全国100所名校2020年最新高考模拟示范卷 数学试题
2020届全国100所名校高三最新高考模拟示范卷(六)数学(理)试题解析
绝密★启用前2020届全国100所名校高三最新高考模拟示范卷(六)数学(理)试题注意事项:1、答题前填写好自己的姓名、班级、考号等信息 2、请将答案正确填写在答题卡上 一、单选题1.已知集合{}|2,2,P x x k k k Z ==≤∈,(){}2|29Q x x =+<,则P Q =I ( ) A .{}4,2,0,1-- B .{}4,2,0-- C .{}|41x x -≤< D .{}|45x x -≤<答案:B可求出{}4,2,0,2,4P =--,{}|51Q x x =-<<,然后进行交集的运算即可. 解:解:{}{}|2,2,4,2,0,2,4P x x k k k Z ==≤∈=--,(){}{}2|29|51Q x x x x =+<=-<<,所以{}4,2,0P Q =--I . 故选:B. 点评:本题考查交集的运算,属于基础题.2.已知复数z 满足1z i z +-=,在复平面内对应的点为(),x y ,则( ) A .1y x =+ B .y x =C .2y x =-D .y x =-答案:A由已知可列式子()()222211x y x y ++-=+,整理化简即可. 解:解:由1z i z +-=,得()()222211x y x y ++-=+, 化简整理得1y x =+. 故选:A. 点评:本题考查复数的模的求法和几何意义,属于基础题.3.已知13 11531log,log,363a b cπ-===,则,,a b c的大小关系是( )A.b a c<<B.a c b<<C.c b a<<D.b c a<<答案:D利用对数函数和指数函数的单调性判断.解:115511log log1,65a=>=1133log log10,3bπ=<=130331c-<==,则01c<<,所以b c a<<.故选:D.点评:本题考查指对数值大小比较.指数函数值大小比较:常化为同底或同指,利用指数函数的单调性,图象或1,0等中间量进行比较.对数函数值大小比较:(1)单调性法:在同底的情况下直接得到大小关系,若不同底,先化为同底;(2)中间量过渡法:寻找中间数联系要比较的两个数,一般是用“0”,“1”或其他特殊值进行“比较传递”;(3)图象法:根据图象观察得出大小关系.4.中国折叠扇有着深厚的文化底蕴.如图(2),在半圆O中作出两个扇形OAB和OCD,用扇环形ABDC(图中阴影部分)制作折叠扇的扇面.记扇环形ABDC的面积为1S,扇形OAB的面积为2S,当1S与2S的比值为51-时,扇面的形状较为美观,则此时扇形OCD的半径与半圆O的半径之比为( )A.514B.512C.35-D52答案:B扇环形ABDC的面积1S等于扇形OAB的面积减扇形OCD的面积;设半径代入求解.解:设AOBθ∠=,半圆O的半径为r,扇形OCD的半径为1r,依题意,有2212115122122r rrθθθ--=,即221251r rr--=,所以22123562551()rr---===,得151rr-=.故选:B.点评:本题考查弧度制下扇形面积计算问题.其解题策思路:(1)明确弧度制下扇形面积公式,在使用公式时,要注意角的单位必须是弧度.(2)分析题目已知哪些量、要求哪些量,然后灵活地运用弧长公式、扇形面积公式直接求解,或合理地利用圆心角所在三角形列方程(组)求解.5.函数ln()sinxf x xx=+的部分图象大致是( )A.B.C.D.答案:C先判断函数的奇偶性,根据奇偶函数图象特征排除,再利用特值验证排除可得解. 解:因为ln||0,()sin()()xx f x x f xx-≠-=-+=--,ln()sin xf x xx∴=+奇函数,图象关于原点对称,所以排除选项D;因为2ln2()102fπππ=+>,所以排除选项A;因为ln()00fπππ=+>,所以排除选项B;因此选项C正确.故选:C. 点评:本题考查函数图象识别问题.其解题思路:由解析式确定函数图象:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复. 函数图象识别有时常用特值法验证排除6.“车走直、马走日、炮打隔子、象飞田、小卒过河赛大车”,这是中国象棋中的部分下棋规则.其中“马走日”是指马走“日”字的对角线,如棋盘中,马从点A 处走出一步,只能到点B 或点C 或点D 或点E .设马从点A 出发,必须经过点,M N (点,M N 不考虑先后顺序)到达点P ,则至少需走的步数为( )A .5B .6C .7D .8答案:B分步计算,第一步从点A 经过点M ,第二步从点M 经过点N ,第三步从点N 到达点P ,解:由图可知,从N 到P 只需1步,从M 到N 至少需走2步,从A 到M 至少需走3步,从A 到N 至少需走3步.所以要使得从点A 经过点,M N 到点P 所走的步数最少,只需从点A 先到点M ,再到点N ,最后到点P ,这样走的步数为6. 故选:B. 点评:本题考查分步乘法计数原理.(1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.7.已知a r ,b r 是单位向量,且()1,1a b +=-r r ,则a r 与a b -r r的夹角为( )A .π6B .π4C .π3D .2π3答案:B由()1,1a b +=-r r ,两边平方,得:()22222112a b a b ++⋅=+-=r r r r ,因为a r ,b r 是单位向量,所以求得0a b ⋅=r r,进而得出a b -=r r 求得a r 与a b -r r的夹角.解:由()1,1a b +=-r r ,两边平方,得:()22222112a b a b ++⋅=+-=r r r r ,因为a r ,b r 是单位向量,所以1122a b ++⋅=r r ,得0a b ⋅=r r,则22222a b a b a b -=+-⋅=r r r r r r,∴a b -=r r所以()2cos ,2a a b a a b a a b⋅--====⋅-r r r r r r r r r r r r ,所以a r 与a b -r r 的夹角为π4.故选:B. 点评:本题考查两个向量的数量积的定义和公式,属于基础题. 8.执行如图所示的程序框图,则输出的S =( )A .414B .325C .256D .75答案:A 根据题意()3mn m =∈N ,由2020n <,得1m =,2,3,4,5,6,分别算出相应值即可得出结果. 解: 解:()3mn m =∈N ,由2020n <,得1m =,2,3,4,5,6.所以S 的值依次为()16115S =-⨯=,()25226S =-⨯=,()36339S =-⨯=,()494420S =-⨯=,()5205575S =-⨯=,()67566414S =-⨯=.故选:A. 点评:本题主要考查程序框图和算法,属于基础题.9.已知等差数列{}n a 的前n 项和为n S ,满足33a =,()21223n n n S S S n --+=+≥,则( )A .2n n S na n -= B .2n n S na n +=C .21n n S a n-=D .21n n S a n+=答案:B由已知得31222S S S +=+,即123222222a a a a a ++=++,进而求出公差2d =,再利用求和公式列式,化简得出结论. 解:。
全国100所名校2020年最新高考模拟示范卷(七)数学理科试题+答案+详解MNJ.Y
全国100所名校最新高考模拟示范卷·数学卷(七)(120分钟 150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数z 的实部是虚部的两倍,且满足151iz a i++=+,则实数a =( ). A .1-B .5C .1D .92.已知集合{}2|30A x x x =-≤,{}*|23,B x x n n ==-∈N ,则A B ⋂=( ). A .{3,1}--B .{1,3}C .{0,1,3}D .{0,1,2,3}3.已知点(1,1)A ,(1,2)B -,点C 在直线20x y +=上,若AC AB ⊥u u u r u u u r,则点C 的坐标是( ).A .(2,1)-B .(2,1)-C .21,55⎛⎫- ⎪⎝⎭D .21,55⎛⎫-⎪⎝⎭4.已知3sin 24tan()θπθ=+,且()k k θπ≠∈Z ,则cos2θ等于( ). A .13-B .13C .14-D .145.执行如图所示的程序框图,输出的S 的值为( ).A .1B .12C .56D .37666.我国法定劳动年龄是16周岁至退休年龄(退休年龄一般指男60周岁,女干部身份55周岁,女工人50周岁).为更好了解我国劳动年龄人口变化情况,有关专家统计了2010~2025年我国劳动年龄人口和15~59周岁人口数量(含预测),得到下表:其中2010年劳动年龄人口是9.20亿人,则下列结论不正确的是( ). A .2012年劳动年龄人口比2011年减少了400万人以上 B .2011~2018这8年15~59周岁人口数的平均数是9.34亿C .2016~2018年,15~59周岁人口数每年的减少率都小于同年劳动人口每年的减少率D .2015~2020年这6年15~59周岁人口数的方差小于这6年劳动人口数的方差7.已知直线:0l kx y +-=与双曲线222:1(0)y C x b b-=>的一条渐近线平行,且这两条平行线间的距离为43,则双曲线C 的焦距为( ).A .4B .6C .D .88.已知函数()ln f x x x =-的图象在1x x =和2x x =处的切线互相垂直,且1212x x =,则12x x +=( ). A .2B .3C .4D .69.我国古代数学著作《九章算术》有如下问题“今有圆亭,下周三丈,上周二丈,高一丈.问积几何?”题中的“圆亭”是一个几何体,其三视图如图所示,其中正视图和侧视图是高为1丈的全等梯形,俯视图中的两个圆的周长分别是2丈和3丈,取3π=,则该圆亭外接球的球心到下底面的距离为( ).A .512丈 B .1736丈 C .2972丈 D .3172丈10.若函数()2sin(2)02f x x πϕϕ⎫=-+<<⎪⎭在,424ππ⎡⎤-⎢⎥⎣⎦上有两个零点,则ϕ的取值范围是( ). A .,63ππ⎡⎤⎢⎥⎣⎦B .5,412ππ⎡⎤⎢⎥⎣⎦C .5,612ππ⎡⎤⎢⎥⎣⎦D .,62ππ⎡⎫⎪⎢⎣⎭11.已知函数()f x 是R 上的函数,当0x ≥时,2211()log log 12x f x x +=⋅+.若()02f x =,则0x =( ). A .12或3- B .1或12-C .3-D .1-12.如图,在长方体1111ABCD A B C D -中,E 是1AA 的中点,点F 是AD 上一点,12AB AA ==,3BC =,1AF =.动点P 在上底面1111A B C D 上,且满足三棱锥P BEF -的体积等于1,则直线CP 与1DD 所成角的正切值的最大值为( ).ABCD .2二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.已知实数x ,y 满足约束条件2201040x y x y x y -+≤⎧⎪-+≥⎨⎪+-≤⎩,则4x y +的最大值为 .14.一个书架的其中一层摆放了7本书,现要把新拿来的2本不同的数学书和1本化学书放入该层,要求2本数学书要放在一起,则不同的摆放方法有 种.(用数字作答)15.在ABC △中,3cos cos c A a C =,且sin sin 3sin a A c C B -=,则b = .16.椭圆2222:1(0)x y C a b a b+=>>的右焦点为(,0)F c,直线0x -=与C 相交于A 、B 两点.若0AF BF ⋅=u u u r u u u r,则椭圆C 的离心率为 .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.在等差数列{}n a 中,39a =,56248a a +=.各项均为正数的等比数列{}n b 的首项为1,其前n 项和为n S ,且2319a S +=. (1)求n a 与n b ;(2)设数列{}n c 满足132log n n n n c c a b +-=-,11c =,求12111na c c c +++…. 18.如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,90BAD ADC ∠=∠=︒,2CD AB ==,2AD =,E 是BC 上一点,且3BC BE =.(1)求证:BC ⊥平面PDE ;(2)F 是PA 的中点,若二面角A BC P --的平面角的正切值为2,求直线CF 与平面PEF 所成角的正弦值.19.秉承“绿水青山就是金山银山”的发展理念,某市环保部门通过制定评分标准,先对本市50%的企业进行评估,评出四个等级,并根据等级给予相应的奖惩,如下表所示:(1)环保部门对企业抽查评估完成后,随机抽取了50家企业的评估得分(40≥分)为样本,得到如下频率分布表: 其中a、b 表示模糊不清的两个数字,但知道样本评估得分的平均数是73.6.现从样本外的数百个企业评估得分中随机抽取3个,若以样本中频率为概率,求至少有两家企业的奖励不少于40万元的概率; (2)某企业为取得一个好的得分,在评估前投入80万元进行技术改造,由于技术水平问题,被评定为“合格”“良好”和“优秀”的概率分别为16,12和13,且由此增加的产值分别为20万元,40万元和60万元.设该企业当年因改造而增加的利润为X 万元,求X 的数学期望.20.直线l 过抛物线2:4C y x =的焦点F ,且与抛物线C 交于M ,N 两点. (1)设点M 在第一象限,过M 作抛物线C 的准线的垂线,A 为垂足,且1tan 2MFA ∠=,直线1l 与直线l 关于直线AM 对称,求直线1l 的方程;(2)过F 且与l 垂直的直线2l 与圆22:(3)3D x y -+=交于P ,Q 两点,若MPQ △与NPQ △面积之和为k 的值. 21.设函数2()1xf x ekx =--,k ∈R .(1)讨论()f x 在(0,)+∞上的单调性;(2)当2k >时,若存在正实数m ,使得对(0,)x m ∀∈,都有|()|2f x x >,求实数k 的取值范围. (二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]已知极点与直角坐标系的原点重合,极轴与x 轴的正半轴重合,曲线C 的极坐标方程是32sin 00,04a πρθθρ⎛⎫+=≤≤≥ ⎪⎝⎭,直线l 的参数方程是3545x t a y t ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数).(1)若2a =-,M 是圆C 上一动点,求点M 到直线l 的距离d 的最小值和最大值; (2)直线1l 与l 关于原点对称,且直线1l 截曲线C的弦长等于,求实数a 的值. 23.[选修4-5:不等式选讲] 已知函数()|1||24|f x x x =+--.(1)若关于x 的不等式()|1||1|f x m x ≤+-+的解集为R ,求实数m 的取值范围; (2)设{}2min (),65f x x x -+表示()f x ,265x x -+二者中较小的一个,若函数{}2()min (),65(06)g x f x x x x =-+≤<,求函数()g x 的值域.2020年普通高等学校招生全国统一考试数学模拟测试参考答案1.A 本题考查复数的概念和运算.15321iz a a i i+=-=-++,由题意得1a =-. 2.B 本题考查集合的运算.∵{|03}A x x =≤≤,{1,1,3,5,}B =-…,∴{1,3}A B ⋂=.3.D 本题考查向量的坐标运算.设点(2,)C m m -,则(21,1)AC m m ==---u u u r ,∵(2,1)AB =-u u u r,AC AB ⊥u u u r u u u r ,∴142105m m m ++-=⇒=-,∴C 的坐标是21,55⎛⎫- ⎪⎝⎭. 4.B 本题考查余弦的倍角公式.由已知得22cos 3θ=,∴21cos22cos 13θθ=-=. 5.D 本题考查程序框图.12S =,1i =;56S =,2i =;3766S =,3i =,结束循环,输出S 的值.6.C 本题考查统计知识.2012年劳动年龄人口数比2011减少了460万人,故A 项正确;通过计算可判断B 项正确;C 项不正确,计算后即可判断,应该是大于;D 项正确,由图得15~59周岁人口数减幅比较小,而劳动人口数的减幅比较大.7.B 本题考查双曲线的性质.设直线l 与渐近线0bx y -=平行,∵l过点,43=,解得28b =,∴29c =,双曲线C 的焦距为6.8.A 本题考查导数的几何意义的应用.∵1()1f x x'=-,∴()1111f x x '=-,()2211f x x '=-,则1211111x x ⎛⎫⎛⎫--=- ⎪⎪⎝⎭⎝⎭,化简得()1212210x x x x +-+=,∵1212x x =,∴122x x +=. 9.D 本题考查数学史和三视图.由三视图可得,该几何体是一个圆台,其上、下底面的半径分别为13丈和12丈,高为1丈.设球心到下底面的距离为x 丈,则222211(1)23x x ⎛⎫⎛⎫+=-+ ⎪ ⎪⎝⎭⎝⎭,解得3172x =. 10.C 本题考查三角函数的性质.()2sin(2)f x x ϕ=-+,则当,424x ππ⎡⎤∈-⎢⎥⎣⎦,2,212x ππϕϕϕ⎡⎤-∈---⎢⎥⎣⎦,∵02πϕ<<,又()f x 在,424ππ⎡⎤-⎢⎥⎣⎦上有两个零点,∴223123ππϕππϕ⎧--≤-⎪⎪⎨⎪-≥-⎪⎩,解得5612ππϕ≤≤. 11.C 本题考查函数的奇偶性的应用.当0x >时,2log (1)0x +>,∴[]222211()log (1)log (1)1log (1)224f x x x x ⎡⎤=-++-=-+-+<⎢⎥⎣⎦,∴00x <.当0x >时,由()2f x =-,得2log (1)2x +=或1-,得3x =或12x =-(舍去),∵函数()f x 是奇函数,∴03x =-. 12.A 本题考查立体几何的综合应用.在底面ABCD 上取一点H ,使得三棱锥H BEF -的体积等于1,即三棱锥E BFH -的体积等于1,由已知条件得132BHF S S ==△下底面,∴H 与C 重合,过C 作CM FE ∥,且交11B C 于M ,则11113B M B C =,过M 作MN BF ∥,且交11A D 于N ,则11113D N A D =.连接CN ,则平面CMN ∥平面BEF ,∴当点P 在MN 上运动时,满足三棱锥P BEF -的体积等于1,又直线CP 与1DD 所成角就是直线CP 与1CC 所成角,即111tan C PC CP CC ∠=为所求,∴当点P 与N 重合时,1C P 取最,即1max tan C CP ∠=.13.10 本题考查线性规划的应用.根据约束条件画出可行域(图略),当取直线220x y -+=和40x y +-=的交点(2,2)时,4x y +取最大值10.14.144 本题考查排列组合.先把两本数学书不分开放入该层,有1282C A 种摆放方法,再把化学书放入,有19C 种摆放方法,故共有121829144C A C =种摆放方法.15.6 本题考查解三角形.由余弦定理得()22222233cos cos b c a a b c c A a C bb+-+-=⇒=,即22212a cb -=①.由正弦定理得22sin sin 3sin 3a Ac C B a c b -=⇒-=②.由①②得6b =.162本题考查椭圆的离心率,设()00,A y ,∵0AF BF ⋅=u u u r u u u r ,即AF BF ⊥u u u r u u u r ,∴||||OF OA =u u u r u u u r ,则2228y y c +=,即229y c =①,又22002281y y a b+=,∴2220228a b y b a =+②,由①②得422481890c a c a -+=,即4281890e e -+=,234e =或232e =(舍去),解得2e =17.解:本题考查等差数列、等比数列和裂项求和.(1)设数列{}n a 的公差为d ,数列{}n b 的公比为q ,则0q >,∵39a =,56248a a +=,∴2(92)9348d d +++=,得3d =,∴236a a d =-=, ∵2319a S +=,∴22390q q --=, 又0q >,解得3q =,∴3d =,3n a n =,13n n b -=.(2)由(1)得132log 3(21)1n n n n c c a b n n n +-=-=--=+, ∴()()()112211(1)122n n n n n n n c c c c c c c c n ---+-+-++-+=+++==……, ∴12112(1)1n c n n n n ⎛⎫==- ⎪++⎝⎭,则1112331na c n n ⎛⎫=- ⎪+⎝⎭, ∴121111111162122333131n c n c c c n n n ⎛⎫+++=-+-++-= ⎪++⎝⎭……. 18.解:本题考查线面垂直、二面角角以及线面角. (1)证明:∵PD ⊥底面ABCD ,∴PD BC ⊥.过E 作EG CD ⊥,垂足为G,∵2CD AB ==2AD =,3BC BE =,∴2433EG AD ==,3DG =,3CG =, ∴22222228DE CE EG DG CG CD +=++==,即CE DE ⊥, ∵PD DE D ⋂=,∴BC ⊥平面PDE . (2)由(1)得BC ⊥平面PDE . ∴PED ∠是二面角A BC P --的平面角. ∵PD ⊥底面ABCD,3DE ==,∴tan 2PD PED DE ∠==,则2PD =. 以D 为坐标原点,建立如图所示的空间直角坐标系,则(2,0,0)A,B,C,4,33E ⎛⎫⎪ ⎪⎝⎭,(0,0,2)P ,(1,0,1)F ,∴(1,0,1)PF =-u u u r,4,233PE ⎛⎫=- ⎪ ⎪⎝⎭u u u r,(1)FC =--u u ur . 设平面PEF 的法向量为(,,)n x y z =r,则00PF P n n E ⎧⋅=⎪⎨⋅=⎪⎩u u u r u r u u r r,∴042033x z x y z -=⎧⎪⎨+-=⎪⎩,令1x =,则4n ⎛⎫= ⎪ ⎪⎝⎭r ,∴|cos ,|F n C 〈〉==u r u ur ∴直线CF 与平面PEF19.解:本题考查概率与统计. (1)∵样本评估得分的平均数是73.6,∴450.04550.106575850.20950.1273.6a b ⨯+⨯+++⨯+⨯=, 即657537.9a b +=①,又0.54a b +=②,由①②解得0.26a =,0.28b =,则企业评估得分不少于70分的频率为0.6,∴至少有两家企业的奖励不少于40万元的概率232332381555125P C ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭.(2)依题意,X 的可能取值为60-,40-,20-,0,60,且该企业被抽中的概率为12,则 111(60)2612P X =-=⨯=,11111(40)26223P X =-=⨯+⨯=,111(20)236P X =-=⨯=,111(0)224P X ==⨯=, 111(60)236P X ==⨯=,X 的分布列为∴135()60(40)(20)060123663E X =-⨯+-⨯+-⨯++⨯=-.20.解:本题考查抛物线概念及其与直线的位置关系. (1)设抛物线C 的准线与x 轴的交点为B ,根据抛物线的定义得||||MA MF =,则MAF MFA ∠=∠.∵MAF AFB ∠=∠,1tan 2MFA ∠=,||2BF =, ∴||||tan 1AB BF AFB =∠=,4tan 3BFM ∠=,∴点M 的坐标为1,14⎛⎫ ⎪⎝⎭,直线MN 的斜率为43-, ∵直线1l 与直线l 关于直线AM 对称, ∴直线1l 的方程为41134y x ⎛⎫-=- ⎪⎝⎭,即4320x y -+=. (2)设直线l 的方程为(1)(0)y k x k =-≠, 与24y x =联立得()2222240k x k x k -++=, 令()11,M x y ,()22,N x y ,则12242x x k+=+,121x x ⋅=,2244||k MN k +==. ∵PQ MN ⊥,∴直线PQ 的方程为1(1)y x k=--,即10x ky +-=, ∴圆心(3,0)D 到直线PQ=,∵圆D ,∴||PQ ==,∴MPQ △与NPQ △面积之和221144||||22k S MN PQ k +==⋅=∵直线PQ 与圆D 有两个交点,∴1(k -∈,且10k -≠, 令21t k =,则(0,3)t ∈,由S ==2t =或0t =(舍去),∴212k =,得2k =±. 21.解:本题考查导数的综合应用.(1)由2()1x f x e kx =--,得2()2x f x e k '=-,∵(0,)x ∈+∞,∴222x e >,当2k >时,由2()20x f x e k '=->,得1ln 22k x >,即函数()f x 在1ln ,22k ⎛⎫+∞ ⎪⎝⎭上单调递增, 由()0f x '<,得10ln 22k x <<,即函数()f x 在10,ln 22k ⎛⎫ ⎪⎝⎭上单调递减; 当2k ≤,()0f x '>在(0,)+∞上恒成立,即函数()f x 在(0,)+∞上单调递增.(2)当2k >时,由(1)结合函数()f x 图象知,00x ∃>,使得对任意()00,x x ∈,都有()0f x <,则由|()|2f x x >得2(2)10x k x e -+->. 设2(2)10x k x e-+->,2()(2)1x t x k x e =-+-, 令()0t x '>得12ln 22k x -<,令()0t x '<得12ln 22k x ->. 若24k <≤,则12ln 022k -≤,∵()0120,ln ,22k x -⎛⎫⊆+∞ ⎪⎝⎭,∴()t x 在()00,x 上单调递减,注意到(0)0t =,∴对任意()00,x x ∈,()0t x <,与题设不符;若4k >,则12ln 022k ->,12120,ln ,ln 2222k k --⎛⎫⎛⎫⊆-∞ ⎪ ⎪⎝⎭⎝⎭,∴()t x 在120,ln 22k -⎛⎫ ⎪⎝⎭上单调递增, ∵(0)0t =,∴对任意120,ln22k x -⎛⎫∈ ⎪⎝⎭,()0t x >符合题意.此时取0120min ,ln 22k m x -⎧⎫<≤⎨⎬⎩⎭,可得对任意(0,)x m ∈,都有()|2f x x >. 综上所述,k 的取值范围为(4,)k ∈+∞.22.解:本题考查直线和圆的极坐标与参数方程.(1)当2a =-时,由34sin 004πρθθ⎛⎫+=≤≤ ⎪⎝⎭,得曲线C 是圆2240x y y +-=的34部分,如图所示,将直线l 的直角坐标方程化为4380x y ++=,由图得,当M 与(1,1)A -重合时,d 取最小值75; 又曲线C 的圆心(0,2)到直线l 的距离为145,半径1r =, ∴max 1419155d =+=. (2)∵曲线222:()C x y a a ++=,直线:4340l x x a ++=,∴圆心C 到直线的距离|34|||55a a a d -+==.∵由圆C 的半径为||a ,直线l 截圆C 的弦长等于,∴=,即||5a =52a =±. 经检验52a =±均合题意,∴52a =±. 23.解:本题考查绝对值不等式.(1)由()|1||1|f x m x ≤+-+,得|22||24||1|x x m +--≤+, ∵关于x 的不等式()|1||1|f x m x ≤+-+的解集为R ,∴|22||24||1|x x m +--≤+对任意x ∈R 恒成立,∵|22||24||(22)(24)|6x x x x +--≤+--=,∴|1|6m +≥,解得7m ≤-或5m ≥,∴实数m 的取值范围是(,7][5,)-∞-⋃+∞.(2)5,1()33,125,2x x f x x x x x -<-⎧⎪=--≤≤⎨⎪-+>⎩,设2165y x x =-+,在同一平面直角坐标系作出函数()y f x =和2165y x x =-+的图象,∵函数{}2()min (),65(06)g x f x x x x =-+≤<,∴函数()y g x =的图象是图中的实线部分,则当3x =时,()g x 取最小值4-;当1x =或5时,()g x 取最大值0. ∴函数()g x 的值域为[4,0]-.。
