第九章 离心技术
离心技术
离心技术离心技术是根据颗粒在匀迷圆周运动时受到一个外向的离心力的行为发展起来的一种分离分析技术。
1.用于工业生产的,如化工、制药、食品等工业大型制备用的离心技术,转速都在每分钟5000转以下。
2.用于生物、医学、化学等实验室分析研究的,转速从每分钟几千到几万转以上,此类技术的使用目的在于分离和纯化样品,以及对纯化样品的有关性能进行研究。
一、基本原理1.离心力Centrifugal force (F)F=mω2rω:旋转角速度(弧度/秒) r:旋转体离旋转轴的距离(cm)m:颗粒质量2.相对离心力Relative centrifugal force (RCF)RCF 就是实际离心力转化为重力加速度的倍数RCF=F离心力/F重力= mω2r/mg= ω2r/gg为重力加速度(980.70g/sec2)同为转于旋转一周等于2π弧度,因此转子的角速度以每分钟旋转的次数(每分钟转数n 或r/min)表示:一般情况下,低速离心时常以r/min来表示,高速离心时则以g(或数字Xg)表示。
用“X g”表示每分钟转速可以真实反映颗粒在离心管不同位置的离心力。
Dole&Cotzias 制作了转子速度和半径相对应的离心力列线图(图2—15)。
3.沉降系数Sedimentation coefficient (S)当转子内样品绕着旋转轴离心时,样品沉降率是由样品颗粒的大小、形状、密度和溶剂的粘度、密度以及离心加速度决定的,在一般情况下,样品的沉降特征可以用沉降系数来表示:S:是指单位离心场中粒子移动的速度。
S的物理意义是颗粒在离心力作用下从静止状态到达等速运动所经过的时间。
S在实际应用时常在10-13秒左右,故把沉降系数10-13秒称为一个Svedberg单位,简写S,单位为秒,1S二1×10-13秒。
对一定的样品,在一定的介质中,样品沉降系数S 也常保持不变。
文献中常用沉降系数以描述某些生物大分子或亚细胞器大小。
离心技术的操作方法
离心技术的操作方法离心技术是一种将混合物中的各种成分分离的物理分离方法。
它是利用离心力的作用,使高密度的组分沉积到离心管底部,而低密度的组分则上浮到离心管顶部,从而实现它们之间的分离。
离心技术在化学、生物、医学等领域中得到广泛应用,具有操作简便、分离效果好等优点。
以下是离心技术的操作方法:首先,准备好实验所需的离心机和离心管。
离心机是用来提供离心力的设备,而离心管则是用来装载混合物的容器。
然后,将混合物均匀地倒入离心管中。
为了保证混合物均匀,可以轻轻摇晃离心管或使用移液管将混合物抽取到离心管中。
接下来,将装有混合物的离心管放入离心机的离心盘中。
离心盘是用来固定离心管的部分,离心机启动时会旋转离心盘,从而产生离心力。
然后,根据分离物性质的不同,选择合适的离心参数。
离心参数包括离心时间、离心力等。
离心时间是指离心机运转的时间,它根据混合物的组成和离心力的大小来确定。
离心力是指离心机产生的离心力的大小,它与离心机的转速和离心半径有关。
根据需要,可以调整离心时间和离心力来达到最佳的分离效果。
然后,启动离心机,让其旋转。
离心机开始旋转后,产生的离心力会使离心管中的混合物发生分离。
高密度的组分会沉积到离心管底部,而低密度的组分则上浮到离心管顶部。
最后,当离心机停止旋转后,离心管中的分离物便会形成分层。
根据需要,可以使用移液管将所需的分离物转移到另一个容器中。
对于离心管顶部的上清液,可以小心地利用移液管将其吸取出来。
对于离心管底部的沉淀,可以倾斜离心管,将其中的液体小心地倒掉,然后将沉淀用移液管转移到另一个容器中。
此外,还需要注意一些操作细节。
例如,在装载混合物时,应注意离心管的容量,不要超过其容积的限制。
在调整离心参数时,应选择适当的离心时间和离心力,避免过分离或不完全分离。
在启动离心机后,应注意观察离心机的运转情况,确保其稳定运转。
总之,离心技术是一种常用的物理分离方法,通过利用离心力使混合物中不同密度的组分分离。
离心技术
s(秒)=
dx/dt w2x
=
2r2(p- m)
9
颗粒直径
dx: 颗粒与转轴中心的距离 r:
dt:颗粒沉降所需时间
w: 角速度 X: 转子半径
p : 颗粒密度
m : 溶液介质密度
: 溶液介质粘度
S =1×10-13s
8
决定沉降速度的因素:
颗粒大小;颗粒密度;溶液介质密度和粘度
9
2.相对离心力(RCF):重要指标
29
2.细胞破碎
* 渗透压冲击
* 超声波振荡
* 机械力研磨或剪切
* 反复冻融
原则:只需破碎细胞膜,保留完整细胞器
30
3.细胞结构成分的分步分离
一系列的差速离心+密度梯度离心
差速离心:分离细胞器
梯度离心:纯化细胞器
31
4.离心方法的选择
根据分离细胞器的性质:
匀浆物中各类细胞器大小不同:
差速离心
上清中各类细胞器大小有差别:
