理论力学第9章刚体的平面运动
理论力学习题册答案
第一章静力学公理与受力分析(1)一.是非题1、加减平衡力系公理不但适用于刚体.还适用于变形体。
()2、作用于刚体上三个力的作用线汇交于一点.该刚体必处于平衡状态。
()3、刚体是真实物体的一种抽象化的力学模型.在自然界中并不存在。
()4、凡是受两个力作用的刚体都是二力构件。
()5、力是滑移矢量.力沿其作用线滑移不会改变对物体的作用效果。
()二.选择题1、在下述公理、法则、原理中.只适于刚体的有()①二力平衡公理②力的平行四边形法则③加减平衡力系公理④力的可传性原理⑤作用与反作用公理三.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
b(杆ABa(球A ))d(杆AB、CD、整体)c(杆AB、CD、整体))e(杆AC、CB、整体)f(杆AC、CD、整体四.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
)a(球A、球B、整体)b(杆BC、杆AC、整体第一章 静力学公理与受力分析(2)一.画出下列图中指定物体受力图。
未画重力的物体不计自重.所有接触处均为光滑接触。
多杆件的整体受力图可在原图上画。
WADB CE Original FigureAD B CEWWFAxF AyF BFBD of the entire frame)a (杆AB 、BC 、整体)b (杆AB 、BC 、轮E 、整体)c (杆AB 、CD 、整体 )d (杆BC 带铰、杆AC 、整体)e(杆CE、AH、整体)f(杆AD、杆DB、整体)g(杆AB带轮及较A、整体)h(杆AB、AC、AD、整体第二章平面汇交和力偶系一.是非题1、因为构成力偶的两个力满足F= - F’.所以力偶的合力等于零。
()2、用解析法求平面汇交力系的合力时.若选用不同的直角坐标系.则所求得的合力不同。
()3、力偶矩就是力偶。
()二.电动机重P=500N.放在水平梁AC的中央.如图所示。
理论力学填空选择
第一章 静力学公理和物体的受力分析一、是非判断题1.1 在任何情况下,体内任意两点距离保持不变的物体称为刚体。
( ) 1.2 物体在两个力作用下平衡的必要与充分条件是这两个力大小相等、方向相反,沿同一直线。
( ) 1.3 加减平衡力系公理不但适用于刚体,而且也适用于变形体。
( ) 1.4 力的可传性只适用于刚体,不适用于变形体。
( ) 1.5 两点受力的构件都是二力杆。
( )1.6 只要作用于刚体上的三个力汇交于一点,该刚体一定平衡。
( ) 1.7 力的平行四边形法则只适用于刚体。
( ) 1.8 凡矢量都可以应用平行四边形法则合成。
( ) 1.9 只要物体平衡,都能应用加减平衡力系公理。
( ) 1.10 凡是平衡力系,它的作用效果都等于零。
( ) 1.11 合力总是比分力大。
( ) 1.12 只要两个力大小相等,方向相同,则它们对物体的作用效果相同。
( ) 1.13 若物体相对于地面保持静止或匀速直线运动状态,则物体处于平衡。
( ) 1.14 当软绳受两个等值反向的压力时,可以平衡。
( ) 1.15 静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。
( ) 1.16 静力学公理中,作用力与反作用力公理和力的平行四边形公理适用于任何物体。
1.17 凡是两端用铰链连接的直杆都是二力杆。
( )1.18 如图所示三铰拱,受力F ,F 1作用, 其中F 作用于铰C 的销子上,则AC 、 BC 构件都不是二力构件。
( )二、填空题1.1 力对物体的作用效应一般分为 效应和 效应。
1.2 对非自由体的运动所预加的限制条件称为 ;约束力的方向总是与约束所能阻止的物体的运动趋势的方向 ;约束力由 力引起,且随 力的改变而改变。
1.3 图示三铰拱架中,若将作用于构件AC 上的力偶M处的约束力 。
A. 都不变;B. 只有C 处的不改变;C. 都改变;D. 只有C 处的改变。
第二章 一、 是非判断题1.1当刚体受三个不平行的力作用时,只要这三个力的作用线汇交于同一点,则刚体一定处于平衡状态。
