若p|\a,则±p当然就不是p,a的公因数;但除了±p,只有±1才可能是p的因数,所以只有±1才可能是p,a的公因数,即二者互质。
显然任意两个不同的质数互质。
质数的性质性质1.素数中只有一个数是偶数,它是2.性质2.设n为大于1的正整数,p是n的大于1的因数中最小的正整数,则p为素数。
性质3.设a 是任意一个大于1的整数,则a 的除1 外最小正因数q 是一质数,并且当a是合数时,q≤证明:假设q不是质数,则由定义可知q除1及本身以外还有一正因数,设它为b,因而1<b<q。
但q|a,所以b|a,这与q是a的除1外的最小正因数矛盾,因而q是质数。
当a是合数时,则a=c·q且c>1,否则a是质数。
由于q是a的除1外的最小正因数,所以q小于等于c ,2q≤q c=a故q≤说明:此性质表明,一个合数a一定是不大于的某些质数的倍数。
换言之,如果所有不大于的质数都不能整除a,那么a一定是质数(作为性质4如下)。
此性质是我们检验一个数是否为素数的最常用的方法。
例如判断191是不是素数。
因为不大于<14的素数有2,3,5,7,11,13,由于191不能被2,3,5,7,11,13整除,所以191是质数。
这种方法还可以求不大于a的所有素数,例如,求50以内的全体素数。
由于不大于的质数有:2,3,5,7,可以在2,3,4,,50中依次划去2,3,5,7的倍数(保留2,3,5,7)最后余下的数就是50以内的全体质数。
初一数学竞赛专讲第⑵讲含例题及答案:数论的方法技巧(下)
初一数学竞赛讲座第2讲数论的方法技巧(下)四、反证法 反证法即首先对命题的结论作出相反的假设,并从此假设出发,经过正确的推理,导出矛盾的结果,这就否定了作为推理出发点的假设,从而肯定了原结论是正确的。
反证法的过程可简述为以下三个步骤: 1.反设:假设所要证明的结论不成立,而其反面成立; 2.归谬:由“反设”出发,通过正确的推理,导出矛盾——与已知条件、公理、定义、定理、反设及明显的事实矛盾或自相矛盾; 3.结论:因为推理正确,产生矛盾的原因在于“反设”的谬误,既然结论的反面不成立,从而肯定了结论成立。
运用反证法的关键在于导致矛盾。
在数论中,不少问题是通过奇偶分析或同余等方法引出矛盾的。
解:如果存在这样的三位数,那么就有 100a+10b+c=(10a+b)+(10b+c)+(10a+c)。
上式可化简为80a=b+c,而这显然是不可能的,因为a≥1,b≤9,c≤9。
这表明所找的数是不存在的。
说明:在证明不存在性的问题时,常用反证法:先假设存在,即至少有一个元素,它符合命题中所述的一切要求,然后从这个存在的元素出发,进行推理,直到产生矛盾。
例2 将某个17位数的数字的排列顺序颠倒,再将得到的数与原来的数相加。
试说明,得到的和中至少有一个数字是偶数。
解:假设得到的和中没有一个数字是偶数,即全是奇数。
在如下式所示的加法算式中,末一列数字的和d+a为奇数,从而第一列也是如此,因此第二列数字的和b+c≤9。
将已知数的前两位数字a,b与末两位数字c,d去掉,所得的13位数仍具有“将它的数字颠倒,得到的数与它相加,和的数字都是奇数”这一性质。
照此进行,每次去掉首末各两位数字,最后得到一位数,它与自身相加是偶数,矛盾。
故和的数字中必有偶数。
说明:显然结论对(4k+1)位数也成立。
但对其他位数的数不一定成立。
如12+21,506+605等。
例3 有一个魔术钱币机,当塞入1枚1分硬币时,退出1枚1角和1枚5分的硬币;当塞入1枚5分硬币时,退出4枚1角硬币;当塞入1枚1角硬币时,退出3枚1分硬币。
初一数学竞赛讲座(1-16讲)
初一数学竞赛讲座(一)自然数的有关性质一、知识要点1、 最大公约数定义1 如果a 1,a 2,…,a n 和d 都是正整数,且d ∣a 1,d ∣a 2,…, d ∣a n ,那么d 叫做a 1,a 2,…,a n 的公约数。
公约数中最大的叫做a 1,a 2,…,a n 的最大公约数,记作(a 1,a 2,…,a n ).如对于4、8、12这一组数,显然1、2、4都是它们的公约数,但4是这些公约数中最大的,所以4是它们的最大公约数,记作(4,8,12)=4.2、最小公倍数定义2 如果a 1,a 2,…,a n 和m 都是正整数,且a 1∣m, a 2∣m,…, a n ∣m ,那么m 叫做a 1,a 2,…,a n 的公倍数。