速率区带离心
上清中各类细胞器密度有差别:
等密度离心
32
密度梯度离心
梯度离心需要的设备
离心机:低速、高速、超高速 转头: 介质: 水平、固定角、垂直 蔗糖, Ficoll, Percoll, Accudenz (Nycodenz),
Metrizoate
介质的梯度形成装置和收集装置
33
5.分离细胞器的鉴定和评价
35
6.举例:细胞核分离
原理: 细胞核特征:体积大,沉降系数大; 密度高,可通过浓蔗糖,分离容易。 分离设计: • 细胞破碎(机械匀浆,渗透溶胀,表面活性剂),
释放细胞核,光镜鉴定释放效果。
• 离心,光镜鉴定分离效果
离心技术
五、离心机使用注意事项 使用前应将负荷平衡, 1. 使用前应将负荷平衡 , 重量误差越小 越好 严禁空转, 2. 严禁空转,启动时转速由低至高逐步 调节,严格高速启动。 调节,严格高速启动。 选择合适的转头,控制转速。 3. 选择合适的转头,控制转速。 保护转头,防止碰撞、擦伤、 4. 保护转头,防止碰撞、擦伤、防止异 污垢进入、用毕立即清洁。 物、污垢进入、用毕立即清洁。 低温离心样品时, 5. 低温离心样品时 , 先将空转头预冷一 定时间。温度± 定时间。温度±0℃。 发现异常如噪声,应立即停机检查。 6. 发现异常如噪声,应立即停机检查。 离心机结构及使用方法——实习 六、离心机结构及使用方法 实习 离心机的应用——自学 七、离心机的应用 自学
2、离心机的分类 :按离心机应用范围分为四类: 、 离心机的分类:按离心机应用范围分为四类: 普通离心机、专用离心机、制备离心机和分析用离心机, 普通离心机、专用离心机、制备离心机和分析用离心机, 按离心速度即离心机转速分为: 按离心速度即离心机转速分为: 普通离心机:转速小于5000转/min,在室温下运 ① 普通离心机:转速小于 转 , 主要用于红细胞,微生物细胞,粗大沉淀物, 行,主要用于红细胞,微生物细胞,粗大沉淀物,细胞 细胞膜等的沉淀分离。 核、细胞膜等的沉淀分离。 高速离心机:转速为5000~20000转/min,通常 ② 高速离心机:转速为 ~ 转 , 备有致冷和温控装置。适用于各种生物细胞、病毒、 备有致冷和温控装置。适用于各种生物细胞、病毒、血 清蛋白等有机物、无机物溶液, 清蛋白等有机物、无机物溶液,悬浮液及胶体溶液等样 品的分离,浓缩、提取制备工作。 品的分离,浓缩、提取制备工作。它是细胞和分子生物 水平研究的基本工具。 水平研究的基本工具。 ③ 超 速 离 心 机 : 转 速 为 20000 ~ 90000 转 /min 。 Ultrcentrifuge因它能产生超强的离心力场而达到独特的 因它能产生超强的离心力场而达到独特的 分离纯化目的。它是分离、纯化、分析、 分离纯化目的。它是分离、纯化、分析、鉴定生物大分 子的重要技术手段 。 如 DNA/RNA 杂交分子的分离 , HDL的分离。 的分离。 的分离
离心技术的原理及应用
离心技术的原理及应用1. 离心技术的概述离心技术是一种以离心力为基础的分离过程,通过利用离心力将混合物的不同组分分离出来。
离心技术被广泛应用于生物化学、制药、环保、食品加工等领域,可用于固体颗粒的分离、液相溶液的分离、精炼和浓缩等。
2. 离心技术的原理离心技术的原理基于离心力的作用。
离心力是由于转动物体的离心力产生的一种力。
物体在离心力作用下,会被推向物体固定轴线的外侧,形成离心效应,使得混合物的不同组分被分离开来。
离心技术通常通过离心机实现。
离心机的核心部件是转子,可以用来容纳试样。
转子围绕着离心机轴线高速旋转,产生强大的离心力,使得试样中的不同组分被分离开来。
3. 离心技术的应用离心技术在各个领域都有广泛的应用,下面列举了其中几个常见的应用:3.1 生物化学领域•分离DNA / RNA:离心技术可以用于从细胞中分离出DNA或RNA,用于基因测序、基因工程等领域的研究。
•分离蛋白质:离心技术可以用于从混合的生物样本中分离出特定的蛋白质,用于进一步的分析和研究。
3.2 制药领域•药物纯化:离心技术可以用于从化学合成或发酵得到的混合药物中分离出纯的活性成分。
•药物制剂:离心技术可以用于将固体颗粒与液体分离,制备出药物颗粒或胶体。
3.3 环保领域•污水处理:离心技术可以用于将污水中的固体颗粒与液体分离,提高水质。
•垃圾处理:离心技术可以用于将垃圾中的有机物与无机物分离,实现垃圾的资源化利用。
3.4 食品加工领域•榨汁:离心技术可以用于将水果中的果汁与果渣分离,制作果汁。
•提取物质:离心技术可以用于从食材中提取有营养或有药用价值的物质,用于食品加工。
4. 离心技术的优点•分离效果好:离心技术可以将混合物中的不同组分快速、高效地分离出来。
•操作简单:离心技术的操作相对简单,不需要复杂的设备和步骤。
•适用性广:离心技术可以适用于多种样本类型和领域,具有广泛的应用性。
