八年级数学二次根式的概念和性质

合集下载

人教版八年级下册数学第十六章二次根式二次根式的概念和性质教案

人教版八年级下册数学第十六章二次根式二次根式的概念和性质教案
-利用多媒体教学资源,如动画和图表,增强直观想象。
-设计分层次练习,从基础到提高,逐步突破难点。
-引导学生通过自主探索和合作交流,构建数学模型,提高数学建模能力。
-在教学中注重教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《二次根式》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要计算平方根的情况?”(例如:计算正方形边长)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次根式的奥秘。
-详细讲解二次根式的性质,结合图形和实际例子,使学生直观理解。
-以典型例题形式,展示二次根式的化简和运算过程,指出易错点,强调运算规则。
-设计具有挑战性的问题,让学生在实际情境中应用二次根式,识别难点,培养解决问题的能力。
-通过小组讨论和互动,激发学生的学习兴趣,促进数学表达和交流能力的提升。
4.教学策略:
在新课讲授环节,我采用了案例分析的教学方法,让学生通过解决实际问题来体会二次根式的应用。从实践活动的表现来看,学生们对此表现出较高的兴趣,但在小组讨论中,部分学生仍然显得不够积极主动。针对这一问题,我计划在接下来的课程中,多鼓励学生发表自己的观点,培养他们的团队协作能力和沟通能力。
此外,在学生小组讨论环节,我发现有些学生在解决问题时思路不够清晰,容易陷入思维定势。为了帮助学生打破思维局限,我将在以后的课堂中,适时给予他们提示和引导,培养他们的问题分析能力和创新意识。

三、教学难点与重点
1.教学重点:
-二次根式的定义及其性质的理解和掌握。
-二次根式的化简和运算方法的运用。
2.教学难点:
-对二次根式性质的深入理解,特别是乘法法则和除法法则的应用。

沪教版 八年级(上)数学 秋季课程 第1讲 二次根式的概念及性质(解析版)

沪教版 八年级(上)数学 秋季课程 第1讲 二次根式的概念及性质(解析版)