理论力学课件-刚体平面运动
作速度 vA、vB的垂线,交点P即为该瞬时的
速度瞬心。
③ 已知某瞬时图形上两点A 、B 的速度 vA vB且 ⊥连线 AB, 则连线 AB与速度矢 vA、vB 端点连线的交点P即速度瞬心。 (a)
vA vB (a) 若vA 与vB 同向,则 AB
v A vB (b) 若v A 与vB 反向, 则 AB
但各点的加速度并不相等。 设匀角速度为,则 aB aB n AB 2 () 而 ac 的方向沿AC,故
aB ac ,瞬时平动与平动不同。
4. 速度瞬心法 利用速度瞬心求平面图形上点的速度的方法,称速度瞬心法。 平面图形任一瞬时的运动可以视为绕速度瞬心的瞬时转动, 故速度瞬心又称为平面图形的瞬时转动中心。 若P点为速度瞬心,则任意一点A的速度大小为 vA AP , 方向 AP,指向与 一致。 5. 注意的问题 ① 速度瞬心在平面图形上的位置不是固定的,而是随时间 不断变化的。在任一瞬时是唯一存在的。 ② 速度瞬心处速度为零,但加速度不一定为零,不同于定轴 转动。 ③ 刚体作瞬时平动时,虽然各点速度相同,但各点加速度 不一定相同,不同于刚体作平动。
vB v A / sin
在B点做 速度平行四边形,如图示。
l / sin 45 2l ()
vBA vActg l ctg45 l
AB vBA / AB l / l (
)
根据速度投影定理 vB AB vA AB vB sin vA vB vA / sin
n 其中 aa aB , ae aA , ar aBA aBA aBA
于是
aB a A aBA aBA
n
aB a A aBA aBA n 其中:aBA AB ,方向 AB,指向与 一致; aBA n AB 2,方向沿AB,指向A点。
哈工大理论力学教案 第9章
解:1, AB作平面运动 作平面运动
基点: 基点: A
2,
vB = vA + vBA ? √ √
大 ? vA 小 方 √ 向
vB = vA cot
vA vBA = sin
vBA vA ωAB = = l l sin
如图所示平面机构中, 例9-2 如图所示平面机构中,AB=BD= DE= l=300mm.在图示位置时,BD‖AE,杆AB的角速度为 .在图示位置时, , 的角速度为 ω=5rad/s. . 此瞬时杆DE的角速度和杆 中点C的速度 的角速度和杆BD中点 的速度. 求:此瞬时杆 的角速度和杆 中点 的速度.
解:1, AB作平面运动 作平面运动 2, vB = vA + vBA
大 ? ωr ? 小 方 √ 向
= 60
基点: 基点:A
√
√
vB = vA cos 30 = 2 3ωr 3
= 0
vB = 0
= 90
vB = vA = ωr, vBA = 0
如图所示的行星轮系中,大齿轮Ⅰ固定, 例9-4 如图所示的行星轮系中,大齿轮Ⅰ固定,半 径为r 行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为r 径为 1 ,行星齿轮Ⅱ沿轮Ⅰ只滚而不滑动,半径为 2. 系杆OA角速度为 系杆 角速度为 ωO . 的角速度ω 及其上B, 两点的速度. 求:轮Ⅱ的角速度 Ⅱ及其上 ,C 两点的速度.
解:1 , BD作平面运动 作平面运动
2, vD = vB + vDB 大 ? ωl 小 方 √ 向 √ ? √
基点: 基点:B
vD = vDB = vB =ωl
vD vB ωDE = = = ω = 5rad s DE l vDB vB ωBD = = = ω = 5rad s BD l
理论力学第九章刚体的平面运动
O 基点
转角
基点的选取是任意的,平面图形的位置可由O’点 坐标及直线O’M与x’的夹角φ 完全确定。 基点的选择不同,其运动方程9-1a不同,平面图形随基 点平移的速度和加速度也不同。但平面图形绕不同基 点转动的角速度和角加速度却完全相同。证明如下
f (t ) f (t ) 3 3
结 论
刚体的平面运动可以简化为平面图形S 在其自身平面L上的运动。
6
2、运动分析
思考
刚体平面运动是复杂运动,考虑是否可以用 简单运动合成来分析?