2020届全国100所名校最新高考模拟示范卷高三数学文科卷(二)(解析版)
全国100所名校最新高考模拟示范卷·数学卷(二)(120分钟 150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{0,1,2,3}A =,{2,3,4,5}B =,则A B =U ( ) A. {1,2,3,4,5} B. {0,1,4,5}C. {2,3}D. {0,1,2,3,4,5}【答案】D 【解析】 【分析】根据并集的定义可直接求得结果. 【详解】由并集的定义可得:{}0,1,2,3,4,5A B =U .故选:D .【点睛】本题考查集合运算中的并集运算,属于基础题. 2.i 是虚数单位,2z i =-,则||z =( )A.B. 2C.D.【答案】C 【解析】 【分析】由复数模长的定义可直接求得结果.详解】2z i =-Q ,z ∴==故选:C .【点睛】本题考查复数模长的求解问题,属于基础题.3.已知向量()1,2a =r ,()1,b λ=-r ,若//a b rr ,则实数λ等于( )A. 1-B. 1C. 2-D. 2【答案】C 【解析】 【分析】由向量平行关系可构造方程求得结果.【详解】//a b r r Q ,()121λ∴⨯=⨯-,解得:2λ=-.故选:C .【点睛】本题考查向量平行的坐标表示,属于基础题. 4.“22x -<≤”是“22x -≤≤”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充分必要条件 D. 既不充分也不必要条件【答案】A 【解析】 【分析】直接利用充分条件、必要条件的定义进行判断即可. 【详解】“22x -<≤”是“22x -≤≤”的充分不必要条件. 故选:A【点睛】本题考查充分、必要条件的判断,属于基础题.5.若双曲线()222210,0x y a b a b-=>>的离心率为53,则该双曲线的渐近线方程为( ) A. 45y x =±B. 54y x =±C. 43y x =±D. 34y x =?【答案】C 【解析】 【分析】由双曲线的离心率,结合,,a b c 的关系求出,a b 的关系,代入双曲线的渐近线方程即可求解. 【详解】因为双曲线的离心率为53,即53c e a ==,所以53c a =,又222c a b =+,所以43b a =,因为双曲线的渐近线方程为by x a=±, 所以该双曲线的渐近线方程为43y x =±.故选:C【点睛】本题考查双曲线的标准方程及其几何性质;考查运算求解能力;属于基础题.6.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法错误的是( )A. 第一场得分的中位数为52B. 第二场得分的平均数为193C. 第一场得分的极差大于第二场得分的极差D. 第一场与第二场得分的众数相等【答案】C 【解析】 【分析】根据茎叶图按顺序排列第一场、第二场得分分数,中间两数的平均数即为中位数,出现次数最多的数为众数,最大数减最小数为极差,求出相应数据即可判断各项正误.【详解】由茎叶图可知第一场得分为:0,0,0,0,0,2,3,7,10,12,17,19,中位数为52,众数为0,极差为19,第二场得分为:0,0,0,0,3,6,7,7,9,10,10,24,众数为0,平均数为193,极差为24,所以选项C 的说法是错误的. 故选:C【点睛】本题考查茎叶图,根据茎叶图计算样本数据的中位数、众数及平均数,属于基础题.7.ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若5b =,22625c c a =---,则cos A =( ) A.45B.35C.310D.25【答案】B 【解析】 【分析】由已知条件可得2226b c a c +-=,再利用余弦定理即可求得cos A . 【详解】因为5b =,22625c c a =---,所以2226b c a c +-=, 又2222cos bc A b c a ⋅=+-,所以62cos c bc A =⋅,所以3cos 5A =. 故选:B【点睛】本题考查利用余弦定理解三角形,属于基础题.8.函数()()21e ln 11exxf x x x -=+-+的图象大致为( )A.B.C. D.【答案】B 【解析】 【分析】根据题意,利用函数奇偶性的定义判断函数()f x 的奇偶性排除选项,C D ;利用()20f >排除选项A 即可.【详解】由题意知,函数())21e ln 11e xxf x x x -=++的定义域为R ,其定义域关于原点对称,因为())21ln11xxe f x x x e ----=++)21ln11x x e x x e -=++又因为()))1222ln1ln1ln1x x x xx x -+=+=-+,所以()()f x f x -=,即函数()f x 为偶函数,故排除,C D ;又因为())2212ln5201e f e -=>+,故排除A.故选:B【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.9.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A.152πB. 12πC.112π D.212π【答案】A 【解析】 【分析】由三视图可知,该几何体为由18的球体和14的圆锥体组成,结合三视图中的数据,利用球和圆锥的体积公式求解即可.【详解】由三视图可知,该几何体为由18的球体和14的圆锥体组成, 所以所求几何体的体积为11+84V V V =球圆锥,因为31149=3=8832V ππ⨯⨯球, 221111=34344312V r h πππ⨯⨯=⨯⨯⨯=圆锥, 所以915322V πππ=+=,即所求几何体的体积为152π. 故选:A【点睛】本题考查三视图还原几何体及球和圆锥的体积公式;考查学生的空间想象能力和运算求解能力;三视图正确还原几何体是求解本题的关键;属于中档题、常考题型.10.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于323d (d 为球的直径),并得到球的体积为316V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据 3.1415926π=⋅⋅⋅,判断下列公式中最精确的一个是( )A. d ≈B. d ≈C. d ≈D. d ≈【答案】C 【解析】 【分析】利用选项中的公式化简求得π,找到最精确的选项即可. 【详解】由316V d π=得:36V d π=. 由A 得:3916V d ≈,69 3.37516π=∴⨯≈;由B 得:312V d ≈,632π∴≈=; 由C 得:3157300Vd≈,6157 3.14300π⨯∴≈=;由D 得:3815V d ≈,683.215π⨯∴≈=, C ∴的公式最精确.故选:C .【点睛】本题考查数学史与立体几何的知识,关键是能够对选项中的公式进行准确化简求得π的近似值.11.已知32cos cos 2αβ-=,2sin sin 2αβ+=,则cos()αβ+等于( ) A.12B. 12-C.14D. 14-【答案】A 【解析】 【分析】把已知两等式平方后作和,结合同角三角函数平方关系和两角和差余弦公式可化简求得结果. 【详解】由32cos cos 2αβ-=得:()22292cos cos 4cos 4cos cos cos 4αβααββ-=-+=,由2sin sin αβ+=()22232sin sin 4sin 4sin sin sin 4αβααββ+=++=,两式相加得:()54cos cos sin sin 3αβαβ--=,即()4cos 2αβ+=,()1cos 2αβ∴+=. 故选:A .【点睛】本题考查利用三角恒等变换公式化简求值的问题,涉及到同角三角函数平方关系的应用;关键是能够通过平方运算配凑出符合两角和差余弦公式的形式.12.已知,,A B C 为椭圆2214x y +=上三个不同的点,若坐标原点O 为ABC V 的重心,则ABC V 的面积为( )A.B.C.2D.【答案】C 【解析】 【分析】设()11,A x y ,()22,B x y ,()33,C x y ,C 到直线AB 的距离为d ,分直线AB 斜率不存在与存在两种情况讨论:斜率不存在时,求出AB 与d ,计算ABC V 的面积;斜率存在时,设直线AB :y kx b =+,联立消元,应用韦达定理得到12x x +与12x x ,化简表示出AB 与C ,将点C 坐标代入椭圆方程得到22441b k =+,计算ABC V 的面积.综合两种情况,可得答案.【详解】设()11,A x y ,()22,B x y ,()33,C x y ,记C 到直线AB 的距离为d ,Q O 为ABC V 的重心,∴1230x x x ++=,1230y y y ++=,①当直线AB 斜率不存在时,根据椭圆对称性可知,12y y =-,12x x =,则12AB y =, 由O 为ABC V 的重心知,12312x x x ==-,30=y ,则()2,0C 或()2,0C -, ∴133332d x x x =-==,1y ==AB ,∴ABC S =△,②当直线AB 斜率存在时,设直线AB :y kx b =+,易知0b ≠,联立方程2214y kx b x y =+⎧⎪⎨+=⎪⎩, 消去y 得()2214kx x b ++=,化简整理得,()222418440k x kbx b +++-=,()()()222228441446416160kb k b k b ∆=-+-=-+>,由韦达定理得,122841kb x x k +=-+,21224441b x x k -=+, ∴12x x -==,∴12241AB x k ==-+,Q O 为ABC V 的重心,∴()3122841kbx x x k =-+=+,()()()312121221224kx b kx b k x by y y k x b +++=-+--+==-=-+,∴22824141,kbb k C k ⎛-++⎫ ⎪⎝⎭,∴C 到直线AB的距离为d ==将点C 代入椭圆方程得,222282411441kb b k k ⎛⎫⎪-+⎛⎫⎝⎭+= ⎪+⎝⎭, 整理得22441b k =+,222641616480k b b ∆=-+=>,∴AB ==,∴ABC V 的面积为212SAB d ==⋅=, 综上所述,ABC V 的面积恒为2. 故选:C.【点睛】本题考查了直线与椭圆的位置关系以及弦长公式的应用,考查了三角形重心的性质,考查了运算能力,另外,作为选择题,本题可直接通过特殊位置求出ABC V 的面积,属于中档题.二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.设()f x 是定义在R 上的函数,若()()g x f x x =+是偶函数,且(2)4g -=-,则(2)f =________.【答案】6- 【解析】 【分析】根据偶函数的定义可构造方程()()f x x f x x +=--,代入2x =和()24g -=-即可求得结果. 【详解】()g x Q 为偶函数,()()g x g x ∴=-,即()()f x x f x x +=--,()()2222f f ∴+=--,又()()2224g f -=--=-,()26f ∴=-.故答案为:6-.【点睛】本题考查利用函数的奇偶性求解函数值的问题,属于基础题. 14.已知数列()*{}n a n ∈N是等差数列,其前n 项和为nS,若11=66S ,36927a a a +=,则12S =___________.【答案】78 【解析】 【分析】由11=66S 及等差数列的性质可得66a =,代入所给等式可得39627a a =+,两式联立即可求得1a 、d ,再利用等差数列的前n 项和公式即可得解.【详解】设等差数列{}n a 的公差为d ,因为116611666S a a ==⇒=①, 所以36939627a a a a a +=+=②, 由①②可得115672027a d a d +=⎧⎨+=⎩,解得111a d =⎧⎨=⎩,所以121=126678S a d +=. 故答案为:78【点睛】本题考查等差数列基本量的求解,等差数列性质的应用及前n 项和公式,属于基础题. 15.已知函数()sin()(0)f x x ωϕω=+>,点2,03π⎛⎫ ⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是函数()f x 图象上相邻的两个对称中心,则ω=_________. 【答案】2 【解析】 【分析】根据正弦函数两相邻对称中心横坐标间隔为半个最小正周期可求得最小正周期,由此可求得ω.【详解】2,0 3π⎛⎫ ⎪⎝⎭Q和7,06π⎛⎫⎪⎝⎭是()f x两个相邻的对称中心,722632Tπππ∴=-=,即2Tππω==,2ω∴=.故答案为:2.【点睛】本题考查正弦型函数对称性和周期性的综合应用问题,关键是明确正弦型函数相邻的两个对称中心横坐标间隔为半个最小正周期.16.在正三棱柱111ABC A B C-中,23AB=,12AA=,,E F分别为1AB,11A C的中点,平面α过点1C,且平面//α平面11A B C,平面αI平面111A B C l=,则异面直线EF与l所成角的余弦值为________.【答案】34【解析】【分析】由面面平行性质可知11//l A B,取1111,A B B C的中点分别为,H G,可证得//GF l,由此得到异面直线所成角为GFE∠或其补角,通过求得cos GFE∠可确定所成角为GFE∠,进而得到结果.【详解】Q平面//α平面11A B C,平面αI平面111A B C l=,平面11A B C I平面11111A B C A B=,11//l A B∴取1111,A B B C的中点分别为,H G,连接1,,,,EH EG GH GF AC,如图所示,则11//GF A B,//GF l∴,∴异面直线EF与l所成的角为GFE∠或其补角,23AB=Q12AA=,14AC∴=,1EH=,3HF GF==2EG EF∴==,3322cos02GFGFEEF∴∠===>,∴异面直线EF与l所成的角为GFE∠,∴异面直线EF 与l 所成角的余弦值为34.故答案为:3. 【点睛】本题以三棱柱为载体,综合考查异面直线所成角的求解;解答的基本方法是通过平移直线,把异面直线平移到两条相交直线上,将异面直线所成角的问题转变为相交直线所成角的问题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.从中国教育在线官方公布的考研动机调查来看,本科生扎堆考研的原因大概集中在这6个方面:本科就业压力大,提升竞争力;通过考研选择真正感兴趣的专业;为了获得学历;继续深造;随大流;有名校情结.如图是2015~2019年全国硕士研究生报考人数趋势图(单位:万人)的折线图.(1)求y 关于t 的线性回归方程;(2)根据(1)中的回归方程,预测2021年全国硕士研究生报考人数. 参考数据:()()51311iii tty y =--=∑.回归方程y a bt =+$$$中斜率和截距的最小二乘估计公式分别:()()()121ii i ni i tty y b t t ∞==--=-∑∑$,$ay bt =-$. 【答案】(1)$31.1120.9y t =+;(2)338.6万人. 【解析】 分析】(1)根据所给数据求出样本平均数以及对应的系数即可求得y 关于t 的线性回归方程;(2)令7t =代入所得线性回归方程即可求得预测值. 【详解】(1)由题中数据计算得1(12345)35t =++++=, 165177201238290214.25y ++++==,()22232521(2)(1)01210i i tt =-=-+-+++=∑,由参考数据知,()()51311iii t t y y =--=∑,所以()()()5=125131131.110iii ii ttty y bt=--===-∑∑$, $214.231.13120.9ay bt =-=-⨯=$, 故所求回归方程为$31.1120.9y t =+.(2)将2021年对应的7t =代人回归方程得$31.17120.9338.6y =⨯+=, 所以预测2021年全国硕士研究生报考人数约为338.6万人. 【点睛】本题考查线性回归方程,最小二乘估计,属于基础题.18.已知数列{}n a 的前n 项和为n S ,14a =,()1314n n n S a -+=-,()212(1)log n n n b a +=-⋅.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .【答案】(1)4nn a =;(2)24(21)n T n n =-+【解析】 【分析】(1)利用n a 与n S 的关系可证得数列{}n a 为等比数列,利用等比数列通项公式求得结果; (2)由(1)可求得{}n b 的通项公式,采用并项求和的方法,结合等差数列求和公式可求得结果. 【详解】(1)()1314nn n S a-+=-Q ,∴当2n ≥且n *∈N 时,()11314n n n S a -+-=-,()()()111331414n n n n n n n a S S a a --+-+∴=-=---,整理可得:()()11440nn n aa -+--=,Q 当2n ≥且n *∈N 时,140n --≠,14n n a a +∴=;当1n =时,()1112331412S a a-==-=,216a ∴=,满足214a a =,∴数列{}n a 是以4为首项,4为公比的等比数列,1444n n n a -∴=⨯=.(2)由(1)知:()()()()()2211122221log 41log 214n n n n n n b n +++=-⋅=-⋅=-⋅,()()22222241234212n T n n ⎡⎤∴=-+-+⋅⋅⋅+--⎣⎦()()()()()()412123434411n =+⨯-++⨯-+⋅⋅⋅+-⨯-⎡⎤⎣⎦()()()()424374144212n n n n n +=⨯---⋅⋅⋅--=-⨯=-+【点睛】本题考查利用n a 与n S 的关系证明数列为等比数列并求通项、并项求和法求解数列的前n 项和的问题,涉及到等差数列求和公式的应用;关键是明确对于通项公式含有()1n-的数列求和时,通常采用并项求和的方式,通过分组找到数列的规律.19.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,AB AD ⊥ ,//BC AD ,2222AD BC PA AB ====,点E F G ,,分别为线段AD DC PB ,,的中点.(1)证明:直线//AG 平面PEF . (2)求多面体AGCPEF 的体积.【答案】(1)证明见解析;(2)13. 【解析】 【分析】(1)由//OG PE 推出//GO 平面PEF ,//AC EF 推出//AC 平面PEF ,从而推出平面//PEF 平面GAC ,由AC ⊂平面GAC 可得//AC 平面PEF ;(2)间接由多面体P ABCD -的体积减去三棱锥G ABC -、P EFD -的体积即可得解.【详解】(1)连接EC ,连接BE 交AC 于点O ,连接GO ,因为//2BC AD AD BC E =,,为线段AD 的中点, 所以//BC AE 且BC AE =,又AB AD ⊥,所以四边形ABCE 为矩形,则点O 为BE 的中点, 因为O 、G 分别为线段BE 、PB 的中点,所以//OG PE , 因为GO ⊄平面PEF ,PE ⊂平面PEF , 所以//GO 平面PEF ,同理可得//AC 平面PEF ,又因为GO ⊂平面GAC ,AC ⊂平面GAC ,AC GO O ⋂=, 所以平面//PEF 平面GAC , 又因AC ⊂平面GAC ,所以直线//AC 平面PEF .(2)因为22 2 AD BC PA ===,1AB =,所以111(12)11322P ABCD V -=⨯⨯+⨯⨯=, 11111132212G ABC V -=⨯⨯⨯⨯=, 11111132212P DEF V -=⨯⨯⨯⨯=, 故所求多面体AGCPEF 的体积为1111212123--=. 【点睛】本题考查面面平行、线面平行的判定及证明,多面体体积的求法,属于中档题.20.已知函数2(),x f x e ax x a R =--∈,()g x 为函数()f x 的导函数.(1)若函数()g x 的最小值为0,求实数a 的值;(2)若0x ∀>,2()(1)(1)1f x a x a x ≥--++恒成立,求实数a 取值范围.【答案】(1)12;(2)[2,)e -+∞. 【解析】 【分析】(1)令()g x =()f x ',当0a ≤时根据导数判断函数()g x 单调递增不符合题意,当0a >时利用导数判断函数单调性从而求出最小值,根据最小值为0列出方程求解即可;(2)不等式化简为210x e x ax -+-≥,则21x e x a x ---≤对任意0x >恒成立,令21()x e x x xϕ--=,利用导数求出函数()x ϕ的最小值,根据不等式恒成立的条件即可求得a 的值. 【详解】(1)()21x f x e ax '=--, 所以()21x g x e ax =--,()2x g x e a '=-,①当0a ≤时,()0g x '>,所以()21x g x e ax =--在R 上单调递增,不合题意; ②当0a >时,(,ln 2)x a ∈-∞时,()0g x '<,(ln 2,)x a ∈+∞时,()0g x '>, 所以函数()g x 在区间(,ln 2)a -∞上单调递减,在区间(ln 2,)a +∞上单调递增,()(ln 2)2(1ln 2)10g x g a a a ≥=--=,令()(1ln )1x x x μ=--,则()ln x x μ'=-,因为()0,1x ∈时()0x μ'>,(1,)x ∈+∞时()0x μ'<,所以()x μ在区间()0,1上单调递增,在区间(1,)+∞上单调递减, 所以()()10x μμ≤=,所以由2(1ln 2)10a a --=知21a =,解得12a =, 即实数a 的值为12. (2)因为0x ∀>,2()(1)(1)1f x a x a x ≥--++恒成立,所以210x e x ax -+-≥,即21x e x a x---≤对任意0x >恒成立,令21()x e x x x ϕ--=,则()2(1)1()x x e x x xϕ---'=,由(1)知,10x e x --≥,当且仅当0x =时,等号成立,当()0,1x ∈时,()0x ϕ'<,函数()x ϕ单调递减;当(1,)x ∈+∞时,()0x ϕ'>,函数()x ϕ单调递增,所以()(1)2x e ϕϕ=-…,所以2a e -≤-,即2a e ≥-. 所以实数a 的取值范围为[2,)e -+∞.【点睛】本题考查导数在研究函数中的应用,利用导数证明不等式,涉及利用导数判断函数的单调性及求函数的最值,属于较难题. 21.已知点()(),80Pt t <是抛物线2:2(0)C xpy p =>上一点,点F 为抛物线C 的焦点,||10PF =.(1)求直线PF 的方程;(2)若直线l 过点()0,4,与抛物线相交于M N ,两点,且曲线C 在点M 与点N 处的切线分别为m n ,,直线m n ,相交于点G ,求||PG 的最小值. 【答案】(1)3480x y +-=;(2)12 【解析】 【分析】(1)根据抛物线的定义可由||10PF =求出p ,即可求得抛物线方程及焦点F ,由点P 在抛物线上即可求出t 从而得点P 的坐标,即可写出直线PF 的两点式方程;(2)设()()1122,,,M x y N x y ,()33,G x y ,求出直线m 、n 的方程,联立可得直线l 的方程,由直线l 过点()0,4可得34y =-,所以点G 在定直线4y =-上,数形结合可得PG 的最小值. 【详解】(1)因为||10PF =,所以8102p+=,解得4p =, 所以()0,2F ,抛物线方程为:28x y =,又点(),8P t 在抛物线上,所以288t =⨯,又0t <,所以8t =-,则()8,8P -,故直线PF 的方程为822(0)80y x --=---, 化简得3480x y +-=.(2)由(1)知,抛物线方程为28x y =,点()0,2F .设()()1122,,,M x y N x y ,则2118x y =,2228x y =,因为14y x '=, 所以直线m 的方程为()11114y y x x x -=-,整理得1114y x x y =-, 同理可得直线n方程为2214y x x y =-,设()33,G x y , 因为直线m n ,相交于点G ,联立313132321414y x x y y x x y⎧-⎪⎪⎨⎪=-⎩=⎪,得直线l 的方程为3314y xx y =-,又因为直线l 过点()0,4,所以34y =-,即点G 在定直线4y =-上,所以PG 的最小值为()8412--=.【点睛】本题考查直线与抛物线的综合应用,属于较难题.解决直线与抛物线的综合问题时,需要注意:(1)观察、应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.(二)选考题:共10分请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),在以坐标原点为极点,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 3πm ρθ⎛⎫-= ⎪⎝⎭. (1)若直线l 与曲线C 至多只有一个公共点,求实数m 的取值范围;(2)若直线l 与曲线C 相交于A ,B 两点,且A ,B 的中点为P ,求点P 的轨迹方程. 【答案】(1)2m ≥或2m ≤-;(220y m +-= 【解析】 【分析】(1)利用参数方程、极坐标方程与直角坐标方程的互化公式把曲线C 和直线l 的方程化为直角坐标方程,并联立直线l 和曲线C 的直角坐标方程,得到关于x 的一元二次方程,利用判别式0∆≤即可求出实数m 的取值范围;()2根据题意,设()()1122,,,A x y B x y ,A ,B 的中点P 为(),x y ,直线l 和曲线C 的直角坐标方程联立,得到关于x 的一元二次方程,由两个交点A ,B 可得判别式>0∆,求出m 取值范围,利用韦达定理和点P 在直线l 上表示出点P 坐标,消去参数m 即可求出A ,B 的中点P 的轨迹方程. 【详解】(1)因为曲线C 的参数方程为2cos 2sin x y αα=⎧⎨=⎩(α为参数),消去参数α可得,曲线C 的直角坐标方程为224x y +=, 由题意知,直线l的极坐标方程可化为1sin cos 22m ρθρθ-=, 因为cos ,sin x y ρθρθ==,所以直线l20y m -+=,联立方程22420x y y m ⎧+=⎪-+=,可得2210x m +-=,因为直线l 与曲线C 至多只有一个公共点,所以判别式)()22410m ∆=--≤,解得2m ≥或2m ≤-,所以所求实数m 的取值范围为2m ≥或2m ≤-.(2)设()()1122,,,A x y B x y ,A ,B 的中点P 为(),x y ,联立方程22420x y y m ⎧+=⎪-+=,可得2210x m +-=,所以判别式)()22410m ∆=-->,解得22m -<<,由韦达定理可得,122x x x m +==, 因为点P 在直线l上,所以222my m m ⎫=-+=⎪⎪⎭,所以可得0x +=,()11y -<<即为点P 的轨迹方程.【点睛】本题考查参数方程、极坐标方程与直角坐标方程的互化公式、动点轨迹方程的求法;考查运算求解能力;熟练掌握参数方程、极坐标方程与直角坐标方程的互化公式是求解本题的关键;属于中档题.[选修4-5:不等式选讲]23.已知a ,b 为正实数,222a b +=. (1)证明:2a b ab +≥. (2)证明:442a b +≥. 【答案】(1)见解析;(2)见解析. 【解析】 【分析】(1)利用基本不等式222a b ab +≥,证得01ab <≤,再利用作差法证得ab ≤,然后由基本不等式a b +≥即可得证;(2)由()222422424a b a a b b +=++=知,224424a b a b =--,结合(1)中01ab <≤,证得2222a b ≤即得证.【详解】(1)证明:因为0,0a b >>,222a b +=, 由基本不等式222a b ab +≥可得,01ab <≤,当且仅当a b =时等号成立,所以01<≤,即110-<≤,所以)10ab =≤,所以ab ≤2ab ≥,由基本不等式可得,a b +≥所以2a b ab +≥≥,即2a b ab +≥得证. (2)证明:因为222a b +=, 所以()222422424a b a a b b +=++=,即224424a b a b =--,由(1)知,01ab <≤,所以2222a b ≤, 所以4442a b --≤,即442a b +≥得证.【点睛】本题主要考查利用两个正数的基本不等式进行不等式的证明;考查运算求解能力和逻辑推理能力;灵活运用两个正数的基本不等式是求解本题的关键;属于中档题.。
