安徽省安庆市2020年中考数学模拟试卷4月份含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省安庆市2020年中考数学模拟试卷(4月份)

一、选择题

1.下列标志图中,既是轴对称图形,又是中心对称图形的是()

A.B.C.D.

2.已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=的图象上,则实数k的值为()

A.3 B.C.﹣3 D.﹣

3.将函数y=x2的图象向左平移2个单位后,得到的新图象的解析式是()A.y=(x+1)2B.y=x2+4x+3 C.y=x2+4x+4 D.y=x2﹣4x+4 4.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1 B.x>1 C.x<﹣1 D.x>﹣1

5.如图,在△ABC中,D,E分别是AB,AC边上的点,DE∥BC,若AD=2,AB=3,DE=4,则BC等于()

A.5 B.6 C.7 D.8

6.如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx+b>的解集是()

A.x<﹣1 B.﹣1<x<0

C.x<﹣1或0<x<2 D.﹣1<x<0或x>2

7.如图,将Rt△ABC绕点A按顺时针旋转一定角度得到Rt△ADE,点B的对应点D恰好落在BC边上.若AB=1,∠B=60°,则CD的长为()

A.0.5 B.1.5 C.D.1

8.如图,BC是半圆O的直径,D,E是上两点,连接BD,CE并延长交于点A,连接OD,OE.如果∠A=70°,那么∠DOE的度数为()

A.35°B.38°C.40°D.42°

9.已知二次函数y=a(x﹣2)2+c,当x=x1时,函数值为y1;当x=x2时,函数值为y2,若|x1﹣2|>|x2﹣2|,则下列表达式正确的是()

A.y1+y2>0 B.y1﹣y2>0 C.a(y1﹣y2)>0 D.a(y1+y2)>0 10.如图,反比例函数的图象经过矩形OABC对角线的交点M,分别与AB、BC 相交于点D、E.若四边形ODBE的面积为6,则k的值为()

A.1 B.2 C.3 D.4

二、填空题(本大题共4小题,每小题5分,满分20分)

11.在△ABC中,若角A,B满足|cos A﹣|+(1﹣tan B)2=0,则∠C的大小是.

12.如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=cm.

13.如图,⊙O的半径为6,点P在⊙O上,点A在⊙O内,且AP=3,过点A作AP的垂线交⊙O于点B、C.设PB=x,PC=y,则y与x的函数表达式为.

14.已知在△ABC中,∠ABC=90°,AB=9,BC=12.点Q是线段AC上的一个动点,过点Q 作AC的垂线交射线AB于点P.当△PQB为等腰三角形时,则AP的长为.

三、(本大题共2小题,每小题8分,满分16分)

15.计算:(﹣2)0+()﹣2+4sin60°﹣|3﹣|.

16.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(1,4),B(4,2),C (3,5)(每个方格的边长均为1个单位长度).

(1)请画出△A1B1C1,使△A1B1C1与△ABC关于x轴对称;

(2)将△ABC绕点O逆时针旋转90°,画出旋转后得到的△A2B2C2.

四、(本大题共2小题,每小题8分,满分16分)

17.某农场拟建两间矩形饲养室,一面靠现有墙(墙足够长),中间用一道墙隔开,并在如图所示的三处各留1m宽的门,已知计划中的材料可建墙体(不包括门)总长为27m,则能建成的饲养室面积最大为多少?

18.已知不等臂跷跷板AB长4m.如图①,当AB的一端A碰到地面上时,AB与地面的夹角为α;如图②,当AB的另一端B碰到地面时,AB与地面的夹角为β.求跷跷板AB的支撑点O到地面的高度OH.(用含α,β的式子表示)

五、(本大题共2小题,每小题10分,满分20分)

19.如图,一次函数y=﹣x+5的图象与反比例函数y=kx﹣1(k≠0)在第一象限的图象交于A(1,n)和B两点.

(1)求反比例函数的解析式与点B坐标;

(2)求△AOB的面积.

20.如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.

(1)如图①,当=时,求的值;

(2)如图②当DE平分∠CDB时,求证:AF=OA;

(3)如图③,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.

21.如图,某大楼的顶部竖有一块广告牌CD,小明在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:,AB=10米,AE=15米.

(1)求点B距水平面AE的高度BH;

(2)求广告牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)

七、(本题满分12分)

22.如图,AB为⊙O的直径,C为⊙O上一点,D是弧BC的中点,BC与AD、OD分别交于点

E、F.

(1)求证:DO∥AC;

(2)求证:DE•DA=DC2;

(3)若tan∠CAD=,求sin∠CDA的值.

23.已知二次函数y=x2+bx+c(b,c为常数).

(Ⅰ)当b=2,c=﹣3时,求二次函数的最小值;

(Ⅱ)当c=5时,若在函数值y=1的情况下,只有一个自变量x的值与其对应,求此时二次函数的解析式;

(Ⅲ)当c=b2时,若在自变量x的值满足b≤x≤b+3的情况下,与其对应的函数值y 的最小值为21,求此时二次函数的解析式.

相关文档
最新文档