Oxy 平移坐标系(动系) 平面运动=随 Oxy 的平移+绕 O 点的转动
=
+
7
3 运动方程
xO f1 t 9-1a yO f 2 t f3 t 9-1b
vB AB = vA
OA
vD
vB
vB
cos30 2 CD作定轴转动(C)
0.2309 m s
vE
vA
vB vD CD 3vB 0.6928 m s CB
vD vE DE = vD ,vE cos 30 vD , vE cos 30 0.8 m s
第九章 刚体的平面运动
本章重点:刚体平面运动的基本概念,求平面图形上各 点的速度与加速度的基点法,以及求速度的 速度投影法和瞬心法,运动学的综合应用。
1
刚体平面运动举例:行星齿轮中小齿轮运动情况
2
车轮运动情况
3
观察曲柄滑块机构中连杆AB的运动情况
4
§ 9-1
1、概念
刚体平面运动的概述和运动分解
30
理论力学_刚体的平面运动
①以A为基点: 随基点A平动到A'B''后, 绕基点转1 角到A'B'
②以B为基点: 随基点B平动到A''B'后, 绕基点转2 角到A'B'
图中看出:AB A'B'' A''B' ,1 2 于是有
lim
t0
1 t
lim
t0
2 t
,1 2
;
d1
dt
d2
dt
,1
2
10
所以,平面图形随基点平动与基点的选择有 关,而绕基点的转动与基点的选取无关.(即在
待求点 基点 即平面图形上任一点的速度等于基点的速度与该点随图形绕 基点转动的速度的矢量和.这种求解速度的方法称为基点法, 也称为合成法.它是求解平面图形内一点速度的基本方法.
二.速度投影法 将上式在AB上投影:
vB AB vA AB 或 vB cos vA cos
即 平面图形上任意两点的速度在该两点连线上的投影等.这 就是 速度投影定理.利用这以定理求平面图形上点的速度的 方法称为速度投影法。速度投影定理反映了刚体上任意两点间 的距离保持不变的特性。
aB
/
O2 B;
而 O AO Bl
1
2
1 2 ;1 2.
30
(b) AB作平面运动, 图示瞬时作瞬时平动, 此时 AB 0, vA vB
O A O B l,
1
2
1 vA / O1A,
23
例3:图示机构,曲柄OA以ω0转动。设 OA=AB=r,图示瞬时O、B、C在同一铅直
线上,求此瞬时点B和C的速度。
解:(1)以OA为研究对象:
南航理论力学习题答案9(1)
第九章刚体的平面运动1.平面运动刚体相对其上任意两点的( )。
① 角速度相等,角加速度相等② 角速度相等,角加速度不相等③ 角速度不相等,角加速度相等④ 角速度不相等,角加速度不相等正确答案:①2.在图示瞬时,已知O 1A = O 2B ,且O 1A 与O 2 B 平行,则( )。
① ω1 = ω2,α1 = α2② ω1≠ω2,α1 = α2③ ω1 = ω2,α1 ≠α2④ ω1≠ω2,α1 ≠α2正确答案:③3.设平面图形上各点的加速度分布如图①~④所示,其中不可能发生的是( )。
正确答案:②4.刚体平面运动的瞬时平动,其特点是( )。
① 各点轨迹相同;速度相同,加速度相同② 该瞬时图形上各点的速度相同③ 该瞬时图形上各点的速度相同,加速度相同④ 每瞬时图形上各点的速度相同正确答案:②5.某瞬时,平面图形上任意两点A 、B 的速度分别v A 和v B ,如图所示。
则此时该两点连线中点C 的速度v C 和C 点相对基点A的速度v CA 分别为( )和( )。
① v C = v A + v B ② v C = ( v A + v B )/2③ v C A = ( v A - v B )/2 ④ v C A = ( v B - v A )/2正确答案:② ④α1α2 ①②③④6.平面图形上任意两点A 、B 的加速度a A 、a B 与连线AB 垂直,且a A ≠ a B ,则该瞬时,平面图形的角速度ω和角加速度α应为( )。
① ω≠0,α ≠0② ω≠0,α = 0③ ω = 0,α ≠0④ ω = 0,α = 0正确答案:③7.平面机构在图示位置时,AB 杆水平,OA 杆鉛直。
若B 点的速度v B ≠0,加速度τB a = 0,则此瞬时OA 杆的角速度ω和角加速度α为( )。