公倍数中最小的数叫做a 1,a 2,…,a n 的最小公倍数,记作[a 1,a 2,…,a n ].如对于4、8、12这一组数,显然24、48、96都是它们的公倍数,但24是这些公倍数中最小的,所以24是它们的最小公倍数,记作[4,8,12]=24.3、最大公约数和最小公倍数的性质性质1 若a ∣b,则(a,b)=a.性质2 若(a,b)=d,且n 为正整数,则(na,nb)=nd.性质3 若n ∣a, n ∣b,则()n b a n b n a ,,=⎪⎭⎫ ⎝⎛. 性质4 若a=bq+r (0≤r<b), 则(a,b)= (b,r) .性质4 实质上是求最大公约数的一种方法,这种方法叫做辗转相除法。
性质5若 b ∣a,则[a,b]=a.性质6若[a,b]=m,且n 为正整数,则[na,nb]=nm.性质7若n ∣a, n ∣b,则[]n b a n b n a ,,=⎥⎦⎤⎢⎣⎡.4、数的整除性定义3 对于整数a 和不为零的整数b ,如果存在整数q ,使得a=b q 成立,则就称b 整除a 或a 被b 整除,记作b ∣a ,若b ∣a ,我们也称a 是b 倍数;若b 不能整除a ,记作b a5、数的整除性的性质性质1 若a ∣b ,b ∣c ,则a ∣c性质2 若c ∣a ,c ∣b ,则c ∣(a ±b)性质3 若b ∣a, n 为整数,则b ∣n a6、同余定义4 设m 是大于1的整数,如果整数a ,b 的差被m 整除,我们就说a ,b 关于模m 同余,记作 a ≡b(mod m)7、同余的性质性质1 如果a ≡b(mod m),c ≡d(mod m),那么a ±c ≡b ±d(mod m),ac ≡bd(mod m)性质2 如果a ≡b(mod m),那么对任意整数k 有ka ≡kb(mod m)性质3 如果a ≡b(mod m),那么对任意正整数k 有a k ≡b k (mod m)性质4如果a ≡b(mod m),d 是a ,b 的公约数,那么()⎪⎪⎭⎫ ⎝⎛≡d m,m mod d b d a2、 例题精讲例1 设m 和n 为大于0的整数,且3m+2n=225.如果m 和n 的最大公约数为15,求m+n 的值(第11届“希望杯”初一试题)解:(1) 因为 (m,n)=15,故可设m=15a ,n=15b ,且(a,b)=1因为 3m+2n=225,所以3a+2b=15因为 a,b 是正整数,所以可得a=1,b=6或a=b=3,但(a,b)=1,所以a=1,b=6从而m+n=15(a+b)=15⨯7=105评注:1、遇到这类问题常设m=15a ,n=15b ,且(a,b)=1,这样可把问题转化为两个互质数的求值问题。
初一数学竞赛系列训练15套
初⼀数学竞赛系列训练15套初⼀数学竞赛系列训练1——⾃然数的有关性质⼀、选择题1、两个⼆位数,它们的最⼤公约数是8,最⼩公倍数是96,这两个数的和是( )A 、56B 、78C 、84D 、962、三⾓形的三边长a 、b 、c 均为整数,且a 、b 、c 的最⼩公倍数为60,a 、b 的最⼤公约数是4,b 、c 的最⼤公约数是3,则a+b+c 的最⼩值是()A 、30B 、31C 、32D 、333、在⾃然数1,2,3,…,100中,能被2整除但不能被3整除的数的个数是( )A 、33B 、34C 、35D 、374、任意改变七位数7175624的末四位数字的顺序得到的所有七位数中,能被3整除的数的个数是( )A 、24B 、12C 、6D 、05、若正整数a 和1995对于模6同余,则a 的值可以是( )A 、25B 、26C 、27D 、286、设n 为⾃然数,若19n+14≡10n+3 (mod 83),则n 的最⼩值是( )A 、4B 、8C 、16D 、32⼆、填空题7、⾃然数n 被3除余2,被4除余3,被5除余4,则n 的最⼩值是8、满⾜[x,y]=6,[y,z]=15的正整数组(x,y,z)共有组9、⼀个四位数能被9整除,去掉末位数后得到的三位数是4的倍数,则这样的四位数中最⼤的⼀个,它的末位数是10、有⼀个11位数,从左到右,前k 位数能被k 整除(k=1,2,3,…,11),这样的最⼩11位数是11、设n 为⾃然数,则3 2 n+8被8除的余数是12、14+24+34+44+…+19944+19954的末位数是三、解答题13、求两个⾃然数,它们的和是667,它们的最⼩公倍数除以最⼤公约数所得的商是120。