5. 离心技术的局限性•样品量有限:离心技术的样品容量一般有限制,不适合处理大量的样品。
离心技术
离心技术离心技术是利用离心力,依据物质的沉降系数、扩散系数和浮力密度的差异而进行物质的分离、浓缩和分析的一种专门技术。
各种离心机是实现其技术目的的仪器保证。
离心技术是利用离心力,依据物质的沉降系数、扩散系数和浮力密度的差异而进行物质的分离、浓缩和分析的一种专门技术。
各种离心机是实现其技术目的的仪器保证。
离心技术就其原理来说属于一种物理的技术手段,目前在农业、医药、食品卫生、生物制品、生物工程、细胞生物学、分子生物学和生物化学等诸多领域里得到了广泛的应用,使离心机,尤其是超速离心机已成为现代生物化学实验室中不可缺少的必备设备。
为了满足生产、科研和教学的不同需要,不同类型、不同规格和不同用途的离心机应运而生,且随着整个科学技术的发展不断地得到改进、提高和更新。
现将离心机分类如下:1.不同类型的离心机不仅具有不同的构造,而且具有不同的应用范围。
普通离心机的最大转速在10000 rpm以下,最大相对离心力小于10000×g,容量从几十毫升至几升,分离形式是固液沉降分离,转子有角式和外摆式,其转速不能严格控制,通常不带冷冻系统,于室温下操作。
这种离心机多用交流整流电动机驱动,电机碳刷易磨损,转速由电压调压器调节,起动电流大,速度升降不均匀,一般转头是置于一个硬质钢轴上,因此离心前精确平衡离心管及其内容物极为重要,否则易造成的离心机损坏。
在现代实验室中,普通离心机通常在下列情况下用于物质的分离和提取:(1)沉淀有粘滞;(2)沉淀颗粒小,容易透过滤纸;(3)沉淀量过多而疏松;(4)沉淀量过少,而需要定量分析;(5)母液粘稠;(6)母液量很少,分离时需减少损失;(7)沉淀和母液需迅速分离;(8)一般胶体溶液。
高速离心机能够对样品溶液中的悬浮物质进行高纯度的分离、浓缩、精制和提取,多用于血液、细胞、蛋白质、酶、病毒、激素等的分离制备。
超速离心机目前主要用于:(1)测定生物大分子和高分子聚合物的沉降系数(S)、扩散系数(D)和分子量(M);(2)研究生物大分子的大小和形状;(3)研究生物大分子的缔合、离解和降解;(4)追随分离高分子的提纯过程,鉴定其均一程度,测定其组成和浓度;(5)分离提纯血清脂蛋白;(6)发现异常血清蛋白质成分等。
离心技术
所以 rpm = 1000 RCF 11.2r
利用此公式可以进行相对离心力和转数的计算,例如:已 知 一 个 离 心 机 转 头 的 半 径 r=254mm (25.4cm), 速 度 rpm=4200, 求RCF?
根据公式 RCF = 11.2r(rpm 1000)2
RCF = 11.2 25.4 (4200 1000)2 = 5018g
二级真空系统。这种泵的真空度可达133.322 10-3pa
3.3.4光学系统:
a 转头识别:通过离心腔内的光学扫描系统,对安装的转 头进行扫并把扫描的信号与本机设定的转头比较以此识别 。 b测速:通过转头底黑白相间的花边进行测定, c沉降带检测:通过光学系统将运行中的离心状态显示出 来。
3.3.5控制系统: 控制系统是离心机的指挥中心。 a速控:包括设速、测速、控速等 设速:是在离心前设定离心时所需速度。 测速:在离心机启动后通过光电检测器测定运行的真实 速度 控速:包括提速、恒速、限速、减速等。 b温控:包括制冷启动、恒温、加温除霜
4转头的基本参数与性能
4.1转头K因子:
转头K因子是转头的常数,它表示转头大小和转速之间的关系。出 厂时就被标定了,以表示每个转头的分离性能。用公式表示为: (rmax/rmin ) S=2.533 1011ln──── (rpm)2.T S:表示颗粒的沉降系数(单位:Sec) rmax:为转头最大半径(单位:cm) rmin:为转头最小半径(单位:cm) rpm:为转头的允许速度(单位:转/分)
超速离心
1概述 2离心的基本理论 3离心机的分类与构造 4转头的基本参数与性能 5离心技术 6安全操作与离心机的保养
1概述
1.1离心技术过程的发展
第九章 离心技术
ω 是指该转头的最大允许角速度
S,T 和K之间的关系
K 最高转数 T =--------------- x (----------------)2 S 实际转数
二. 离心设备 离心机
转子 离心管 附件
(一).离心机(Centrifugel) 1.低速离心机 转子 电动机
转子带有放置离心管的孔 转子的中央位于离心机的驱动轴上 离心机的转速和温度控制不够准确 一般最高转速在6,000rpm以下 实验室中常用于分离制备。
离心技术的基本目的
1.最大程度地富集目的颗粒。 2.最大程度地减少非目的颗粒。
问题是在同一离心力作用下,所有的颗粒均会以 不同的速度沉淀。如何能够有效的达到上述的 基本目的,这就是我们要考虑和必须回答的问 题。