① ω = 0,α ≠0② ω≠0,α = 0③ ω = 0,α = 0④ ω≠0,α ≠0正确答案:②8.在图示三种运动情况下,平面运动刚体的速度瞬心:(a )为( );(b )为( );(c )为( )。
理论力学—刚体平面运动
试求:该瞬时滑块B的速度和AB杆的角速度。
B
O
A
R
O1
解:用速度合成法(基点法)求解。
取A 为基点,B 点的速度为
vB v A vBA
式中:vA r 方向与OA相垂直。
vBA方向与AB杆垂直,大小未知
第二章 刚体的平面运动
§2.1. 刚体平面运动的简化 §2.2. 用分析方法研究平面图形的运动 §2.2.1. 运动方程
§2.2.2.平面图形的角位移、角速度 角加速度
§2.2.3. 平面图形上点的运动分析
*§2.3. 用矢量方法研究平面图形的运动 §2.3.1 平面平动 §2.3.2 定轴转动 *§ 2.3.3 平面图形上点的速度关系 *§2.3.4. 平面图形上点的加速度关系
Z
Y A1
S
A
A2
X
简化
Y
S A
X
§2.2 分析法研究平面图形的运动
2.2.1.运动方程
一、确定图形位置
自由的平面图形S,其位置的确定 可由其上任一线段AB 的位置来确定。
AB 位置由下述方法确定:
y
建立与参考空间固连
B
直角坐标Oxy
x A
A
A点坐标:xA, yA
O
y
A
x
方位角(AB与固定线 Ox夹角)
求解B 点的速度、加速度。
§2.3. 矢量法研究平面图形的运动
2.3.1、平面平动
平面平动特征
刚体上任意线段AB在移动
B
B'
过程中方向不变。
平动刚体上点的速度与加速度 rB A
理论力学刚体的平面运动
A的速度为
vA vO vAO 2vO
B的速度为
vB vO2 vBO2 2vO
同理,可得D的速度为
A
vDO
vD
D vO O
vO
vAO
vA
vO B vO
vCO
C
vBO vO
vB
vD 2vO
9.3.2 速度投影法
应用矢量投影定理,将该矢量式 vB vA vBA向
AB连线投影 。
vA cos vB cos
结论:刚体的平面运动可以 简化为平面图形S 在其自身 平面内的运动。
9.1.3 刚体的平面运动方程
在平面图形S内建立平面直角坐标系Oxy,为确定
平面图形 S 在任意瞬时 t 的位置,只须确定其上任意
线段 AB 的位置,而线段 AB 的位置可由点 A 的坐标
xA,yA 和线段 AB 与 x 轴(或 y 轴)的夹角j 来确定。
9.1.2 平面运动的简化
⑴ 作平面Ⅱ∥定平面Ⅰ且与 刚体相交成一平面图形S 。当刚体 运动时,平面图形S 始终保持在平 面Ⅱ内。平面Ⅱ称为平面图形S 自 身所在平面。
⑵ 在刚体上任取⊥平面图形S 的直线A1A2 , A1A2 作平动,其上各 点都具有相同的运动。
⑶ A1A2 和图形S 的交点 A 的运动可代表全部A1A2 的运动, 而平面图形S 内各点的运动即可代表全部刚体的运动。
[vB ]AB [v A ]AB
(9-3)
速度投影定理:平面图形上任意两点的速度在 这两点连线上的投影相等。速度投影定理是刚体上任 意两点间的距离保持不变的必然结果。适用于任何形 式的刚体运动。
应用速度投影定理求速度的方法称为速度投影 法。
例9-4 用速度投影法求例9-1中点B的速度。
《理论力学》课件 第九章
第九章刚体的平面运动刚体的平面运动是工程机械中较为常见的一种刚体运动,它可以看作为平移与转动的合成,也可以看作为绕不断运动的轴的转动。
在运动中,刚体上的任意一点与某一固定平面始终保持相等的距离。
平面运动刚体上的各点都在平行于某一固定平面的平面内运动。
注意与平移区别()Oϕ'--基点,转角,Oxy--定系用一个平面图形代表作平面运动的刚体;用平面内的任意线段的位置来确定平面图形的位置;用线段上任意点0′的坐标和一个夹角来确定该线段的位置。
平面图形的运动方程对于任意的平面运动,可在平面图形上任取一点O′,称为基点。
在这一点假想地安上一个平移参考系O’x’y’,平面图形运动时,动坐标轴方向始终保持不变,可令其分别平行于定坐标轴Ox和Oy,平面的平面运动可看成为随同基点的平移和绕基点转动这两部分运动的合成。
平移坐标系-'''y x O平移-----牵连运动转动-----相对运动四、重要结论:平面运动可取任意基点而分解为平移和转动。
