小学六年级比的应用应用题题型解析

合集下载

六年级上册第四单元《比》基础知识点汇总、参考重点题型与解题思路总结

六年级上册第四单元《比》基础知识点汇总、参考重点题型与解题思路总结

第四单元《比》基础知识点与解题思路一、比的意义1、比:两个数相除又叫做两个数的比。

2、比的结构:在两个数的比中,比号前面的数叫比的前项,比号后面的数叫比的后项。

比的前项除以后项所得的商,叫做比值。

比值通常用分数表示,也可以用小数或整数表示最简比:比的前项和后项只有公因数1,这样的比称为最简整数比。

3、比可以表示两个同类数量之间的倍数关系:比如一个长方形长和宽的比是15:10;也可以表示两个不同类数量之间的相除关系,得到一个新的量:比如路程÷时间=速度。

4、求比值:前项除以后项所得的商叫做比值,所以用比的前项除以后项即可求得比值(单位不统一时需要先统一单位再计算)。

比值是一个具体的数,通常用分数表示,也可以用小数或整数表示。

比值是否带单位:同类数量的比仅表示数量之间的倍数关系,其比值不带单位;不同类数量的比,其比值是一个新的数量,通常带一个复合单位(如速度)。

5、比与比值的关系:二者在写法上可能相同(都可以用分数表示),但比表示两个数量之间的相除关系;比值则是一个具体的数字。

6、比、除法与分数之间的联系:a:b=a÷b=b a(b≠0)区别:(1)意义不同:比表示两个数量之间的相除关系;除法是一种运算;分数是一个数;(2)表示方法不同:除法是一种运算,只能用算式表示;比和分数都可以用分数的形式表示,但是分数并不一定表示两个数量的比。

(3)、结果不同:除法的计算结果是一个商,这个商可以是整数、小数或分数;比只有当要求比值的时候,才需要用除法计算,比值可以用整数、小数或分数表示;而分数就是一个数,不需要计算。