3.沉降系数 Sedimentation icient (S) 样品沉降率 样品颗粒的大小 形状 密度 溶剂的粘度、密度 离心加速度
若用 ω=
2πn (rad/sec) 60
(2πn/60)2
RCF= x r 980.7 =1.118×10-5 n2 r n:转子每分钟的转数(rpm)
影响离心力的两大因素
1. 离心机转数(rpm) 2. 离心半径(r )
换用不同型号的离心机时,你不能只考虑 离心机转数而忽视离心机半径。不同型号 和半径的离心机在相同转数时会产生大小 不同的离心力,也就会产生不同的离心效 果。
澄清时间(T值)--2
1 Lnrt - Lnr0 t1-t0 = ---- x ---------------S
ω2
澄清时间与颗粒的沉淀系数S成反比, 与离心机的重要参数( Lnrt - Lnr0) /ω2成正比,即与所使用的离心机或 使用的转头有关。
离心技术工作原理
离心技术工作原理离心技术是一种常见的工程技术,它的工作原理是基于离心力的运用。
离心力是一种向心力的反作用力,它使物体沿着曲线运动时远离曲线的中心。
离心技术利用离心力来实现物质的分离、浓缩和纯化等目的。
离心技术的工作原理可以简单地描述为:通过旋转运动产生离心力,然后利用离心力对物质进行分离。
具体来说,离心技术通常包括以下几个步骤:将待分离的混合物加入到离心设备中,通常是一个圆盘或圆柱形的容器。
然后,通过电机或其他动力源使离心设备高速旋转起来。
旋转运动会产生离心力,离心力的大小与旋转速度和离心设备的几何形状有关。
接下来,由于离心力的作用,混合物中的不同组分会受到不同的力,从而产生不同的运动轨迹。
通常,较重的组分会沉积在离心设备的底部,而较轻的组分则会向上移动。
这样,通过调整离心设备的设计和运行参数,可以实现对混合物的分离。
根据需要,可以采取不同的方法将分离出的物质收集起来。
例如,可以通过改变离心设备的速度或倾斜角度来控制分离效果,或者通过在离心设备中添加分离介质来增强分离效果。
此外,还可以采用不同的收集装置或分离装置,例如收集管、分液漏斗等。
离心技术在各个领域都有广泛的应用。
在生物医药领域,离心技术常用于细胞培养、血液分离和蛋白质纯化等方面。
在化工工业中,离心技术被用于分离溶液中的悬浮物、提取物质和浓缩溶液等。
此外,离心技术还在食品加工、环境监测和科学研究等领域得到广泛应用。
总的来说,离心技术通过利用离心力来实现物质的分离和纯化,具有简单、高效、可控性强等优点。
它在科学研究和工程实践中的应用广泛,为人类的生活和发展提供了重要支持。
离心技术(课件)
离心技术概述离心技术的基本原理离心机的主要构造和类型制备性超速离心的分离方法密度梯度液的选择分析型超速离心机离心操作的注意事项第一节概述一、离心技术的概念离心技术是根据一组物质的密度和在溶液中沉降系数不同(浮力不同),用不同离心力使其从溶液中分离、浓缩和纯化的方法。
二、离心技术的应用分离出化学反应后的沉淀物,天然的生物大分子、无机物、有机物,在生物化学以及其它的生物学领域,常用来收集细胞、细胞器及生物大分子物质。
第二节离心技术的基本原理一、离心力(F)F = m·a = m·ω2 r a —粒子旋转的加速度,m —沉降粒子的有效质量ω—粒子旋转的角速度,r—粒子的旋转半径( cm )二、相对离心力(RCF)RCF 就是实际离心力转化为重力加速度的倍数RCF=F离心力/F重力=mω2r/mg=ω2r/g g为重力加速度(980.7cm/sec2)在离心管的不同部位距旋转中心轴的距离也不同,那么在一定的转速下其RCF值也各不相同三、沉降系数(S) S是指单位离心场中粒子移动的速度。
S在实际应用时常在10-13秒左右,故把沉降系数10-13秒称为一个Svedberg单位,简写S,量纲为秒。
通过分析型离心机可以测得某种悬浮颗粒或生物高分子的沉降系数沉降系数S的两个重要用途1、预计沉降时间对已知S值的物质,可计算出在离心管中完成沉降所需要的时间2、测定物质分子质量由测得的某物质的沉降系数,可计算出其分子质量:四、沉降时间Ts第三节离心机的分类和结构一、离心机的分类1、按工作原理分为制备型(用于分离)和分析型2、按离心速度分为:普通<6000 rpm,6000g高速离心机<25000rpm,<89000g超速离心机>25000rpm,(最大85000rpm,600,000g)3、按特殊用途分为大容量、低温冷冻、立式台式、连续流动式。
二、离心机的结构1、转动装置:超速离心机主要由驱动和速度控制、温度控制、真空系统和转头四部分组成。
离心技术简介
离心技术简介1.离心技术悬浮在液体中颗粒的运动速度取决于:①应用力——液相中的颗粒处在一支平稳的试管内,会受到地球重力的作用而运动。