全国100所名校2020年最新高考模拟示范卷(二)数学理科试题+答案+详解MNJ.Y
全国100所名校最新高考模拟示范卷·数学卷(二)(120分钟 150分)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{0,1,2,3}, {2,3,4,5}A B ==,则A B =U ( ) A.{}1,2,3,4,5B.{}0,1,4,5C.{}2,3D.{}0,1,2,3,4,52.i 是虚数单位,2z i =-,则z =( )A.B.2C.3.已知向量()1,2a =r ,(1,)b λ=-r ,若a b r r∥,则实数λ等于( )A.-1B.1C.-2D.24.“22x -<≤”是“22x -≤≤”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D 既不充分也不必要条件5.双曲线22221x y a b -= (0a >,0b >)的离心率为53,则该双曲线的渐近线方程为( ) A.45y x =±B.54y x =±C.43y x =±D.34y x =±6.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京、广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法错误的是( )A.第一场得分的中位数为52B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等7.ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,若5b =,22625c c a ---,则cos A =( )A.45 B.35C.310D.258.函数1())1x xe f x x e-=+的图象大致为( )A BC D9.某几何体的三视图如图所示,三个视图中的曲线都是圆弧,则该几何体的体积为( )A.152πB.12πC.112π D.212π10.图为祖冲之之子祖晒“开立圆术”中设计的立体模型.祖晒提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于323d (d 为球的直径),并得到球的体积为316V d π=,这种算法比外国人早了一千多年.人们还用过一些类似的近似公式,根据3.1415926π=⋅⋅⋅,判断下列公式中最精确的一个是( )A.d ≈B.d ≈C.d ≈D.d ≈11.已知32cos cos 2αβ-=,2sin sin 2αβ+=,则cos()αβ+等于( ) A.12 B.12-C.14D.14-12.已知A B C ,,为椭圆2214x y +=上三个不同的点,若坐标原点O 为ABC △的重心,则ABC △的面积为( )A.B.2C.2D.二、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设()f x 是定义在R 上的函数,若()()g x f x x =+是偶函数,且()24g -=-,则()2f =___________.14.已知数列()*(}n f a n ∈N 是等差数列,其前n 项和为n S ,若66nS =,则4a =___________.15.已知函数()sin()(0)f x x ωϕω=+>,点2,03π⎛⎫ ⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是函数()f x 图象上相邻的两个对称中心,则ω=___________.16.在正三棱柱111ABC A B C -中,12AB AA ==,E F ,分别为111AB AC ,的中点,平面a 过点1C ,且平面a ∥平面11A B C ,平面a I 平面111A B C l =,则异面直线EF 与l 所成角的余弦值为___________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.从中国教育在线官方公布的考研动机调查来看,本科生扎堆考研的原因大概集中在这6个方面:本科就业压力大,提升竞争力;通过考研选择真正感兴趣的专业;为了获得学历;继续深造;随大流;有名校情结如图是2015~2019年全国硕士研究生报考人数趋势图(单位:万人)的折线图.(1)求y 关于t 的线性回归方程;(2)根据(1)中的回归方程,预测2021年全国硕士研究生报考人数. 参考数据:()()51311iii t t y y =--=∑.回归方程$$y abt =+$中斜率和截距的最小二乘估计公式分别:()()()121ii i ni i tty y b t t ∞==--=-∑∑,$a y bt=-$. 18.已知数列{}n a 的前n 项和为n S ,()()21112,4,314,(1)log n n nn n n n S aS a b a -++==-=-⋅.(1)求数列{}n a 的通项公式; (2)求数列{}n b 的前2n 项和2n T .19.如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,底面ABCD 为直角梯形,AB AD ⊥ ,BC AD ∥,2222AD BC PA AB ====,点E F G ,,分别为线段AD DC PB ,,的中点.(1)证明:直线AG ∥平面PEF.(2)求多面体 ACCPEF 的体积.20.已知函数2()e ,x f x ax x a =--∈R ,()g x 为函数()f x 的导函数.(1)若函数()gx 的最小值为0,求实数a 的值;(2)若0x ∀>,2()(1)(1)1f x a x a x --++…恒成立,求实数a 的取值范围.21.已知点()(),80Pt t <是抛物线2(:20)C x py p =>上一点,点F 为抛物线C 的焦点,||10PF =.(1)求直线PF 的方程; (2)若直线l 过点()0,4,与抛物线相交于M N ,两点,且曲线C 在点M 与点N 处的切线分别为m n ,,直线m n ,相交于点G ,求||PG 的最小值.(二)选考题:共10分请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,曲线C 的参数方程为2cos 2sin x ay α=⎧⎨=⎩(a 为参数),在以坐标原点为极点,,x 轴的正半轴为极轴的极坐标系中,直线l 的极坐标方程为sin 3m πρθ⎛⎫-= ⎪⎝⎭. (1)若直线l 与曲线C 至多只有一个公共点,求实数m 的取值范围;(2)若直线l 与曲线C 相交于A B ,两点,且A B ,的中点为P ,求点P 的轨迹方程. 23.[选修4-5:不等式选讲] 已知a b ,为正实数,222a b +=. (1)证明:2a b ab +≥. (2)证明:442a b +….2020年普通高等学校招生全国统一考试数学模拟测试参考答案1.D 本题考查集合的运算因为{0,1,2,3}, {2,3,4,5}A B ==,所以{}0,12,3,4,5A B =U .2C 本题考查复数的模.因为2z i =-,所以||z ==3.C 本题考查向量的平行.因为a b r r∥,所以20λ--=,解得2λ=-.4.A 本题考查充分、必要条件“22x -<≤”是“22x -≤≤”的充分不必要条件.5.C 本题考查双曲线的渐近线.22225161199b e a =-=-=,即43b a =,故双线的渐近线方程为43y x =±. 6.C 本题考查茎叶图.由茎叶图可知第一场得分的中位数为52,众数为0,极差为19,第二场得分的众数为 0,平均数为193,极差为2,所以选项C 的说法是错误的. 7.B 本题考查解三角形.因为225625b c c a =⋅---,所以2226b c a c +-=,所以62cos c bc A =⋅, 所以3cos 5A =. 8.B 本题考查函数的图象.因为()()f x f x -=,所以()f x 为偶函数,排除CD 项,又因为)1(1)ln 101cf e-=>+,所以排除A 项.9.A 本題考查三视图.根据三视图可知,该几何体是由14个圆锥和18个球组成的, 如图所示,其中球的半径为3,圆锥的底面半径也为3,高为4,故该几何体的体积为2311119153433438322x ππππ⨯⨯⨯+⨯⨯-+=.10.C 本题考查数学史与立体几何.由316V xd =,解得36V x d =,选项A 化简得3916V d ≈, 所以69 3.37516π⨯≈=;选项B 化简得212V d ≈,所以632π≈=;选项C 化简得3157300V d ≈, 所以6157 3.14300π⨯≈=;选项D 化简得2815V d ≈,所以683.215π⨯≈=;所以选项C 的 公式最精确.11.A 本题考查三角恒等变换.因为32cos cos 2αβ-=,2sin sin αβ+-,所以2294cos 4cos cos cos 4ααββ-+=,2234sin 4sin sin sin 4ααββ++=, 两式相加得54(cos cos sin sin )3αβαβ--=,解得1cos()2αβ+=. 12.B 本题考查直线与椭圆的位置关系.不妨设直线AB 的方程为y kx m =+代人椭圆方程得()()222148410k xkmx m +++-=.设()11,Ax y ,()22,B x y ,则122814kmx x k +=-+,()21224114m x x k-=+. 设()33,Cx y ,因为O 为ABC △的重心,所以()2122814kmxx x k=-+=+, ()()2121222214my y y k x x m k =-+=-++=-⎡⎤⎣⎦+,代入椭圆方程得22441m k -+,12|||AB x x -, 点O 到直线AB的距离d -,所以OMB △的面积111||||22S AB d m =⨯⨯-⨯因为22441m k -+,所以1S =, 因为O 为ABC △的重心,所以ABC △的面积132S S ==. (另解:不妨设()2,0A,因为O 为ABC △的重心,所以BC 横坐标为1-,可得||BC =ABC△的面积为1322S =⨯=.) 13.6本题考查函数的性质,由题知,(2)(2)2(2)4g f g -+--=-,解得()26f =-.14.6本题考查等差数列基本量的求解设等差数列{}n a 的公差为d ,因为66n S =,所以41166a =,解得a6.15.2本题考查三角函数的性质因为点2,03π⎛⎫ ⎪⎝⎭和7,06π⎛⎫⎪⎝⎭是函数()f x 图象上相邻的两个对称中心,所以是72632wππππ=--,解得2ω=.16.4本题考在异面直线所成角.因为平面a ∥平面11A B C , 平面a I 平面111A B C l =,平面11A B C I 平面11111A B C A B =,所以11l A B ∥,取11A B ,11B C 的中点分别为H G ,,连接EH BG GH GF AC ,,,,,如图所示,则11GF A B ∥, 所以GF l ∥所以异面直线EF 与所成的角为GFE ∠或其补角,又因为AB =12AA =,所以14AC =,1EH =,HP GP ==所以2EG EF -=,所以22cos 24GF GFE RP ∠==.【解题方法】本题以三棱柱为载体,综合考查异面直线所成角的概念.解答的基本方法是通过平移直线,把异面直线平移到两条相交直线上,明确异面直线所成角的概念,应用三角函数知识求解,充分利用图形特征,则可事半功倍.例如本题利用图形易得11D A B ∥,这是本题的题眼. 17.解:本题考查线性回归方程. (1)由题中数据计算得1(12345)35t =++++=, ()2223215(2)(1)01210i i i a t =---+-+++=∑,由参考数据知,()()51311iii t t y y =--=∑,所以()()()532131131.110iiiii tty y b tt=--=-=-∑∑,$214.2-31.13120.9ay bt --=⨯=$, 故所求回归方程为31.1120.9yt =+.(2)将2021年对应的7t =代人回归方程得31.17120.9338.6y =⨯+=, 所以预测2021年全国硕士研究生报考人数约为338.6万人. 18.解:本题考查数列通项公式及前n 项和 (1)因为()1311n nn S a+=-,所以当2n ≥时,所以()1314n n n S a +--,所以()11314(14)nn n n n a aa ++-=--,整理得()()11440nn n aa +--=,所以14,(2)n n a a n +=>,当1n =时,()12314nS a--,14a =,所以216a =,所以24a a =,所以数列{}n a 是首项和公比均为4的等比数列,所以1444n n a +=⨯=,即4n n a =.(2)由(1)知4n na =,所以()()221121222(1)log 4(1)log 24(1)n n n n n n b n +++=-⋅--⋅--⋅22222241234(21)(2)4[37(41)]4(21)n T n n n n n ⎡⎤=-+-++--=-----=-⋅+⎣⎦L L ,故数列{}n b 的前2n 项和24(21)n T n n =-+.【名师点睛】等差数列、等比数列的通项公式及前n 项和问题,是高考的常考内容,解题过程中要注意应用函数与方程思想,构建方程(或方程组)求基本量,例如此题,从已知出发,构建1,a d 的方程组求数列通项公式,利用前后项合并,构造等差数列,求数列的前n 项和. 19.解:本题考查线面平行及多面体的体积.(1)证明:因为2BC AD AD BC E =∥,,为线段AD 的中点,所以BC AE ∥,连接EC ,因为AB AD ⊥,所以四边形ABCE 为矩形,连接BE 交AC 于点O ,连GO ,因为G 为线段PB 的中点,所以OG PE ∥,因为GO ⊄平面PEF ,PBC 平面PEF , 所以GO ∥平面PEF ,由题易知,AC ∥平面PEF , 又因为GC ⊂平面GAC ,AC ⊂平面GAC .AC GO O =I ,所以平面PEF ∥平面GAC ,又因为AGC 平面GMC ,所以直线AC ∥平面PEF .(2)因为22 2 AD BC PA ===,1AB =,所以四棱锥P ABCD -的体积111(12)11322S =⨯⨯+⨯⨯=,三棱锥G ABC -的体联11111132212S =⨯⨯⨯⨯=,棱锥P DEF -的体积 11111132212S =⨯⨯⨯⨯=,故所求多面体AGCPEF 的体积为1111212123--=.20.解:本题考查函数最值及恒成立求参数范围. (1)()21x f x e ax '=--,所以()21xg x eax =--,()2x g x e a '=-,①当0a ≤时,()0g x '>,所以()21x g x e ax =--在R 上单词递增,不合题意;②当0a >时,(,ln 2)x a ∈-∞,()0g x '<,(ln 2,)x a ∈+∞,()0g x '>, 所以函数()gx 在区间(,ln 2)a -∞上单调递减,在区间(ln 2,)a +∞上单调递增,()(ln 2)2(1ln 2)10g x g a a a ----…,令()ln 1x x x x μ'---,则()ln x x μ'=-,所以()x μ在区间()0,1上单调递增,在区间(1,)+∞上单调递减,所以()()10x μμ≤=,所以由2(1ln 2)10a a --=,解得12a =, 即实数a 的值为12. (2)因为0x ∀>,2()(1)(1)1f x a x a x >--++恒成立,所以210x e x ax -+-≥,即21x e x a x ---<对任意0x >恒成立,令21()x e x x xϕ---,则()2(1)1()x x e x x x ϕ---'=,由(1)知,10x e x --≥,当且仅当0x =时,等号成立,所以函数()x ϕ在区间()0,1上单调递减,在区间(1,)+∞上单词递增,所以()(1)2x e ϕϕ=-…,所以2a e -≤-,即2a e ≥-. 所以实数a 的取值范围为[2,)e -+∞. 21.解:本题考查抛物线的性质. (1)因为||10PF =,所以8102p+-,解得4p =,所以()0,2F , 因为288t =⨯,且0t <,所以8t =-,所以()8,8P -,故直线PF 的方程为822(0)80y x ------, 化简得3480x y +-=.(2)由(1)知,抛物线方程为28x y =,点()0,2F .设()()1122,,,Mx y N x y ,又因为14y x '=, 所以直线m 的方程为()11114y y x x x -=- 整理得1114y x x y =-, 同理可得直线n 的方程为1214y x x y =-,设()33,G x y , 联立311332321414y x x y y x x y⎧--⎪⎪⎨⎪=-⎪⎩,得直线l 的方程为3314y xx y =-,又因为直线l 过点()0,4,所以4y =-,即点G 在定直线4y =-上,所以PG 的最小值为()8412--=.【解题思路】解决直线与抛物线的综合问题时,需要注意:(1)观察、应用题设中的每一个条件,明确确定直线、抛物线的条件;(2)强化有关直线与抛物线联立得出一元二次方程后的运算能力,重视根与系数之间的关系、弦长、斜率、三角形的面积等问题.22.解:本题考查坐标与参数方程: (1)由题知,曲线C 的直角坐标方程为224x y +=,直线l20y m -+=,因为直线l 与曲线C||2m =≥, 所以实数m 的取值范围为(,2][2,)-∞-+∞U . (2)设()()1122,,,,(,)Ax y B x y P u v ,由(1)知,(2,2)m ∈-,由22204y m x y -+=+=⎪⎩,解得224440x m ++-=,所以122u x x -+-=,)121224v y y x x m m -+++=,所以2u =-,即u =,故点P的轨迹方程为0(11)x y +=-<<.23.解:本题考查不等式证明.(1)因为222a b +=所以1ab ≤,所以1ab ≤≤,2a b +≤,所以2a b ab +≤, 即2a b ab +≥,当且仅当a b =时等号成立, (2)()244222222242a b a b a b a b +-+-=-, 由(1)知1ab ≤,所以221a b ≤,所以2242422a b -≥--,即442a b +≥,当且仅当a b =时等号成立.。
【试卷】2020年全国100所名校最新高考模拟示范卷 理科数学(包括答案、教师评分标准)
2020年全国100所名校最新高考模拟示范卷理科数学(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20},{|21}A x x x B x x =--=-<≤≤,则A B = ( ) A .{|12}x x -≤≤ B .{|22}x x -<≤C .{|21}x x -<≤D .{|22}x x -≤≤2.i 是虚数单位,2i1iz =-,则z =( )A .1B .2CD .3.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随机投放一根这样的针到白纸上,则落地后与直线相交的概率为( ) A .12πB .3πC .2πD .1π4.函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞⎪⎝⎭ B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦5.下列命题中是真命题的是( )①“1x >”是“21x ≥”的充分不必要条件 ;②命题“0x ∀>,都有sin 1x ≤”的否定是“00x ∃>,使得0sin 1x >”;③数据128,,,x x x 的平均数为6,则数据12825,25,,25x x x --- 的平均数是6;④当3a =-时,方程组232106x y a x y a-+=⎧⎨-=⎩有无穷多解.A .①②④B .③④C .②③D .①③④6.已知15455,log log 2a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >>7.在ABC △中,sin 1,2C BC AB ===ABC △的面积为( )A .2B .32C .4D8.我国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升.如图是一个这种商鞅铜方升的三视图,若x 是方程 1.3522.35x x -=-的根,则该商鞅铜方升的俯视图的面积是正视图面积的( ) A .1.5倍 B .2倍 C .2.5倍D .3.5倍9.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭, 若()f x 在[0,2]π上有且仅有5个零点, 则ω的取值范围为 ( ) A .1229,510⎡⎫⎪⎢⎣⎭ B .1229,510⎛⎤⎥⎝⎦ C .1229,510⎛⎫⎪⎝⎭ D .1229,510⎡⎤⎢⎥⎣⎦ 10.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( ) AB .2C .4D.11.对于函数()f x ,若12,x x 满足1212()()()f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点” .若实数a 与b 和a b +与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4B .3log 41+C .43D .3log 41-12.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形11,ABCD BCC B 的中心.平面1D MN 将正方体分割为两个多面体,则点C 所在的多面体与点1A 所在的多面体的体积之比是( )A .23B .12 C .25D .13二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为 .14.已知平面向量a 与b 的夹角为3π,1),1a b =-= ,则2a b -=.15.已知函数()ln 2f x x x a =-在点(1,(1))f 处的切线经过原点,函数()()f x g x x=的最小值为m ,则 2m a += .16.设12,F F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过左焦点1FC在第一象限相交于一点P ,若12F PF △是等腰三角形,则C 的离心率e = .三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分. 17.(本小题满分12分)新高考取消文理科,实行“3+3”模式,成绩由语文、数学、外语统一高考成绩和自主选考的3门普通高中学业水平考试等级性考试科目成绩构成.为了解各年龄层对新高考的了解情况,随机调查50人,并把调查结果制成下表: 年龄(岁) [15, 25) [25, 35) [35, 45) [45, 55) [55, 65) [65, 75) 频数 5 15 10 10 5 5 了解4126521(1)把年龄在[15, 45)称为中青年,年龄在[45, 75)称为中老年,请根据上表完成2×2列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考 不了解新高考 总计中青年 中老年 总计附:22()()()()()n ad bc K a b c d a c b d -=++++.P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828(2)若从年龄在[55, 65)的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为X ,求X 的分布列以及E (X ) . 18.(本小题满分12分) 已知等差数列{}n a 的前n 项和为n S ,若公差40,14d S ≠=且137,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .19.(本小题满分12分) 如图,在菱形ABCD 中,,32BAD EDC ππ∠=∠=,平面CDE ⊥平面,//,ABCD EF DB M 是线段AE的中点,112DE EF BD ===. (1)证明://DM 平面CEF .(2)求直线BF 与平面AEF 所成角的余弦值.AE20.(本小题满分12分)已知函数21()(1)ln ()2f x m x x m =--∈R . (1)讨论函数()f x 的极值;(2)是否存在实数m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 21.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的短轴长为,离心率12e =,其右焦点为F .(1)求椭圆C 的方程; (2)过F 作夹角为4π的两条直线12,l l 分别交椭圆C 于,P Q 和,M N ,求PQ MN的取值范围.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所作的第一题计分.22.【选修4—4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系中,曲线122cos :2sin x C y αα=+⎧⎨=⎩(α为参数),在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:sin 13C πρθ⎛⎫-= ⎪⎝⎭. (1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最小值及此时点P 的直角坐标. 23.【选修4—5:不等式选讲】(本小题满分10分)已知()211f x x x =++-. (1)求不等式()9f x ≤的解集;(2)设()9124g x x x =-+--,在同一坐标系内画出函数()f x 和()g x 的图象,并根据图象写出不等式()()f x g x ≤的解集.2020年全国100所名校最新高考模拟示范卷理科数学(五)参考答案1.答案:B解析:2{|20}{|(2)(1)0}{|12}A x x x x x x x x=--=-+=-≤≤≤≤,{|21}B x x=-<≤,所以{|22}A B x x=-<≤.2.答案:C 解析:2i2i2i,1i1i1iz z=∴====---,公式:11121222,zzz z z zz z⋅=⋅=.3.答案:D 解析:因为70412212π≈,故选D.4.答案:B 解析:当0a≤时,1()f x axx=+在(2,)+∞上单调递减,当0a>时,1()f x axx=+在⎛⎝上单调递减,在⎫+∞⎪⎭2,即14a≥.5.答案:A 解析:①正确;②正确;③由()6E X =,可得(25)2()52657E X E X -=-=⨯-=,故错误.当3a =-时,26a x y a -=即为963x y -=-,即3210x y -+=,所以方程组232106x y a x y a-+=⎧⎨-=⎩有无穷多解,④正确.6.答案:A解析:105445511551,1log log 2,log 2log 22a b c =>=>=>==<=,故a b c >>.7.答案:A解析:234cos 12sin ,sin 255C C C =-=-∴=;1,a c ==由余弦定理可得2222cos c a b ab C =+- 即263105b b +-=,31(5)05b b ⎛⎫-+= ⎪⎝⎭,5b =,114sin 152225ABC S ab C ∴==⨯⨯⨯=△. 8.答案:C 解析:由 1.3522.35x x -=-,设 1.35t x =-,得21t t =-,作出函数2t y =和1y t =-的图象,可知0t =,即 1.35x =.俯视图的面积为1.3513(5.4 1.35)13.5⨯+⨯-=,正视图面积为5.4,所以俯视图的面积是正视图面积的2.5倍. 9.