其中平移的速度和加速度与基点的选择有关,而平面图形绕基点转动的角速度和角加速度与基点的选择无关.任何平面图形的运动可分解为两个运动(1)牵连运动,即随同基点O′的平移;(2)相对运动,即绕基点O′的转动。
平面图形内任一点M的运动也是两个运动的合成,因此可用速度合成定理来求它的速度,这种方法称为基点法。
注意:此处动点、动系、基点在同一个刚体上。
但属于刚体上的不同点。
点M 的牵连速度v v点M的相对速度v vω'M O v v v v 'ωv v AB v v ω结论:平面图形内任一点的速度等于基点的速度与该点随图形绕基点转动速度的矢量和。
平面图形内任意两点A 和B 的速度确定基点A ,一般应使V A 为已知条件。
O’M 上速度分布图角速度与相对速度有关AABAABBAvlABvωϕ=v v v应使V B位于平行四边形的对角线上V BA=AB·ω,此处ω是尺AB的角速度3、角速度分析例9-2图所示平面机构中,AB=BD=DE=l=300mm。
理论力学:第9章 动能定理
δ。小球运动时所受的力有重力 FP 和弹性力 F。当小球由 O 运
动到 B 时,重力 FP 所做的功等于 FPδ;至于弹性力 F 所做的
功,在式(9-9)中令
δ1=0,δ2=δ,即知为
速不变。已知绞车 І 的半径为 r1,其对轴的转动惯量为 I1;滑轮Ⅱ、Ⅲ的半径各
为 r2 、r3,对轴的转动惯量各为 I2、I3;链带的单位长度重量为 q,全长为 l。试
求在变速和匀速两个阶段,电动机的输出功率。忽略各处摩擦。
FP 2 FP1
例 9-5 图
·9·
解:用功率方程求解,设链带速度为 v,系统总动能、有用功率、无用功率为
如果用微分形式的动能定理求解此题,则要注意到
δ WF
FPdy
k
y 2
d
y 2
δ WF
FP
k 4
y dy
将式(d)和式(h)代入式(9-21),得
d
8FP 3Q 16g
v
2 A
FP
k 4
y
dy
此式两边被 dt 除,同样得到物块 A 的微分方程(g)。
k 2
2
。由质点动能
定理得 即
0
1 2
FP g
v02
FP
k 2
2
k
2
2FP
FP g
v02
0
解得
1 k
理论力学-刚体的平面运动
刚体的平面运动
解: 基点法
例 题 4
解法一、选A点为基点, A点的速度vA=u,则B点 B
vBA vB ωAB vA =u 的速度可表示为
vB v A vBA
式中vB 方向沿OB向下,vBA 方向垂直于杆AB,由
ψ
O A
速度合成矢量图可得
u
u vB , tan
所以
u vBA , sin
ω
O φ
A B
第9章 刚体的平面运动
参考答案
9-1, 9-2, 9-3.
刚体的平面运动
作业 9-1
曲柄连杆机构如图所 示,OA= r , 3r 。如 AB 曲柄OA以匀角速度ω转动, A ω
求当 60,0 和 90 时点 B的速度。 B
刚体的平面运动
vA
ω
作业 9-1
刚体的平面运动
作业 9-2
A
如图所示,半径为R的
D
vO B O
车轮,沿直线轨道作无滑动 的滚动,已知轮心O以匀速 vO前进。求轮缘上A,B,C 和D各点的速度。
C
刚体的平面运动
作业 9-3
曲柄滑块机构如图所示,曲柄OA长R,连杆AB长l。设曲柄以匀 角速度ω沿逆钟向绕定轴 O 转动。试求当曲柄转角为φ 时滑块B的速 度和连杆AB的角速度。
ω
O
所以
B
x
vB v A
vB vBA vA
y
π 2 π 2
sin( ) sin( ) R π cos sin( ) 2
其中
sin
R sin l
可求得连杆AB 的角速度
理论力学复习总结知识点
第一篇静力学第1 章静力学公理与物体的受力分析1.1 静力学公理公理1 二力平衡公理:作用于刚体上的两个力,使刚体保持平衡的必要和充分条件是:这两个力大小相等、方向相反且作用于同一直线上。
F=-F’工程上常遇到只受两个力作用而平衡的构件,称为二力构件或二力杆。
公理2加减平衡力系公理:在作用于刚体的任意力系上添加或取去任意平衡力系,不改变原力系对刚体的效应。
推论力的可传递性原理:作用于刚体上*点的力,可沿其作用线移至刚体任意一点,而不改变该力对刚体的作用。