②固液相的密度差——密度小于液相的颗粒悬浮在上面,密度大于液相的颗粒则沉降下来。
③颗粒的大小与形状。
④介质的黏滞度。
就大多数生物颗粒(细胞、细胞器或分子)而言,受重力作用的悬浮或沉降的速度太慢,就无法应用于物质速度(g= m·s-2)的倍数的分离。
所以常使用离心机对物质进行分离。
离心机是一种通过使样品绕离心转轴的中心旋转而在其上产生一个远大于地球重力的仪器。
不同大小、形状和密度的颗粒会以不同的速度沉降。
颗粒的沉降速度取决于离心机的转速及颗粒与中心轴的距离。
2.离心分离常见的一些方法(一)差速沉降(沉淀)法将一混合悬浮液以一定的RCF(RCF又称为相对离心力,RCF取决于转子的转数和旋转半径),离心一定的时间后,混合物将会被分为沉淀和上清液两部分。
这种方法被广泛应用于从细胞匀浆中分离细胞器。
(二)密度梯度离心法下列技术使用了密度梯度,即离心管中的溶液从管顶到管底密度逐渐增加。
①差速区带离心法。
将样品置于平缓的预制备的密度梯度介质上,进行离心,较大的颗粒将比较小的颗粒更快地沉降,通过梯度介质,形成几个明显的区带(条带)。
这种方法有时间限制,在任一区带到达管底之前必须停止离心。
②等密度离心法。
这种技术根据其浮力密度的不同分离物质。
几种物质可通过离心法形成密度梯度(如蔗糖、CsCl等)。
样品与适当的介质混合后离心——各种颗粒在与其等密度的介质带处形成沉降区带。
这种方法要求介质梯度应有一定的陡度,要有足够的离心时间形成梯度颗粒的再分配,进一步离心对其不会有影响。
使用一根细的巴氏滴管或带有细长针头的注射器可收集一个密度梯度内的条带。
另一种方法可将试管刺穿,将内含物分段逐滴收集到几个管中。
需要更精确的研究时,可以再进行更精确的分离。
离心技术
不同的细胞器、大分子和病毒的密度及相应的沉降系数
常见物质的沉降系数
可溶蛋白 1-60s 真核生物核糖体 80s 微粒体 100-1000s 线粒体 10000-100000s 核酸 4-100s 病毒 60-1000s 烟草花叶病毒 200s
概述
技术要点:
制备超离心的关键是如何根据颗粒和介 质的性质以及转子的某些参数来确定转速 和离心时间。
Equilibrium density-gradient centrifugation 平衡密度梯度离心
原理 当不同颗粒存在浮力密度差时,在离
心力场下,在密度梯度介质中,颗粒或 向下沉降,或向上浮起,一直移动到与 它们各自的密度恰好相等的位置上形成 区带,从而使不同浮力密度的物质得到 分离。
介质的密度梯度范围必需包括所有待分离粒 子的密度。样品可以铺在密度梯度液柱上面 或均匀分布在密度梯度介质中。离心过程中 粒子移至与它本身密度相同的地方形成区带。
对称平衡:当离心转速达 1 - 5 万(rpm / min)
时,如对称管相差 1 g ,转头半径 5 cm ,则离心
力公式
F=m × RCF
查表得: 1 万( rpm / min ) RCF=6000 代入公式 F=1 × 6000=6 ( kg )
5 万( rpm / min ) RCF=150000 代入公式 F=1 × 150000=150 (kg )
因为它可以真实地反映颗粒在离心管内不同位置的离 心力及其动态变化。
由于离心管中从管口到管底与旋转 中心的距离是不同的,所以在同样转速 时,管口和管底所受到的离心力也有差 别。
例如:在某个角度转头中,离心管 口到旋转中心的距离为4.8cm,而离心 管底到旋转中心的距离是8.0cm,当转 速为12000 r/min时,离心管口和离心 管底所受到的相对离心力RCF分别是: RCF(管口)=
生化技术第九章 离心分离技术
经过一定时间的 离心,它们就分 别处于与本身密 度相同的梯度区
13
(1)原理:利用各种粒子的沉降速度和浮力
密度差,当一定粒子到达与其密度相同的梯度
位置时则停止沉降,不同粒子处于不同位置,
则得到了分离。
差速区带离心法
等密度梯度离心法
原理
介质的梯 度范围
依离子的沉降速度被 分离 介质的梯度小于样品 各粒子的密度
上清液 上清液 上清液 上清液
植物组织 匀浆
匀浆液 纱布过滤
上清液 100×g 离心
沉淀(弃去)未破碎 的细胞及细胞壁
2000×g 离心
沉淀(细胞核)
沉淀(叶绿体) 10000×g 离心
沉淀(线粒体) 105000×g 离心
沉淀(核糖体)
12
3. 密度梯度离心
在离心管中作 成密度梯度
将样品液 铺于梯度 上
控制精密(时间、转速)
用途:菌体、细胞碎片、细胞器等的分离
超速离心机:最大转速 80 000r/min, 最大相对离
心力500 000×g
控制精密:时间控制、温度控制、转速控制、真空系统
用途:细胞器分级分离、病毒、DNA、RNA、蛋白质分离
提纯等
7
二、离心机
2. 根据转头类型可以分为以下几种: 角式转头
为25S.