答案:A 解析:因为当[0,2]x ∈π时,2555x πππω+ωπ+≤≤,由()f x 在[0,2]π有且仅有5个零点.则265x ππω+<π5≤,解得1229510ω⎡⎫∈⎪⎢⎣⎭,. 10.答案:C解析:设221122(2,),(2,)A t t B t t ,12t t ≠,由24x y =,得2xy '=,所以切线12,l l 的斜率分别为11k t =,22k t =, 所以21111:(2)l y t t x t -=-,即211y t x t =-,同理2222:l y t x t =-,联立2112223y t x t y t x t y ⎧=-⎪=-⎨⎪=-⎩,得12123x t t y t t =+⎧⎨==-⎩,22121212222ABt t t tk t t -+==-,21211:(2)2AB t t l y t x t +-=-,即12122t t y x t t +=-,即1232t t y x +=+,即直线AB 恒过定点(0,3),即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 解法二:不妨设(0,3)P -,设切线方程为3y kx =-,将其代入24x y =,得24120x kx -+=, 则216480k ∆=-=,解得k =,当k =2120x -+=,解得x =故A ,同理可得(B -,所以直线AB 的方程为3y =,直线AB 过圆心(0,3), 则直线AB 截圆22650x y y +-+=所得弦长为4. 11.答案:D解析:a 与b 为函数()3x f x =的“线性对称点”,所以333a ba b +=+=≥,故34a b +≥(当且仅当a b =时取等号).又a b +与c 为函数()3x f x =的“线性对称点”,所以3333abca b c++++=,所以33314313131313a b a b ca b a b a b +++++===+---≤,从而c 的最大值为334log log 413=-.12.答案:B 解析:设正方体的棱长为1,延长1D N ,与AB 的延长线交于点F ,则1BF =,连接FM并延长,交BC 于点P ,交AD 于点Q ,取AB 中点G ,连接MG ,则23BP BF GM FG ==, 12,233BP AQ BP ∴===,连接PN ,并延长交11B C 于点H ,连接1D H ,则113HC =,平面1HD QP 即为截面,取PC 中点E ,连接1,C E QE ,则点C 所在的多面体的体积1111111111111123233D DQ C CE C D H EQP V V V --⎛⎫⎛⎫=+=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,点1A 所在的多面体的体积1221211,332V V V =-=∴=.13.答案:160- 解析:612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为33361(2)160C x x ⎛⎫⋅⋅-=- ⎪⎝⎭. 14 解析:2,1a b == ,cos 13a b a bπ⋅=⋅=,所以222244164113a b a a b b -=-⋅+=-+= ,所以2a b -=15.答案:0解析:()1ln ,(1)1,(1)2f x x f f a ''=+==-,切线1l 的方程:21y a x +=-,又1l 过原点,所以21a =-,221111()ln 1,()ln ,()x f x x x g x x g x x x x x-'=+=+=-=,当(0,1)x ∈时,()0,()g x g x '<单调递减,当(1,)x ∈+∞时,()0,()g x g x '>单调递增,故()()f x g x x=的最小值为(1)1g =,所以1,20m m a =+=. 16.答案:2或43 解析:设直线倾斜角为α,则7tan cos 8αα==.P 在第一象限, 12F PF △是等腰三角形,所以112F P F F =或212F P F F =.若112F P F F =,则11212,22F P F F c F P c a ===-,由余弦定理得222244(22)788c c x a c +--=,整理得23840e e -+=,解得2e =或23e =(舍去).250(221288)5.56 3.84130202030K ⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关联.…………………………………………………………………………………………………6分(2)年龄在[55, 65)的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数X 可能取值为0,1,2,则31121323233335551633(0),(1),(2)1010510C C C C C P X P X P X C C C ==========.………………………9分 所以X 的分布列为13()012105105E X =⨯+⨯+⨯=.……………………………………………………………………12分18.解析:(1)由题意可得4121114614(2)(6)S a d a d a a d =+=⎧⎨+=+⎩ ,即1212372a d d a d +=⎧⎨=⎩,…………………………3分 又因为0d ≠,所以12,1a d ==,所以1n a n =+.……………………………………………………6分 (2)因为111(2)(1)11(1)(2)(1)(2)12n n n n a a n n n n n n ++-+===-++++++,………………………………9分 所以11111111233412222(2)n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭ .…………………………12分 19.解析:(1)设AC 与BD 的交点为O ,连接MO .因为//OD EF ,OD ⊄平面CEF ,EF ⊂平面CEF ,所以//OD 平面CEF .……………………………………………………………………………………2分 又OM 是ACE △的中位线,所以//OM CE ,又OM ⊄平面CEF ,CE ⊂平面CEF ,所以//OM 平面CEF .……………………………………………………………………………………………………4分 又OM OD O = ,所以平面//OMD 平面CEF .又MD ⊂平面OMD ,故//MD 平面CEF .…5分 (2)因为DE DC ⊥,平面CDE ⊥平面ABCD ,平面CDE 平面,ABCD CD DE =⊂平面CDE ,所以ED ⊥平面ABCD .连接OF ,则EF OD ,故四边形ODEF 是平行四边形,故//ED OF , 从而OF ⊥平面ABCD .……………………………………………………………………………………6分 以O 为坐标原点,,,OA OB OF 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,1,0),(0,0,1),(0,1,1)A B F E -,则(0,1,0),((0,1,1)EF AF BF ===-,设平面AEF 的法向量为(,,)n x y z =,则0n EF y n AF z ⎧⋅==⎪⎨⋅=+=⎪⎩,取n = ,…………8分则cos ,n BF n BF n BF⋅==⋅BF则cos sin ,n BF θ== ,所以直线BF 与平面AEF ………………………………………………12分 20.解析:(1)由题知,2110,()mx x f x mx x x-'>=-+=,…………………………………………1分 ①当0≤m 时,21()0mx f x x -'=<,所以()f x 在(0,)+∞上单调递减,没有极值;………………3分②当0m >时,令21()0mx f x x -'==,得x =,当x⎛∈ ⎝时,()0,()f x f x '<单调递减,当x ⎫∈+∞⎪⎭时,()0,()f x f x '>单调递增,故()f x 在x=处取得极小值111ln 222f m m =+-,无极大值.…………………………5分 (2)不妨令11111()x x x e x h x x e xe----=-=,不难证明10≥x e x --,当且仅当1x =时取等号, 所以当(1,)x ∈+∞时,()0h x >,由(1)知,当0,1≤m x >时,()f x 在(1,)+∞上单调递减,()(1)0f x f <=恒成立; 所以若要不等式111()x f x x e->-在(1,)+∞上恒成立,只能0m >. 当01m <<1>,由(1)知,()f x 在⎛ ⎝上单调递减, 所以(1)0f f<=,不满足题意.……………………………………………………………………8分 当1≥m 时,设21111()(1)ln 2x F x m x x x e-=---+, 因为1,1≥m x >,所以11111,1,01,10≥x x x mx x e e e---><<-<-<,32221222111111(1)(1)()10x x x x x x F x mx x x x e x x x x---+-+'=-++->-++-==>, 所以()F x 在(1,)+∞上单调递增,又(1)0F =,所以当(1,)x ∈+∞时,()0F x >恒成立,即()()0f x h x ->恒成立,故存在1≥m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立.此时m 的最小值是1.…………12分21.解析:(1)由2b =b =,又由22222214c a b e a a -===,得2234a b =, 则224,3a b ==,故椭圆C 的方程为22143x y +=.……………………………………………………4分(2)由(1)知(1,0)F ,①当直线12,l l 的斜率都存在时,由对称性不妨设直线1l 的方程为(1)y k x =-,1k ≠±, 由222222(1)(43)8412034120y k x k x k x k x y =-⎧⇒+-+-=⎨+-=⎩,……………………………………5分设1122(,),(,)P x y Q x y ,则2221212228412,,144(1)04343k k x x x x k k k -+==∆=+>++,…………6分则2212(1)34k PQ k +==+,由椭圆的对称性可设直线2l 的斜率为11k k +-, 则22221121224(1)17(1)21341k k k MN k k k k +⎛⎫+⋅ ⎪+-⎝⎭==+++⎛⎫+⋅ ⎪-⎝⎭,……………………………………………………8分 222222212(1)7(1)27(1)27873424(1)6882432PQk k k k k k MN k k k k ++++++=⋅==+++++, 令87t k =+,则78t k -=,当0t =时,78k =-,78PQ MN =, 当0t ≠时,22724322432197878722t k t k t t-⎛⎫+ ⎪+⎝⎭==+-+, 若0t >,则1977722t t +--,若0t <,则1977722≤t t+-2872432≤k k ++,即2872432k k ++,≤PQ MN ,且87PQ MN ≠.………………………………………………10分 ②当直线12,l l 的斜率其中一条不存在时,由对称性不妨设直线1l 的方程为1y x =-,则2242,37b PQ MN a ===,此时87PQ MN =∈⎣⎦.若设2l 的方程为1y x =-,则78PQMN =∈⎣⎦, 综上可知,PQ MN的取值范围是⎣⎦.……………………………………………12分22.解析:(1)由122cos :2sin x C y αα=+⎧⎨=⎩(α为参数),得1C 的普通方程为22(2)4x y -+=;由sin 13πρθ⎛⎫-= ⎪⎝⎭,得1sin cos 12ρθρθ=cos sin 20θρθ-+=,又由cos ,sin x y ρθρθ==,得曲线220C y -+=.…………………………………………5分 (2)由题意,可设点P 的直角坐标为(22cos ,2sin )αα+,因为2C 是直线,所以PQ 的最小值,即为P 到2C 的距离()d α的最小值,()2cos 16d παα⎛⎫=+++ ⎪⎝⎭.………………………………8分当且仅当52,6Z k k παπ=+∈时,()d α1-, 此时P的直角坐标为(2.…………………………………………………………………………10分23.解析:(1)3,11()2112,1213,2≥≤x x f x x x x x x x ⎧⎪⎪⎪=++-=+-<<⎨⎪⎪--⎪⎩,…………………………………………1分当1≥x 时,39≤x ,得13≤≤x ;………………………………………………………………………2分当112x -<<时,29≤x +,解得7≤x ,故112x -<<;…………………………………………3分 当12≤x -时,39≤x -,解得3≥x -,故132≤≤x --.……………………………………………4分综上,原不等式的解集为{|33}≤≤x x -.………………………………………………………………5分(2)36,1()91244,12≤x x g x x x x x +-⎧⎪=-+--=+-<<⎨⎪,在同一坐标系内画出函数()f x 和()g x 的图象,10分2020年全国100所名校最新高考模拟示范卷理科数学(五)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合2{|20},{|21}A x x x B x x =--=-<≤≤,则A B = ( ) A .{|12}x x -≤≤ B .{|22}x x -<≤C .{|21}x x -<≤D .{|22}x x -≤≤1.答案:B解析:2{|20}{|(2)(1)0}{|12},{|21}A x x x x x x x x B x x =--=-+=-=-<≤≤≤≤≤, 所以{|22}A B x x =-< ≤. 2.i 是虚数单位,2i1iz =-,则z =( )A .1B .2CD .2.答案:C解析:2i 2i 2i ,1i 1i 1i z z =∴====--- ,公式:11121222,z z z z z z z z ⋅=⋅=. 3.1777年,法国科学家蒲丰在宴请客人时,在地上铺了一张白纸,上面画着一条条等距离的平行线,而他给每个客人发许多等质量的,长度等于相邻两平行线距离的一半的针,让他们随意投放.事后,蒲丰对针落地的位置进行统计,发现共投针2212枚,与直线相交的有704枚.根据这次统计数据,若客人随机投放一根这样的针到白纸上,则落地后与直线相交的概率为( ) A .12πB .3πC .2πD .1π3.答案:D解析:因为70412212π≈,故选D . 4.函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( )A .1,4⎛⎫+∞⎪⎝⎭B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦4.答案:B解析:当0a ≤时,1()f x axx =+在(2,)+∞上单调递减,当0a >时,1()f x ax x =+在⎛ ⎝上单调递减,在⎫+∞⎪⎭2,即14a ≥.5.下列命题中是真命题的是( )①“1x >”是“21x ≥”的充分不必要条件 ;②命题“0x ∀>,都有sin 1x ≤”的否定是“00x ∃>,使得0sin 1x >”;③数据128,,,x x x 的平均数为6,则数据12825,25,,25x x x --- 的平均数是6;④当3a =-时,方程组232106x y a x y a-+=⎧⎨-=⎩有无穷多解.A .①②④B .③④C .②③D .①③④5.答案:A解析:①正确;②正确;③由()6E X =,可得(25)2()52657E X E X -=-=⨯-=,故错误. 当3a =-时,26a x y a -=即为963x y -=-,即3210x y -+=,所以方程组232106x y a x y a-+=⎧⎨-=⎩有无穷多解,④正确.6.已知15455,log log 2a b c ===,则,,a b c 的大小关系为( )A .a b c >>B .a c b >>C .b a c >>D .c b a >>6.答案:A解析:105445511551,1log log 2,log 2log 22a b c =>=>=>==<=,故a b c >>.7.在ABC △中,sin 1,2C BC AB ===ABC △的面积为( )A .2B .32C .4D7.答案:A解析:234cos 12sin ,sin 255C C C =-=-∴=;1,a c ==由余弦定理可得2222cos c a b ab C =+- 即263105b b +-=,31(5)05b b ⎛⎫-+= ⎪⎝⎭,5b =,114sin 152225ABC S ab C ∴==⨯⨯⨯=△. 8.我国古代数学名著《九章算术》中记载了公元前344年商鞅督造一种标准量器——商鞅铜方升.如图是一个这种商鞅铜方升的三视图,若x 是方程 1.352 2.35x x -=-的根,则该商鞅铜方升的俯视图的面积是正视图面积的( ) A .1.5倍B .2倍C .2.5倍D .3.5倍8.答案:C 解析:由 1.3522.35x x -=-,设 1.35t x =-,得21t t =-,作出函数2t y =和1y t =-的图象,可知0t =,即 1.35x =.俯视图的面积为1.3513(5.4 1.35)13.5⨯+⨯-=,正视图面积为5.4,所以俯视图的面积是正视图面积的2.5倍. 9.设函数()sin (0)5f x x πωω⎛⎫=+> ⎪⎝⎭,若()f x 在[0,2]π上有且仅有5个零点,则ω的取值范围为 ( ) A .1229,510⎡⎫⎪⎢⎣⎭B .1229,510⎛⎤⎥⎝⎦C .1229,510⎛⎫⎪⎝⎭D .1229,510⎡⎤⎢⎥⎣⎦9.答案:A解析:因为当[0,2]x ∈π时,2555x πππω+ωπ+≤≤,由()f x 在[0,2]π有且仅有5个零点. 则265x ππω+<π5≤,解得1229510ω⎡⎫∈⎪⎢⎣⎭,. 10.已知曲线24x y =,动点P 在直线3y =-上,过点P 作曲线的两条切线12,l l ,切点分别为,A B ,则直线AB 截圆22650x y y +-+=所得弦长为( ) AB .2C .4D.10.答案:C解析:设221122(2,),(2,)A t t B t t ,12t t ≠,由24x y =,得2xy '=,所以切线12,l l 的斜率分别为11k t =,22k t =, 所以21111:(2)l y t t x t -=-,即211y t x t =-,同理2222:l y t x t =-,联立2112223y t x t y t x t y ⎧=-⎪=-⎨⎪=-⎩,得12123x t t y t t =+⎧⎨==-⎩,22121212222ABt t t tk t t -+==-,21211:(2)2AB t t l y t x t +-=-,即12122t t y x t t +=-,即1232t t y x +=+,即直线AB 恒过定点(0,3),即直线AB 过圆心(0,3),则直线AB 截圆22650x y y +-+=所得弦长为4. 解法二:不妨设(0,3)P -,设切线方程为3y kx =-,将其代入24x y =,得24120x kx -+=, 则216480k ∆=-=,解得k =,当k =2120x -+=,解得x =故A ,同理可得(B -,所以直线AB 的方程为3y =,直线AB 过圆心(0,3), 则直线AB 截圆22650x y y +-+=所得弦长为4.11.对于函数()f x ,若12,x x 满足1212()()()f x f x f x x +=+,则称12,x x 为函数()f x 的一对“线性对称点” .若实数a 与b 和a b +与c 为函数()3x f x =的两对“线性对称点”,则c 的最大值为( ) A .3log 4 B .3log 41+C .43D .3log 41-11.答案:D解析:a 与b 为函数()3x f x =的“线性对称点”,所以333a ba b +=+=≥,故34a b +≥(当且仅当a b =时取等号).又a b +与c 为函数()3x f x =的“线性对称点”,所以3333abca b c++++=,所以33314313131313a b a b ca b a b a b +++++===+---≤,从而c 的最大值为334log log 413=-.12.在正方体1111ABCD A B C D -中,如图,,M N 分别是正方形11,ABCD BCC B 的中心.平面1D MN 将正方体分割为两个多面体,则点C 所在的多面体与点1A 所在的多面体的体积之比是( ) A .23B .12C .25D .1312.答案:B解析:设正方体的棱长为1,延长1D N ,与AB 的延长线交于点F ,则1BF =,连接FM 并延长,交BC于点P ,交AD 于点Q ,取AB 中点G ,连接MG ,则212,,2333BP BF BP AQ BP GM FG ==∴===, 连接PN ,并延长交11B C 于点H ,连接1D H ,则113HC =,平面1HD QP 即为截面,取PC 中点E ,连接1,C E QE ,则点C 所在的多面体的体积1111111111111123233D DQ C CE C D H EQP V V V --⎛⎫⎛⎫=+=⨯⨯⨯+⨯⨯⨯= ⎪ ⎪⎝⎭⎝⎭,点1A 所在的多面体的体积1221211,332V V V =-=∴=.二、填空题:本题共4小题,每小题5分,共20分.把答案填在题中的横线上.13.612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为 .13.答案:160-解析:612x x ⎛⎫- ⎪⎝⎭的展开式中常数项为33361(2)160C x x ⎛⎫⋅⋅-=- ⎪⎝⎭.14.已知平面向量a 与b的夹角为3π,1),1a b =-= ,则2a b -= .14解析:2,1a b == ,cos 13a b a bπ⋅=⋅=,所以222244164113a b a a b b -=-⋅+=-+= ,所以2a b -=.15.已知函数()ln 2f x x x a =-在点(1,(1))f 处的切线经过原点,函数()()f x g x x=的最小值为m ,则 2m a += .15.答案:0解析:()1ln ,(1)1,(1)2f x x f f a ''=+==-,切线1l 的方程:21y a x +=-,又1l 过原点,所以21a =-,221111()ln 1,()ln ,()x f x x x g x x g x x x x x-'=+=+=-=,当(0,1)x ∈时,()0,()g x g x '<单调递减,当(1,)x ∈+∞时,()0,()g x g x '>单调递增, 故()()f x g x x=的最小值为(1)1g =,所以1,20m m a =+=. 16.设12,F F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过左焦点1FC在第一象限相交于一点P ,若12F PF △是等腰三角形,则C 的离心率e = . 16.答案:2或43解析:设直线倾斜角为α,则7tan cos 8αα==.P 在第一象限, 12F PF △是等腰三角形,所以112F P F F =或212F P F F =.若112F P F F =,则11212,22F P F F c F P c a ===-,222频数 5 15 10 10 5 5 了解4126521(1)把年龄在[15, 45)称为中青年,年龄在[45, 75)称为中老年,请根据上表完成2×2列联表,是否有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关?了解新高考不了解新高考总计 中青年中老年 总计附:22()()()()()n ad bc K a b c d a c b d -=++++.P (K 2≥k )0.050 0.010 0.001 k3.8416.63510.828(2)若从年龄在[55, 65)的被调查者中随机选取3人进行调查,记选中的3人中了解新高考的人数为X ,求X 的分布列以及E (X ) . 17.解析:(1)2×2列联表如图所示,了解新高考不了解新高考总计 中青年 22 8 30 中老年 8 12 20 总计302050…………………………………………………………3分250(221288)5.56 3.84130202030K ⨯⨯-⨯=≈>⨯⨯⨯,所以有95%的把握判断对新高考的了解与年龄(中青年、中老年)有关联.…………………………………………………………………………………………………6分 (2)年龄在[55, 65)的被调查者共5人,其中了解新高考的有2人,则抽取的3人中了解新高考的人数X 可能取值为0,1,2,则31121323233335551633(0),(1),(2)1010510C C C C C P X P X P X C C C ==========.………………………9分 所以X 的分布列为13()012105105E X =⨯+⨯+⨯=.……………………………………………………………………12分 18.(本小题满分12分)已知等差数列{}n a 的前n 项和为n S ,若公差40,14d S ≠=且137,,a a a 成等比数列. (1)求数列{}n a 的通项公式; (2)求数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n T .18.解析:(1)由题意可得4121114614(2)(6)S a d a d a a d =+=⎧⎨+=+⎩ ,即1212372a d d a d +=⎧⎨=⎩,…………………………3分 又因为0d ≠,所以12,1a d ==,所以1n a n =+.……………………………………………………6分 (2)因为111(2)(1)11(1)(2)(1)(2)12n n n n a a n n n n n n ++-+===-++++++,………………………………9分 所以11111111233412222(2)n n T n n n n ⎛⎫⎛⎫⎛⎫=-+-++-=-=⎪ ⎪ ⎪++++⎝⎭⎝⎭⎝⎭ .…………………………12分 19.(本小题满分12分) 如图,在菱形ABCD 中,,32BAD EDC ππ∠=∠=,平面CDE ⊥平面,//,ABCD EF DB M 是线段AE的中点,112DE EF BD ===. (1)证明://DM 平面CEF .(2)求直线BF 与平面AEF 所成角的余弦值.AE19.解析:(1)设AC 与BD 的交点为O ,连接MO .因为//OD EF ,OD ⊄平面CEF ,EF ⊂平面CEF , 所以//OD 平面CEF .……………………………………………………………………………………2分 又OM 是ACE △的中位线,所以//OM CE ,又OM ⊄平面CEF ,CE ⊂平面CEF ,所以//OM 平面CEF .……………………………………………………………………………………………………4分 又OM OD O = ,所以平面//OMD 平面CEF .又MD ⊂平面OMD ,故//MD 平面CEF .…5分 (2)因为DE DC ⊥,平面CDE ⊥平面ABCD ,平面CDE 平面,ABCD CD DE =⊂平面CDE ,所以ED ⊥平面ABCD .连接OF ,则EF OD ,故四边形ODEF 是平行四边形,故//ED OF , 从而OF ⊥平面ABCD .……………………………………………………………………………………6分 以O 为坐标原点,,,OA OB OF 分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则(0,1,0),(0,0,1),(0,1,1)A B F E -,则(0,1,0),((0,1,1)EF AF BF ===-,设平面AEF 的法向量为(,,)n x y z =,则0n EF y n AF z ⎧⋅==⎪⎨⋅=+=⎪⎩,取n = ,…………8分则cos ,n BF n BF n BF⋅==⋅ 所以直线BF 与平面AEF12分20.(本小题满分12分)已知函数21()(1)ln ()2f x m x x m =--∈R . (1)讨论函数()f x 的极值;(2)是否存在实数m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立?