公理3 力的平行四边形法则:作用于物体上*点的两个力的合力,也作用于同一点上,其大小和方向可由这两个力所组成的平行四边形的对角线来表示。
推论三力平衡汇交定理:作用于刚体上三个相互平衡的力,假设其中两个力的作用线汇交于一点,则此三个力必在同一平面,且第三个力的作用线通过汇交点。
公理4作用与反作用定律:两物体间相互作用的力总是同时存在,且其大小相等、方向相反,沿着同一直线,分别作用在两个物体上。
公理5钢化原理:变形体在*一力系作用下平衡,假设将它钢化成刚体,其平衡状态保持不变。
对处于平衡状态的变形体,总可以把它视为刚体来研究。
1.2 约束及其约束力1.柔性体约束2.光滑接触面约束3.光滑铰链约束第2章平面汇交力系与平面力偶系1.平面汇交力系合成的结果是一个合力,合力的作用线通过各力作用线的汇交点,其大小和方向可由失多边形的封闭边来表示,即等于个力失的矢量和,即F R=F1+F2+…..+Fn=∑F2.矢量投影定理:合矢量在*轴上的投影,等于其分矢量在同一轴上的投影的代数和。
3.力对刚体的作用效应分为移动和转动。
力对刚体的移动效应用力失来度量;力对刚体的转动效应用力矩来度量,即力矩是度量力使刚体绕*点或*轴转动的强弱程度的物理量。
〔Mo〔F〕=±Fh〕4.把作用在同一物体上大小相等、方向相反、作用线不重合的两个平行力所组成的力系称为力偶,记为〔F,F’〕。
理论力学第九章修改
vPA AP vA , 方向 PA, 恰与vA反向. 所以
vP 0
瞬心法的优点是将刚体的平面运动问题转化为刚体绕瞬心 的定轴转动问题。
3.几种确定速度瞬心位置的方法
①已知图形上一点的速度vA 和图形角速度,
可以确定速度瞬心的位置.(P点)
AP vA
,
AP vA且, P在vA
顺转向绕A点
aB cos 30 0 0 aBAn
aB aBA n / cos 30
20 3 2 /
3
3 2
40 2 131.5cm/s2 ()
3
研究轮B:P2为其速度瞬心
B vB / BP2 20 3 /15 7.25rad/s ( )
B aB / BP2 131.5 /15 8.77rad/s2 ( )
动系作平动。
取B为动点, 则B点的运动可视为
牵连运动为平动和相对运动为圆 周运动的合成。
根据速度合成定理 va ve vr , 则B点速度为:
vB vA vBA
平面图形内任意点的速度等于基点的速度与该点随图形绕 基点转动速度的矢量和。
例9-1 椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示,AB=l。 求:B端的速度以及尺AB的角速度。
例9-9 如图所示,在外啮合行星齿轮机构中,系杆以匀角速
度ω1绕O1转动。大齿轮Ⅱ固定,行星轮Ⅰ半径为r,在轮Ⅱ上 只滚不滑。设A和B是轮缘 Ⅰ上的两点,点A在O1O的延长线上, 而点B在垂直于O1O的半径上。
求:点A和B的加速度。
已知:O1O l, O1O 1, r1 r,纯滚动。求:aA, aB。 解: 1 轮Ⅰ作平面运动,瞬心为 C
arctan
r l
aB ao2 aBnO 2
理论力学第九章刚体的平面运动
v CA
v MA
C
vA
vA vA
v M = v A + v MA
v M = v A − ω ⋅ AM
v 当M在VA垂线上时: MA = ω ⋅ AM 垂线上时:
必可找到一点C: v C = 0 (v A = v CA ) v AC v A ⇒ AC = =
ω
ω
15
2、平面图形内各点的速度分布
小 A 大 ? ω ⋅O = ω r2 0 Ⅱ 方 ? 向 √ √
2 2 vB = vA +vBA
vB
vA
v CA v A
vC
v BA v A
= 2ω (r +r2 ) O 1
vB与 A夹 为 o, 向 图 v 角 45 指 如
4 vC =vA +vCA vC =vA +vCA = 2 O(r +r ) ω 1 2
向 方 √
√ √
8
ω DE
[例9-3]曲柄连杆机构如图所示,OA =r,AB= 3 。如 3]曲柄连杆机构如图所示, 曲柄连杆机构如图所示 r 转动。 曲柄OA以匀角速度ω转动。 0o 90 点 的 度 求 当 =60o,, o时 B 速 。 : ϕ
vA
vA
解:1 AB作平面 运动, 基点: 运动, 基点:A
6
2、例题分析