7、为什么比的后项不能为0:在除法中,除数不能为0;在分数中,分母不能为0;而比的后项就相当于除法中的除数、分数中的分母,所以比的后项也不能为0。

8、求比中的未知项:在除法中,被除数÷除数=商,这3个数量只要知道其中任意2个量,就能求出另一个量,除数=被除数÷商;被除数=商×除数。

小学六年级上册 数学能力强化训练《第6讲 比例应用题一+答案》秋季

小学六年级上册 数学能力强化训练《第6讲  比例应用题一+答案》秋季

小学六年级上册 数学《能力强化训练+答案》秋季第6讲 比例应用题一例题练习题例1 一批化肥500吨,把其中的15留作库存,其余的按3:5分配给甲、乙两个生产队,甲、乙两个生产队各分到多少吨化肥?【答案】甲:150吨;乙:250吨【解析】一共分配150014005⎛⎫⨯-= ⎪⎝⎭(吨),其中甲分到340015035⨯=+(吨),乙分到400-150=250(吨).练1 甲、乙两辆汽车从相距720千米的A 、B 两地同时开出,相向而行,4小时后相遇.已知甲、乙两车的速度比是4:5,那么这两车的速度各是多少?【答案】甲:80千米/时;乙:100千米/时【解析】两车的速度和为720÷4=180(千米/时),根据速度比,甲车的速度为41808045⨯=+(千米/时),乙车的速度为180-80=100(千米/时).例2 红旗小学共有师生1081人.其中老师与学生的人数之比为2:45,男生与女生的人数之比为5:4.请问:红旗小学的老师、男生和女生各有多少人?【答案】老师:46人;男生:575人;女生:460人【解析】老师有2108146245⨯=+(人),那么学生一共有1081-46=1035(人);所以男生有5103557554⨯=+(人),女生有1035-575=460(人). 练2 512名士兵分成龙、虎两个营,将龙营分成甲、乙两个连,再将乙连分成A 、B 两个排.如果每次都按5:3的人数比来分,那么A 排有多少名士兵?【答案】75名【解析】由题意可知:龙营有551232053⨯=+(名)士兵;乙连有332012053⨯=+(名)士兵;A 排有51207553⨯=+士兵.例3育才小学五年级学生分成三批去参观博物馆.第=二批人数是第一批的45,第三批人数是第二批的23.已知第一批的人数比第二、三批的总和少55人.请问:育才小学五年级一共有多少人?【答案】385人【解析】根据题意,第一批:第二批=5:4,第二批:第三批=3:2,那么第一批:第二批:第三批=15:12:8;设第一批人数为15份,第二批人数为12份,第三批人数为8份,那么第一批的人数比第二、三批的总和少12+8-15=5(份),对应55人,每份为11人;所以五年级的总人数为11×(15+12+8)=385(人).练3萱萱家8月份共缴纳水费、电费、煤气费140元,其中煤气费是电费的916,水费与煤气费的比是1:3,萱萱家水费、电费、煤气费各是多少元?【答案】水费:15元;电费:80元;煤气费:45元【解析】由题意可知,电费:煤气费=16:9,而煤气费:水费=3:1,则电费:煤气费:水费=16:9:3,设电费为16份,煤气费为9份,水费为3份,所以水费为3140151693⨯=++(元),煤气费为9140451693⨯=++(元),电费为16140801693⨯=++(元).例4甲、乙、丙三个人合买一台电视机,甲付钱的12等于乙付钱的13,等于丙付钱数的37,已知丙比甲多付了120元,那么这台电视机多少钱?【答案】2640元【解析】根据题意,甲:乙:丙=2:3:73=6:9:7,设甲付的钱为6份,乙付的钱为9份,丙附的钱为7份,因为丙比甲多付120元,那么1份对应120元,所以这台电视机120×(6+9+7)=2640(元).练4A、B、C三架飞机模型在空中停留了一段时间.A在空中停留时间的23是B的47,B在空中停留时间的23又是C的47,C在空中的停留时间比A多13分钟.那么B在空中停留了多少时间?【答案】42分钟【解析】由题意可知,在空中停留的时间A:B:C=36:42:49,设A的停留时间为36份,B的停留时间为42份,C 的停留时间为49份,因为C 在空中的停留时间比A 多13分钟,所以B 在空中停留了13÷(49-36)×42=42(分).挑战极限1 已知甲、乙、丙三个班的总人数之比为3:4:2,其中甲班男、女生人数之比为5:4,丙班男、女生人数之比为2:1,且三个班所有男生和所有女生的人数之比为13:14.请问:乙班男、女生人数的比是多少?【答案】1:2【解析】根据甲、乙、两三个班的人数比,可设甲班人数为3份,乙班人数为4份,丙班人数为2份,共3+4+2=9(份);甲班男生有553543⨯=+(份),甲班女生有443543⨯=+(份);丙班男生有242213⨯=+(份),丙班女生有122213⨯=+(份);所有男生有()131334213143++⨯=+(份),所有女生有()141434213143++⨯=+(份);那么乙班男生有135443333--=(份),乙班女生有144283333--=(份),所以乙班男、女姓的人数比为1:2.自我巩固1.伍角人民币与贰角人民币的张数比为24:5,那么伍角和贰角的总钱数比值为________.【答案】12【解析】设伍角和贰角张数分别为24张和5张,那么伍角总钱数为5×24=120(角),贰角总钱数为2×5=10(角),伍角和贰角的总钱数之比为12:1,比值为12.2.一个直角三角形的两个锐角度数的比是2:1,较小的锐角是________度.【答案】30 【解析】190=3021︒⨯+.3.大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶油重量比为3:2,原来大瓶油重________千克.(填小数)【答案】1.7【解析】用去0.2千克后,两瓶油共重2.5千克;根据两瓶油的重量比,可以求出大瓶剩下的油重32.5=1.532⨯+(千克),原来大瓶油重1.5+0.2=1.7(千克). 4.一个直角三角形的三条边总和是60厘米,已知三条边的长度之比是3:4:5,那么这个直角三角形的面积为________平方厘米.【答案】150【解析】该直角三角形的两条直角边的长度分别为360=15345⨯++(厘米),460=20345⨯++(厘米),所以这个直角三角形的面积为15×20×12=150(平方厘米).5.甲、乙、两三个数的平均数是60,三个数的比是3:2:1,丙数等于________.【答案】30【解析】根据平均数,先求出甲、乙、两三个数的总和:60×3=180,按3:2:1分配,丙数等于1180=30321⨯++. 6.盒子里有三种颜色的球,黄球与红球的个数比为2:3,红球与白球的个数比为4:5,已知三种球共175个,那么红球有________个.【答案】60【解析】根据题意可知:黄球:红球:白球=8:12:15,所以红球有12175=6081215⨯++(个).7.某医院有医生、护士共3800人,其中医生与护士的人数之比是3:7,男护士与女护士的人数之比是1:69,那么男护士有________人.【答案】38【解析】护士的总人数为73800=266037⨯+(人),男护士有12660=38169⨯+(人).8.一个长方形的周长是24厘米,长与宽的比为2:1,这个长方形的面积是________平方厘米.【答案】32【解析】长方形周长是24厘米,那么一条长与一条宽的和为12厘米,长:212=821⨯+(厘米),宽:12-8=4(厘米),面积为8×4=32(平方厘米).9.六年级有三个班,已知一班人数是二班人数的34,三班的人数之比是5:6,一、三班共有78名同学,那么六年级共有学生________人.【答案】118【解析】一班:二班=3:4,二班:三班=5:6,所以一班:二班:三班=15:20:24,设一班人数为15份,二班人数为20份,三班人数为24份,因为一、三班共有78名同学,对应15+24=39(份),一份是2人,所以六年级共有学生2×(15+20+24)=118(人).10.阿呆的妈妈买了西瓜、桃子、苹果三种水果,其中西瓜重量的13与桃子的12相等,桃子重量的12与苹果的14相等.已知西瓜比苹果少买了1千克,那么阿呆的妈妈买了________千克桃子.【答案】2【解析】西瓜:桃子=3:2,桃子:苹果=1:2,所以西瓜:桃子:苹果=3:2:4,设西瓜的重量为3份,桃子的重量为2份,苹果的重量为4份,因为西瓜比苹果少买了1千克,对应4-3=1(份),一份是1千克,所以阿呆的妈妈买了1×2=2(千克)桃子.课堂落实1.故事书是科技书的56,科技书是文学书的12,又知道故事书和文学书共有102本,那么科技书有________本. 【答案】362.老师给班里学生准备了120颗糖果,老师自己吃掉15后,按照3:5分配给班里的男生和女生,那么女生总共可以分到________颗糖果.【答案】603.十一小学六年级共有师生320人,已知老师和学生的人数比为1:15,而且男同学和女同学的人数之比为2:3,那么六年级女同学共有________人.【答案】1804.甲数是乙数的65,丙数是乙数的56,且甲数比丙数大121,那么这三个数的和是________.【答案】10015.两车分别从甲、乙两地同时出发,相向而行,已知两地相距200千米,两车2小时后相遇,而且两车的速度比是2:3,那么当两车相遇时,快车行驶的距离为________千米.【答案】120。