若存在,求出m 的最小值;若不存在,请说明理由. 20.解析:(1)由题知,2110,()mx x f x mx x x-'>=-+=,…………………………………………1分 ①当0≤m 时,21()0mx f x x-'=<,所以()f x 在(0,)+∞上单调递减,没有极值;………………3分 ②当0m >时,令21()0mx f x x -'==,得x =, 当x ⎛∈ ⎝时,()0,()f x f x '<单调递减,当x ⎫∈+∞⎪⎭时,()0,()f x fx '>单调递增, 故()f x在x =处取得极小值111ln 222f m m =+-,无极大值.…………………………5分 (2)不妨令11111()x x x e x h x x e xe----=-=,不难证明10≥x e x --,当且仅当1x =时取等号, 所以当(1,)x ∈+∞时,()0h x >,由(1)知,当0,1≤m x >时,()f x 在(1,)+∞上单调递减,()(1)0f x f <=恒成立;所以若要不等式111()x f x x e ->-在(1,)+∞上恒成立,只能0m >. 当01m <<1>,由(1)知,()f x 在⎛ ⎝上单调递减, 所以(1)0f f<=,不满足题意.……………………………………………………………………8分 当1≥m 时,设21111()(1)ln 2x F x m x x x e-=---+, 因为1,1≥m x >,所以11111,1,01,10≥x x x mx x e e e ---><<-<-<, 32221222111111(1)(1)()10x x x x x x F x mx x x x e x x x x---+-+'=-++->-++-==>, 所以()F x 在(1,)+∞上单调递增,又(1)0F =,所以当(1,)x ∈+∞时,()0F x >恒成立,即()()0f x h x ->恒成立,故存在1≥m ,使得不等式111()x f x x e->-在(1,)+∞上恒成立.此时m 的最小值是1.…………12分 21.(本小题满分12分)已知椭圆2222:1(0)x y C a b a b+=>>的短轴长为,离心率12e =,其右焦点为F . (1)求椭圆C 的方程;(2)过F 作夹角为4π的两条直线12,l l 分别交椭圆C 于,P Q 和,M N ,求PQMN 的取值范围.21.解析:(1)由2b =b =,又由22222214c a b e a a -===,得2234a b =, 则224,3a b ==,故椭圆C 的方程为22143x y +=.……………………………………………………4分 (2)由(1)知(1,0)F ,①当直线12,l l 的斜率都存在时,由对称性不妨设直线1l 的方程为(1)y k x =-,1k ≠±,由222222(1)(43)8412034120y k x k x k x k x y =-⎧⇒+-+-=⎨+-=⎩,……………………………………5分 设1122(,),(,)P x y Q x y ,则2221212228412,,144(1)04343k k x x x x k k k -+==∆=+>++,…………6分则2212(1)34k PQ k +==+,由椭圆的对称性可设直线2l 的斜率为11k k +-,则22221121224(1)17(1)21341k k k MN k k k k +⎛⎫+⋅ ⎪+-⎝⎭==+++⎛⎫+⋅ ⎪-⎝⎭,……………………………………………………8分 222222212(1)7(1)27(1)27873424(1)6882432PQ k k k k k k MN k k k k ++++++=⋅==+++++, 令87t k =+,则78t k -=,当0t =时,78k =-,78PQ MN =, 当0t ≠时,22724322432197878722t k t k t t-⎛⎫+ ⎪+⎝⎭==+-+, 若0t >,则1977722t t +--,若0t <,则1977722≤t t+-2872432≤k k ++,即2872432k k ++,≤PQ MN ,且87PQ MN ≠.………………………………………………10分 ②当直线12,l l 的斜率其中一条不存在时,由对称性不妨设直线1l 的方程为1y x =-, 则2242,37b PQ MN a ===,此时87PQ MN =∈⎣⎦. 若设2l 的方程为1y x =-,则78PQMN =∈⎣⎦, 综上可知,PQMN的取值范围是⎣⎦.……………………………………………12分 (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所作的第一题计分.22.【选修4—4:坐标系与参数方程】(本小题满分10分)在平面直角坐标系中,曲线122cos :2sin x C y αα=+⎧⎨=⎩(α为参数),在以原点O 为极点,x 轴正半轴为极轴的极坐标系中,曲线2:sin 13C πρθ⎛⎫-= ⎪⎝⎭. (1)写出1C 的普通方程和2C 的直角坐标方程;(2)设点P 在曲线1C 上,点Q 在曲线2C 上,求PQ 的最小值及此时点P 的直角坐标.22.解析:(1)由122cos :2sin x C y αα=+⎧⎨=⎩(α为参数),得1C 的普通方程为22(2)4x y -+=; 由sin 13πρθ⎛⎫-= ⎪⎝⎭,得1sin cos 12ρθρθ=cos sin 20θρθ-+=, 又由cos ,sin x y ρθρθ==,得曲线220C y -+=.…………………………………………5分(2)由题意,可设点P 的直角坐标为(22cos ,2sin )αα+,因为2C 是直线,所以PQ 的最小值,即为P 到2C 的距离()d α的最小值,()2cos 16d παα⎛⎫=+++ ⎪⎝⎭.………………………………8分 当且仅当52,6Z k k παπ=+∈时,()d α1-, 此时P的直角坐标为(2.…………………………………………………………………………10分23.【选修4—5:不等式选讲】(本小题满分10分) 已知()211f x x x =++-.(1)求不等式()9f x ≤的解集;(2)设()9124g x x x =-+--,在同一坐标系内画出函数()f x 和()g x 的图象,并根据图象写出不等式()()f x g x ≤的解集.23.解析:(1)3,11()2112,1213,2≥≤x x f x x x x x x x ⎧⎪⎪⎪=++-=+-<<⎨⎪⎪--⎪⎩,…………………………………………1分 当1≥x 时,39≤x ,得13≤≤x ;………………………………………………………………………2分 当112x -<<时,29≤x +,解得7≤x ,故112x -<<;…………………………………………3分 当12≤x -时,39≤x -,解得3≥x -,故132≤≤x --.……………………………………………4分 综上,原不等式的解集为{|33}≤≤x x -.………………………………………………………………5分(2)36,1()91244,12312,2≤≥x x g x x x x x x x +-⎧⎪=-+--=+-<<⎨⎪-+⎩,在同一坐标系内画出函数()f x 和()g x 的图象,10分。
(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试理科数学模拟测试试题(含答案)
2020年普通高等学校招生考试数学模拟测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5}B.{0,1,4,5}C.{2,3}D.{0,1,2,3,4,5}2.i 是虚数单位,z=2—i,则|z|=B.23.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1B.1C.-2D.24.设命题p:∀x ∈R ,x 2>0,则p ⌝为A.∀x ∈R ,x 2≤0B.∀x ∈R ,x 2>0C.∃x ∈R ,x 2>0D.∃x ∈R ,x 2≤05.51(1)x-展开式中含x -2的系数是 A.15B.-15C.10D.-106.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53,点P(b,0),为则12||||PF PF =A.6B.8C.9D.107.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于32(3d d 为球的直径),并得到球的体积为16V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式中最精确的一个是A.d ≈3B .d ≈√2V 3C.d≈√300157V3D .d≈√158V 38.已知23cos cos ,2sin sin 2αβαβ-=+=则cos(a+β)等于 A.12B.12-C.14D.14-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是A.第一场得分的中位数为52 B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等10.已知正方体的外接球与内切球上各有一个动点M 、N,若线段MN 1,则 A.正方体的外接球的表面积为12π B.正方体的内切球的体积为43πC.正方体的边长为2D.线段MN 的最大值为11.已知圆M 与直线x 十y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列 结论正确的是A.圆M 的圆心在定直线x-y-2=0上B.圆M 的面积的最大值为50πC.圆M 的半径的最小值为1D.满足条件的所有圆M 的半径之积为1012.若存在m,使得f(x)≥m 对任意x ∈D 恒成立,则函数f(x)在D 上有下界,其中m 为函数f(x)的一个下界;若存在M,使得f(x)≤M 对任意x ∈D 恒成立,则函数f(x)在D 上有上界,其中M 为函数f(x)的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是A.1不是函数1()(0)f x x x x=+>的一个下界 B.函数f(x)=x l nx 有下界,无上界C.函数2()xe f x x=有上界有,上无界下,界无下界D.函数2sin ()1xf x x =+有界 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设f(x)是定义在R 上的函数,若g(x)=f(x)+x 是偶函数,且g(-2)=-4,则f(2)=___. 14.已知函数f(x)=sin(ωx+φ)(ω>0),点2(,0)3π和7(,0)6π是函数f(x)图象上相邻的两个对称中心,则ω=___.15.已知F 1,F 2分别为椭圆的221168x y +=左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点F 2作∠F 1MF2的角平分线的垂线,垂足为N,若|ON|=2(О为坐标原点),则|MF 2|-|MF 1|=___,|OM|=__.(本题第一空2分,第二空3分)16.在正三棱柱ABC-A 1B 1C 1中,AB =1=2,E,F 分别为AB 1,A 1C 1的中点,平面α过点C 1,且平面α∥平面A 1B 1C ,平面α∩平面A 1B 1C 1=l ,则异面直线EF 与l 所成角的余弦值为__·四、解答题:本题共6小题,共70分。
2020年全国100所名校最新高考模拟示范卷高三数学(理)(五)试题解析(含答案)
则该商鞅铜方升的俯视图的面积是正视图面积的(
)
A. 1.5 倍 答案: C
B. 2 倍
C. 2.5 倍
D. 3.5 倍
令 f (x) 2x 1.35 x 2.35, f (1.35) 0 ,再结合 f ( x) 在 R 的单调性,可求出 x ,根据
三视图的对应长度关系,即可求解 . 解:
2x 1.35 2.35 x 化为 2x 1.35 x 2.35 0 ,
即可求解 .
解:
不等量关系,
当 x? [0,2 ] 时, x
,2
55
,
5
∵ f x 在 0,2 上有且仅有 5 个零点,
∴5 2
6
12
,∴
29
.
5
5
10
故选 :A.
点评:
本题考查正弦型函数的性质,整体代换是解题的关键,属于基础题
.
10.已知曲线 x2 4 y ,动点 P 在直线 y 3 上,过点 P 作曲线的两条切线 l1,l2 ,切
的一对“线性对称点” .若实数 a 与 b 和 a b 与 c 为函数 f (x) 3x 的两对“线性对称
点”,则 c 的最大值为(
)
A. log 3 4
B. log 3 4 1
答案: D
4
C.
3
D. log3 4 1
根据已知有 3a b
3c
3a
b
c
,可得
3c
1
1 3a b
,只需求出 3a b 的最小值,根据 1
1
由题知 a
55
50
1,1 b
log 4 5
log 4 2
1
,
2020年全国100所名校最新高考模拟示范卷数学理科卷(三)MNJ.Y
全国100所名校最新高考模拟示范卷·数学卷(三)(120分钟 150分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{|10}A x x =->,{|lg }B x y x ==,则A B ⋂=( ) A .(1,)+∞B .(0,1)C .(0,)+∞D .[1,)+∞2.设复数z 满足31iz i+=-(i 为虚数单位),则z 在复平面内对应的点位于( ) A .第一象限B .第二象限C .第三象限D .第四象限3.已知3log 0.3a =, 4.13b -=,32c =,则( ) A .c b a << B .c a b <<C a b c <<D .a c b <<4.已知3sin 24θ=-,则1tan tan θθ+=( ) A .83-B .43-C .83D .435.已知||||2a b ==,21a a b +⋅=,则向量a ,b 的夹角θ=( )A .6π B .3π C .23π D .56π 6.中国古典乐器一般按“八音”分类.“八音”是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(p áo )、竹”八音.其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器,现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( ) A .314B .1114C .114D .277.函数()3ln ||xf x x =的大致图象为( )A .B .C .D .8.已知不同直线l 、m 与不同平面a ,β,且l α⊂,m β⊂,则下列说法中正确的是( ) A .若a β∥,则l m ∥ B .若a β⊥,则l m ⊥ C .若l β⊥,则a β⊥D .若a β⊥,则m α⊥9.在ABC △中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a b c -=( ) A .32B .12C .14D .1810.已知函数()3sin()f x x ωϕ=+(其中0ω<,0ϕπ<<),其图象向右平移6π个单位长度得()y g x =的图象,若函数()g x 的最小正周期是π,且3122g π⎛⎫=⎪⎝⎭,则( ) A .12ω=-,23ϕπ= B .12ω=-,3πϕ= C .2ω=-,23ϕπ= D .2ω=-,3πϕ=11.在三棱锥P ABC -中,AB AP ⊥,CB AP ⊥,CB AB ⊥,2AB BC ==,点P 到底面ABC 的距离为1,则三棱锥P ABC -的外接球的表面积为( ) A .3πB .9πC .12πD .24π12.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( ) A .25B .2C .72D .3二、填空题:本题共4小题,每小题5分,共20分,把答案填在答题卡中的横线上.13.若变量,x y 满足约束条件20300x y x y x y -+⎧⎪+≤⎨⎪+⎩,则32z x y =+的最大值为________.14.已知双曲线22:144y x C -=,P 是双曲线渐近线上第一象限的一点,O为坐标原点,且||OP =则点P 的坐标是_______.15.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为45和34;乙笔试、面试通过的概率分别为23和12.若笔试、面试都通过则被录取,且甲、乙录取与否相互独立,则该次考试甲、乙同时被录取的概率是________,只有一人被录取的概率是__________.16.已知函数[]22()(0)x f x f e kx '=-(e 为自然对数的底数,()f x '为函数()f x 的导函数且(0)0f '≠至少有两个零点,则实数k 的取值范围是__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答. (一)必考题:共60分.17.已知等差数列{}n a 的公差2d =,且1a ,2a ,4a 成等比数列. (1)求数列{}n a 的通项公式;(2)设12nan b ⎛⎫= ⎪⎝⎭,求数列{}n n a b +的前n 项和n S .18.在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,AC BD O ⋂=,1AO ⊥平面ABCD .(1)证明1AO ∥平面11B CD .(2)若1AB AA =,求二面角1A A B D --的正弦值.19.金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生,新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%的把握认为愿意参加新生接待工作与性别有关.(2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人,若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X .附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.)20k20.已知函数2()(ln )2f x a x x x x =-+-,e 为自然对数的底数. (1)当2a e =-时,求函数()f x 的极值;(2)若2xπ,求证:()22(sin ln )2x e x e x π->-+-. 21.已知椭圆2222:1(0)x y C a b a b +=>>,左、右顶点分别为1A ,2A ,上、下顶点分别为1B ,2B ,且1(0,1)B ,112A B B △为等边三角形,过点(1,0)的直线与椭圆C 在y 轴右侧的部分交于M 、N 两点,O 为坐标原点.(1)求椭圆的标准方程;(2)求OMN △面积的取值范围.(二)选考题:共10分.请考生在第22、23两题中任选一题作答.如果多做,则按所做的第一题计分. 22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的参数方程为22cos2sin x y θθ=+⎧⎨=⎩(θ为参数),直线l 经过点(1,M --且倾斜角为α. (1)求曲线C 的极坐标方程和直线l 的参数方程;(2)已知直线l 与曲线C 交于A ,B 两点,满足A 为MB 的中点,求tan α. 23.[选修4-5:不等式选讲]设函数()|1||2|1f x x x a =++-+. (1)当1a =时,解不等式()6f x ;(2)设12a <-,且当21a x <-时,不等式()26f x x +有解,求实数a 的取值范围. 2020年普通高等学校招生全国统一考试数学模拟测试参考答案1.B 本题考查集合的运算,因为10x ->.所以1x <,所以(,1)A =-∞,因为0x >,所以(0,)B =+∞,所以(0,1)A B ⋂=.2.A 本题考复数的运算及几何意义,由3(3)(1)24121(1)(1)2i i i iz i i i i ++++====+--+,所以复数z 在复平面内对应点的坐标为(1,2),所以z 在复平面内的对应点位于第一象限.3.C 本题考查指数、对数的大小比较,因为3log 0.30a =<,4.13(0,1)b -=∈,312c =>,所以a b c <<. 4.A 本题考查三角恒等变换.∵3sin 24θ=-,∴3sin cos 8θθ=-, 则1sin cos 18tan tan cos sin sin cos 3θθθθθθθθ+=+==-. 5.C 本题考查向量的数量积.因为21a a b +⋅=,所以1a b ⋅=-,所以1cos 2||||a b a b θ⋅==-,所以23x θ=. 6.B 本题考查中国传统文化与古典概型,设事件A =“从‘八音’中任取‘两音’,含有打击乐器”,所以2114442811()14C C C P A C +=-. 7.A 本题考查在函数的图象与性质.因为函数()f x 为非奇非偶函数,所以函数图象不关于y 轴对称,排除选项C ,D ,当x →+∞时,函数值()f x →+∞,故排除选项B .8.C 本题考查在空间中的线面关系.若a β∥,l ,m 可能为异面关系,故选项A 不正确; 若αβ⊥,l ,m 可能为平行、相交或异面关系,故选项B 不正确; 由面面垂直的判定定理,若l β⊥,l α⊂,则αβ⊥,故选项C 正确;若αβ⊥,n αβ⋂-,由面面垂直的性质定理知,当m n ⊥时,m α⊥,故选项D 不正确.9. D 本题考查解三角形.∵cos cos 4ca Bb A -=,∴由余弦定理得222222224a c b b c a c a b ac bc +-+-⨯-⨯=,化简得2224c a b -=,∴222128a b c -=. 10.C 本题考查三角函数的图象与性质.由题意可得()3sin 6g x x πωωϕ⎛⎫=-+ ⎪⎝⎭,因为函数()g x 的最小正周期是π,所以2||ππω=,所以2ω=±,因为0ω<,所以2ω=-,所以()3sin 23g x x πϕ⎛⎫=-++ ⎪⎝⎭,因为3122g π⎛⎫=⎪⎝⎭,所以1sin 62πϕ⎛⎫+= ⎪⎝⎭,所以2k ϕπ=或22()3k k Z ππ+∈,因为0ϕπ<<,所以23ϕπ=.11.B 本题考查多面体与球,因为AB AP ⊥,CB AP ⊥,CB AB B ⋂=,所以PA ⊥底面ABC ,因为点P 到底面ABC 的距离为1.所以1AP =.因为CB AP ⊥,CB AB ⊥,AB PA A ⋂=,所以BC ⊥平面PAB ,故BC PB ⊥,90PBC PAC ∠=∠=︒,即该球的直径为CP3CP ===,所以球的半径为32R =,249S R ππ==. 12.B 本题考查抛物线的定义与平面几何知识.过点A 作准线的垂线,垂足为M ,AM 与y 轴交于点N ,因为||2||FA AS =,所以||1||3SA SF =, 所以1||||33AN OF p ==,所以4||3AM p =, 根据抛物线的定义知4||||3AF AM p ==,因为12||||23AS AF p ==, 所以||2SF p =,所以||2TS p =.根据抛物线的性质112||||2AF BF p +=,得3114||p BF p+=,解得||4BF p =,所以||42||2FB pTS p==.13.32 本题考查简单的线性规划,先作出约束条件所表示的平面区域,如图所示,联立2030x y x y -+=⎧⎨+=⎩,解得13,22B ⎛⎫-⎪⎝⎭,当目标函数过点B 时取最大值,所以max 13332222z ⎛⎫⨯-+⨯= ⎪⎝⎭=.14.()2,2 本题考查双曲线的性质,等轴双曲线224y x -=过第一象限的渐近线方程为y x =,因为||OP =P 的坐标为()2,2.15.15 815 本题考查独立事件的概率.甲被录取的概率为1433545P =⨯=,乙被录取的概率为2211323P =⨯=,则该次考试甲,乙同时被录取的概率是12311535P PP ==⨯=,只有一人被录取的概率是()()12213221811535315P P P P P =-+-=⨯+⨯=. 【温馨提示】2019年全国Ⅰ卷出现了两空题,2020年全国Ⅰ、Ⅱ、Ⅲ卷都有一定概率出现两空题,故此题设置两空.16.2,4e ⎡⎫+∞⎪⎢⎣⎭本题考查函数与导数.因为[]2()(0)2x f x f e kx ''=-,所以2(0)[(0)]f f ''=,解得()01f '=或()00f '=(不合题意,舍去),所以()2x f x e kx =-,由()y f x =至少有两个零点,所以20xe kx -=至少有两根,因为0x =不是方程的根,所以方程可化为2x e k x =,记2()xe g x x=,因为()22222(2)()x xx e x xe e x g x xx --'==,所以()g x 在区间()0,2单调递减,在区间(,0)-∞和(2,)+∞单调递增,函数()g x 大致图象如图,所以当2(2)4k g e =时,函数()f x 至少有2个零点,所以实数k 的取值范围是2,4e ⎡⎫+∞⎪⎢⎣⎭.知识拓展: 一、分离变量法是通过将两个变量构成的不等式(方程)变形到不等号(等号)两端,使两端变量各自相同,解决有关不等式恒成立、不等式存在(有)解和方程有解中参数取值范围的一种方法,可以避开对参数的分类讨论,大大提高解题的准确度. 二、数形结合法“数”与“形”反映了事物两个方面的属性,我们认为,数形结合,主要指的是数与形之间的一一对应关系,数形结合就是把抽象的数学语言、数量关系与直观的几何图形、位置关系结合起来,通过“以形助数”或“以数解形”即通过抽象思维与形象思维的结合,可以使复杂问题简单化,抽象问题具体化,从而起到优化解题途径的目的.17.解:本题考查数列的通项公式与前n 项和.(1)根据题意,得3142a a a =,即()()21113a a d a d +=+,即()()211162a a a +=+,解得12a =,所以1(1)22(1)2n a a n d n n +--+--=.(2)由(1)得2111224na nn n b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以数列{}n b 是首项为14,公比为14的等比数到,所以)()22323121(22)111124(444nn n n n n S a a a a b b b b ⎡⎤+⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+++++⋅⋅⋅+=++++⋅⋅⋅+⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎝⎭⎢⎣=⎭⎥⎦211343nn n -+=+⨯.18.解,本题考查线面平行与二面角.(1)连接11AC ,设11111B D ACQ ⋂=,连接1O C ,图略.因为在四棱柱1111ABCD A B C D -中,O ,1O 分别为AC ,11AC 的中点,所以11OC AO ∥,11OC AO =,所以四边形11AOCO 为平行四边形,所以11AO O C ∥,因为1AO ⊄平面11B CD ,1O C ⊂平面11B CD ,所以1AO ∥平面11B CB .(2)以O 为原点,OB ,OC ,1OA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系O xyz -.设1OA =.因为1AB AA -,所以11OA =,所以(0,1,0)A -,1(0,0,1)A ,(1,0,0)B ,(1,0,0)D -,所以1(0,1,1)AA =,()1,1,0AB =,设()1111,,n x y z =为平面1AA B 的一个法向量,因为1110A A nB n A ⎧⋅=⎪⎨⋅=⎪⎩,所以11110y z x y +=⎧⎨+=⎩,令11y =,所以1(1,1,1)n =--,因为平面1DA B 的一个法向量为2(0,1,0)n =,设二面角1A A B D --的平面角为θ,所以21121|cos |31n n n n θ⋅===⨯,所以sin 3θ=.19.解:本题考查独立性检验和分布列、期望.