二次根式是以实数中所学内容为基础,对开平方、开立方等运算进行扩展,基本要求是知道二次根式的取值范围、掌握二次根式的求值,二次根式中题目类型多变,方法多种多样.重点是掌握二次根式的概念、性质,难点是通过性质进行化简和求值.1、二次根式的概念(1)代数式a (0a )叫做二次根式,读作“根号a ”,其中a 是被开方数. (2)二次根式有意义的条件是被开方数是非负数.二次根式的概念及性质知识结构模块一:二次根式的概念知识精讲内容分析例题解析【例1】下列各式中,二次根式的个数有 ( )A .2个B .3个C .4个D .5个【答案】B .根式,当0x <时就不是.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.【例2】添加什么条件时,下列式子是二次根式?(1(2 (3 (4 【答案】(1)4x ≥;(2)11x -<<;(3)0y ≥;(4)14x ≥或14x ≤-.【解析】(1)由40x -≥,得4x ≥; (2)由10x ->,得11x -<<; (3)由230x y ≥,得0y ≥;(4)由104x -≥,得14x ≥或14x ≤-. 【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【例3)A . 对于任意实数a ,它表示的是a 的算术平方根B . 对于任意的正实数a ,它表示的是a 的算术平方根C . 对于任意的正实数a ,它表示的是a 的平方根D . 对于任意的非负实数a ,它表示的是a 的算术平方根 【答案】D .(0)a ≥表示a 的算术平方根. 【总结】本题考查算术平方根的概念.【例4成立的条件是()A .02xx ≥- B .0x ≥ C .2x ≠ D .2x > 【答案】D .【解析】由0x ≥,20x ->,得0x ≥,2x >,∴2x >.【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例5】求使下列二次根式有意义的实数x 的取值范围.(1(2【答案】(1)1x ≥或0x <;(2)12x ≥-且1x ≠. 【解析】(1)由110x -+≥,得1x ≥或0x <; (2)由21010x x +≥⎧⎨-≠⎩,得12x ≥-且1x ≠.【总结】二次根式有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例6】实数x 、y满足,xy y=,求的值.【答案】3.【解析】由0x ≥0x ≥,得x =y =;∴3x y =.【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零.【例72|313|0x y --=,求2017()x y +的值. 【答案】1.【解析】由题意得:2203130x x y -=⎧⎨--=⎩,解得:23x y =⎧⎨=-⎩,∴20172017()(1)-1x y +=-=.【总结】考查非负数相加和为零的模型,则这几个式子都为零.【例8】如果代数式有意义,那么在平面直角坐标系中()P m n ,的位置在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C . 【解析】0mn ≠,∴0m ≠且0n ≠,0m ∴->,0m ∴<.0mn >又, 0n ∴<.故点P 在第三象限. 【总结】二次根式的被开方数为非负数.【例9】如果2y =xy 的值. 【答案】6.【解析】33x x ≥≤∵,, 3x ∴=,2y ∴=, 6xy ∴=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零.【例10】 已1()2x y z x y z =++,求、、的值.【答案】1x =, 2y =,3z =.【解析】由题意得:x y z =++,∴0x y z ---, 即)))2221110++=,∴1x =, 2y =,3z =.【总结】本题主要考查利用配方将原式化为几个非负数和为零的形式.【例11】 若222222()a b b c a b c ab bc ac -=+-=++---的值. 【答案】30.【解析】2a b -=2b c -=,∴4a c -=.∴ =原式222222222a b c ab bc ac ++---=()()()222a b b c a c -+-+-=((222224++=7716+- =30.【总结】本题主要考查三项完全平方式的运用以及二次根式的计算.【例12】 若z ,求z 的值. 【难度】★★★【答案】3358. 【解析】20160x y -+≥, ∴2016x y +≥.又20160x y --≥, ∴2016x y +≤, ∴2016x y +=.∴35232530x y z x y z +--++-=.即35230125302x y z x y z +--=⎧⎨+-=⎩()(), 解得:220143358x y z =⎧⎪=⎨⎪=⎩.【总结】本题先根据二次根式有意义的条件,得出2016x y +=,又考查当两个非负数的和为零时,则这两个式子必然都等于零.1、二次根式的性质 (1)二次根式的性质:性质1:2(0)a a a =≥;性质2:2()(0)a a a =≥;性质3:ab a b =⨯(0a ≥,0b ≥);性质4:aa bb=(0a ≥,0b >).知识精讲模块二:二次根式的性质(2)2a 与a 的关系:2(0)0(0)(0)a a a a a a a >⎧⎪===⎨⎪-<⎩.【例13】 计算下列各式的值:(1)23; (2)2(3)-;(3)2(3)--; (4)2(3)-;(5)21()5-; (6)221(0)x x x -+<.【答案】(1) 3; (2) 3; (3) -3; (4)3; (5)15-;(6)1x -+.【解析】根据二次根式性质2即可得出结果. 【总结】考查二次根式性质2的运用.【例14】 化简: (1)320(0)a a >; (2)2320a b ;(3)254(0)a b c a <;(4)22()a b b --(00a b ><,).【答案】(1)25a a ;(2)25ab b ;(3) 22ab c b -;(4)a . 【解析】(1)原式=24525a a a a ⨯=;(2)原式=224525a b b ab b ⨯=; (3)原式=24422a b c b ab c b ⨯=-;(4) 00a b >>,,∴0a b ->,∴原式=()a b b a ---=.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.例题解析【例15】 化简:(1;(2(3)20a a <();(45)x <<.【答案】(1)21a +;(2)()()00(0)0a b a b a b a b a b ++>⎧⎪+=⎨⎪--+<⎩;(3)3a -;(4)3.【解析】(121a =+; (2()()00(0)0a b a b a b a b a b a b ++>⎧⎪+=+=⎨⎪--+<⎩;(3)()223a a a a =--=-; (4253x x -=+-=.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例16】 化简:(10)x >;(22+.. 【答案】(1)()()10111x x x x -<<⎧⎪⎨-≥⎪⎩; (2)1x -.【解析】(1()()101111x x x x x -<<⎧⎪-=⎨-≥=⎪⎩; (2)20x -≥,∴2x ≥.∴原式=122x x x ---+-=1221x x x x --++-=-.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例17】 把下列各式中根号外面的因式移到根号内,并使原式的值不变.(1(2)(3)2-(4)(1)x -【答案】(1 (23)4)【解析】(1(2)=(3)2-(4)(1)x -== 【总结】把式子移入根号中,要保持式子的正负值不变化,同时注意题目中的隐含条件的发掘.【例18】 化简:(100)ab bc ><,;(20)a b <<【答案】(1)-;(2)22a b -.【解析】(1)原式=a c ac ⋅=- (2)原式=2222a b a b -=-.【总结】考查二次根式的化简,注意被开方出来的结果一定非负.【例19】 已0,求()x x y +的值. 【答案】9.【解析】由题意得:203280x y x y -=⎧⎨+-=⎩, ∴21x y =⎧⎨=⎩.∴()()2219x x y +=+=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零.【例20】 已知x y 、是实数,且1|1|21y y y -<-,求的值. 【答案】1-.【解析】由题意得:1x =,12y <;∴|1|1111y y y y --==---.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,再利用去绝对值的知识就可以解决.【例21】 已知125x x -=-,求x 的取值范围. 【答案】14x ≤≤.【解析】由题意得:1425x x x ---=-;零点分段法分类讨论即可.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【例22】 如7x y --成立,求xy 的值. 【答案】30.【解析】由题意得:3x =,10y =,∴30xy =.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,再利用去绝对值的知识就可以解决.【例23】 已知2x =+的值..【解析】=又∵2x =,∴42420x -=+=<.∴原式=()()41411x x x x -=-==---【总结】考查二次根式的化简求值,注意被开方出来的结果一定非负.【例24】 已知2441310x x x x --+=+,求的个位数字. 【答案】7. 【解析】∵1130x x-+=, ∴113x x+=. ∴2222112132167x x x x ⎛⎫+=+-=-= ⎪⎝⎭,∴()2422421121672x x x x ⎛⎫+=+-=- ⎪⎝⎭,∴个位数字为7.【总结】本题考查了完全平方公式的变形及计算.【例25】 (1)在△ABC 中,a b c 、、0,求最大边c 的取值范围;(2)已知实数x y 、,满足2()x y +22x y +的平方根.【答案】(1)814c ≤<;(2)±【解析】(1)根据题意,即为60a -,由此60a -=,80b -=,解得:6a =, 8b =,根据三角形三边关系,且c 为最大边,可知b c a b ≤<+,即814c ≤<.(2)由题意得:2()0x y +=,∴053160x y x y +=⎧⎨--=⎩,解得:22x y =⎧⎨=-⎩,∴==±.【总结】考查非负数相加和为零的模型,则这几个式子都为零,然后根据三角形三边关系即可确定取值范围.【例26】 已知:1141r a b c r r ≥=-==+,,,试比较a 、b 、c 的大小. 【答案】a b c <<. 【解析】由题意得:22a =-=,∵4r ≥, 1≤<,∴a b <;又∵11b r c ===, ∴b c <,∴a b c <<.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例27】 已b 的式子表示). 【答案】21b b -.21-=∴()211b y b-+=,∴原式114y ++()()22214111b bb b b bbbbb-++--==. 【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例28】 化0)a >.【答案】a b +. 【解析】原式=()()222222222a b a a b a a b b-+-+---=()()222222a b aa b b-+---=2222a b a a b b -+---,又∵20a b >>,∴原式=2222a b a a b b -+--+=a b +.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【例29】 已知:m =1465-,求43224882467m m m m m m --++-+的值.【答案】8.【解析】由题意得:35m =-;∴35m -=,∴2(3)5m -=,∴264m m =-, 把264m m =-代入原式,合并同类项得:原式=8.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题1】 下列计算中正确的是( ).A .2(2)2=B .22(2)2=C .22(2)2-=-D .211()42-=-【答案】A .【解析】根据二次根式性质1即可得出结果. 【总结】考查二次根式的性质1.【习题2】 判断下列哪些二次根式是二次根式? (1)4;(2)1a +;(3)2a ;(4)211a +;(5)223x x -+;(6)22(0)x x x -<.【答案】(1)是; (2)不是 ; (3)是; (4)是; (5)是;(6)是.随堂检测【解析】二次根式有意义的条件,即被开方数为非负数即可. 【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【习题3】 当添加什么条件时,下列二次根式有意义?(1)43x -; (2)121a --;(3)2a ;(4)143x--;(5)22x x -+-;(6)21xx +. 【答案】(1)43x ≤;(2)12a <; (3)a 为任意实数;(4)43x >;(5)2x =; (6)0x ≥.【解析】(1)由430x -≥得:43x ≤; (2)由1021a -≥-得:12a <; (3)a 为任意实数; (4)由1043x -≥-得:43x >; (5)2x =; (6)0x ≥.【总结】本题考查二次根式有意义的条件,即被开方数为非负数即可.【习题4】 化简:(1)24()9-;(2)22((2))a -;(32441x x -+12x ≥();(42(3)a -【答案】(1)49; (2)24a ; (3)21x -; (4)()()()3330333a a a a a a ->⎧⎪-==⎨⎪-<⎩.【解析】(12444()=999--=; (2)222((2))4a a -=;(324412121x x x x -+-=-; (4()()()233(3)30333a a a a a a a ->⎧⎪-=-==⎨⎪-<⎩.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【习题5】 化简下列二次根式:(100)x y ≥≥,;(2(3(0)a a <.【答案】(1)5 (2) 3.14π-; (3)2a -.【解析】(15(2 3.14 3.14π=-=-π;(32a a a a =--=-.【总结】考查二次根式的被开方数的非负性和二次根式的性质1性质3,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【习题6】 已知2+的整数部分是a ,小数部分是b ,那么(2b a ++的值是多少? 【答案】5.23<,∴425<,∴4a =,242b ==,∴(()2524(52b a =-++=.【总结】对于一个无理数的小数部分,没有办法完整写出来,只能用一种整体思想相应的表示出来.【习题7】 已知3x = 【答案】1.=代入3x =, 原式.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题8】 222(2)023y x xy y +=-+,求的值. 【答案】40.【解析】∵3020x y -=⎧⎨+=⎩, ∴32x y =⎧⎨=-⎩.∴代入得:2223x xy y -+=()()2223332240⨯-⨯⨯-+-=.【总结】本题主要考查当两个非负数的和为零时,则说明这两个非负数均为零.【习题9】 已知非零实数x 、y 满足条件24224x y x -++=-,求x y +的值. 【答案】1.【解析】∵()230x y -≥,∴30x -≥,即3x ≥,∴240x ->,∴24224x y x -++-,即20y +=,∴2030y x +=⎧⎨-=⎩, 解得:32x y =⎧⎨=-⎩.∴3(2)1x y +=+-=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,另一方面考查了非负数和为零的基本模型.【习题10】=a x y 、、是两两不同的实数,则22223x xy y x xy y +--+值等于 __________.【答案】13.【解析】由题意知: ()()()()()()01020304a x a a y a x a a y -≥⎧⎪-≥⎪⎨-≥⎪⎪-≥⎩, 解得:0a x y =⎧⎨=-⎩.∴22222222223313x xy y y y y x xy y y y y +---==-+++. 【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【习题11】 求满足26a x y -=-的自然数a x y 、、的值. 【答案】617x y a ===,,或325x y a ===,,. 【解析】由题意得:262(1)a x y xy-=+-∵26a -是无理数,假设xy 是有理数,则2x y xy +-是有理数,这与(1)式矛盾, ∴xy 为无理数,∴6x y a xy +=⎧⎨=⎩,又∵26a x y -=-,∴x y >.∴617x y a ===,,或325x y a ===,,.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【作业1】 判断下列式子哪些是二次根式?(1)2x; (2)2x; (3)1(1)x x -<; (4)244b b -+; (5)321a +;(6)222a +.【答案】(1)不是; (2)不是; (3)不是; (4)是; (5)不是; (6)是. 【解析】根据二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数,即可判断出来.【总结】考查二次根式的概念,需满足两个条件:①根指数为2;②被开方数为非负数.【作业2】 将x 移到根号内,不改变原来的式子的值:(1)21(1)x x x ->;(2)21(2)(2)44x x x x ->-+. 【答案】(1)222x x -;(2)1. 【解析】(1)()22212221x x x x x x =---=;(2)()()2221(2)44212x x x x x ----==+.【总结】把式子移入根号中,要保持式子的正负值不变化,同时注意题目中的隐含条件的发课后作业掘.【作业3】若11)-有意义,则x 的取值范围是______. 【答案】10x x ≥≠且.【解析】∵11)-=∴101010x x x +≥⎧≥⎧⎪⎨≠≠⎩,解得:. 【总结】式子有意义的条件:①二次根式的被开方数为非负数;②分母不为零;③零没有零次幂.【作业4】计算:201520162)2).2.【解析】))2015201520162)2)222⎡⎤=⎣⎦2.【总结】当碰到次数较大的时候,想到去用公式,本题运用平方差公式和二次根式的计算即可.【作业5】 化简:(10)y <;(2) 【答案】(1) (2【解析】(1)原式=(136y ⨯-=(2)原式()()00x x =>⎪<⎪⎩,∴. 【总结】考查二次根式的被开方数的非负性和二次根式的性质3、性质4,先将根号中的平方数或平方式找出来,以绝对值的形式写出来,然后根据式子确立相关隐含条件,去绝对值解题.【作业6】 已知x 为非零实数,且112221x x x a x-++=,则=________. 【答案】22a -.【解析】∵1122x xa -+=, a=, ∴212x a x++=, ∴212x a x+=-,∴22112x x a x x+=+=-.【总结】本题考查完全平方公式的变形和二次根式的综合.【作业7】 若代数式3|2|0a a b --,求的立方根.【解析】由题意得:2,4a b ==,∴3a b -==【总结】本题主要考查当几个非负数的和为零时,则这两个式子必然都等于零的基本模型,还考查了去绝对值的知识.【作业8】 m 2 【答案】2.【解析】由题意得:1m =12m m-=. 【总结】考查根号中套根号类型的式子,注意观查,部分可转化为一个数字的平方,同时对于一个无理数的小数部分,没有办法完整写出来,只能用一种整体思想相应的表示出来.【作业9】 已知a b c 、、为有理数,且等式a +29991001a b c ++求的值.【答案】2000.=a +∴011a b c ===,,, ∴2999100199910012000a b c ++=+=.【总结】部分题目不方便直接求解,在这个过程中一定要注意观察,应用一些特别的等量关系进行求解解决问题.【作业10】已知14(01)a a a +=<<的值.【答案】【解析】212422a a =+-=-=, ∵01a <<0<=【总结】本题考查完全公式的变形和无理数、二次根式的综合.【作业11】已知2|8|(41)0x y y -+- 【答案】1.【解析】由题意得:80410830x y y z x -=⎧⎪-=⎨⎪-=⎩,解得:21434x y z ⎧⎪=⎪⎪=⎨⎪⎪=⎪⎩132122=+-=.【总结】考查二次根式有意义的条件,两互为相反数的式子作为被开方数,则这两个式子必然都等于零,还考查了去绝对值的知识.【作业12】 化简: (1(2.【答案】(12;(2+. 【解析】(12==;(2=.【总结】本题主要考查复合二次根式的化简,注意观察,部分可转化为一个数字的平方,即=,由此可进行化简计算,注意观察根号中数字的因数,分解即可得到相关计算结果,同时根据二次根式性质进行相关变形计算.。