14、已知两个数的和是40,它们的最⼤公约数与最⼩公倍数的和是56,求这两个数。
15、五位数H 97H 4能被12整除,它的最末两位数字所成的数7H 能被6整除,求出这个五位数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学竞赛系列讲座(二)特殊的正整数一、知识要点1、 完全平方数及其性质定义1 如果一个数是一个整数的平方,则称这个数是完全平方数.如:1、4、9、…等都是完全平方数,完全平方数有下列性质:性质1 任何完全平方数的个位数只能是0,1,4,5,6,9中的一个.性质2 奇完全平方数的十位数一定是偶数.性质3 偶完全平方数是4的倍数.性质4 完全平方数有奇数个不同的正约数.性质5 完全平方数与完全平方数的积仍是完全平方数,完全平方数与非完全平方数的积是非完全平方数.2、 质数与合数定义2 一个大于1的整数a ,如果只有1和a 这两个约数,那么a 叫做质数.定义3 一个大于1的整数a ,如果只有1和a 这两个约数外,还有其他正约数,那么a 叫做合数.1既不是质数也不是合数.3、 质数与合数的有关性质(1)质数有无数多个(2)2是唯一的既是质数,又是偶数的整数,即是唯一的偶质数.大于2的质数必为奇数.(3)若质数p ∣a •b ,则必有p ∣a 或p ∣b .(4)若正整数a 、b 的积是质数p ,则必有a =p 或b =p.(5)唯一分解定理:任何整数n (n >1)可以唯一地分解为:k a k a a p p p n 2121=,其中p 1<p 2<…<p k 是质数,a 1,a 2,…,a k 是正整数.二、例题精讲例1 有一个四位数恰好是个完全平方数,它的千位数字比百位数字多1,比十位数字少1,比个位数字少2,这个四位数是解 设所求的四位数为m 2,它的百位数字为a ,则有m 2=1000(a +1)+100a +10(a +2)+(a +3)=1111a +1023=11(101a +93)因为11是质数,所以11∣(101a +93),而101a +93=11(9a +8)+(2a +5),所以11∣(2a +5),由题意 a +3≤9,故a ≤6,从而a =3于是所求的四位数为4356例2 一个四位数有这样的性质:用它的后两位数去除这个四位数得到一个完全平方数(如果它的十位数是0,就只用个位数去除),且这个平方数正好是前两位数加1的平方.例如4802÷2=2401=492=(48+1)2,则具有上述性质的最小四位数是(1994年四川省初中数学联合竞赛试题)解 设具有上述性质的四位数是100c 1+c 2,其中10≤c 1,c 2≤99,按题意,得100c 1+c 2=()22122122121c c c c c c c ++=+,∴100c 1= c 1c 2 (c 1+2), 即210012+=c c ,因而(c 1+2)∣100,又10≤c 1≤99,所以c 1=18,23,48,98 相应地c 2=5,4,2,1于是符合题意的四位数是1805,2304,4802,9801,其中最小的是1805评注:本题根据题意,列出不定方程,然后利用整数的整除性来求解.例3 三个质数a 、b 、c 的乘积等于这三个质数和的5倍,则a 2+b 2+c 2= (1996年“希望杯”初二试题)分析:由题意得出abc =5(a +b +c ),由此显然得质数a 、b 、c 中必有一个是5,不妨设a =5,代入前式中再设法求b 、c解 因为abc =5(a +b +c ),所以在质数a 、b 、c 中必有一个是5,不妨设a =5, 于是5bc =5b +5c +25,即(b -1) (c -1)=6,而6=2⨯3=1⨯6,则⎩⎨⎧=-=-3121c b ①或⎩⎨⎧=-=-6111c b ② 由①得b =3,c =4,不合题意,由②得b =2,c =7,符合题意.所以所求的三个质数是5,2,7.于是a 2+b 2+c 2=78评注:质数问题常常通过分解质因数来解决.例4 试证:一个整数的平方的个位数字为6时,十位数字必为奇数.分析:一个整数的平方的个位数字为6,则这个整数的个位数字必为4或6,从而可设此数为a =10g+4或a =10g+6 (g 为整数).