(1)因为2K 的观测值2160(60404020)3210.667 6.6358080100603k ⨯⨯-⨯==≈>⨯⨯⨯, 所以有99%的把握认为愿意参加新生接待工作与性别有关. (2)根据分层抽样方法得,男生31065⨯=人,女生21045⨯=人, 所以选取的10人中,男生有6人,女生有4人.X 的可能取值有0,1,2,3.2063104201(0)1206C C P X C ====,2164310601(1)1202C C P X C ====,2416013363(2)12010C C P X C -===,033431041(3)12030C C P X C ====.∴X 的分布列是∴11316()01236210305E X =⨯+⨯+⨯+⨯=. 20.解:本题考查函数的极值与证明不等式. (1)因为1(1)(2)()122x x a f x a x x x -+⎛⎫'=-+-= ⎪⎝⎭,所以当2a e =-时,2(1)()()x x e f x x--'=,因为当01x <<时,()0f x '>;当1x e <<时,()0f x '<;当x e >时,()0f x '>;所以函数()y f x =在(0,1)和(),e +∞上单调递增,在(1,)e 上单调递减,所以当1x =时,函数有极大值(1)21f e =--,当x e =时,函数有极小值2()f e e =-.(2)由(1)知,当2a e =-,2xπ时,函数()y f x =在x e =时取得极小值,也即最小值2e -,所以222(ln )2e x x x x e --+--,化简可得2()22ln e x x e x --,令()sin 12g x x x π=--+,则()1cos 0g x x '=-,所以函数()g x 在,2π⎡⎫+∞⎪⎢⎣⎭上单调递增,所以()02g x g π⎛⎫= ⎪⎝⎭,所以sin 12x x π+-,从而可得3)22ln 2sin (12ln 2x x e x x e x e π⎛⎫-+-- ⎪⎝⎭-,因为不等式的两个等号不同时成立,所以2()2(sin ln )2e x x e x π->-+-.【解题思路】第(1)问为常见题型,把实数a 的值代入,求导,算极值即可;第(2)问先在第(1)问的基础之上得出222(ln )2e x x x x e--+--,即()222ln e x x e x --,再构造函数()sin 12g x x x π=--+,导出不等式sin 12x x π+-,最后根据不等式性质及不等式不同时取等号得出结论.21.解:本题考查椭圆中的面积问题.(1)因为1(0,1)B ,所以1b =,因为112A B B △为等边三角形,所以a =,所以a =所以椭圆的标准方程为2213x y +=. (2)设OMN △的面积为S .①当直线MN的斜率不存在时,可得1,M ⎛ ⎝⎭,N ⎛ ⎝⎭,所以112S =⨯= ②当直线MN 的斜率存在时,设直线MN 的斜率为k ,则直线MN 的方程为(1)y k x =-,设()11,M x y ,()22,N x y ,联立2213(1)x y y k x ⎧+=⎪⎨⎪=-⎩,化简得()2222316330k x k x k +-+-=,所以2122631k x x k +=+,21223331k x x k -=+,()1212y y k x x -=-=,因为10x >,20x >,所以||1k >,面积121||12S y y =⨯-⨯22|313k k k ==++t =21S t =+,t ∈,由()S t 在定义域内单调递减,所以34S <<OMN △面积的取值范围是34⎛ ⎝⎦. 22.解:本题考查在极坐标与参数方程.(1)由已知曲线C 的普通方程为32(2)4x y -+=,即224x y x +=,因为cos x ρθ=,222x y ρ=+, 可得24cos p ρθ=,化简为4cos p θ=.直线1cos ,:sin x t l y t αα=-+⎧⎪⎨=-⎪⎩(t 为参数,0απ<). (2)设,A B 对应的参数分别为A t ,B t ,将直线l 的参数方程代入C并整理,得26cos )320t t αα-++=,所以cos )A B t t αα+=+,32B A t t ⋅=,又A 为MB 的中点,所以2B A t t =,因此cos )4sin 6A t πααα⎛⎫=+=+ ⎪⎝⎭,8sin 6B t πα⎛⎫+ ⎝=⎪⎭, 所以232sin 326A B t t πα⎛⎫⋅+= ⎪⎝⎭=,即2sin 16πα⎛⎫+= ⎪⎝⎭. 因为0απ≤<,所以7666πππα+<, 从而62ππα+=,即3πα=,tan 3π=. 23.解:本题考查绝对值不等式的解法.(1)因为1a =,()6f x ,所以|1||2|5x x ++-≤,21,2|1||2|3,1212,1x x x x x x x ->⎧⎪++-=-≤≤⎨⎪-<-⎩.当2215x x >⎧⎨-≤⎩,解得23x <≤;1235x -⎧⎨⎩,解得12x -,当1125x x <-⎧⎨-≤⎩,解得21x -≤<-,所以原不等式的解集为[2,3]-. (2)因为21a x ≤<-,()26f x x ≤+,所以12126x x a x --+-+≤+,所以3a x --≤,因为不等式()26f x x ≤+有解,所以31a --<-,即2a >-,所以实数a 的取值范围是12,2⎛⎫--⎪⎝⎭.。
(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试数学模拟测试(四)ZX-MNJ.SD
按秘密级事项管理★启用前2020年普通高等学校招生全国统一考试数学模拟测试本试卷共22题,共150分,考试时间120分钟,考试结束后,将本试卷和答题卡一并交回. 注意事项:1.答题前,考生先将自己的姓名、考生号、考场号和座位号填写清楚,将条形码准确粘贴在条形码区域内.2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,笔迹清楚.3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效.4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑.5.保持卡面清洁,不要折叠,不要弄破、弄皱.不准使用涂改液、修正带、刮纸刀.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}|26M x x =-<<,{}2|3log 35N x x =-<<,则M N =I ( ) A .{}2|2log 35x x -<< B .{}2|3log 35x x -<< C .{}|36x x -<<D .{}2|log 356x x <<2.设复数z 满足12z zz +=+,z 在复平面内对应的点的坐标为(),x y ,则( ) A .221x y =+B .221y x =+C .221x y =-D .221y x =-3.已知()2,1AB =-u u u r ,()1,AC λ=u u u r ,若cos BAC ∠=,则实数λ的值是( )A .-1B .7C .1D .1或74.“2b =”是“函数()()2231f x b b x α=--(α为常数)为幂函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件5.若()()613x a x -+的展开式中3x 的系数为-45,则实数a 的值为( ) A .23B .2C .14D .136.函数()2cos 2cos 221xxf x x =+-的图象大致是( )A .B .C .D .7.如图,正方体的底面与正四面体的底面在同一平面α上,且AB CD P ,若正方体的六个面所在的平面与直线CE ,EF 相交的平面个数分别记为m ,n ,则下列结论正确的是( )A .m n =B .2m n =+C .m n <D .8m n +<8.已知函数()2xf x x a =+,()ln 42xg x x a -=-,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( ) A .(]0,1B .(]0,4C .[)1,+∞D .(]0,ln 2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.刘女士的网店经营坚果类食品,2019年各月份的收入、支出(单位:百元)情况的统计如图所示,下列说法中正确的是( )A .4至5月份的收入的变化率与11至12月份的收入的变化率相同B .支出最高值与支出最低值的比是5:1C .第三季度平均收入为5000元D .利润最高的月份是3月份和10月份10.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是( )A .焦距长约为300公里B .长轴长约为3988公里C .两焦点坐标约为()150,0±D .离心率约为7599411.如图,已知正方体1111ABCD A B C D -的棱长为2,E 为棱1CC 的中点,F 为棱1AA 上的点,且满足1:1:2A F FA =,点F 、B 、E 、G 、H 为过三点B 、E 、F 的平面BMN 与正方体1111ABCD A B C D -的棱的交点,则下列说法正确的是( )A .HF BE PB .三棱锥1B BMN -的体积为6C .直线MN 与平面11A B BA 的夹角是45°D .11:1:3D G GC =12.已知函数()sin f x a x x =的一条对称轴为56x π=,函数()f x 在区间()12,x x 上具有单调性,且()()12f x f x =-,则下述四个结论正确的是( ) A .实数a 的值为1B .()()11,x f x 和()()22,x f x 两点关于函数()f x 图象的一条对称轴对称 C .21x x -的最大值为π D .12x x +的最小值为23π 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上.13.若函数()()()()()2log 2242x x f x f x x ->⎧⎪=⎨+≤⎪⎩,则()5f -=__________;()()5f f -=__________.(本题第一空2分,第二空3分)14.某部门全部员工参加一项社会公益活动,按年龄分为A ,B ,C 三组,其人数之比为5:3:2,现用分层抽样的方法从总体中抽取一个容量为20的样本,若C 组中甲、乙二人均被抽到的概率是111,则该部门员工总人数为__________.15.已知双曲线22219x y b -=的左、右焦点分别为1F 、2F ,P 为双曲线上任一点,且12PF PF ⋅u u u r u u u u r 的最小值为-7,则该双曲线的离心率是__________.16.如图,在矩形ABCD 中,24AD AB ==,E 是AD 的中点,将ABE △,CDE △分别沿BE ,CE 折起,使得平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE ,则所得几何体ABCDE 的外接球的体积为__________.四、解答题:本题共6小题,共70分.解答应写出文字说眀、证明过程或演算步骤.17.在①2316b b a =,②412b a =,③5348S S -=这三个条件中任选一个,补充在下面问题中.若问题中的正整数k 存在,求k 的值;若不存在,请说明理由.设正数等比数列{}n b 的前n 项和为n S ,{}n a 是等差数列,__________,34b a =,12a =,35730a a a ++=,是否存在正整数k ,使得132k k k S S b +=++成立? 注:如果选择多个条件分别解答,按第一个解答计分.18.已知在ABC △中,内角A ,B ,C 所对的边分别为a ,b ,c ,若1a =,6A π=21b -=.(1)求cos C 的值; (2)求ABC △的面积.19.在如图所示的多面体中,四边形ABEG 是矩形,梯形DGEF 为直角梯形,平面DGEF ⊥平面ABEG ,且DG GE ⊥,DF GE P ,2222AB AG DG DF ====. (1)求证:FG ⊥平面BEF . (2)求二面角A BF E --的大小.20.在直角坐标系xOy 中,曲线1C 上的任意一点M 到直线1y =-的距离比M 点到点()0,2F 的距离小1. (1)求动点M 的轨迹1C 的方程;(2)若点P 是圆()()222:221C x y -++=上一动点,过点P 作曲线1C 的两条切线,切点分别为A 、B ,求直线AB 斜率的取值范围.21.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案(a )规定每日底薪100元,外卖业务每完成一单提成2元;方案(b )规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为[)25,35,[)35,45,[)45,55,[)55,65,[)65,75,[)75,85,[]85,95七组,整理得到如图所示的频率分布直方图.(1)随机选取一天,估计这一天该快餐店的骑手的人均日外卖业务量不少于65单的概率; (2)从以往统计数据看,新聘骑手选择日工资方案(a )概率为13,选择方案()b 的概率为23.若甲、乙、丙、丁四名骑手分别到该快餐店应聘,四人选择日工资方案相互独立,求至少有两名骑手选择方案()a 的概率;(3)若仅从人日均收入的角度考虑,请你为新聘骑手做出日工资方案的选择,并说明理由. (同组中的每个数据用该组区间的中点值代替)22.已知函数()()ln 1f x m x x =+-,()sin g x mx x =-. (1)若函数()f x 在()0,+∞上单调递减,且函数()g x 在0,2π⎛⎫⎪⎝⎭上单调递增,求实数m 的值; (2)求证:()()21111sin11sin1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫++++< ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭L (*n ∈N 且2n ≥). 2020年普通高等学校招生全国统一考试数学模拟测试参考答案1.A 本题考查交集.25log 356<<Q ,{}2|2log 35M N x x ∴=-<<I .2.B 本题考查复数的几何意义.12z zz +=+Q ,1x =+,解得221y x =+.3.C 本题考查向量的数量积.cos 10AB AC BAC AB AC ⋅∠===u u u r u u u r Q u u u r u u u r ,∴解得1λ=. 4.A 本题考查充分必要条件.Q 当函数()()2231f x b b x α=--为幂函数时,22311b b --=,解得2b =或12-,∴“2b =”是“函数()()2231f x b b x α=--为幂函数”的充分不必要条件. 5.D 本题考查二项式定理.()()()()666131313x a x x x a x -+=+-+Q 的展开式中3x 的系数为2233663313554045C aC a -=-=-,∴解得13a =. 6.C 本题考查函数的图象.()2cos 221cos 2cos 22121x xx x f x x x +=+=--Q , ()()()2121cos 2cos 22121x x x x f x x x f x --++∴-=-=-=---,∴函数()f x 为奇函数,∴排除选项A ,B ;又Q 当0,4x π⎛⎫∈ ⎪⎝⎭时,()0f x >,∴选C 项. 7.A 本题考查线面关系.如图,CE ⊂平面ABPQ ,从而CE P 平面1111A B PQ ,易知CE 与正方体的其余四个面所在平面均相交,4m ∴=,EF Q P 平面11BPPB ,EF P 平面11AQQ A ,且EF 与正方体的其余四个面所在平面均相交,4n ∴=,m n ∴=.8.A 本题考查函数与导数.由题意得()()0000002ln 425xx f x g x x a x a --=+-+=,即0000242ln 5xx a a x x -+=+-,令()ln 5h x x x =+-,()111xh x x x-'∴=-=,()h x ∴在()0,1上单调递增,则()1,+∞上单调递减, ()()max 14h x h ∴==,而024224x x a a a -+≥=,当且仅当00242x x -=⋅,即当01x =时,等号成立,44a ∴≤,01a ∴<≤.9.ACD 本题考查图表问题.对于A 选项,4至5月份的收入的变化率为30502054-=--,11至12月份的变化率为5070201211-=--,故相同,A 项正确.对于B 选项,支出最高值是2月份60百元,支出最低值是5月份的10百元,故支出最高值与支出最低值的比是6:1,故B 项错误.对于C 选项,第三季度的7,8,9月每个月的收入分别为40百元,50百元,60百元,故第三季度的平均收入为405060503++=百元,故C 项正确.对于D 选项,利润最高的月份是3月份和10月份都是30百元,故D 项正确.10.AD 本题考查椭圆的实际应用.设该椭圆的半长轴长为a ,半焦距长为c .依题意可得月球半径约为1347617382⨯=,10017381838a c -=+=,40017382138a c +=+=,2183821383976a =+=,1988a =,21381988150c =-=,椭圆的离心率约为150751988994c e a ===,可得结论A 、D 项正确,B 项错误;11.AD 本题考查立体几何问题.对于A 选项,由于平面11ADD A P 平面11BCC B ,而平面BMN 与这两个平面分别交于HF 和BE ,根据面面平行的性质定理可知HF BE P ,故A 选项判断正确;由于1:1:2A F FA =,而E 是1CC 的中点,故11MA =,123HD =,112D G =,132GC =,12C N =. 对于B 选项,111111111342=43232B BMN B MNB V V MB NB BB --==⨯⨯⨯⨯=⨯⨯⨯⨯,故B 选项判断错误; 对于C 选项,由于1B N ⊥平面11A B BA ,所以直线MN 与平面11A B BA 所成的角为1NMB ∠,且1114tan 13B N NMB B M ∠==≠,故C 选项判断错误; 对于D 选项,根据前面计算的结果可知112D G =,132GC =,故D 选项判断正确. 12.ACD 本题考查三角函数性质.56x π=Q 是函数()f x 的一条对称轴, ()53f x f x π⎛⎫∴=- ⎪⎝⎭,∴令0x =,得()503f f π⎛⎫=⎪⎝⎭,解得1a =, ()sin 2sin 3f x x x x π⎛⎫∴==- ⎪⎝⎭,又Q 函数()f x 在区间()12,x x 上具有单调性,21x x ∴-的最大值为2Tπ=,且()()12f x f x =-,()()11,x f x ∴和()()22,x f x 两点关于函数()f x 图象的一个对称中心对称, ()1212233322x x x x k k ππππ-+-+-∴==∈Z ,()12223x x k k ππ∴+=+∈Z ,当0k =时,12x x +取最小值为23π, ∴A ,C ,D 项正确,B 项错误.13.0 1 本题考查求函数值.()()()5130f f f -=-==,()()()()5041ff f f -===.14.60 本题考查分层抽样和概率.设C 组有n 人,()22224121111n n C C C n n -==-Q ,∴解得12n =,∴该部门员工总共有()12532602⨯++=人. 15.43本题考查双曲线的离心率.设点()1,0F c -()0c >,()2,0F c ()0c >,(),P m n , 则22219m n b -=,即22291n m b ⎛⎫=+ ⎪⎝⎭, ()1=,PF c m n ---u u u r Q ,()2,PF c m n =--u u u u r,2222222221222991199n PF PF m c n n c n c c b b ⎛⎫⎛⎫∴⋅=-+=++-=++-≥- ⎪ ⎪⎝⎭⎝⎭u u u r u u u u r ,当0n =时,等号成立,297c ∴-=-,4c ∴=,43e ∴=. 16.323π 本题考查折叠问题.由题可得ABE △,CDE △,BEC △均为等腰直角三角形,如图, 设BE ,EC ,BC 的中点分别为M ,N ,O ,连接AM ,OM ,AO ,DN ,NO ,DO ,OE ,则OM BE ⊥,ON CE ⊥. 因为平面ABE ⊥平面BCE ,平面CDE ⊥平面BCE .所以OM ⊥平面ABE ,ON ⊥平面DEC ,易得2OA OB OC OD OE =====, 则几何体ABCDE 的外接球的球心为O ,半径2R =, 所以几何体ABCDE 的外接球的体积为343233V R ππ==.17.解:本题考查数列的应用.Q 在等差数列{}n a 中,3575330a a a a ++==,510a ∴=, ∴公差51251a a d -==-,()112n a a n d n ∴=+-=,348b a ∴==, 若存在正整数k ,使得132k k k S S b +=++成立,即132k k b b +=+成立,设正数等比数列{}n b 的公比为()0q q >,若选①,2316b b a =Q ,24b ∴=,322b q b ∴==,2n n b ∴=, ∴当5k =时,满足6532b b =+成立.若选②,41224b a ==Q ,433b q b ∴==,383n n b -∴=⋅, 23838332n n --∴⋅=⋅+,332n -∴=方程无正整数解, ∴不存在正整数k ,使得132k k b b +=+成立.若选③,5348S S -=Q ,4548b b ∴+=,28848q q ∴+=,260q q ∴+-=, ∴解得2q =或3q =-(舍去),2nn b ∴=,∴当5k =时,满足6532b b =+成立.18.解:本题考查解三角形.(121b -=2b a -=2sin sin C B A -=,6A π=Q ,56B C π∴=-,512sin 62C C π⎛⎫--= ⎪⎝⎭, ∴解得1cos 2C =-. (2)Q 在ABC △中,1cos 2C =-,23C π∴=,6B AC ππ∴=--=,1b a ∴==,11sin 112224ABC S ab C ∴==⨯⨯⨯=△. 19.解:本题考查线面垂直和二面角.(1)Q 平面DGEF ⊥平面ABEG ,且BE GE ⊥,BE ∴⊥平面DGEF ,BE FG ∴⊥,由题意可得FG FE ==222FG FE GE ∴+=,FE FG ∴⊥,FG ∴⊥平面BEF .(2)如图所示,建立空间直角坐标系,则()1,0,0A ,()1,2,0B ,()0,2,0E ,()0,1,1F ,()1,1,1FA =--u u u r,()1,1,1FB =-u u u r ,()0,1,1FE =-u u u r.设平面AFB 的法向量是()111,,n x y z =r ,则11111111100000x y z x z FA n x y z y FB n ⎧--==⋅=⎧⎧⎪⇒⇒⎨⎨⎨+-==⋅=⎩⎩⎪⎩u u u r ru u u r r,令11x =,()1,0,1n =r ,由(1)可知平面EFB 的法向量是()0,1,1m GF ==u r u u u r,1cos ,2n m n m n m⋅∴===r u r r u r r u r ,∴两法向量所成的角为3π, 由图可知,二面角A BF E --的大小为23π.20.解:本题考查轨迹问题.(1)设点(),M x y ,Q 点M 到直线1y =-的距离等于1y +,11y ∴+=,化简得28x y =,∴动点M 的轨迹1C 的方程为28x y =.(2)由题意可知,PA 、PB 的斜率都存在,分别设为1k 、2k ,切点()11,A x y ,()22,B x y , 设点(),P m n ,过点P 的抛物线的切线方程为()y k x m n =-+, 联立()28y k x m nx y⎧=-+⎪⎨=⎪⎩,得28880x kx km n -+-=,26432320k km n ∆=-+=Q ,即220k km n -+=,122m k k ∴+=,122nk k =, 由28x y =,得4x y '=,114x k ∴=,2211128x y k ==,2222222428x x k yk =⋅==,222121212121224424ABy y k k k k m k x x k k --+∴====--, Q 点(),P m n 满足()()22221x y -++=,13m ∴≤≤,13444m ∴≤≤,即直线AB 斜率的取值范围为13,44⎡⎤⎢⎥⎣⎦. 21.解:本题考查概率问题.(1)设事件A 为“随机选取一天,这一天该快餐店的骑手的人均日外卖业务量不少于65单”. 依题意,快餐店的人均日外卖业务量不少于65单的频率分别为0.2、0.15、0.05,0.20.150.050.4++=Q ,()P A Q 估计为0.4.(2)设事件B 为“甲、乙、丙、丁四名骑手中至少有两名骑手选择方案()a ”, 设事件i C 为“甲、乙、丙、丁四名骑手中恰有()0,1,2,3,4i i =人选择方案()a ”,则()()()41310144212163211111333818127P B P C P C C C ⎛⎫⎛⎫⎛⎫=--=--=--= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 所以四名骑手中至少有两名骑手选择方案()a 的概率为1127. (3)设骑手每日完成外卖业务量为X 件, 方案()a 的日工资()*11002Y X X =+∈N ,方案()b 的日工资()*2*150,54,150554,54,X X Y X X X ⎧≤∈⎪=⎨+->∈⎪⎩NN, 所以随机变量1Y 的分布列为()11600.051800.052000.22200.32400.22600.152800.05224E Y =⨯+⨯+⨯+⨯+⨯+⨯+⨯=;同理,随机变量2Y 的分布列为()21500.31800.32300.22800.153300.05203.5E Y =⨯+⨯+⨯+⨯+⨯=.()()12E Y E Y >Q ,∴建议骑手应选择方案()a .22.解:本题考查函数与导数.(1)Q 函数()f x 在()0,+∞上单调递减,()101mf x x'∴=-<+,即1m x <+在()0,+∞上恒成立,1m ∴≤, 又Q 函数()g x 在0,2π⎛⎫⎪⎝⎭上单调递增, ()cos 0g x m x '∴=->,即cos m x >在0,2π⎛⎫⎪⎝⎭上恒成立,1m ≥,∴综上可知,1m =.(2)由(1)知,当1m =时,函数()()ln 1f x x x =+-在()0,+∞上为减函数,()sin g x x x =-在0,2π⎛⎫⎪⎝⎭上为增函数,∴当0x >时,()ln 1x x +<,当02x π<<时,sin x x <.sin1Q ,1sin12⨯,1sin 23⨯,L ,()1sin 01n n>-⨯(*n ∈N 且2n ≥),()()()111ln 1sin11sin 1sin 1sin ln 1sin112231n n ⎡⎤⎛⎫⎛⎫⎛⎫∴++++=+⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L()11111ln 1sin ln 1sin ln 1sin sin1sin sin 122311223n n ⎛⎫⎛⎫⎛⎫+++++++<+++ ⎪ ⎪ ⎪ ⎪⨯⨯-⨯⨯⨯⎝⎭⎝⎭⎝⎭L L ()()1111111111sin111221122312231n n n n n n n ⎛⎫⎛⎫⎛⎫+<++++=+-+-++-=-< ⎪ ⎪ ⎪-⨯⨯⨯-⨯-⎝⎭⎝⎭⎝⎭L L ,即()()111ln 1sin11sin 1sin 1sin 212231n n ⎡⎤⎛⎫⎛⎫⎛⎫++++<⎢⎥ ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎢⎥⎝⎭⎣⎦L , ()()21111sin11sin 1sin 1sin 12231e n n ⎛⎫⎛⎫⎛⎫∴++++< ⎪ ⎪⎪ ⎪⨯⨯-⨯⎝⎭⎝⎭⎝⎭L(*n ∈N 且2n ≥).。
2020届全国100所名校高三最新高考模拟示范卷(六)数学(理)试题(解析版)
基本不等式法:先对解析式变形,使之具备“一正二定三相等”的条件后用基本不等式求出最值
导数法:先求导,然后求出在给定区间上的极值,最后结合端点值,求出最值
换元法:对比较复杂的函数可通过换元转化为熟悉的函数,再用相应的方法求最值
14.已知等比数列 中, , ,则 __________.