八年级数学实数之二次根式知识点总结

八年级数学实数之二次根式知识点总结

一、二次根式的概念及性质:① 二次根式的概念:一般地,形如 √a (a≥0)的式子叫作二次根式,其中“ √ ” 称为二次根号,a称为被开方数。

例如,√2 ,√(x^2+1) ,√(x-1) (x≥1) 等都是二次根式 。

② 二次根式的性质:当 a ≥ 0 时,√a 表示 a 的算术平方根,所以√a 是非负数 ( √a ≥ 0),即对于式子 √a 来说,不但 a ≥ 0,而且 √a ≥ 0,因此可以说 √a 具有双重非负性 。

③ 最简二次根式:1、被开方数中不含有分母 ;2、被开方数中不含有能开得尽方的因数和因式 。

④ 积的算术平方根的性质:积的算术平方根,等于积中各因式的算术平方根的积。

⑤ 商的算术平方根的性质:商的算术平方根,等于被除式的算术平方根除以除式的算术平方根。

注:对于商的算术平方根,最后结果一定要进行分母有理化。

⑥ 分母有理化:化去分母中根号的变形叫作分母有理化,分母有理化的方法是根据分数的基本性质,将分子和分母分别乘分母的有理化因式(两个含有二次根式的代数式相乘,如果它们的积不含二次根式,就说这两个代数式互为有理化因式)化去分母中的根号。

⑦ 化成最简二次根式的一般方法:1、将被开方数中能开得尽方的因数或因式进行开方;2、若被开方数含分母,先根据商的算术平方根的性质对二次根式进行变形,再根据分母有理化的方法化简二次根式;3、若分母中含二次根式,根据分母有理化的方法化简二次根式 。

判断一个二次根式是否为最简二次根式,要紧扣最简二次根式的特点:(1)被开方数中不含分母;(2)被开方数中不含能开得尽方的因数或因式;(3)若被开方数是和(或差)的形式,则先把被开方数写成积的形式,再判断,若无法写成积(或一个数)的形式,则为最简二次根式 。

⑧ 二次根式的加减:(1)先把每个二次根式都化成最简二次根式;(2)把被开方数相同的二次根式合并,注意合并时只把“系数”相加减,根号部分不动,不是同类二次根式的不能合并,即二、知识点讲解:1、二次根式的概念及有意义的条件:例题1、下列式子中,是二次根式的有 ( B )例题2、使式子 √(m-2) 有意义的最小整数 m 的值是 2 。

数学八年级下《二次根式》复习课件

数学八年级下《二次根式》复习课件
a
2
先平方,后开方
想一想:
2.从取值范围来看 2 a≥0 a

a
2
≥0 时, 当a ____
a
2

a
2
a取任何实数
例1、x 取何值时,下列各式在实数范围内 有意义?
x1 1 ; x2
解:(1)由
x 1 0
x 2 0,
得x≥-1且x≠2.
∴当x≥-1且x≠2时,式子 意义.
2 3 11 (2)
解:原式
2

11 2 3 .
2

2
11 12 1.
11 2 3 11 2 3
2
小结一下
求二次根式的值:
先根据题意,列出二次根式, 然后归结为求代数式的值的问题。
?
练习:
1.计算: 1 3 2 (1) 9 45 3 2 ;
1 3
知识巩固
最简二次根式
①被开方数的因数是整数,因式是整式。 ②被开方数中不含能开得尽方的因数或因式。 ③分母中不含有二次根式。
30
2.5x
50
2 x( x y ) 2
x2 y2
首页
上页
下页
知识巩固
同类二次根式
几个二次根式化成最简二次根式后, 如果被开方数相同,这几个二次根式就叫 做同类二次根式 ①化成最简二次根式后
1 -2 3 (2)( ) - 2 2 - 3 2 8
0
计算:
20 15 2011 (3) 3( 3 ) (1) 5
(4)
( 2 3)(2 2 1)
二次根式的化简求值
先化简,再求值。
(1)2(a 3 )(a 3 ) a(a 6) 6 其中:a 2 1

初二数学二次根式知识点解析

初二数学二次根式知识点解析

二次根式的定义性质和概念如果一个数的平方等于a,那么这个数叫做a的平方根。

a可以是具体的数,也可以是含有字母的代数式。

即:若,则x叫做a的平方根,记作x= 。

其中a叫被开方数。

其中正的平方根被称为算术平方根。

关于二次根式概念,应注意:被开方数可以是数,也可以是代数式。

被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。

二次根式的性质:1.任何一个正数的平方根有两个,它们互为相反数。

如正数a的算术平方根是,则a的另一个平方根为﹣ ;最简形势中被开方数不能有分母存在。

2.零的平方根是零,即 ;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。

4.无理数可用有理数形式表示, 如: 。

二次根式的几何意义1、(a≥0)[任何一个非负数都可以写成一个数的平方的形式;利用此性质在实数范围内因式分解];2、都是非负数;当a≥0时, ;而中a取值范围是a≥0,中取值范围是全体实数。

3、c= 表示直角三角形内,斜边等于两直角边的平方和的根号,即勾股定理推论;4、逆用可将根号外的非负因式移到括号内,如﹙a>0﹚,﹙a<0﹚﹙a≥0﹚,﹙a<0﹚5、注意: ,即具有双重非负性。

算术平方根正数a的正的平方根和零的平方根统称为算术平方根,用(a≥0)来表示。

0的算术平方根为0.开平方运算求一个非负数的平方根的运算,叫做开平方。

开平方与平方互为逆运算。

化简化简二次根式是初中阶段考试必考的内容,初中竞赛的题目中也常常会考察这一内容。

最简二次根式定义概要(❶被开方数不含分母❷被开方数中不含能开得尽的因数或因式)二次根式化简一般步骤:①把带分数或小数化成假分数;②把开方数分解成质因数或分解因式;③把根号内能开得尽方的因式或因数移到根号外;④化去根号内的分母,或化去分母中的根号;⑤约分。

有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式注意﹙①他们必须是成对出现的两个代数式;②这两个代数式都含有二次根式;③这两个代数式的积化简后不再含有二次根式④一个二次根式可以与几个二次根式互为有理化因式﹚分母有理化在分母含有根号的式子中,把分母的根号化去,叫做分母有理化。

初中数学 什么是二次根式

初中数学 什么是二次根式

初中数学什么是二次根式二次根式是指含有二次根号的代数式,也可以理解为二次方程的根。

在初中数学中,学生会接触到二次根式的概念和运算。

接下来,我将详细介绍二次根式的定义、性质、运算规则以及解题技巧。

希望这篇文章能够帮助你更好地理解和应用二次根式。

一、二次根式的定义与性质1. 定义:二次根式是形如√a的表达式,其中a是一个非负实数。

如果a是一个非负实数的平方,那么√a是一个有理数;如果a不是一个非负实数的平方,那么√a是一个无理数。

2. 性质:a. 二次根式的值是非负的,即√a ≥ 0。

b. 二次根式的平方等于被开方数,即(√a)² = a。

c. 二次根式可以进行加减乘除运算,具体的运算规则将在下一部分介绍。

二、二次根式的运算规则1. 加减法运算:a. 同类项相加减:对于同类项的二次根式,可以直接对其系数进行加减运算。

例如,√2 + √2 = 2√2。

b. 不同类项相加减:对于不同类项的二次根式,无法直接进行加减运算,需要进行化简。

例如,√2 + √3 无法进行直接运算,但可以化简为√6(根据乘法公式√a * √b = √(ab))。

2. 乘法运算:a. 二次根式的乘法遵循乘法公式:√a * √b = √(ab)。

例如,√2 * √3 = √(2 * 3) = √6。

b. 多个二次根式相乘时,可以使用乘法交换律和结合律进行化简。

例如,√2 * √3 * √5 = √(2 * 3 * 5) = √30。

3. 除法运算:a. 二次根式的除法遵循除法公式:√a / √b = √(a / b)。

例如,√6 / √2 = √(6 / 2) = √3。

b. 多个二次根式相除时,同样可以使用除法公式进行化简。

例如,√30 / √2 = √(30 / 2) = √15。

三、二次根式的化简与合并1. 化简:将一个二次根式表示为最简形式。

例如,√8可以化简为2√2。

2. 合并:将多个二次根式合并为一个二次根式。

(完整版)八年级下册数学--二次根式知识点整理

(完整版)八年级下册数学--二次根式知识点整理

二次根式1、算术平方根的定义:一般地,如果一个正数x的平方等于a,那么这个正数x叫做a的算术平方根。

2、解不等式(组):尤其注意当不等式两边乘(除以)同一个负数,不等号方向改变。

如:-2x>4,不等式两边同除以-2得x<-2。

不等式组的解集是两个不等式解集的公共部分。

如{3、分式有意义的条件:分母≠04、绝对值:|a|=a (a≥0);|a|= - a (a<0)一、二次根式的概念一般地,我们把形如 a (a≥0)的式子叫做二次根式,“”称为二次根号。

★正确理解二次根式的概念,要把握以下五点:(1)二次根式的概念是从形式上界定的,必须含有二次根号“”,“”的根指数为2,即“2”,我们一般省略根指数2,写作“”。

如25 可以写作 5 。

(2)二次根式中的被开方数既可以是一个数,也可以是一个含有字母的式子。

(3)式子 a 表示非负数a的算术平方根,因此a≥0, a ≥0。

其中a≥0是 a 有意义的前提条件。

(4)在具体问题中,如果已知二次根式 a ,就意味着给出了a≥0这一隐含条件。

(5)形如b a (a≥0)的式子也是二次根式,b与 a 是相乘的关系。

要注意当b是分数时不能写成带分数,例如832 可写成8 23,但不能写成 2232 。

练习:一、判断下列各式,哪些是二次根式?(1) 6 ;(2)-18 ;(3)x2+1 ;(4)3-8 ;(5)x2+2x+1 ;(6)3|x|;(7)1+2x (x<-12)X≥-2X<5的解集为-2≤x<5。

二、当x 取什么实数时,下列各式有意义?(1)2-5x ;(2)4x 2+4x+1二、二次根式的性质:二次根式的性质符号语言文字语言应用与拓展注意a (a ≥0)的性质a ≥0 (a ≥0)一个非负数的算术平方根是非负数。