6
二、离心机
1. 根据其最大转速可以分为以下几种:
普通离心机:最大转速 6 000r/min, 最大相对离
心力6 000×g
型号很多,容量不同,转速不同,控制不精密
用途:固液沉淀分离
高速离心机:最大转速 25 000r/min, 最大相对离
心力90 000×g 型号较多,转速不同,有控温装置,
离心技术
转头可分为:角度转头,垂直转头,水平 转头可分为:角度转头,垂直转头, 转头。 转头。 离心管及其管帽是转头重要的附件,制造 离心管及其管帽是转头重要的附件, 离心管的材料主要有特种玻璃, 离心管的材料主要有特种玻璃,塑料和不 锈钢。 锈钢。
制备性超速离心技术
制备性超速离心主要利用离心机转子高速旋转时所产生的强大 制备性超速离心主要利用离心机转子高速旋转时所产生的强大 离心力,加快颗粒的沉降速度, 离心力,加快颗粒的沉降速度,把样品中不同沉降系数或浮力 密度差的物质分开。 密度差的物质分开。 沉降系数指单位离心力作用下颗粒沉降的速度。 沉降系数指单位离心力作用下颗粒沉降的速度。沉降系数用 指单位离心力作用下颗粒沉降的速度 svedberg表示 简称S 量纲为秒,1S单位等于 表示, 单位等于1 svedberg表示,简称S,量纲为秒,1S单位等于1×10-13秒, 沉降速度是指在强大离心力作用下, 沉降速度是指在强大离心力作用下,单位时间内物质运动的 距离。 距离。 制备超离心的关键是如何根据颗粒和介质的性质以及转子的 某些参数来确定转速和离心时间。 某些参数来确定转速和离心时间。 颗粒沉降的时间和速度取决于:离心力、 颗粒沉降的时间和速度取决于:离心力、颗粒的大小形状和 密度、沉降介质的密度和黏度。 密度、沉降介质的密度和黏度。
已破碎的细胞
500g,10’
沉淀(细胞核) 沉淀(细胞核)
上清液
10 000g,10’
上清液 沉淀(细胞膜碎片、 沉淀(细胞膜碎片、 线粒体、溶酶体) 线粒体、溶酶体) 沉淀(核糖核蛋白体) 沉淀(核糖核蛋白体)
100 000g,3h
上清液( 上清液(可 溶性组分) 溶性组分)
密度梯度离心
密 度 升 高
梯度混合器
离心技术工作原理
离心技术工作原理
离心技术的工作原理主要涉及两个方面:离心力和沉降速度。
首先,离心技术利用离心机产生的离心力来加速分离物质。
离心机通常由一个旋转的容器和一个电动机组成。
当电动机启动时,容器以高速旋转。
由于离心力是与旋转速度的平方成正比的,因此高速旋转能够产生强大的离心力。
离心力是指物体在旋转运动中受到的离心加速度,它的作用是将物质向外推离离心轴线。
这样,当装有悬浮液或高分子溶液的容器做高速水平旋转时,强大的离心力会使溶剂中的悬浮颗粒或高分子沿着离心力的方向运动而逐渐背离中心轴。
其次,离心技术还涉及沉降速度的概念。
在相同转速下,容器中不同大小的悬浮颗粒或高分子溶质会以不同的速率沉降。
这是因为不同大小的颗粒或溶质在离心力作用下的受力不同,从而导致它们沉降的速度也不同。
经过一定时间的离心操作,就有可能实现不同悬浮颗粒或高分子溶质的有效分离。
离心技术分为制备离心技术和分析离心技术。
制备离心技术主要用于物质的分离、纯化,而分析离心技术则主要用来分析样品的组成。
这种技术广泛应用于生物学、医学、化工等领域,是一种重要的分离和提取方法。
总的来说,离心技术的工作原理是利用离心力将物质推向离心机的外周,同时利用不同颗粒或溶质在离心力作用下的不同沉降速度来实现它们的分离。
这种方法具有高效、快速、简便等优点,因此在许多领域得到了广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ficoll密度梯度离心法分离外周血单核细胞
(一) 原理: 红细胞、粒细胞比重大,离心后沉于管底;淋巴细胞和单 核细胞离心后漂浮于分层液的液面上,吸取分层液液面的细 胞,就可从外周血中分离到单核细胞。 (二) 方法: 1. 在短管中加入适量细胞分离液。 2. 取肝素抗凝静脉血,用滴管沿管壁缓慢叠加于分层液 面上,注意保持清楚的界面。离心2000rpm×20分钟。 3. 离心后管内分为三层,上层为血浆,下层主要为红细 胞和粒细胞。中层为淋巴细胞分离液,在上、中层界面处有 一以单核细胞为主的白色云雾层狭窄带,单个核细胞包括淋 巴细胞和单核细胞。 4. 用毛细血管插到云雾层,吸取单个核细胞。置入另一 短中管中,加入5倍以上体积的Hank's液或RPMI1640, 1500rpm×10分钟,洗涤细胞两次。