证明:设一个整数为a ,则由一个整数的平方的个位数字为6知,此数可设为a =10g+4或a =10g+6 (g 为整数)∴当a =10g+4时,a 2=(10g+4)2=100g 2+80g+16=10(10g 2+8g+1)+6当a =10g+6时,a 2=(10g+6)2=100g 2+120g+36=10(10g 2+12g+3)+6∴十位数字必为10g 2+8g+1和10g 2+12g+3的个位数字,显然是奇数.评注:类似地,可以证明:一个整数的个位数字和十位数字都是奇数,则这个整数不是完全平方数.例5 三人分糖,每人都得整数块,乙比丙多得13块,甲所得是乙的2倍,已知糖的总块数是一个小于50的质数,且它的各位数字之和为11,试求每人得糖的块数.(安徽省初中数学联赛试题)分析:设出未知数,根据题意,列出方程和不等式组,再通过质数的性质来求解. 解 设甲、乙、丙分别得糖x 、y 、z 块,依题意得⎪⎩⎪⎨⎧++<+++==为质数,且 z y x z y x z y y x 50132∵ 11=2+9=3+8=4+7=5+6,故小于50且数字和为11的质数只可能是29和47 若x +y +z =29,则可得4y =42 ,y 不是整数,舍去.若x +y +z =47,则可得4y =60,y =15,从而x =30,z =2∴甲、乙、丙分别得糖30、15、2块.评注:本题的关键是分析出小于50且数字和为11的质数只可能是29和47.这类问题是常利用质数的性质来分析求得所有的可能值,再设法检验求得所要的解.例6 如果p 与p+2都是大于3的质数,那么6是p+1的因数.(第五届加拿大数学奥林匹克试题)分析 任何一个大于3整数都可以表示成6n -2,6n -1,6n ,6n +1,6n +2,6n +3(n 是大于0的整数)中的一种,显然6n -2,6n , 6n +2,6n +3都是合数,所以大于3的质数均可以写成6n +1或6n -1的形式,问题即证明p 不能写成6n +1的形式.解 因为p 是大于3的质数,所以可设p =6n +1(n 是大于0的整数),那么p+2=6n +1+2=6n +3=3(2n +1) 与p+2是大于3的质数矛盾.于是p ≠6n +1,所以p =6n -1(n 是大于0的整数),从而p+1=6n ,即6是p+1的因数.评注:对大于3整数合理分类是解决这个问题的关键.对无限多个整数进行讨论时,将其转化为有限的几类是一种常用的处理方法.例7证明有无穷多个n,使多项式n2+3n+7表示合数.分析:要使多项式n2+3n+7表示合数,只要能将多项式n2+3n+7表示成两个因式的积的形式.证明当n为7的倍数时,即n=7k(k是大于等于1的整数)时n2+3n+7=(7k)2+3⨯7k+7=7(7k2+3k+1) 为7的倍数,所以它显然是一个合数.评注:本题也可将7换成其他数,比如:3、5、11等等.例8求证:22001+3是合数分析:22001+3不能分解,22001次数又太高,无法计算.我们可以探索2 n的末位数字的规律,从而得出22001+3的末位数字,由此来证明22001+3是合数.证明:∵21=2,22=4,23=8,24=16,25=32,26=64,27=128,29=256,…∴24k+1的末位数字是2,24k+2的末位数字是4,24k+3的末位数字是8,24k+4的末位数字是6(k为非负整数)而2001=4⨯250+1∴22001的末位数字是2,∴22001+3的末位数字是5∴5∣22001+3,显然22001+3≠5所以22001+3是合数评注:本题另辟蹊径,通过探索2 n的末位数字的规律来得出22001+3的末位数字,从而证明22001+3是合数.解数学竞赛题,思路要开阔.例9 求证大于11的整数一定可以表示成两个合数之和.证明设大于11的整数为N若N=3k(k≥4,且k为整数),则N=6+3(k-2),显然6和3(k-2)都是合数若N=3k+1(k≥4,且k为整数),则N=4+3(k-1),显然4和3(k-1)都是合数若N=3k+2(k≥4,且k为整数),则N=8+3(k-2),显然8和3(k-2)都是合数于是对任意正整数N(N>11),一定可以表示成两个合数之和.评注:本题是通过对整数的合理分类来帮助解题,这是解决整数问题的一种常用方法.