(1)二次根式的非负性(a ≥0,a ≥0)应用较多,如:a+1 +b-3 =0,则a+1=0,b-3=0,即a= -1,b=3;又如x-a +a-x ,则x 的取值范围是x-a ≥0,a-x ≥0,解得x=a 。

八年级数学二次根式课件-二次根式

八年级数学二次根式课件-二次根式

(a≥0). =ቊ-a(aa≥(a<0),0).
(3)双重非负性: a ≥ 0(a≥0).
数学
八年级 下册
人教版
第一单元
1.(1)一个数的平方是16,则这个数是 ±. 4
(2)7的平方根是 ± 7

13的算术平方根是 13
.
2.下列各式中是二次根式的是( C )
3
A. 8
B. -1 C. 3
D. x(x<0)
数学
八年级 下册
人教版
第一单元
2.下列式子中不是代数式的为( B )
A. x+2(x≥-2) B.5a+8=7
C.2 020
D.3ba+-21(a≠13)
数学
八年级 下册
人教版
第一单元
3.若x= y-3- 6-2y+2,则|x-y|的值是( B )
A.5
B.1
C.-1 D.2
数学
八年级 下册
人教版
∴y=2 022,
∴xy

2 2
002221.
数学
八年级 下册
拓展题:已知 a-17+ 17-a=b+8. (1)求a和b的值; (2)求a2-b2的平方根. 解:(1)由ቊa1-7-17a≥≥00,,解得a=17, ∴b=-8, ∴a=17,b=-8; (2)a2-b2=172-82=225, ∵225的平方根是±15, ∴a2-b2的平方根是±15.
解:∵0<x<2,∴x-2<0,x-3<0. ∴ x2-4x+4+ x-3 =2-x+3-x=5-2x.
数学
八年级 下册
人教版
第一单元
【变式2】已知y= x-2+ 2-x+ 38,求 2xy的值.
6 2

_沪教版(上海)八年级数学 知识点梳理(最新最全)

_沪教版(上海)八年级数学 知识点梳理(最新最全)

上海市沪教版八年级数学上下册知识点梳理第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子)0(≥a a 叫做二次根式.注意被开方数只能是正数或0。

2. 二次根式的性质 ①⎩⎨⎧≤-≥==)0()0(2a a a a a a ; ②)0()(2≥=a a a ③)0,0(≥≥⋅=b a b a ab ; ④)0,0(>≥=b a ba b a 16.2 最简二次根式与同类二次根式1. 被开方数所含因数是整数,因式是整式,不含能开得尽方的因数或因式的二次根式,叫做最简二次根式.2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类三次根式分别合并.2.二次根式的乘法:等于各个因式的被开方数的积的算术平方根,即 ).0,0(≥≥=⋅b a ab b a3.二次根式的和相乘,可参照多项式的乘法进行.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,那么这两个三次根式互为有理化因式.4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式,把分母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:≥0)).0,0(≥≥=⋅b a ab b a=a ≥0,b>0)n =≥0)第十七章 一元二次方程17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是2的整式方程叫做一元二次方程2.一般形式y=ax ²+bx+c (a ≠0),称为一元二次方程的一般式,ax 叫做二次项,a 是二次项系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法3.求根公式2b x a -±=:1222b b x x a a---= , = ; △=24b ac -≥017.3 一元二次方程的判别式1.一元二次方程20(0)ax bx c a ++=≠:△>0时,方程有两个不相等的实数根△=0时,方程有两个相等的实数根△<0时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1.一般来说,如果二次三项式2ax bx c ++(0a ≠)通过因式分解得2ax bx c ++=12()()a x x x x --;1x 、2x 是一元二次方程20(0)ax bx c a ++=≠的根2.把二次三项式分解因式时;如果24b ac -≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果24b ac -<0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式 第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为x 和y ,如果在变量x 的允许取之范围内,变量y 随变量x 的变化而变化,他们之间存在确定的依赖关系,那么变量y 叫做变量x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学是自称为函数解析式()y f x =4.函数的自变量允许取之的范围,叫做这个函数的定义域;如果变量y 是自变量x 的函数,那么对于x 在定义域内去顶的一个值a ,变量y 的对应值叫做当x=a 时的函数值18.2 正比例函数1. 如果两个变量每一组对应值的比是一个不等于零的常数,那么就说这两个变量成正比例2.正比例函数:解析式形如y=kx (k 是不等于零的常数)的函数叫做正比例函数,气质常数k 叫做比例系数;正比例函数的定义域是一切实数3.对于一个函数()y f x =,如果一个图形上任意一点的坐标都满足关系式()y f x =,同时以这个函数解析式所确定的x 与y 的任意一组对应值为坐标的点都在图形上,那么这个图形叫做函数()y f x =的图像4.一般地,正比例函数y kx =(0)k k ≠是常数且的图像时经过原点O (0,0)和点(1,k )的一条直线,我们把正比例函数y kx =的图像叫做直线y kx =18.3 反比例函数1.如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例2.解析式形如(0)k y k k x=≠是常数,的函数叫做反比例函数,其中k 也叫做反比例系数 反比例函数的定义域是不等于零的一切实数18.4函数的表示法1.把两个变量之间的依赖关系用数学式子来表达------解析法2.把两个变量之间的依赖关系用图像来表示------图像法3.把两个变量之间的依赖关系用表格来表示------列表法第十九章 几何证明19.1 命题和证明1.我们现在学习的证明方式是演绎证明,简称证明2.能界定某个对象含义的句子叫做定义3.判断一件事情的句子叫做命题;其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题4.数学命题通常由题设、结论两部分组成5.命题可以写成“如果……那么……”的形式,如果后是题设,那么后是结论19.2 证明举例1.平行的判定,全等三角形的判定19.3 逆命题和逆定理1.在两个命题中,如果第一个命题的题设是第二个命题的结论,二第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题,如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题2.如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理19.4线段的垂直平分线1. 线段的垂直平分线定理:线段垂直平分线上的任意一点到这条线段两个端点的距离相等。

八年级上下册数学知识点整理

八年级上下册数学知识点整理

⎧ ④ a 把第十六章 二次根式第一节 二次根式的概念和性质16.1 二次根式1. 二次根式的概念: 式子 a (a ≥ 0) 叫做二次根式.注意被开方数只能是正数或 0。

2. 二次根式的性质① a 2 = a =⎨a(a ≥ 0) ⎩ - a(a ≤ 0);② ( a ) 2 = a(a ≥ 0)③ ab = a ⋅ b (a ≥ 0, b ≥ 0) ;a = (a ≥ 0,b > 0)bb 16.2 最简二次根式与同类二次根式1. (1)被开方数中因式的指数都为 1;(2)被开方数不含有分母。

被开方数同时符合上述两个条件的二次根式,叫作最简二次根式。

2.化成最简二次根式后,被开方数相同的二次根式,叫做同类二次根式16.3 二次根式的运算1.二次根式的加减:先把各个二次根式化成最简二次根式,再把同类二次根式分别合并.2.二次根式的乘法:两个二次根式相乘,被开方数相乘,根指数不变。

即a ⋅b = ab (a ≥ 0, b ≥ 0).3.二次根式的除法:两个二次根式相除,被开方数相除,根指数不变。

4.二次根式相除,通常先写成分式的形式,然后分子、分母都乘以分母的有理化因式, 分 母的根号化去(或分子、分母约分).把分母的根号化去,叫做分母有理化.二次根式的运算法则:a c +bc =(a+b)c (c ≥ 0)a ⋅b = ab (a ≥ 0, b ≥ 0).aa =b b (a ≥ 0,b>0)( a )n = a n ( a ≥ 0)5.混合运算:两个含有二次根式的非零代数式相乘,如果它们的积不含有有二次根式,我们 就说这两个含有二次根式的非零代数式互为有理化因式。

2a 2a 2a第十七章 一元二次方程 17.1 一元二次方程的概念1.只含有一个未知数,且未知数的最高次数是 2 的整式方程叫做一元二次方程。

2.一般形式 y=ax ²+b x +c (a ≠0),称为一元二次方程的一般式,ax 2叫做二次项,a 是二次项 系数;bx 叫做一次项,b 是一次项系数;c 叫做常数项17.2 一元二次方程的解法1.特殊的一元二次方程的解法:开平方法,分解因式法2.一般的一元二次方程的解法:配方法、求根公式法-b ± b 2 - 4ac -b + b 2 - 4ac -b - b 2 - 4ac 3.求根公式 x = : x = , x = ; 1 2△= b 2 - 4ac ≥017.3 一元二次方程的判别式1.一元二次方程 ax 2 + bx + c = 0(a ≠ 0) :△>0 时,方程有两个不相等的实数根△=0 时,方程有两个相等的实数根△<0 时,方程没有实数根2.反过来说也是成立的17.4 一元二次方程的应用1 . 一 般 来 说 , 如 果 二 次 三 项 式 ax2 + bx + c ( a ≠ 0 ) 通 过 因 式 分 解 得ax 2 + bx + c = a( x - x )( x - x ) ; x 、 x 是一元二次方程 ax 2 + bx + c = 0(a ≠ 0) 的根 1 2 1 2 2.把二次三项式分解因式时;如果 b 2 - 4ac ≥0,那么先用公式法求出方程的两个实数根,再写出分解式如果 b 2 - 4ac <0,那么方程没有实数根,那此二次三项式在实数范围内不能分解因式3. 实际问题:设,列,解,答第十八章 正比例函数和反比例函数18.1.函数的概念1.在问题研究过程中,可以取不同数值的量叫做变量;保持数值不变的量叫做常量2.在某个变化过程中有两个变量,设为 x 和 y ,如果在变量 x 的允许取之范围内,变量 y 随变量 x 的变化而变化,他们之间存在确定的依赖关系,那么变量 y 叫做变量 x 的函数,x 叫做自变量3.表达两个变量之间依赖关系的数学式子称为函数解析式 y = f ( x )4.函数的自变量允许取值的范围,叫做这个函数的定义域;如果变量 y 是自变量 x 的函数, 那么对于 x 在定义域内取定的一个值 a ,变量 y 的对应值叫做当 x=a 时的函数值。