d 2 o S 2 18
五 沉降时间 六 转子常数 七 分子量计算
M SRT 0 D1
沉降时间(Sedimentation Time, Ts) dx/dt S= 2 X 1 dx dt= 2 S X 1 lnX2/X1 积分得 t2-t1= · S 2
第一节 基本原理和设备
一、沉降和离心 沉降作用:悬浮液静置时,在重力作用下,密度 大于周围溶液的固体颗粒逐渐下沉。 漂浮作用: 影响沉降的因素:颗粒大小、颗粒密度、溶液黏 度 离心技术:利用旋转产生的离心力代替重力,加速 固体沉降速度的一种分离方式 。
离心技术有多种形式: 1.离心沉降 2.离心过滤 3.离心分离 4.离心分析
• • • • • • • R1最小、 3.8cm R2平均、 5.9cm R3最大、 8.1cm RCF值分别 67,910g 105,400g 144,700g
R1 R2 R3
2.水平转子 (1)转子静止时,处在转子中的离心管中 心线与旋转轴平行, (2)转子旋转加速时,离心管中心线由 行位置逐渐过渡到垂直位置,即与旋 转轴成90°角, (3)粒子的沉淀方向同旋转半径方向基本 一致有少量的“管壁效应”
注意点: 离心时间要长 可用角式转头或水平式转头 粒子密度相近或相等时不宜用 密度梯度溶液中要包含所有粒子密度 不能用刹车
Percoll 非连续等密度梯度离心法纯化牛肾上腺嗜铬细胞
• 疼痛和帕金森病,体外无增殖能力,只能依赖于肾上腺髓质 的分离来获取。 • 实验动物年龄在1 岁左右的健康小公牛,体重约200~ 400 kg, • 取小公牛肾上腺,D-Hank’s 溶液冲洗后,肾上腺充分消化 后剥除皮质,将髓质剪碎成1 mm左右的小块,滴加少量 DHank’s液以保持髓质的营养,将滤过的细胞悬液在100 ×
3.按工作性质分类 (1)制备型离心机 (2)实验室用离心机, 4.按操作方式分类 (1)连续离心机 。 (2)人工卸料(出渣)离心机; (3)自动卸料离心机(如螺旋式离心机)
(二)常用离心机 1 普通离心机 2管式高速离心机 原理: 应用:液固,液液,发酵工程酶工程中分 离菌体
• 3 蝶片式离心机
◎梯度液:起支持介质和稳定剂的作用。 ◎ρp>ρm则S>0, 离心时间要严格控制。 ◎应用于物质大小相异而密度相同的情况。 2.注意点: 严格控制离心时间 ρp>ρm 事先配成较平缓的连续密度的梯度溶液 不能用角式转头、只能用水平式转头 不能用刹车
(三)等密度离心法
概念: 离心力作用下,不同密度的多组分颗粒在梯度 介质中“向上”或“向下”移动,当移动至其 密度与介质密度相等的位置便不再移动,形成 静止区带,即达到离心平衡,各组分按密度不 同处于区带的不同位置。该离心方法称等密度 离心法。
• 4 离心过滤机
• 5 卧式螺旋卸料沉降离心机
6高速离心机
制冷设备温度控制在0-4℃范围内 制动器 实际速度和温度可通过仪表显示 配有一定类型及规格的转子 最高转速在25,000rpm以下 常用于生物大分子的分离制备
7超速离心机 驱动和速度控制 温度控制 真空系统 转子 常用于分离亚细胞器、病毒粒子、DNA、 RNA和蛋白质分子。 在分离时无须加入可能引起被分离物质结 构改变的物质。
(三)密度梯度的设计 1.梯度介质的选用: (1)盐梯度介质 (2)小分子有机物如蔗糖 (3)三碘化苯衍生物 (4)有机高聚物 (5)胶态二氧化硅
六 :常见的密度梯度材料及应用 ⑴蔗糖:水溶性大,性质稳定,渗透压较高, 其最高密度可达1.33g/ml,且由于价格低容易 制备,是现在实验室里常用于细胞器、病毒、 RNA分离的梯度材料,但由于有较大的渗透压, 不宜用于细胞的分离。 ⑵聚蔗糖:商品名Ficoll,常采用Ficoll-400也 就是相对分子重量为400000,Ficoll渗透压低, 但它的粘度却特别高,为此常与泛影葡胺混合 使用以降低粘度。主要用于分离各种细胞包括 血细胞、成纤维细胞、肿瘤细胞、鼠肝细胞等。 ⑶氯化铯:是一种离子性介质、水溶性大,最 高密度可达1.91g/ml。由于它是重金属盐类, 在离心时形成的梯度有较好的分辨率,被广泛 地用于DNA、质粒、病毒和脂蛋白的分离,但 价格较贵。
八、离心机
(一)离心机的分类 1.按转速高低及是否有冷冻来分 (1)普通离心机,小于6000rpm (2)高速离心机,8000~25000rpm (3)超速离心机,2(3)沉降式离心机(4)转头式离心机(5)电动式 离心机