轴的负向运动, [例9-1] 椭圆规尺的A端以速度vA沿x 轴的负向运动, 如图所示, 如图所示,AB=l。求:B端的速度以及尺AB的角速度。 。 的角速度。 解:1、AB作平面运动, 作平面运动, 作平面运动 基点: 基点: A
vB
v BA
2 vB = vA +vBA
胡汉才编著《理论力学》课后习题答案第9章习题解答
9-1在图示系统中,均质杆OA 、AB 与均质轮的质量均为m ,OA 杆的长度为1l ,AB 杆的长度为2l ,轮的半径为R ,轮沿水平面作纯滚动。
在图示瞬时,OA 杆的角速度为ω,求整个系统的动量。
ω125ml ,方向水平向左题9-1图 题9-2图9-2 如图所示,均质圆盘半径为R ,质量为m ,不计质量的细杆长l ,绕轴O 转动,角速度为ω,求下列三种情况下圆盘对固定轴的动量矩: (a )圆盘固结于杆;(b )圆盘绕A 轴转动,相对于杆OA 的角速度为ω-; (c )圆盘绕A 轴转动,相对于杆OA 的角速度为ω。
(a )ω)l R (m L O 222+=;(b )ω2ml L O =;(c )ω)l R (m L O 22+= 9-3水平圆盘可绕铅直轴z 转动,如图所示,其对z 轴的转动惯量为z J 。
一质量为m 的质点,在圆盘上作匀速圆周运动,质点的速度为0v ,圆的半径为r ,圆心到盘中心的距离为l 。
开始运动时,质点在位置0M ,圆盘角速度为零。
求圆盘角速度ω与角ϕ间的关系,轴承摩擦不计。
9-4如图所示,质量为m 的滑块A ,可以在水平光滑槽中运动,具有刚性系数为k 的弹簧一端与滑块相连接,另一端固定。
杆AB 长度为l ,质量忽略不计,A 端与滑块A 铰接,B 端装有质量1m ,在铅直平面内可绕点A 旋转。
设在力偶M 作用下转动角速度ω为常数。
求滑块A 的运动微分方程。
t l m m m x m m kx ωωsin 2111+=++&&9-5质量为m,半径为R的均质圆盘,置于质量为M的平板上,沿平板加一常力F。
设平板与地面间摩擦系数为f,平板与圆盘间的接触是足够粗糙的,求圆盘中心A点的加速度。
9-6均质实心圆柱体A 和薄铁环B 的质量均为m ,半径都等于r ,两者用杆AB 铰接,无滑动地沿斜面滚下,斜面与水平面的夹角为θ,如图所示。
如杆的质量忽略不计,求杆AB 的加速度和杆的内力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、刚体平面运动的简化
对于刚体所作的平面运动的研究,可以不必考虑它的 厚度,而简化为以一个截面代表的平面图形在其自身平面 内的运动来研究。研究刚体的平面运动,就是要确定代表 刚体的平面图形的运动,确定图形上各点的速度和加速度。
动画
刚体平面运动实例
动画
刚体平面运动实例
动画
刚体平面运动实例
动画
刚体平面运动简化
动画
刚体平面运动简化实例
§9.1 刚体平面运动的概述和运动分解
三、刚体平面运动的方程
为了确定平面图形的运动,取静系OX,Y 在图形 上S任取 一点 (O称 为基点),并取任一线段 ,O只M要确定了 的O位M 置, 的位S 置也就确定了
y
B O
ω
φ x
A
§9.2 求平面图形内各点速度的基点法
例 题 9-1
运动演示
§9.2 求平面图形内各点速度的基点法
例 题 9-1
解 : 基点法
y
vB
vBA
vA
B
O
规尺AB作平面运动 。以A点为基点,应用速度 合成定理,B点的速度可表示为
vB v A vBA
ω
φ vA
A
其中, vA的大小已知。由速度合成矢量图可
C B
ω
D
A 60
E 60
§9.2 求平面图形内各点速度的基点法
例 题 9-2
运动演示
§9.2 求平面图形内各点速度的基点法
例 题 9-2
解: 基点法
B ω
A 60
vDB
vD
C
60
60
vB D vB
E 60
1. 求杆DE的角速度。
杆BD作平面运动, vB大小为 vB l 1.5 m s-1
取A为基点, 将动系铰接于A点,牵连运动是随同基点A的
平动,相对运动是绕基点A的转动。所以B点的牵连速
度等于基点A的速度,B点的相对运动是以基点A为圆心AB, 为半径的圆周运动,则动点B点的运动可视为牵连运动
为平动和相对运动为圆周运动的合成。