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册 二次根式知识点归纳及题型总结

最新人教版八年级数学下册二次根式知识点归纳及题型总结二次根式知识点归纳和题型归类一、知识框图二、知识要点梳理知识点一、二次根式的主要性质:1.二次根式的定义:形如$\sqrt{a}$($a\geq 0$)的式子叫做二次根式。

2.二次根式的双重非负性:$\sqrt{a}\geq 0$,即一个非负数的算术平方根是一个非负数。

3.二次根式的同底同指数相加减:$\sqrt{a}+\sqrt{b}=\sqrt{a+b}$,$\sqrt{a}-\sqrt{b}=\sqrt{a-b}$。

4.积的算术平方根的性质:$\sqrt{ab}=\sqrt{a}\cdot\sqrt{b}$。

5.商的算术平方根的性质:$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($b\neq 0$)。

6.若$a\geq 0$,则$\sqrt{a^2}=|a|$。

知识点二、二次根式的运算1.二次根式的乘除运算1) 运算结果应满足以下两个要求:①应为最简二次根式或有理式;②分母中不含根号。

2) 注意每一步运算的算理。

3) 乘法公式的推广:$(\sqrt{a}\pm\sqrt{b})^2=a+b\pm2\sqrt{ab}$。

2.二次根式的加减运算:先化简,再运算。

3.二次根式的混合运算1) 明确运算的顺序,即先乘方、开方,再乘除,最后算加减,有括号先算括号里。

2) 整式、分式中的运算律、运算法则及乘法公式在二次根式的混合运算中也同样适用。

例题:1.下列各式中一定是二次根式的是()。

A。

$-3$;B。

$x$;C。

$x^2+1$;D。

$x-1$2.$x$取何值时,下列各式在实数范围内有意义。

1)$\sqrt{-15+x}$;(2)$\frac{1}{\sqrt{x+4}}$3)$\sqrt{x+4}+\sqrt{2x+1}$;(4)$\sqrt{x+1}-\sqrt{x}$5)$3-\sqrt{x+1}$;(6)$\frac{2x}{\sqrt{x+1}}$7)若$x(x-1)=\frac{1}{4}$,则$x$的取值范围是()。

八年级数学二次根式知识点

八年级数学二次根式知识点

八年级数学二次根式知识点在八年级数学中,二次根式是比较基础的一个知识点,也是初学者需要特别掌握的内容之一。

本文将详细介绍二次根式的定义、性质、运算方法和解题技巧,希望能够帮助大家更好地掌握这个知识点。

1. 二次根式的定义二次根式是指如下形式的算式:$\sqrt{a}$其中,a是一个非负实数,$\sqrt{a}$表示a的平方根。

例如,$\sqrt{4}$等于2,$\sqrt{9}$等于3。

2. 二次根式的性质(1)二次根式的值不超过其被开方数的值。

即,对于任意非负实数a和b,当a≥b时,有$\sqrt{a}≥\sqrt{b}$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是单调递增的。

(2)二次根式的值域为非负实数。

即,对于任意非负实数a,有$\sqrt{a}≥0$。

这是因为,平方根函数$\sqrt{x}$在x≥0的范围内是非负的。

(3)二次根式可以转化为分数形式。

即,对于任意非负实数a和正整数b,有$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$。

这是因为,分子、分母分别乘以$\sqrt{b}$,可以得到等式右边的形式。

3. 二次根式的运算方法(1)二次根式的加减法对于相同根式$\sqrt{a}$和$\sqrt{b}$,有:$\sqrt{a}±\sqrt{b}=\sqrt{a±b}$例如,$\sqrt{2}+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}$。

(2)二次根式的乘法对于非负实数a和b,有:$\sqrt{a}·\sqrt{b}=\sqrt{ab}$例如,$\sqrt{2}·\sqrt{8}=\sqrt{16}=4$。

(3)二次根式的除法对于非负实数a和b(b≠0),有:$\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$例如,$\frac{\sqrt{8}}{\sqrt{2}}=\sqrt{4}=2$。

人教版数学八年级下册:二次根式(含答案)

人教版数学八年级下册:二次根式(含答案)