水平转子的特点: (1)转子的重心位置较高 (2)样品粒子沉降穿过溶剂层的距离大于 直径 (3)对于多种成分样品分离特别有效 (4)常用于速率区带离心和等密度离心
(二)离心管 由管体和盖组件两部分组成
离心分离法
差速离心法
沉降速度法
速率区带离心法
等密度离心法 沉降平衡法 经典式沉降法
二、离心方法
RCF=
x
r
980.7 =1.118×10-5 n2 r n:转子每分钟的转数(rpm) Dole&Cotzias制作了转子速度和半径相 对应的离心力列线图。
三 沉降速度 即在离心力作用下,物质粒子于单位 时间内沿离心力方向移动的距离。
d 2 0 2 x 18
四沉降系数 在单位离心力场中,颗粒的沉降速度谓 之“沉降系数”
用途: 差速离心的分辨率不高,沉降系数在同 一个数量级内的各种粒子不容易分开,常用 于颗粒或密度差别较大的组分的分离,或其 他分离手段之前的粗制品提取。
例用差速离心法分离已破碎的细胞各组份 已破碎的细胞 500g,10分钟
沉淀 (细胞核) 上清液 10,000g,10分钟 上清液 100,000g,3小
二 离心力
1 离心力(centrifugal force,Fc): 在一定角度速度下作圆周运动的任何物体 都受到的向外的力。离心力(Fc)的大小等 于离心加速度ω 2r与颗粒质量m的乘积,即: F=mω2r
⒉相对离心力(relative centrifugal force, RCF)由于各种离心机转子的半径或者离心管 至旋转轴中心的距离不同,离心力而受变化, RCF就是实际离心场转化为重力加速度的倍数。
第九章
离心技术
本章要求: • 基本概念:离心力,相对离心力,沉降速度,沉降 系数。 • 相对离心力的计算 • 螺旋卸料离心机的特点 • 影响沉降速度的因素 • 制备型离心机常用的转子 • 差分离心法 • 速度区带离心法及其特点,等密度离心法及其特点. • 密度梯度离心常用的介质有哪几类: • 密度梯度的制备方法 • 梯度的回收方法 • 了解分析型离心技术:
特点: (1)样品加于梯度介质的顶部、离心时间须严格控制。 (2)介质的密度亦须严格掌握:梯度最大值≤组分最 小密度。 (3)样品的密度<梯度密度最小值?。 (4)分离依据是各组分之沉降系数差。 (5)分辨率受组分沉降系数,离心时间,颗粒扩散系 数,介质粘度及梯度范围和形状的影响。 用途: 本法适于分离颗粒大小不同而密度相近或相同的组 分,如DNA与RNA混合物、核蛋白体亚单位及线粒体、 溶酶体及过氧化物酶体等。
沉淀 (细胞膜碎片,线粒体,) 时 溶酶体
沉淀 (核糖核蛋白体)
上清液 (可溶性成份)
(二)速度区带离心法
概念: 又称速率区带离心法或分级区带离心法。离心 操作时将样品液置于连续或不连续,线性或非线 性密度梯度液上(如蔗糖、甘油、KBr、CsCl 等),控制离心时间,使具有不同沉降速度的粒 子处于不同的密度梯度层内分成一系列区带,从 而达到彼此分离的目的。这种离心方法称速度区 带离心法。
角式转子的特点: (1)重心低,转速可较高 (2)样品粒子穿过溶剂层的距离略大于 离心管 的直径; (3)“管壁效应” : 有一定的角度, 在离心过程中撞到 离心管外壁的粒子沿着管壁滑到管底形 成沉淀, 此效应使最后在管底聚成的沉 淀较紧密。
在离心管的不同部位距旋转中心轴的距 离也不同,那么在一定的转速下其RCF值也各 不相同 • 设40000rpm时
第二节 制备型超离心技术
一、离心设备 (一)转子 1 角度转子 2 水平转子 3 区带转子 4 垂直管转子 5 连续离心转子 6 细胞洗脱转子
1.固定角式转子 离心管在离心机中放置的位置与旋转 轴心形成一个固定的角度,角度变化在1440°之间。 常见的角度 20° 28° 34° 40
固定角式转子
差分离心(离心沉降)、密度离心法(离心分离)
(一)差分离心
概念: 差分离心法亦称为“差速离心法”,是依据不同 大小和密度的颗粒在离心力场中沉降速度的不同进 行离心分离的一项技术。 过程是将样品溶液在一定离心力场中离心一定 时间使颗粒大组分沉降于管底,上层液再用加大的 离心力场离心一定时间,又可获得中等大小的组分。 如此依次提高离心力,逐级分离出所需组分,故称 其为差分离心法。
4 2 N 2 rm RCF 3600 mg 4 2 N 2r 1.11810-5 N 2r x g 3600 980
式中r为离心转子的半径距离,以cm为单位; g为地球重力加速度(980cm/sec2);N为转 子每分钟的转数(rpm)。