§9.2 求平面图形内各点速度的基点法
求平面图形内任一点速度的基点法
动画
刚体平面运动分解
动画
平面运动
动画
平面运动
动画
平面运动分解
动画
平面运动
动画
平面运动分解
动画
平面运动分解
§9.2 求平面图形内各点速度的基点法
一.基点法(合成法)
已一知点求A::的图某速形瞬度上时vv任平A 一面,点运图B动形的平角速面速度图度vv形B S内
A vvA
方向与AB垂直。 以B点为基点,应用速度合成定理,D点的
速度可表示为 vD vB vDB
其中,D 点绕 B 的转动速度 vDB 的方向与BD垂直,D点的速度 vD与 DE 垂直。
§9.2 求平面图形内各点速度的基点法
例 题 9-2
由速度合成矢量图可得
vDB
ωBD
B
C
60
vD
60
ω
D
vB
vB
A 60
vvBA 总是垂直于AB连线,即vvBA在AB连线上的投影等于零。
所以
vvB AB vvA AB
速度投影定理:刚体上任意两点的速度在过这两点的直线 上的投影相等。
§9.2 求平面图形内各点速度的基点法
例 题 9-1
椭圆规尺的A端以速度vA沿 x 轴的负向运动,如图 所示,AB=l。试求B端的速度以及规尺AB的角速度。
§9.2 求平面图形内各点速度的基点法
例,OA= r ,AB 3r 。如
曲柄OA以匀角速度ω转动,
B
求当
, 和60 0 时点90B的
速度。
§9.2 求平面图形内各点速度的基点法
例 题 9-3
运动演示
§9.2 求平面图形内各点速度的基点法
例 题 9-3
解: 基点法
得
vB vA cot
v BA
vA
sin
x
故规尺AB的角速度
vBA vBA v A AB l l sin
(顺时针)
§9.2 求平面图形内各点速度的基点法
例 题 9-2
如图所示平面机构中,AB=BD=DE=l=300 mm。在图示位置时, BD∥AE。杆AB的角速度为ω=5 rad·s-1。试求此瞬时杆DE的角速度 和杆BD中点C 的速度。
vA
A
ω
连杆AB作平面运动,以A为基点,B点
vA B vB
vBA
的速度为
vB = vA+ vBA
其中,vA方向与OA垂直, vB沿BO方向, vBA与AB垂直。
⑴ 当 60 时, AB 3r
此时OA恰与AB垂直,由速度合成矢量图可得
vB vA
cos 30 2 3 r
vve vvA vvr vvBA v rvAB
vvB vva vve vvr vvA vvBA
vvB
vvBA B vvA
A vvA
定理:刚体作平面运动时,其上任一点的速度等于该瞬 时基点的速度与该点随图形绕基点作圆周运动时的速度 的矢量和。
§9.2 求平面图形内各点速度的基点法
二、速度投影定理
y
SM
O
o
x
§9.1 刚体平面运动的概述和运动分解
刚体平面运动方程
xo xo (t )
yo
yo (t )
(t)
刚体的平面运动可以看成是平动和转动的合成运动。
四、刚体的平面运动分解为平动和转动
刚体平面运动可以分解为随同基点的平动和绕基点 的转动,平面图形随同基点平动的速度和加速度与基点 的选取的有关。绕基点转动的角速度和角加速度则与基 点的选择无关。
vB vB
60
仍以B点为基点,应用速度合成定理,C点 的速度可表示为
vC vB vCB
其中vB大小和方向均为已知,vCB 方向与BD
E 杆垂直,大小为
vCB
BD
l 2
0.75
m s-1
由此瞬时速度矢的几何关系,得出此时vC
的方向恰好沿杆BD,大小为
vc vB2 vCB2 1.3 m s-1
E 60
vD vDB vB 1.5 m s-1
vDB 为D点绕B的转动速度,应有
vDB BD BD
于是可得此瞬时杆BD的角速度为
BD vBD l 5 rad s-1
转向为逆时针
§9.2 求平面图形内各点速度的基点法
例 题 9-2
2. 求杆BD中点C的速度。
B ω
A 60
vCB C vC D
主要内容
§9.1 刚体平面运动的概述和运动分解 §9.2 求平面图形内各点速度的基点法 §9.3 求平面图形内各点速度的瞬心法 §9.4 用基点法求平面图形内各点的加速度 §9.5 运动学综合应用举例
§9.1 刚体平面运动的概述和运动分解
一、刚体平面运动的概念 在运动过程中,刚体上所有各点到某一固定平面的距