二次根式》1.二次根式的概念(1) 一般地,我们把形如a(a≥0)的式子叫做二次根式.(2) 对于a(a≥0)的讨论应注意下面的问题:①二次根号“ ”的根指数是2,二次根号下的 a 叫被开方数,被开方数可以是数字,也可以是整式、分式等.②式子a只有在条件a≥0 时才叫二次根式.即a≥0 是a为二次根式的前提条件.式子-2就不是二次根式,但式子(-2)2是二次根式.③a(a≥0)实际上就是非负数 a 的算术平方根,既可表示开方运算,也可表示运算的结果.④4是二次根式,虽然4=2,但 2 不是二次根式.因此二次根式指的是某种式子的“外在形态”.二次根式有两个要素:一是含有二次根号“” ;二是被开方数可以不只是数字,但必须是非负的,否则无意义.【例1-1】当a为实数时,下列各式中哪些是二次根式?a+10,|a|,a2,a2-1,a2+1,(a-1)2.分析:因为 a 为实数,而|a|≥0,a2≥0,a2+1> 0,(a-1)2≥0,所以|a|,a2,a2+1,(a-1)2是二次根式.因为 a 是实数时,并不能保证a+10,a2- 1 是非负数,即a+10,a2-1 可能是负数.如当a<-10时,a+10<0;又如当0<a<1时,a2-1<0,因此,a+10,a2-1 不是二次根式.解:|a|,a2,a2+1,(a-1)2是二次根式.【例1-2】x 是怎样的实数时,式子x-3在实数范围内有意义?分析:问题实质上是问当x是怎样的实数时,x-3 是非负数,式子x-3有意义.解:由二次根式的定义可知被开方式x-3≥0,即x≥3,就是说当x≥3 时,式子x-3在实数范围内有意义.2.二次根式的性质(1) a(a≥0)是一个非.负.数.a (a≥0)既是二次根式,又是非负数的算术平方根,所以它一定是非负数,即a ≥0(a≥0),我们把这个性质叫做二次根式的非负性.【例2-1】若a+3+(b-2)2=0,则a b的值是__________ .解析:由题意可知a+3=0,(b-2)2=0,所以a+3=0,b-2=0,则a=-3,b=2.所以a b=(-3)2=9.答案:9(2) ( a)2=a(a≥0)由于a(a≥0)是一个非负数,表示非负数 a 的算术平方根,因此通过算术平方根的定义,将非负数 a 的算术平方根平方,就等于它本身,即( a)2=a(a≥0).例② ( x -3)2(x ≥3)= ________ .解析: ①直接利用公式 ( a)2=a(a ≥ 0),可得 ( 32)2=23; ②因为 x ≥ 3,所以 x -3≥0, 所以由公式 ( a)2=a(a ≥0),可得 ( x -3)2= x -3(x ≥3).2 答案: ①32 ② x - 33a(a ≥ 0), 由算术平方根的定义,可得 a 2= |a|= -a(a<0). a 2=a(a ≥0)表示非负数 a 的平方的算术平方根等于 a. 【例 2-3】 计算:(1) (- 1.5)2;(2) (a -3)2(a < 3);(3) (2x3)2( x 32)(1) ( a)2=a 的前提条件是 a ≥0;而 a 2=|a|中的 a 为一切实数.(2) a(a ≥ 0), |a|,a 2 是三个重要的非负数,即 a(a ≥0)≥0,|a|≥0,a 2≥0,在解题时 应用较多.(3) a 2=( a)2 成立的条件是 a ≥ 0,否则不成立.(4) ( a)2= a(a ≥ 0)可以逆用,即任意的一个非负数都可以写成它的算术平方根的平方 形式.(5) 在利用 a 2进行化简时,要先得出 |a|,再根据绝对值的性质进行化简,一定要弄清 被开方数的底数是正还是负,这是容易出错的地方.3.求二次根式中被开方数字母的取值范围 由二次根式的意义可知, a 的取值范围是: a ≥0.即当 a ≥ 0 时, a 有意义,是二次根 式;当 a <0 时, a 无意义,不是二次根式.(1) 确定形如 a 的式子中的被开方数中的字母取值范围时,可根据式子 a 有意义或无 意义的条件,列出不等式,然后 解不等式即可.(2)当被开方数是分式时,同时要求分母不等于零.(3) a 2= |a|=a(a ≥ 0),- a(a<0).求解此类问题抓住一点,就是由二次根式的定义a(a ≥ 0)得被开方数必须是非负数,即把问题转化为解不等式.【例 3】 当字母取何值时,下列各式为二次根式.(1) a 2+ b 2; (2) - 3x ;分析: 必须保证被开方数是非负数,以上式子才是二次根式,当分母上有未知数时, 分母不能为 0,根据这些要求列不等式解答即可.解: (1)因为 a , b 为任意实数时,都有 a 2+b 2≥0,所以当 a ,b 为任意实数时, a 2+b 2是二次根式.(2)- 3x ≥ 0, x ≤ 0,即当 x ≤0 时, - 3x 是二次根式.1(3) ≥ 0,且 x ≠0,所以 x > 0. 2x4.二次根式非负性的应用(1)在实数范围内,我们知道式子 a(a ≥ 0)表示非负数 a 的算术平方根,它具有双重非 负性:① a ≥0;② a ≥0.运用这两个简单的非负性,再结合非负数的简单性质“若几个非负数的和等于 这几个非负数都等于 0”可以解决一些算术平方根问题. 巧记要点: 二次根式,内外一致;即二次根式根号下和根号外一致为非负数. (2)到目前为止,我们已经学过三类具有非负性的代数式:① |a|≥ 0;②a 2≥0;③ a ≥0(a ≥0).【例 4- 1】已知 x ,y 都是实数,且满足 y = 5-x + x - 5+ 3,求 x +y 的值. 分析: 式子中有两个二次根式,它们的被开方数都应该是非负数,由此可得关于 x 的 不等式组.当 x =5时, y = 5-5+ 5-5+3=3. ∴x +y =5+3= 8.两个算术平方根,当 被开方数互为相反数时,只有它们同时为零,这两个 式子才能都有意义.1【例 4- 2】已知 x ,y 为实数,且 y =2+ 8x -1+ 1- 8x ,则 x ∶ y = _______ 解析: 因为 y 为实数,所以隐含着两个算术平方根都有意义,即被开方数均为非负1 1 1解得 x =8,于是 y =2+ 0+0=2.故 x ∶y = 1∶4.(4) ≥ 0, 2-x故 x -2≥0 且 x - 2≠0,所以 x >2.0,则 解: 由题意知 5 - x ≥ 0,x ≤5, ∴ x = 5.x - 5≥ 0, x ≥5, 数.实际上,若 a 和 - a 都有意义,则 a =0.即依题意得8x -1≥0,1- 8x ≥0.(3)-3答案:1∶4,5.式子( a)2的意义和运用二次根式的一个性质是:( a)2=a(a≥0).因为2=( 2)2,35=( 53)2,所以上面的性质又可以写成:a=( a)2(a≥0).可见,利用这个式子我们可以把任何一个非负数写成一个数的平方的形式.二次根式中的 2 3表示2× 3,这与带分数221表示2+12是不一样的,因此,以后遇到32× 3应写成32 3,而不能写成121 3.【例5-1】计算:(1)(2 3)2;(2)( -2 21)2;(3)(-5×3)2.解:(1)(2 3)2=22×( 3)2=12.(2)(-2 21)2=(-2)2×( 12)2= 2.(3) (-5× 3)2=(-1)2× ( 5× 3)2=15.【例5-2】把多项式n5-6n3+9 n 在实数范围内分解因式.分析:按照因式分解的一般步骤,先对多项式n5-6n3+9n 提取公因式,得n(n4-6n2+9),再利用完全平方公式分解,得n(n2-3)2,要求在实数范围内分解,所以可以将3写成( 3)2,再运用平方差公式进行因式分解.解:n5-6n3+9n=n(n4-6n2+9)=n(n2-3)2=n(n+3)2(n-3)2.6.二次根式与相反数和绝对值的综合应用(1)二次根式具有非负性,一个数的绝对值,完全平方数也是一个非负数,因此可以把这几者结合出题.(2)绝对值、算术平方根、完全平方数为非负数,即:|a|≥0,b≥0(b≥0),c2≥0.非负数有一个重要的性质,即若干个非负数的和等于零,那么每一个非负数分别为零.即:|a|+b=0? a=0,b=0;|a|+c2=0? a=0,c=0;b+c2=0? b=0,c=0;|a|+b+c2=0? a=0,b=0,c=0.【例6-1】若|a-b+1|与a+2b+4互为相反数,则(a+b)2 011= ____ .解析:|a-b+1|与a+2b+4互为相反数,∴ |a-b+1|+a+2b+4=0.而|a -b+1|≥0 , a +2b+ 4 ≥0 ,a-b+1=0,a=-2,a+2b+4=0. b=- 1.∴(a+b)2 011=(-2-1)2 011=(-3)2 011=-32 011. 答案:-32 011【例6-2】若a2+b-2=4a-4,求ab的值.分析:通过变形将等式转化为两个非负数的和等于零的形式,即(a-2)2+b-2=0,由二次根式的性质可知b-2≥0,由完全平方数的意义可知(a-2)2≥0,而它们的和为零,则a-2=0,b-2=0,从而可求出a,b 的值.解:由a2+b-2=4a-4,得a2-4a+4+b-2=0,即(a-2)2+b-2=0.∵(a-2)2≥0,b-2≥0 且(a-2)2+b-2=0,∴ a-2=0,b-2=0,解得a=2,b=2.∴ ab=2,即ab的值为 2.7.二次根式( a)2=a( a≥0)与a2=|a|的区别、运用( a)2=a(a≥0)与a2=|a|是二次根式的两个极为重要的性质,是正确地进行二次根式化简、运算的重要依据.(1)正确理解( a)2与a2的意义学习了二次根式的定义以后,我们知道a≥0(a≥0),即a是一个非负数,a是非负数a的算术平方根,那么( a)2就是非负数 a 的算术平方根的平方,但只有当a≥0 时,a才能有意义.对于a2,则表示a2的算术平方根,由于a2中的被开方数是一个完全平方式,所以 a 无论取什么值,a2总是非负数,即a2总是有意义的.(2)( a)2与a2的区别和联系区别:①表示的意义不同.( a)2表示非负实数 a 的算术平方根的平方;a2表示实数a 的平方的算术平方根.②运算的顺序不同.( a)2是先求非负实数 a 的算术平方根,然后再进行平方运算;而a2则是先求实数 a 的平方,再求a2的算术平方根.③取值范围不同.在( a)2中,a只能取非负实数,即a≥0;而在a2中,a可以取一切实数.④写法不同.在( a)2中,幂指数 2 在根号的外面;而在a2中,幂指数 2 在根号的里面.a(a> 0),⑤结果不同.( a)2=a(a≥0),而a2=0(a=0),-a(a< 0).联系:①在运算时,都有平方和开平方的运算.②两式运算的结果都是非负数,即( a)2≥0,a2≥0.③仅当a≥0 时,有( a)2=a2. 如果先做二次根式运算,后做平方运算,只有一种可能;如果先做平方运算,再做二次根式运算,答案需分情况讨论.【例7-1】已知x< 2,则化简x2-4x+4的结果是( ).A.x-2 B.x+2 C.-x- 2 D.2-x解析:x2-4x+4=(x-2)2=(2-x)2,因为x<2,2-x>0,所以x2-4x+4=2-x.答案:D【例7-2】化简1-6x+9x2-( 2x-1)2得( ).A .-5xB .2-5x C.x D.-x解析:错解正解由 2x -1,知 2x -1≥ 0,得 x ≥1,从而有原式= (1-3x )2- (2x -=(1-3x )-(2x - 1)=2-5x , 3x - 1≥ 0,所以原式= (1- 3x )2- (2x -1) = 故选 B. (3x -1)2-(2x -1)=(3x -1)-(2x -1)=x.故 选 C. 错因剖析:思路分析: 本题错在忽视了二次根式成本题主要应用二次根式的性质: 立的隐含条件.题目中a a 0 , (1) a 2= |a|= a a 0 ,2x - 1有意义, 说明隐含了 - a a <0 .1 条件 2x -1≥ 0,即 x ≥2,可(2)( a)2=a(a ≥0) . 知 3x -1≥ 0.正确应用二次根式的性质是解决本题的关键 . 答案: C【 例 7 - 3 】 若 m 满 足 关 系 式 3x +5y -2-m + 2x +3y -m = x - 199+y · 199- x -y ,试确定 m 的值. 分析: 挖掘题目中隐含的算术平方根的两个非负性,并在解题过程中有机地配合应 用,是解决本题的关键.解: 由算术平方根的被开方数的非负性,得x - 199+ y ≥ 0, x + y ≥ 199,即 ∴x +y = 199.199-x - y ≥ 0, x + y ≤ 199.x - 199+ y · 199-x -y =0.+5y -2- m + 2x + 3y -m =0. 再由算术平方根的非负性及y =- 197. ∴m =2x +3y =2×396+3×(-197)=201.点拨: (1)运用二次根式的定义得出: x ≥a 且 x ≤a ,故有 x = a ,这是由不等关系推出相等关系的一种十分有效的方法,在前面的解题中已用到.a ≥ 0,(2)由 b ≥ 0, 推出 a = b =0,这也是求一个方程中含有多个未知数的有效方法之a +b = 0 两个非负数的和为零,① 3x + 5y -2-m =0,得 2x + 3y -m =0. 由①-②,得 x +2y = 2.x + y =199 , 解方程组 得 x +2y = 2, x = 396,。

八年级下册数学二次根式的定义和性质

八年级下册数学二次根式的定义和性质

二次根式的定义和性质讲学:●二次根式的定义:形如的式子叫二次根式,其中叫被开方数。

两个特点:二次根号,非负性(非负性包括被开方数和开方结果)判断二次根式:1.有二次根号2.被开方数可以确定非负(包括转化为非负形式)1.有意义必须满足_________2.当满足什么条件时下列式子有意义。

●二次根式的性质:1.非负性:是一个非负数.2.3.公式与区别与联系(1)表示求一个数的平方的算术根,的范围是一切实数.(2)表示一个数的算术平方根的平方,的范围是非负数.(3)和的运算结果都是非负的.4.把根号外的因式移入根号内:1判断根号外的因式的符号;2留下符号;3平方后与被开方数相乘计算:因式分解:考练:【例1】下列各式,,,,,,其中是二次根式的是?【例2】若式子有意义,则x的取值范围是.【例3】若则=【例4】若则= .【例5】化简:的结果为()A、B、0 C、D、4【例6】已知,则化简的结果是【例7】如果表示两个实数的点在数轴上的位置如图所示,那么化简的结果等于()A、B、C、D、【例8】如果,那么的取值范围是()o b aA、B、C、或D、【例9】化简二次根式的结果是( )课后作业:二次根式的定义:1.下列各式中,一定是二次根式的是()A、B、C、D、2.在中是二次根式的个数有______个3.使代数式有意义的的取值范围是()A、>3B、≥3C、>4 D 、≥3且≠44.使代数式有意义的的取值范围是5.如果代数式有意义,那么,直角坐标系中点(,)的位置在()A、第一象限B、第二象限C、第三象限D、第四象限6.若,则的值为()A、-1B、1C、2D、37.若都是实数,且,求的值8.当取什么值时,代数式取值最小,并求出这个最小值。