函数 的最小正周期 ,①正确;
将函数 的图象向左平移 ,
得 ,
显然 的图象不关于原点对称,②错误;
当 时, ,
所以 在区间 上单调递增,③正确;
由 ,得 , ,解得 ,
由 ,得 ,
因为 ,所以 , , , , ,
所以函数 在区间 上有 个零点,④正确.
故选:C.
【点睛】
本题主要考查正弦函数的图象和性质,考查计算能力,属于中档题.
因为 ,所以排除选项A;
因为 ,所以排除选项B;因此选项C正确.
故选:C.
【点睛】
本题考查函数图象识别问题.
其解题思路:由解析式确定函数图象:
①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置;
②由函数的单调性,判断图象的变化趋势;
③由函数的奇偶性,判断图象的对称性;
④由函数的周期性,判断图象的循环往复.
函数图象识别有时常用特值法验证排除
6.“车走直、马走日、炮打隔子、象飞田、小卒过河赛大车”,这是中国象棋中的部分下棋规则.其中“马走日”是指马走“日”字的对角线,如棋盘中,马从点 处走出一步,只能到点 或点 或点 或点 .设马从点 出发,必须经过点 (点 不考虑先后顺序)到达点 ,则至少需走的步数为( )
求双曲线方程的思路:
2020年届全国100所名校最新高考模拟示范卷数学模拟测试(四)试题带答案解析)
20.在直角坐标系 中,曲线 上的任意一点 到直线 的距离比 点到点 的距离小1.
(1)求动点 的轨迹 的方程;
(2)若点 是圆 上一动点,过点 作曲线 的两条切线,切点分别为 ,求直线 斜率的取值范围.
21.某大学开学期间,该大学附近一家快餐店招聘外卖骑手,该快餐店提供了两种日工资结算方案:方案 规定每日底薪100元,外卖业务每完成一单提成2元;方案 规定每日底薪150元,外卖业务的前54单没有提成,从第55单开始,每完成一单提成5元.该快餐店记录了每天骑手的人均业务量,现随机抽取100天的数据,将样本数据分为 七组,整理得到如图所示的频率分布直方图.
A.焦距长约为300公里B.长轴长约为3988公里
C.两焦点坐标约为 D.离心率约为
11.如图,已知正方体 的棱长为2, 为棱 的中点, 为棱 上的点,且满足 ,点 为过三点 的平面 与正方体 的棱的交点,则下列说法正确的是( )
A. B.三棱锥 的体积为6
C.直线 与平面 的夹角是45°D.
12.已知函数 的一条对称轴为 ,函数 在区间 上具有单调性,且 ,则下述四个结论正确的是( )
15.已知双曲线 的左、右焦点分别为 为双曲线上任一点,且 的最小值为 ,则该双曲线的离心率是__________.
16.如图,在矩形 中, , 是 的中点,将 , 分别沿 折起,使得平面 平面 ,平面 平面 ,则所得几何体 的外接球的体积为__________.
四、解答题
17.在① ,② ,③ 这三个条件中任选一个,补充在下面问题中.若问题中的正整数 存在,求 的值;若不存在,说明理由.
设正数等比数列 的前 项和为 , 是等差数列,__________, , , ,是否存在正整数 ,使得 成立?
2020届全国100所名校最新高考模拟示范卷(二)高三模拟测试数学(理)试题(解析版)
(1)因为 ,
利用正弦定理可得, ,
即 ,因为 ,
所以 ,即 ,
因为 ,所以 , ,
因为 ,所以 .
(2)由(1)及余弦定理可得,
,即 ,
所以 ,当且仅当 时等号成立,
所以 的最大值为 .
【点睛】
本题考查利用正余弦定理解三角形、两角和的正弦公式及利用基本不等式求最值;考查运算求解能力和知识迁移能力;属于中档题、常考题型.
18.如图,在四棱锥 中, 底面 ,底面 为直角梯形, , ∥ , , , , , 分别为线段 , , 的中点.
(1)证明:平面 ∥平面 .
(2)求直线 与平面 所成角的正弦值.
【答案】(1)证明见解析;(2)
【解析】(1)连接 ,设 与 相交于点 ,利用线面平行的判定定理和面面平行的判定定理即可证明;
以 为原点, 所在的直线为 轴, 轴, 轴,
建立空间直角坐标系,如图所示:
则 , , , ,
所以 ,
11.已知数列 满足条件 , , ,则 的最小值为()
A.3B.2C.1D.0
【答案】C
【解析】利用 可得 ,即 ,结合 可得 ,利用累加法可得, ,只需求出 的最小值即可,结合 ,即 ,分 两种情况分别代入递推式,依次求出 的值,求出使 最小的对应的 的值即可.
【详解】
因为 , ,
所以 ,即 ,
又 ,所以 ,
,即 , .
故答案为: .
【点睛】
本题考查正弦型函数对称性和周期性的综合应用问题,关键是明确正弦型函数相邻的两个对称中心横坐标间隔为半个最小正周期.
15.若 , 满足约束条件 ,则 的最大值为__________.
【答案】
【解析】作出不等式组表示的平面区域,平移直线 ,根据目标函数的几何意义知,向下平移直线 到最高点时,目标函数 有最大值,据此求出目标函数 最大值即可.
2020届全国100所名校最新高考模拟示范卷高三数学文科卷(三)
17.在如图所示的平面四边形 中,已知 , , , .
(1)求 的值;
(2)求 的长.
18.金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生,新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:
愿意
(2)若 ,求点 到平面 的距离.
20.已知椭圆 ,左、右顶点分别为 , ,上、下顶点分别为 , ,且 , 为等边三角形,过点 的直线与椭圆 在 轴右侧的部分交于 、 两点, 为坐标原点.
(1)求椭圆的标准方程;
(2)若 ,求直线 的方程.
21.已知函数 .
(1)当 ( 为自然对数的底数)时,求函数 的极值;
8.中国古典乐器一般按“八音”分类.“八音”是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo)、竹”八音.其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器,现从打击乐器、弹拨乐器中任取不同的‘两音’,含有弹拨乐器的概率为()
3.已知 , , ,则()
A. B. C. D.
4.已知双曲线 , 是双曲线渐近线上第一象限的一点, 为坐标原点,且 ,则点 的坐标是()
A. B. C. D.
5.已知 ,则 ()
A. B. C. D.
6.已知 , ,则向量 , 的夹角 ()
A. B. C. D.
7.函数 的大致图象为()
A. B. C. D.
A. B. C. D.
9.已知不同直线 、 与不同平面 、 ,且 , ,则下列说法中正确的是()
A.若 ,则 B.若 ,则
2020届全国100所名校最新高考模拟示范卷高三数学(理)模拟测试试题(三)(解析版)
2020届全国100所名校最新高考模拟示范卷高三数学(理)模拟测试试题(三)一、单选题 1.复数31iz i+=-(i 为虚数单位)在复平面内对应的点位于( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】A【解析】由题,根据复数的运算,将复数化简,可得点坐标,即得结果. 【详解】 因为复数3i (3)(1)121i (1)(1)i i z i i i +++===+--+ 所以在复平面所对应的点为(1,2),在第一象限 故选A 【点睛】本题考查了复数,掌握好复数的运算法则,属于基础题. 2.已知全集U =R ,集合{|lg(1)}A x y x ==-,|B x y⎧==⎨⎩则()U A B =I ð( ) A .(1,)+∞ B .(0,1)C .(0,)+∞D .[1,)+∞【答案】D【解析】根据函数定义域的求解方法可分别求得集合,A B ,由补集和交集定义可求得结果. 【详解】{}()10,1A x x =->=-∞Q ,()0,B =+∞,[)1,U A ∴=+∞ð, ()[)1,U A B ∴=+∞I ð. 故选:D . 【点睛】本题考查集合运算中的补集和交集运算问题,涉及到函数定义域的求解,属于基础题.3.已知3sin 24θ=-,则1tan tan θθ+=( ) A .83- B .43-C .83D .43【答案】A【解析】由二倍角公式求得sin cos θθ,切化弦后,结合同角三角函数平方关系可求得结果. 【详解】3sin 22sin cos 4θθθ==-Q ,3sin cos 8θθ∴=-,221sin cos sin cos 18tan 3tan cos sin sin cos 38θθθθθθθθθθ+∴+=+===--. 故选:A . 【点睛】本题考查三角函数值的求解问题,涉及到二倍角公式、同角三角函数平方关系的应用,属于基础题.4.中国古典乐器一般按“八音”分类.这是我国最早按乐器的制造材料来对乐器进行分类的方法,最先见于《周礼·春官·大师》,分为“金、石、土、革、丝、木、匏(páo )、竹”八音,其中“金、石、木、革”为打击乐器,“土、匏、竹”为吹奏乐器,“丝”为弹拨乐器.现从“八音”中任取不同的“两音”,则含有打击乐器的概率为( ) A .314B .1114C .114D .27【答案】B【解析】分别求得所有基本事件个数和满足题意的基本事件个数,根据古典概型概率公式可求得结果. 【详解】从“八音”中任取不同的“两音”共有2828C =种取法;“两音”中含有打击乐器的取法共有228422C C -=种取法;∴所求概率22112814p ==. 故选:B . 【点睛】本题考查古典概型概率问题的求解,关键是能够利用组合的知识求得基本事件总数和满足题意的基本事件个数.5.已知不同直线l 、m 与不同平面α、β,且l α⊂,m β⊂,则下列说法中正确的是( )A .若//αβ,则l//mB .若αβ⊥,则l m ⊥C .若l β⊥,则αβ⊥D .若αβ⊥,则m α⊥【答案】C【解析】根据空间中平行关系、垂直关系的相关判定和性质可依次判断各个选项得到结果. 【详解】对于A ,若//αβ,则,l m 可能为平行或异面直线,A 错误; 对于B ,若αβ⊥,则,l m 可能为平行、相交或异面直线,B 错误; 对于C ,若l β⊥,且l α⊂,由面面垂直的判定定理可知αβ⊥,C 正确; 对于D ,若αβ⊥,只有当m 垂直于,αβ的交线时才有m α⊥,D 错误. 故选:C . 【点睛】本题考查空间中线面关系、面面关系相关命题的辨析,关键是熟练掌握空间中的平行关系与垂直关系的相关命题.6.在ABC V 中,角A 、B 、C 所对的边分别为a 、b 、c ,若cos cos 4c a B b A -=,则2222a b c-=( ) A .32B .12C .14D .18【答案】D【解析】利用余弦定理角化边整理可得结果. 【详解】由余弦定理得:222222224a cb bc a ca b ac bc +-+-⋅-⋅=,整理可得:2224c a b -=,222128a b c -∴=. 故选:D .【点睛】本题考查余弦定理边角互化的应用,属于基础题. 7.已知2log 3a =, 4.12b -=,13827c -⎛⎫= ⎪⎝⎭,则() A .c b a << B .c a b <<C .b c a <<D .a c b <<【答案】C【解析】利用指数函数和对数函数的单调性,即可比较大小. 【详解】因为2log 3(1,2)a =∈, 4.12(0,1)b -=∈,1383272c -⎛⎫==⎪⎝⎭, 且223log 22log 32=<, 所以b c a <<. 故选:C . 【点睛】本题考查利用指数函数和对数函数的单调性比较大小,属综合基础题.8.已知边长为4的菱形ABCD ,60DAB ∠=︒,M 为CD 的中点,N 为平面ABCD 内一点,若AN NM =,则AM AN ⋅=u u u u r u u u r( ) A .16 B .14C .12D .8【答案】B【解析】取AM 中点O ,可确定0AM ON ⋅=u u u u r u u u r;根据平面向量线性运算和数量积的运算法则可求得2AM uuuu r ,利用()AM AN AM AO ON ⋅=⋅+u u u u r u u u r u u u u r u u u r u u u r 可求得结果.【详解】取AM 中点O ,连接ON ,AN NM =Q ,ON AM ∴⊥,即0AM ON ⋅=u u u u r u u u r.60DAB ∠=o Q ,120ADM ∴∠=o ,()22222cos 416828AM DM DADM DA DM DA ADM ∴=-=+-⋅∠=++=u u u u r u u u u r u u u ru u u u r u u u r u u u u r u u u r,则()21142AM AN AM AO ON AM AO AM ON AM ⋅=⋅+=⋅+⋅==u u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r .故选:B . 【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解. 9.已知()y f x =是定义在R 上的奇函数,且当0x >时,2()3f x x x=+-.若0x ≤,则()0f x ≤的解集是( ) A .[2,1]--B .(,2][1,0]-∞-⋃-C .(,2][1,0)-∞-⋃-D .(,2)(1,0]-∞-⋃-【答案】B【解析】利用函数奇偶性可求得()f x 在0x <时的解析式和()0f ,进而构造出不等式求得结果. 【详解】()f x Q 为定义在R 上的奇函数,()00f ∴=.当0x <时,0x ->,()23f x x x∴-=---, ()f x Q 为奇函数,()()()230f x f x x x x∴=--=++<,由0230x x x <⎧⎪⎨++≤⎪⎩得:2x -≤或10x -≤<; 综上所述:若0x ≤,则()0f x ≤的解集为(][],21,0-∞--U . 故选:B . 【点睛】本题考查函数奇偶性的应用,涉及到利用函数奇偶性求解对称区间的解析式;易错点是忽略奇函数在0x =处有意义时,()00f =的情况. 10.将函数()cos f x x =的图象先向右平移56π个单位长度,在把所得函数图象的横坐标变为原来的1ω(0)>ω倍,纵坐标不变,得到函数()g x 的图象,若函数()g x 在3(,)22ππ上没有零点,则ω的取值范围是( )A .228(0,][,]939UB .2(0,]9C .28(0,][,1]99UD .(0,1]【答案】A【解析】根据y =Acos (ωx +φ)的图象变换规律,求得g (x )的解析式,根据定义域求出56x πω-的范围,再利用余弦函数的图象和性质,求得ω的取值范围. 【详解】函数()cos f x x =的图象先向右平移56π个单位长度, 可得5cos 6y x π⎛⎫=-⎪⎝⎭的图象, 再将图象上每个点的横坐标变为原来的1ω(0)>ω倍(纵坐标不变),得到函数5()cos 6g x x πω⎛⎫=- ⎪⎝⎭的图象, ∴周期2T πω=,若函数()g x 在3(,)22ππ上没有零点,∴ 553526626x ωπππωππω-<-<-, ∴ 35526262T ωππωπππω⎛⎫⎛⎫---≤=⎪⎪⎝⎭⎝⎭, 21ω∴≤,解得01ω<≤,又522635226k k πωππππωπππ⎧-+≤-⎪⎪⎨⎪+≥-⎪⎩,解得3412323k ωω-≤≤-, 当k =0时,解2839ω≤≤, 当k =-1时,01ω<≤,可得209ω<≤, ω∴∈228(0,][,]939U .故答案为:A . 【点睛】本题考查函数y =Acos (ωx +φ)的图象变换及零点问题,此类问题通常采用数形结合思想,构建不等关系式,求解可得,属于较难题.11.在三棱锥P ABC -中,AB BP ⊥,AC PC ⊥,AB AC ⊥,22PB PC ==,点P 到底面ABC 的距离为2,则三棱锥P ABC -外接球的表面积为( ) A .3π B .32π C .12πD .24π【答案】C【解析】首先根据垂直关系可确定OP OA OB OC ===,由此可知O 为三棱锥外接球的球心,在PAB ∆中,可以算出AP 的一个表达式,在OAG ∆中,可以计算出AO 的一个表达式,根据长度关系可构造等式求得半径,进而求出球的表面积. 【详解】取AP 中点O ,由AB BP ⊥,AC PC ⊥可知:OP OA OB OC ===,O ∴为三棱锥P ABC -外接球球心,过P 作PH ⊥平面ABC ,交平面ABC 于H ,连接AH 交BC 于G ,连接OG ,HB ,HC ,PB PC =Q ,HB HC ∴=,AB AC ∴=,G ∴为BC 的中点由球的性质可知:OG ⊥平面ABC ,OG//PH ∴,且112OG PH ==. 设AB x =,22PB =Q ,211822AO PA x ∴==+ 122AG BC x ==Q ,∴在OAG ∆中,222AG OG OA +=, 即222211822x x ⎛⎫+=+ ⎪ ⎪⎝⎭,解得:2x =, ∴三棱锥P ABC -的外接球的半径为:()()2221122422322x AO +=+==,∴三棱锥P ABC -外接球的表面积为2412S R ππ==.故选:C .本题考查三棱锥外接球的表面积的求解问题,求解几何体外接球相关问题的关键是能够利用球的性质确定外接球球心的位置.12.已知抛物线2:4(0)C y px p =>的焦点为F ,过焦点的直线与抛物线分别交于A 、B 两点,与y 轴的正半轴交于点S ,与准线l 交于点T ,且||2||FA AS =,则||||FB TS =( ) A .25B .2C .72D .3【答案】B【解析】过点A 作准线的垂线,垂足为M ,与y 轴交于点N ,由2FA AS =和抛物线的定义可求得TS ,利用抛物线的性质1122AF BF p+=可构造方程求得BF ,进而求得结果. 【详解】过点A 作准线的垂线,垂足为M ,AM 与y 轴交于点N ,由抛物线解析式知:(),0F p ,准线方程为x p =-.2FA AS =Q ,13SASF ∴=,133p AN OF ∴==,43AM p ∴=, 由抛物线定义知:43AF AM p ==,1223AS AF p ∴==,2SF p ∴=, 2TS SF p ∴==.由抛物线性质11212AF BF p p +==得:3114p BF p+=,解得:4BF p =, 422FB pTS p∴==. 故选:B .本题考查抛物线定义与几何性质的应用,关键是熟练掌握抛物线的定义和焦半径所满足的等式.二、填空题13.若变量x ,y 满足约束条件20300x y x y x y -+≥⎧⎪+≤⎨⎪+≥⎩,则32z x y =+的最大值为__________.【答案】32【解析】根据约束条件可以画出可行域,从而将问题转化为直线322zy x =-+在y 轴截距最大的问题的求解,通过数形结合的方式可确定过13,22B ⎛⎫- ⎪⎝⎭时,z 取最大值,代入可求得结果. 【详解】由约束条件可得可行域如下图阴影部分所示:将32z x y =+化为322z y x =-+,则z 最大时,直线322zy x =-+在y 轴截距最大; 由直线32y x =-平移可知,当322zy x =-+过B 时,在y 轴截距最大,由2030x y x y -+=⎧⎨+=⎩得:13,22B ⎛⎫- ⎪⎝⎭,max 13332222z ⎛⎫∴=⨯-+⨯= ⎪⎝⎭.故答案为:32. 【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在y 轴截距的最值的求解问题,通过数形结合的方式可求得结果.14.甲、乙两人同时参加公务员考试,甲笔试、面试通过的概率分别为45和34;乙笔试、面试通过的概率分别为23和12.若笔试面试都通过才被录取,且甲、乙录取与否相互独立,则该次考试只有一人被录取的概率是__________. 【答案】815【解析】分别求得甲、乙被录取的概率,根据独立事件概率公式可求得结果. 【详解】甲被录取的概率1433545p =⨯=;乙被录取的概率2211323p =⨯=; ∴只有一人被录取的概率()()12213212811533515p p p p p =-+-=⨯+⨯=.故答案为:815.【点睛】本题考查独立事件概率的求解问题,属于基础题.15.已知函数()()ln ()ln xx eax e x f x x ax--=-,若在定义域内恒有()0f x <,则实数a 的取值范围是__________. 【答案】1,e e⎡⎫⎪⎢⎣⎭【解析】根据指数函数xy e =与对数函数ln y x =图象可将原题转化为()()ln 0xeax x ax --<恒成立问题,凑而可知y ax =的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定a 的取值范围. 【详解】由指数函数xy e =与对数函数ln y x =图象可知:ln >x e x ,()0f x ∴<恒成立可转化为0ln x e ax x ax-<-恒成立,即()()ln 0x e ax x ax --<恒成立,ln x e ax x ∴>>,即y ax =是夹在函数xy e =与ln y x =的图象之间,y ax ∴=的图象在过原点且与两函数相切的两条切线之间.设过原点且与ln y x =相切的直线与函数相切于点(),ln m m ,则切线斜率11ln m k m m ==,解得:11m ek e =⎧⎪⎨=⎪⎩;设过原点且与x y e =相切的直线与函数相切于点(),nn e,则切线斜率2nne k e n ==,解得:21n k e =⎧⎨=⎩;当1a e =时,1ln 0x x e -≤,又ln 0x ax -≠,1a e∴=满足题意; 综上所述:实数a 的取值范围为1,e e ⎡⎫⎪⎢⎣⎭. 【点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.三、双空题16.已知双曲线22221(0,0)x y a b a b-=>>的左焦点为(F ,A 、B 为双曲线上关于原点对称的两点,AF 的中点为H ,BF 的中点为K ,HK 的中点为G ,若|HK|=2|OG|,且直线AB的斜率为4,则||AB =__________,双曲线的离心率为__________.【答案】【解析】设()00,A x y ,()00,B x y --,根据中点坐标公式可得,H K 坐标,利用0OH OK ⋅=u u u r u u u r 可得到A 点坐标所满足的方程,结合直线斜率可求得2200,x y ,进而求得AB ;将A 点坐标代入双曲线方程,结合焦点坐标可求得,a b ,进而得到离心率.【详解】Q左焦点为()F ,∴双曲线的半焦距c =设()00,A x y ,()00,B x y --,0022x y H ⎛⎫- ⎪ ⎪⎝⎭∴,0022x y K ⎛⎫--- ⎪ ⎪⎝⎭, 2HK OG =Q ,OH OK ∴⊥,即0OH OK ⋅=u u u r u u u r ,22003044x y -∴-=,即22003x y +=, 又直线AB,即004y x =,2083x ∴=,2013y =,AB ∴==A Q 在双曲线上,2200221x y a b∴-=,即2281133a b -=, 结合2223c a b =+=可解得:a =1b =,∴离心率2c e a ==.故答案为:【点睛】本题考查直线与双曲线的综合应用问题,涉及到直线截双曲线所得线段长度的求解、双曲线离心率的求解问题;关键是能够通过设点的方式,结合直线斜率、垂直关系、点在双曲线上来构造方程组求得所需变量的值.四、解答题17.