但要注意对整数的分类要不重复不遗漏.例10证明:n (n+1)+1(n是自然数)不能是某个整数的平方.分析:注意到n (n+1)+1=n2+n+1,∵n是自然数,∴n2<n2+n+1<( n+1)2,这为我们证题提供了出发点.证明:n (n+1)+1=n2+n+1,∵n是自然数,∴n2<n2+n+1<( n+1)2,而n、n+1是两个相邻的自然数,∴n (n+1)+1(n是自然数)不能是某个整数的平方.评注:本题应用了在两个相邻正整数的平方数之间不可能还存在一个完全平方数这个结论.例11 如果一个自然数是质数,且它的数字位置经过任意交换后仍然是质数,则称这个数为绝对质数.证明:绝对质数不能有多于三个不同的数字.分析:绝对质数中出现的数字不会有偶数,也不会有5,因为有偶数和5它就一定不是绝对质数,则绝对质数中出现的数字只可能是1,3,7,9.接下来用反证法来证明这个问题.证明:因为绝对质数的数字位置经过任意交换后仍然是质数,所以绝对质数中出现的数字不会有偶数,也不会有5,即绝对质数中出现的数字只可能是1,3,7,9.假设有一个绝对质数M 中出现的数字超过了3个,也即这个绝对质数中出现的数字包含了1,3,7,9,则13791379M 211+==M a a a n ,M 2=M+9137,M 3=M+7913,M 4=M+3791,M 5=M+1397,M 6=M+3197,M 7=M+7139都是质数.可验证,这七个数中每两个数的差都不能被7整除,说明M 1、M 2、M 3、M 4、M 5、M 6、M 7被7除所得余数互不相同.因而必有一个是0,即能被7整除,这与此数是质数矛盾.所以假设不成立,所以绝对质数不能有多于三个不同的数字.评注:本题是用反证法来证明,对于题目中出现“不”的字眼,常常用反证法来证明.三、巩固练习一、选择题1、在整数0、1、2、3、4、5、6、7、8、9中,设质数的个数为x ,偶数的个数为y ,完全平方数的个数为z ,合数的个数为u ,则x +y +z+u 的值是( )A 、17B 、15C 、13D 、112、设n 为大于1的自然数,则下列四个式子的代数值一定不是完全平方数的是( )A 、3n 2-3n +3B 、5n 2-5n -5C 、9n 2-9n +9D 、11n 2-11n -113、有3个数,一个是最小的奇质数,一个是小于50的的最大质数,一个是大于60的最小质数,则这3个数的和是( )A 、101B 、110C 、111D 、1134、两个质数的和是49,则这两个质数的倒数和是( )A 、4994B 、9449C 、4586D 、8645 5、a 、b 为正整数,且56a +392b 为完全平方数,则a +b 的最小值等于( )A 、6B 、7C 、8D 、96、3个质数p 、q 、r 满足等式p+q =r ,且p<q<r ,则p 的值是( )A 、2B 、3C 、5D 、7二、填空题7、使得m 2+m +7是完全平方数的所有整数m 的积是 .8、如果一个正整数减去54,是一个完全平方数,这个正整数加上35后,是另外一个完全平方数,那么这个正整数是 .9、一个质数的平方与一个正奇数的和等于125,则这两个数和积是 .10、p 是质数,p 2+2也是质数,则1997+p 4= .11、若n 为自然数,n +3,n +7都是质数,则n 除以3所得的余数是 .12、设自然数n 1>n 2,且792221=-n n ,则n 1= ,n 2= .三、解答题13、证明:不存在这样的三位数abc ,使cab bca abc ++成为完全平方数.14、试求四位数xxyy ,使它是一个完全平方数.15、a 、b 、c 、d 都是质数,且10<c <d <20,c -a 是大于2的质数,d 2-c 2=a 3b (a +b ),求a 、b 、c 、d 的值16、设a 、b 、c 、d 是四个整数,且()()2222241d c b a cd ab m --+--=是非零整数,求证:m 是合数.17、求一个三位数,使它等于n 2,并且各位数字之积为n -1.18、设n 1、n 2是任意两个大于3的质数,M =121-n ,N =122-n ,M 与N 的最大公约数至少为多少?19、证明有无穷多个n ,使多项式n 2+n +41表示合数.20、已知p 和8p 2+1都是质数,求证:8p 2-p+2也是质数.。