9.二次根式的性质:10.若,则的值为。

11. 已知 为实数,且 ,则 的值为( )A 、3B 、– 3C 、1D 、– 112. 已知直角三角形两边 的长满足 ,则第三边长为______________.13. 若 与 互为相反数,则14. 在实数范围内分解因式: = ; =15. 化简:16. 根式 的值是( )A 、-3B 、3或-3C 、3D 、917. 已知 ,那么 可化简为( )A .B .C .D .18. 若 ,则 等于( )A 、B 、C 、D 、19. 若 ,则化简 的结果是( )A 、-1B 、1C 、D 、20. 化简 得( )A 、2B 、C 、-2D 、21. 当 且 时,化简 = .22. 已知 ,化简求值:23. 实数 在数轴上的位置如图所示: 化简: . 24. 如果 成立,那么实数 的取值范围是________________25. 若 ,则 的取值范围是____________。

八年级上册数学二次根式知识点总结

八年级上册数学二次根式知识点总结

八年级上册数学二次根式知识点总结一、二次根式的概念。

1. 定义。

- 一般地,形如√(a)(a≥0)的式子叫做二次根式。

其中“√()”称为二次根号,a 叫做被开方数。

例如√(4),√(x + 1)(x≥ - 1)都是二次根式。

- 要注意被开方数a必须是非负数,这是二次根式有意义的条件。

例如√(-2)就不是二次根式,因为被开方数-2<0。

2. 最简二次根式。

- 满足以下两个条件的二次根式叫做最简二次根式:- 被开方数中不含能开得尽方的因数或因式。

例如√(8)不是最简二次根式,因为8 = 2^3,√(8)=√(2^3) = 2√(2),而√(2)是最简二次根式。

- 被开方数不含分母。

例如(1)/(√(2))不是最简形式,将其分母有理化得到(√(2))/(2),√(2)是最简二次根式。

二、二次根式的性质。

1. (√(a))^2=a(a≥0)- 例如(√(3))^2=3,(√(x + 1))^2=x + 1(x≥ - 1)。

2. √(a^2)=| a|=<=ft{begin{array}{l}a(a≥0) - a(a < 0)end{array}right.- 当a = 3时,√(3^2)=|3| = 3;当a=-3时,√((-3)^2)=| - 3|=3。

3. √(ab)=√(a)·√(b)(a≥0,b≥0)- 例如√(12)=√(4×3)=√(4)·√(3)=2√(3)。

4. √(frac{a){b}}=(√(a))/(√(b))(a≥0,b > 0)- 例如√(frac{8){2}}=(√(8))/(√(2))=(2√(2))/(√(2)) = 2。

三、二次根式的运算。

1. 二次根式的加减法。

- 先把各个二次根式化成最简二次根式,再把同类二次根式(被开方数相同的二次根式)合并。

- 例如计算√(12)+√(27)-√(48):- 先化简:√(12)=2√(3),√(27)=3√(3),√(48)=4√(3)。

八下数学16.1二次根式概念和性质

八下数学16.1二次根式概念和性质

2
2 3
32
2
2 3 6
2
2
(5) x xy x2 xy x2 xy x3 y
反之,a ( a ) 2 (a 0)
1.利用a ( a ) 2 (a 0) 把下列非负 数分别写成一个非负数的平方的形式。
(1)9
(2)5 (3)2.5
解:9= 92=32
解:5=
2
5
(4)0.25
x2 2x 1 = (x-1)2 = | x 1|
当x 3时,
原式= | 3-1 | = 3+1
试一试
1.计算下列各题:
2
(1) 15 (2)
1
2
5
2.若 (1 x)2 1 x ,则x的取值范围为 (
)A. x≤1 B. x≥1 C. 0≤x≤1 D.一切有理数
3.
a2

(√
a
2

a
二次根号
a 读作“根号 ”
形如 a (a 0)的式子叫做二次根式.
1.表示a的算术平方根 2. a可以是数,也可以是式. 3. 形式上含有二次根号 4. a≥0, a≥0 ( 双重非负性) 5.既可表示开方运算,也可表示运算的结果.
(1) 代数式 a 是二次根式吗?
答:代数式 a 只有在条件a≥0的情况下,才属于二次根式!
分母不为0 被开方数大于等于0 结合数轴,写出解集来
二次根式的定义:
形如 a (a 0) 的式子叫做二次根式。
二次根式有意义的条件:
a0
当a 0时,a表示a的算术平方根,故 a 0 当a=0时,a表示0的算术平方根,故 a =0
二次根式性质: a 0 , a 0 (双重非负性)

二次根式定义及性质

二次根式定义及性质

二次根式定义及性质教学内容:1.学习目标:理解二次根式的概念,了解被开方数是非负数的理由;理解并掌握下列结论:,,,并利用它们进行计算和化简.2.重点:;,及其运用.3.难点:利用,,解决具体问题.知识点一:二次根式的概念一般地,我们把形如(a≥0)•的式子叫做二次根式,“”称为二次根号.知识点二:二次根式的性质1.;2.;3.;4. 积的算术平方根的性质:;5. 商的算术平方根的性质:.知识点三:代数式形如5,a,a+b,ab,,x3,这些式子,用基本的运算符号(基本运算包括加、减、乘、除、乘方、开方)把数和表示数的字母连接起来的式子,我们称这样的式子为代数式(algebraic expression).经典例题透析类型一:二次根式的概念例1、下列式子,哪些是二次根式,哪些不是二次根式:、、、(x>0)、、、、、(x≥0,y≥0).思路点拨:二次根式应满足两个条件:第一,有二次根号“”;第二,被开方数是正数或0.解:二次根式有:、(x>0)、、、(x≥0,y≥0);不是二次根式的有:、、、.例2、当x是多少时,在实数范围内有意义?思路点拨:由二次根式的定义可知,被开方数一定要大于或等于0,所以3x-1≥0,•才能有意义.解:由3x-1≥0,得:x≥当x≥时,在实数范围内有意义.总结升华:要使二次根式在实数范围内有意义,必须满足被开方数是非负数.举一反三【变式1】x 是怎样的实数时,下列各式实数范围内有意义?(1);(2);解:(1)由≥0,解得:x取任意实数∴当x取任意实数时,二次根式在实数范围内都有意义.(2)由x-1≥0,且x-1≠0,解得:x>1∴当x>1时,二次根式在实数范围内都有意义.【变式2】当x是多少时,+在实数范围内有意义?思路点拨:要使+在实数范围内有意义,必须同时满足中的2x+3≥0和中的x+1≠0.解:依题意,得由①得:x≥-由②得:x≠-1当x≥-且x≠-1时,+在实数范围内有意义.类型二:二次根式的性质例1、计算:(1)(2)(3)(4)(5)(b≥0)(6)思路点拨:我们可以直接利用(a≥0)的结论解题.解:(1) (2)=;(3);(4)=;(5);(6).举一反三【变式1】计算:(1);(2);(3);(4).思路点拨:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)2≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4题都可以运用的重要结论解题.解:(1)因为x≥0,所以x+1>0;(2)∵a2≥0,∴;(3)∵a2+2a+1=(a+1)2又∵(a+1)2≥0,∴a2+2a+1≥0,∴=a2+2a+1;(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴=4x2-12x+9.例2、化简:(1);(2);(3);(4).思路点拨:因为(1)9=32,(2)(-4)2=42,(3)25=52,(4)(-3)2=32,所以都可运用去化简.解:(1)==3;(2)==4;(3)==5;(4)==3.例3、填空:当a≥0时,=____;当a<0时,=______,•并根据这一性质回答下列问题.(1)若=a,则a可以是什么数?(2)若=-a,则a可以是什么数?(3)>a,则a可以是什么数?思路点拨:∵=a(a≥0),∴要填第一个空格可以根据这个结论,第二空格就不行,应变形,使“( )2”中的数是正数,因为,当a≤0时,=,那么-a≥0.(1)根据结论求条件;(2)根据第二个填空的分析,逆向思想;(3)根据(1)、(2)可知,而要大于a,只有什么时候才能保证呢?解:(1)因为,所以a≥0;(2)因为,所以a≤0;(3)因为当a≥0时,要使,即使a>a所以a不存在;当a<0时,,要使,即使-a>a,即a<0;综上,a<0.类型三:二次根式性质的应用例1、当x=-4时,求二次根式的值.思路点拨:二次根式也是一种代数式,求二次根式的值和求其他代数式的值方法相同.解:将x=-4代入二次根式,得=.例2、(1)已知y=++5,求的值.(2)若+=0,求的值.解:(1)由可得,,(2)例3、在实数范围内分解因式:(1)x2-5;(2)x3-2x;解:(1)原式.(2)原式.学习成果测评基础达标一、选择题1.下列式子中,不是二次根式的是( )A.B.C.D.2.已知一个正方形的面积是5,那么它的边长是( )A.5 B.C.D.以上皆不对3.(福建省福州市)若代数式在实数范围内有意义,则x的取值范围为( )A.x>0 B.x≥0 C.x ≠0D.x≥0且x ≠ 14.的值是( )A.0 B.C.4D.以上都不对5.a≥0时,、、,比较它们的结果,下面四个选项中正确的是( ) A.B.C.D.6.(辽宁省大连市) 如图,数轴上点N表示的数可能是()A.B.C.D.二、填空题1.若,则x = ____________.2.若有意义,则的取值范围是____________.3.-=________.4.=____________.5.=____________.6.若,则____________.7.若,则____________;若,则____________.8.化简:=__________.9. 计算:(1)=_______;(2)=________;(3) =________。