已知等差数列{}n a 的公差2d =,且1a ,2a ,4a 成等比数列. (1)求数列{}n a 的通项公式;(2)设12na nb ⎛⎫= ⎪⎝⎭,求数列{}n n a b +的前n 项和n S . 【答案】(1)2n a n =;(2)211343n n S n n =+-+⨯. 【解析】(1)根据等比中项性质可构造方程求得1a ,由等差数列通项公式可求得结果; (2)由(1)可得n b ,可知{}n b 为等比数列,利用分组求和法,结合等差和等比数列求和公式可求得结果. 【详解】(1)124,,a a a Q 成等比数列,2214a a a ∴=,即()()21113a d a a d +=+,()()211126a a a ∴+=+,解得:12a =,()2212n a n n ∴=+-=.(2)由(1)得:2111224n a n nn b ⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,114n n b b +∴=,114b =,∴数列{}n b 是首项为14,公比为14的等比数列, ()()123123n n n S a a a a b b b b ∴=+++⋅⋅⋅+++++⋅⋅⋅+()2322111124444nn n ⎡⎤+⎛⎫⎛⎫⎛⎫=++++⋅⋅⋅+⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦211343nn n =+-+⨯. 【点睛】本题考查等差数列通项公式的求解、分组求和法求解数列的前n 项和的问题;关键是能够根据通项公式证得数列{}n b 为等比数列,进而采用分组求和法,结合等差和等比数列求和公式求得结果.18.在四棱柱1111ABCD A B C D -中,底面ABCD 为正方形,AC BD O =I ,1A O ⊥平面ABCD .(1)证明:1//A O 平面11B CD ;(2)若1AB AA =,求二面角111D AB A --的余弦值. 【答案】(1)详见解析;(2)15. 【解析】(1)连接11A C ,设11111B D AC O ⋂=,可证得四边形11 A OCO 为平行四边形,由此得到11AO//O C ,根据线面平行判定定理可证得结论;(2)以O 为原点建立空间直角坐标系,利用二面角的空间向量求法可求得结果. 【详解】(1)连接11A C ,设11111B D AC O ⋂=,连接1O C ,Q 在四棱柱1111ABCD A B C D -中,1,O O 分别为11,AC A C 的中点,11//OC A O ∴,∴四边形11 A OCO 为平行四边形,11A O//O C ∴,1A O ⊄Q 平面11B CD ,1O C ⊂平面11B CD ,1//AO ∴平面11B CD .(2)以O 为原点,1,,OB OC OA 所在直线分别为,,x y z 轴建立空间直角坐标系O xyz -.设1OA =,Q 四边形ABCD 为正方形,12AB AA ∴==11OA ∴=,则()0,1,0A -,()10,0,1A ,()11,1,1B ,()11,1,1D -, ()11,2,1AB ∴=u u u r ,()112,0,0B D =-u u u u r ,()111,1,0A B =u u u u r,设()1111,,n x y z =u r 为平面11AB D 的法向量,()2222,,n x y z =u u r为平面11A AB 的法向量,由1111100n AB n B D ⎧⋅=⎪⎨⋅=⎪⎩u v u u u v u v u u u u v 得:11112020x y z x ++=⎧⎨-=⎩,令11y =,则10x =,12z =-, 由2121100n AB n A B ⎧⋅=⎪⎨⋅=⎪⎩u u v u u u v u u v u u u u v 得:22222200x y z x y ++=⎧⎨+=⎩,令21x =,则21y =-,21z =,()10,1,2n ∴=-u r ,()21,1,1n =-u u r,12121215cos ,553n n n n n n ⋅∴<>===-⨯⋅u r u u ru r u u r u r u u r ,Q 二面角111D AB A --为锐二面角,∴二面角111D AB A --的余弦值为155. 【点睛】本题考查立体几何中线面平行关系的证明、空间向量法求解二面角的问题;关键是能够熟练掌握二面角的向量求法,易错点是求得法向量夹角余弦值后,未根据图形判断二面角为锐二面角还是钝二面角,造成余弦值符号出现错误.19.金秋九月,丹桂飘香,某高校迎来了一大批优秀的学生.新生接待其实也是和社会沟通的一个平台.校团委、学生会从在校学生中随机抽取了160名学生,对是否愿意投入到新生接待工作进行了问卷调查,统计数据如下:(1)根据上表说明,能否有99%把握认为愿意参加新生接待工作与性别有关; (2)现从参与问卷调查且愿意参加新生接待工作的学生中,采用按性别分层抽样的方法,选取10人.若从这10人中随机选取3人到火车站迎接新生,设选取的3人中女生人数为X ,写出X 的分布列,并求()E X .附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)有99%把握认为愿意参加新生接待工作与性别有关;(2)详见解析. 【解析】(1)计算得到 6.635k >,由此可得结论;(2)根据分层抽样原则可得男生和女生人数,由超几何分布概率公式可求得X 的所有可能取值所对应的概率,由此得到分布列;根据数学期望计算公式计算可得期望. 【详解】(1)∵2K Q 的观测值()2160604040203210.667 6.6358080100603k ⨯⨯-⨯==≈>⨯⨯⨯,∴有99%的把握认为愿意参加新生接待工作与性别有关.(2)根据分层抽样方法得:男生有31065⨯=人,女生有21045⨯=人, ∴选取的10人中,男生有6人,女生有4人.则X 的可能取值有0,1,2,3,()306431020101206C C P X C ∴====,()216431060111202C C P X C ====,()1264310363212010C C P X C ====,()036431041312030C C P X C ====,X ∴的分布列为:()1131601236210305E X ∴=⨯+⨯+⨯+⨯=.【点睛】本题考查独立性检验、分层抽样、超几何分布的分布列和数学期望的求解;关键是能够明确随机变量服从于超几何分布,进而利用超几何分布概率公式求得随机变量每个取值所对应的概率.20.已知函数()()2ln 2f x a x x x x =-+-.(1)当2a e =-(e 为自然对数的底数)时,求函数()f x 的极值; (2)()f x '为()y f x =的导函数,当0a >,120x x >>时,求证:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<- ⎪ ⎪⎝⎭⎝⎭.【答案】(1)极大值21e --,极小值2e -;(2)详见解析. 【解析】首先确定函数的定义域和()f x ';(1)当2a e =-时,根据()f x '的正负可确定()f x 单调性,进而确定极值点,代入可求得极值;(2)通过分析法可将问题转化为证明12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+,设121x t x =>,令()()21ln 1t h t t t -=-+,利用导数可证得()0h t >,进而得到结论.【详解】由题意得:()f x 定义域为()0,∞+,()()()121122x x a f x a x x x -+⎛⎫'=-+-= ⎪⎝⎭,(1)当2a e =-时,()()()21x x e f x x--'=,∴当()0,1x ∈和(),e +∞时,()0f x '>;当()1,x e ∈时,()0f x '<,()f x ∴在()0,1,(),e +∞上单调递增,在()1,e 上单调递减, ()f x ∴极大值为()121221f e e =-+-=--,极小值为()()22212f e e e e e e =--+-=-.(2)要证:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<-⎪ ⎪⎝⎭⎝⎭,即证:()()()1212122x x f x f x f x x '+⎛⎫-<- ⎪⎝⎭, 即证:()()2211222211ln 2ln 2a x x x x a x x x x -+----+()12121222a x x a x x x x ⎛⎫<++--- ⎪+⎝⎭,化简可得:()1212122lna x x x a x x x ->+. 0a >Q ,()1212122ln x x x x x x -∴>+,即证:12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭>+, 设121x t x =>,令()()21ln 1t h t t t -=-+,则()()()22101t h t t t -'=>+, ()h t ∴在()1,+∞上单调递增,()()10h t h ∴>=,则由12112221ln 1x xx x x x ⎛⎫- ⎪⎝⎭>+,从而有:()()1212112222x x x x f x f x f x f x ++⎛⎫⎛⎫''-<- ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题考查导数在研究函数中的应用,涉及到函数极值的求解、利用导数证明不等式的问题;本题不等式证明的关键是能够将多个变量的问题转化为一个变量的问题,通过构造函数的方式将问题转化为函数最值的求解问题.21.如图,椭圆22 22:1(0)x yC a ba b+=>>的左、右顶点分别为1A,2A,上、下顶点分别为1B,2B,且1()0,1B,112A B BV为等边三角形,过点(1,0)的直线与椭圆C在y 轴右侧的部分交于M、N两点.(1)求椭圆C的标准方程;(2)求四边形21B MNB面积的取值范围.【答案】(1)2213xy+=;(2)36,12⎛+⎝⎦.【解析】(1)根据1B坐标和112A B B∆为等边三角形可得,a b,进而得到椭圆方程;(2)①当直线MN斜率不存在时,易求,M N坐标,从而得到所求面积;②当直线MN 的斜率存在时,设方程为()1y k x=-,与椭圆方程联立得到韦达定理的形式,并确定k的取值范围;利用21NOB OMN MOBS S S S=++△△△,代入韦达定理的结论可求得S关于k的表达式,采用换元法将问题转化为33Smm=+-23,23m∈的值域的求解问题,结合函数单调性可求得值域;结合两种情况的结论可得最终结果.【详解】(1)()10,1BQ,1b∴=,112A B B∆Q为等边三角形,33a b∴==∴椭圆的标准方程为2213xy+=.(2)设四边形21B MNB的面积为S.①当直线MN的斜率不存在时,可得61,M⎛⎝⎭,6N⎛⎝⎭,1266211233S⎛=⨯+⨯=+⎭∴⎝.②当直线MN 的斜率存在时,设直线MN 的方程为()1y k x =-, 设()11,M x y ,()22,N x y ,联立()22131x y y k x ⎧+=⎪⎨⎪=-⎩得:()2222316330k x k x k +-+-=,2122631k x x k ∴+=+,21223331k x x k -=+,()1212y y k x x ∴-=-=. 10x >Q ,20x >,120x x ∴>,1k ∴>,面积()121212111122OMN MO NOB B S S S S x x y y =++=⨯+⨯+⨯-⨯△△△222331313k k k==++23k +.令t =231S t +=+,t ∈,令m t =+S =4m m=+-,m ∈,Q ()S m在定义域内单调递减,3123S ∴<<+.综上所述:四边形21B MNB面积的取值范围是3,12⎛+ ⎝⎦.【点睛】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的四边形面积的取值范围的求解问题;关键是能够将所求面积表示为关于某一变量的函数,将问题转化为函数值域的求解问题.22.在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的参数方程为22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数),直线l经过点(1,M --且倾斜角为α.(1)求曲线C 的极坐标方程和直线l 的参数方程;(2)已知直线l 与曲线C 交于,A B ,满足A 为MB 的中点,求tan α.【答案】(1)4cos ρθ=,1cos t sin x t y αα=-+⎧⎪⎨=-⎪⎩;(2【解析】(1)由曲线C 的参数方程消去参数可得曲线C 的普通方程,由此可求曲线C 的极坐标方程;直接利用直线的倾斜角以及经过的点求出直线的参数方程即可;(2)将直线的参数方程,代入曲线C 的普通方程224x y x +=,整理得)26cos 320t tαα-++=,利用韦达定理,根据A 为MB 的中点,解出α即可.【详解】 (1)由22cos 2sin x y θθ=+⎧⎨=⎩(θ为参数)消去参数,可得()2224x y -+=,即224x y x +=,∴已知曲线C 的普通方程为224x y x +=, Q cos x ρθ=,222x y ρ=+,∴24cos ρρθ=,即4cos ρθ=, ∴曲线C 的极坐标方程为4cos ρθ=,Q 直线l经过点(1,M --,且倾斜角为α,∴直线l的参数方程:1cos sin x t y t αα=-+⎧⎪⎨=-⎪⎩(t 为参数,0απ≤≤).(2)设,A B 对应的参数分别为A t ,B t . 将直线l 的参数方程代入C 并整理,得)26cos 320t tαα-++=,∴)6cos A B t t αα+=+,32A B t t ⋅=.又A 为MB 的中点,∴2B A t t =,∴)2cos 4sin 6A t πααα⎛⎫=+=+ ⎪⎝⎭,8sin 6B t πα⎛⎫=+ ⎪⎝⎭,∴232sin 326A B t t πα⎛⎫⋅=+= ⎪⎝⎭,即2sin ()16πα+=, Q 0απ≤≤, ∴7666πππα≤+<, ∴62ππα+=,即3πα=,∴tan 3π=【点睛】本题考查了圆的参数方程与极坐标方程之间的互化以及直线参数方程的应用,考查了计算能力,属于中档题.23.设函数()121f x x x a =++-+.(1)当1a =时,解不等式()6f x ≤;(2)设12a <-,且当21a x ≤<-时,不等式()26f x x ≤+有解,求实数a 的取值范围.【答案】(1)[2,3]-;(2)12,2⎛⎫-- ⎪⎝⎭. 【解析】(1)通过分类讨论去掉绝对值符号,进而解不等式组求得结果; (2)将不等式整理为3a x --≤,根据能成立思想可知max 3a x --≤,由此构造不等式求得结果.【详解】(1)当1a =时,()6f x ≤可化为125x x ++-≤,21,2123,1212,1x x x x x x x ->⎧⎪++-=-≤≤⎨⎪-<-⎩Q∴由2215x x >⎧⎨-≤⎩,解得23x <≤;由1235x -≤≤⎧⎨≤⎩,解得12x -≤≤;由1125x x <-⎧⎨-≤⎩,解得21x -≤<-.综上所述:所以原不等式的解集为[]2,3-.(2)21a x ≤<-Q ,()26f x x ≤+,12126x x a x ∴--+-+≤+,3a x ∴--≤,()26f x x ≤+Q 有解,31a ∴--<-,即2a >-,又21a <-,12a ∴<-, ∴实数a 的取值范围是12,2⎛⎫-- ⎪⎝⎭. 【点睛】本题考查绝对值不等式的求解、根据不等式有解求解参数范围的问题;关键是明确对于不等式能成立的问题,通过分离变量的方式将问题转化为所求参数与函数最值之间的比较问题.。
(全国100所名校最新高考模拟示范卷)2020年普通高等学校招生全国统一考试理科数学模拟测试试题(二)
2020年普通高等学校招生考试数学模拟测试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合A={0,1,2,3},B={2,3,4,5},则A ∪B= A.{1,2,3,4,5}B.{0,1,4,5}C.{2,3}D.{0,1,2,3,4,5}2.i 是虚数单位,z=2—i,则|z|=B.23.已知向量a =(1,2),b =(-1,λ),若a ∥b ,则实数λ等于 A.-1B.1C.-2D.24.设命题p:∀x ∈R ,x 2>0,则p ⌝为A.∀x ∈R ,x 2≤0B.∀x ∈R ,x 2>0C.∃x ∈R ,x 2>0D.∃x ∈R ,x 2≤05.51(1)x-展开式中含x -2的系数是 A.15B.-15C.10D.-106.若双曲线22221(0,x y a b a b -=>>)的左、右焦点分别为F 1、F 2,离心率为53,点P(b,0),为则12||||PF PF =A.6B.8C.9D.107.图为祖冲之之子祖暅“开立圆术”中设计的立体模型.祖暅提出“祖氏原理”,他将牟合方盖的体积化成立方体与一个相当于四棱锥的体积之差,从而求出牟合方盖的体积等于32(3d d 为球的直径),并得到球的体积为16V d π=,这种算法比外国人早了一千多年,人们还用过一些类似的公式,根据π=3.1415926…,判断下列公式中最精确的一个是A.d ≈3B .d ≈√2V 3C.d≈√300157V3D .d≈√158V 38.已知23cos cos ,2sin sin 2αβαβ-=+=则cos(a+β)等于 A.12B.12-C.14D.14-二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9.第18届国际篮联篮球世界杯(世界男子篮球锦标赛更名为篮球世界杯后的第二届世界杯)于2019年8月31日至9月15日在中国的北京广州、南京、上海、武汉、深圳、佛山、东莞八座城市举行.中国队12名球员在第一场和第二场得分的茎叶图如图所示,则下列说法正确的是A.第一场得分的中位数为52 B.第二场得分的平均数为193C.第一场得分的极差大于第二场得分的极差D.第一场与第二场得分的众数相等10.已知正方体的外接球与内切球上各有一个动点M 、N,若线段MN 1,则 A.正方体的外接球的表面积为12π B.正方体的内切球的体积为43πC.正方体的边长为2D.线段MN 的最大值为11.已知圆M 与直线x 十y +2=0相切于点A(0,-2),圆M 被x 轴所截得的弦长为2,则下列 结论正确的是A.圆M 的圆心在定直线x-y-2=0上B.圆M 的面积的最大值为50πC.圆M 的半径的最小值为1D.满足条件的所有圆M 的半径之积为1012.若存在m,使得f(x)≥m 对任意x ∈D 恒成立,则函数f(x)在D 上有下界,其中m 为函数f(x)的一个下界;若存在M,使得f(x)≤M 对任意x ∈D 恒成立,则函数f(x)在D 上有上界,其中M 为函数f(x)的一个上界.如果一个函数既有上界又有下界,那么称该函数有界.下列说法正确的是A.1不是函数1()(0)f x x x x=+>的一个下界 B.函数f(x)=x l nx 有下界,无上界C.函数2()xe f x x=有上界有,上无界下,界无下界D.函数2sin ()1xf x x =+有界 三、填空题:本题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.设f(x)是定义在R 上的函数,若g(x)=f(x)+x 是偶函数,且g(-2)=-4,则f(2)=___. 14.已知函数f(x)=sin(ωx+φ)(ω>0),点2(,0)3π和7(,0)6π是函数f(x)图象上相邻的两个对称中心,则ω=___.15.已知F 1,F 2分别为椭圆的221168x y +=左、右焦点,M 是椭圆上的一点,且在y 轴的左侧,过点F 2作∠F 1MF2的角平分线的垂线,垂足为N,若|ON|=2(О为坐标原点),则|MF 2|-|MF 1|=___,|OM|=__.(本题第一空2分,第二空3分)16.在正三棱柱ABC-A 1B 1C 1中,AB =1=2,E,F 分别为AB 1,A 1C 1的中点,平面α过点C 1,且平面α∥平面A 1B 1C ,平面α∩平面A 1B 1C 1=l ,则异面直线EF 与l 所成角的余弦值为__·四、解答题:本题共6小题,共70分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国100所名校2020年最新高考模拟示范卷
数学模拟测试(四)
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是 符合题目要求的.
1.已知集合2{|26},{|3log 35},M x x N x x =-<<=-<<,则M∩N=
2.{|2log 35}A x x -<<
2.{|3log 35}B x x -<< C.{x|-3<x<6} 2.{|log 356}D x x <<
2.设复数z 满足||1,2z z z z +=+在复平面内对应的点的坐标为(x,y),则 2.21A x y =+
2.21B y x =+ 2.21C x y =- 2.21D y x =-
3.已知(2,1),(1,)AB AC λ=-=u u u r u u u r ,若10cos .BAC ∠=则实数λ的值是 A.-1 B.7
C.1
D.1或7 4.“b=2"是“函数2()(231)(f x b b x αα=--为常数)为幂函数”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件 5.若6()(13)x a x -+的展开式中3x 的系数为-45,则实数a 的值为
2.3A B.2 1.4C 1.3
D 6.函数f 2cos 2()cos 221
x x x x =+-的图象大致是
7.如图,正方体的底面与正四面体的底面在同一平面a 上,且AB//CD ,若正方体的六个面所在的平面与直线CE,EF 相交的平面个数分别记为m,n ,则下列结论正确的是
A.m=n
B.m=n+2
C.m<n
D.m 十n<8
8.已知函数()2,()ln 42
x x f x x a g x x a -=+=-,若存在实数0,x 使00()()5f x g x -=成立,则正数a 的取
值范围为
A.(0,1]
B.(0,4]
C.[1,+∞)
D.(0,1n2] 二、多项选择题:本题共4小题,每小题分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得分,部分选对的得3分,有选错的得0分.
9.刘女士的网店经营坚果类食品,2019年各月份的收人、支出(单位:百元)情况的统计如图所示,下列说法中正确的是
A.4至5月份的收入的变化率与11至12月份的收人的
变化率相同
B.支出最高值与支出最低值的比是5:1
C.第三季度平均收人为5000元,
D.利润最高的月份是3月份和10月份
10.嫦娥四号月球探测器于2018年12月8日搭载长征三号乙运载火箭在西昌卫星发射中心发射.12日下午4点43分左右,嫦娥四号顺利进入了以月球球心为-一个焦点的椭圆形轨道,如图中轨道③所示,其近月点与月球表面距离为100公里,远月点与月球表面距离为400公里,已知月球的直径约为3476公里,对该椭圆下述四个结论正确的是
A.焦距长约为300公里
B.长轴长约为3988公里
C.两焦点坐标约为(±150,0)
D.离心率约为75994。