人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1

人教初中数学八年级下册 16.1《二次根式》二次根式的概念和性质课件1

通常把形如 m a(a 0)的式子也叫做二
次根式,如 3 2, 2a b2 1 等. 24
例题1 化简二次根式:
1 72; 2 12a3; 3 18x2 x 0.
注意判断根号 内字母的取值 范围,
25
例题2 化简二次根式:
1 a;
3
2 5 ;
2x
3 b2 b 0;
aa 0.
29
9a
4 a 1.
a
注意判断根号内 字母的取值范围,
26
写出下列等式成立的条件:
1 (x 2)(x 6) x 2 x 6
2 y 2 y 2
6 y 6 y
27
小结
1.掌握化简二次根式的两个基本步骤: ⑴ 将二次根式中的分母化去; ⑵ 把二次根式中所含的完全平方因式移
不要忽略 4
说一说:
下列各式是二次根式吗?
(1) 32, (2) 6, (3) 12, (4) - m (m≤0), (5) xy (x,y 异号), (6) a2 1 , (7) 3 5
在实数范围内,负数没有平方根
5
a2 1
3 -2
2a 1
a
a 12
你能用魔法师变出的这些代数式 作为被开方数构造二次根式吗?
6
例 1 x是怎样的实数时,式子 x 3
在实数范围内有意义?
试一试(2) x是怎样的实数时,下列各式 在实数范围内有意义?
(1) 2x ; (2) 2x 5 ; (3) 3 x
7
1、 x取何值时,下列二次根式有意义?
(1) x 1 x 1 (2) 3x x 0
(3) 4x2x为全体实数(4) 1 x

二次根式的有关概念及性质

二次根式的有关概念及性质

二次根式的有关概念及性质二次根式的概念及性质一、二次根式的概念:1.二次根式:形如$\sqrt{a}$($a\geq 0$)的式子。

2.最简二次根式:满足以下两个条件的二次根式称为最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。

例如,$\sqrt{4}$含有可开得尽方的因数4,不是最简二次根式;而$\sqrt{5}$、$\sqrt{x}$都是最简二次根式。

3.同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就是同类二次根式。

例如,$\sqrt{2}$、$2\sqrt{2}$、$\sqrt{18}$就是同类二次根式。

4.有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,则称这两个代数式互为有理化因式。

例如,$(\sqrt{2}+1)(\sqrt{2}-1)=2-1=1$是有理化因式。

二、二次根式的性质:1.非负数的算术平方根再平方仍得这个数,即:$(\sqrt{a})^2=a$($a\geq 0$)。

2.非负数的算术平方根是非负数,即$\sqrt{a}\geq0$($a\geq 0$)。

3.某数的平方的算术平方根等于该数的绝对值,即$\sqrt{a^2}=|a|$。

4.非负数的积的算术平方根等于各因式的算术平方根的积,即$\sqrt{ab}=\sqrt{a}\sqrt{b}$($a\geq 0,b\geq 0$)。

5.非负数的商的算术平方根等于被除式的算术平方根除以除式的算术平方根,即$\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$($a\geq 0,b>0$)。

三、例题:例1.求$x$的取值范围,使得以下各式有意义:1) $\frac{1}{\sqrt{6-x}}$;(2) $\sqrt{x^2+3}$;(3)$\frac{\sqrt{x+3}}{\sqrt{3-x}}$;(4) $\sqrt{2x-1}+\sqrt{x-1}$;(5) $\sqrt{4-x^2}$;(6) $\sqrt{2x-3}+\sqrt{5-x}$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次根式的概念及性质
用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为3的正方形的边长为__________,面积为S 的正方形的边长为___________。

(2)一个长方形的围栏,长是宽的2倍,面积为130平方米,则它的宽为___________。

(3)一个物体从高处自由落下,落到地面所用的时间t (单位:s )与开始落下时离地面的高度h (单位:m )满足关系:h=52
t 。

如果用含有h 的式子表示t ,那么t 为____________。

【知识梳理1】二次根式的概念
形如_____(a≥0)的式子叫做二次根式, 叫做 。

注:(1)二次根式的定义是从形式上界定的,即必须含有二次根号“
”,如:2、
3
2
等都是二次根式。

尽管9的结果为3,但由于9满足二次根式的特征,所以9是二次根式;
(2)二次根式的被开方数可以是一个数字,也可以是一个代数式,但必须满足被开方数大于等于0,如
21x ﹣-,由于被开方数小于0,所以它不是二次根式;
(3)根指数是2,这里的2可以省略不写,如37不是二次根式,因为它的根指数不是2;
形如b a (a≥0)的式子也是二次根式,它表示b 与a 的乘积,当b 是带分数或小数时,要写成假分数的形式,如352不能写成1
152
的形式。

【例题精讲】二次根式的定义
例1. 在式子()12,02,1,42
2
2
3+-<--+x x x x a y x ,,4,x 中,是二次根式的有( )
A 、2个
B 、3个
C 、4个
D 、5个 【试一试】
1. 下列各式中,一定是二次根式的是( ) A 、a B 、10- C 、1a + D 、12+a
2. 在、、、、中是二次根式的个数有______个。

【知识梳理2】二次根式有意义的条件 要使二次根式a 有意义,则 ≥0。

根据具体的情况可分类讨论如下:
a 2a
b 1x +2
1x +3
(1)单个二次根式如
A 有意义的条件:A≥0;
(2)多个二次根式相加如
A B N ++…+有意义的条件:
000A B N ⎧⎪⎪
⎨⎪⎪⎩≥,≥,…≥;
(3)二次根式作为分式的分母如
B
A
有意义的条件:A >0; (4)二次根式与分式的和如
1
A B +
有意义的条件:0.
A B ⎧⎨⎩≥0,≠ 重点剖析:当二次根式的被开方数是分式时,除了要保证被开方数是非负数外,还要同时保证分母不能为零。

【例题精讲】二次根式有意义的条件 例1. 当x 取什么实数时,下列各式有意义?
(1)x -; (2)()2
12-x ; (3)x x -⋅-21;
(4)()()x x --21; (5)
5124
--x x ; (6)311
x
--.
【试一试】
1. 若32-a 是二次根式,则字母a 应满足的条件是( ) A 、23
≠a B 、 23≤a C 、 23>a D 、 2
3≥a 2. 当a 满足__________时, a
2
-有意义。

3. 当
2
1-a 有意义时,a 的取值范围是_________________。

4. 若x x -+有意义,则x 的取值范围是_______________。

5. 使式子x -4有意义且取得最小值的x 的取值是( )
A 、0
B 、4
C 、2
D 、不存在
【知识梳理3】二次根式的性质
性质1:式子a (a≥0)具有双重非负性:它既表示二次根式,又表示非负数a 的算术平方根。

具体描述为(1)a 是非负数,a 的最小值是0;(2)a 的被开方数a 是非负数。

性质2:(a )2=a (______),即一个非负数的算术平方根的平方等于它本身。

注:不能忽略被开方数为非负数这个限制条件,从而出现类似()()2
5﹣
=﹣5式的错误。

性质3:2a =a =____0)__0)((__a a ⎧⎨
⎩≥<,

即当一个数为非负数时,它的平方的算术平方根等于 ;当一个
数为负数时,它的平方的算术平方根等于 。

注:a 的取值范围是任意实数,不一定总是非负数,须避免出现类似(
)2
7﹣=﹣7式的错误。

【例题精讲1】二次根式的性质
例1. 已知443422-=++++-c c b a ,求c
b
a
)(的值。

例2. 已知实数a 在数轴上的位置如图所示,化简2
1a a -
+。

【试一试】
1. 若0)1(32
=++-n m ,则m n +的值为 。

2. 已知y x ,为实数,且()02312
=-+-y x ,则y x -的值为( )
A 、3
B 、– 3
C 、1
D 、– 1
3. 已知直角三角形两边x 、y 的长满足|x 2-4|+652+-y y =0,则第三边长为__________。

4. 若
1
a b -+与
24a b ++互为相反数,则()
2005
_____________
a b -=。

5. 实数a 、b 在数轴上的位置如下图所示,且a b >,化简2
a -a
b +。

【例题精讲2】二次根式的化简
例1. 当x=-2时,二次根式x 2
12-的值为_______。

例2. 填空:当a≥0时,=_____;当a <0时,=_______, 并根据这一性质回答下列问题。

若=a ,则a 可以是什么数? 若=-a ,则a 可以是什么数? >a ,则a 可以是什么数? 当m <3时,()
2
3m -= 。

【试一试】
1. 计算:(1)21142⎛⎫ ⎪⎝⎭
= ;22
112233⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭+﹣
= ;()223⎡⎤⎢⎥⎣⎦﹣﹣= 。

2. a≥0时,、、-,比较它们的结果,下面四个选项中正确的是( )
A 、=≥-
B 、>>-
C 、<<-
D 、->=
3. 当时,代数式的值是 。

【例题精讲3】利用二次根式的非负性求值
例1. 已知3260x y x y +-+-+=,求x 、y 的值。

例2. 已知226y x x =-+-+,求x
y
的值。

2
a 2
a 2a 2
a 2
a 2a 2
()a -2
a 2a 2()a -2a 2a 2
()a -2
a 2a 2()a -2a 2a 2
a 2
()a -2-=x 1352
--x x
1、化简:()
3313--
2、已知2x <,则化简244x x -+的结果是( )
A 、2x -
B 、2x +
C 、2x --
D 、2x -
3、根式2(3)-的值是( )
A 、-3
B 、3或-3
C 、3
D 、9
4、已知a<0,那么│-2a│可化简为( )
A 、-a
B 、a
C 、-3a
D 、3a 5、若a -3<0,则化简
a
a a -++-4962的结果是( )
A 、 -1
B 、 1
C 、2a -7
D 、 7-2a 6、化简2
1816x x x ---+的结果是2x -5,则x 的取值范围是(

A 、x 为任意实数
B 、1≤x ≤4
C 、 x ≥1
D 、x ≤1 7、若代数式2
2
(2)(4)a a -+-的值是常数2,则a 的取值范围是( )
A 、4a ≥
B 、2a ≤
C 、24a ≤≤
D 、2a =或4a =
8、如果11a 2a a 2=+-+,那么a 的取值范围是( )
A 、 a=0
B 、a=1
C 、 a=0或a=1
D 、 a≤1
一、选择题。

1、实数a 、b 在数轴上的位置如图所示,那么化简|a ﹣b|﹣2
a 的结果是( )
A 、 2a ﹣b
B 、 b
C 、﹣b
D 、﹣2a+b
2、若x<2,化简2(x 2)-+|3﹣x|的正确结果是( )
A 、 ﹣1
B 、 1
C 、2x ﹣5
D 、5﹣2x
2a。

相关文档
最新文档