六年级数学比的应用题(解析版)

六年级数学比的应用题(解析版)

六年级数学比的应用题1、红花和黄共共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?解: 70÷7×2=20(朵) 70÷7×5=50(朵)答:红花是20朵,黄花是50朵2、 一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?解:180÷9×2=40(度)180÷9×3=60(度)180÷9×4=80(度)答:这个三角形的度数分别是40度,60度,80度。

3、 某校参加电脑兴趣小组的有42人,其中男、女生人数的比是 4 ∶3,男生有多少人?解:42÷7×4=24(人)答:男生有24人。

4、一桶重200克的盐水,盐和水的质量比是1:24,要使盐和水的质量比是1:29,要加多少克水?解:盐 200× 2411+= 8(克) 盐水8÷ 2911+=240(克) 要加水240-200=40(克)答:要加水40克。

5、一班有60人,二班有80人,从一班调多少人到二班,两班人数比才能为2:3?解:(60+80)×232+=56(人) 60-56=4(人) 答:从一班调4人到二班,两班人数比才能为2:3。

6、把300本作业按4∶5∶6分给四、五、六年级的同学,四、五、六年级的同学各得多少本作业本?解:4+5+6=15300÷15=2020×4=80(本),20×5=100(本),20×6=120(本)答:四年级得80本,五年级得100本,六年级得120本。

7、一种生理盐水是把盐水和水按照1∶100配制而成,要配制这种生理盐水5050千克,需要盐水多少千克?解:1+100=1015050÷101=50(千克)答:需要盐水50千克。

8、山羊和绵羊的头数比是2∶5,山羊40头。

山羊和绵羊一共有多少头?解:40÷2=20(头)20×(5+2)=140(头)答:山羊和绵羊一共有140头。

小学六年级比例应用题小学六年级应用题的分析与建议.doc

小学六年级比例应用题小学六年级应用题的分析与建议.doc

小学六年级比例应用题小学六年级应用题的分析与建议2009 年试卷应用题。

(25 分,每题 5 分) 1. 54 ?的铁丝围成一个三角形,这个三角形三边长度的比是 2:3 : 4,三条边长各是多少厘米, 2.小明和爸爸乘车去郊游,去时每小时行 60 千米,用了 1.2 小时。

原路返回时用了 0.9 小时,返回时汽车每小时行多少千米, 3.一项工程,甲队单独做 10 天完成,乙队单独做 15 天完成。

如果两队同时合做,几天可完成这项工程的 5,6, 4.李大伯养了 42 只鸭,养鸭的只数比鸡少 60?.李大伯养了多少只鸡, 5.做一个无盖的圆柱形铁皮水桶,底面直径是 2 分米,桶深 5 分米,做这个水桶至少需要多少平方分米的铁皮,这个水桶能装多少升水,(铁皮厚度忽略不计) 第 1 题是六年级上册第三单元分数除法第三章节比的应用知识点的抽查,是按比例分配的题目;第 2 题是六年级下册第三单元比例的应用知识点的考查,也是一道归总比例应用题,。

紧1扣条件原路返回确定是一道反比例应用题;第 3 题是一道旧教材中有关工程问题的应用题。

该类题目在新教材中从未出现,但在考题中时而有,作为毕业班教师的我们在复习过程中要重视,以例题的形式出现,利用两三课时时间对该类题目进行系统的讲解与训练; 第 4 题是六年级上册第五单元百分数应用题,是对教材中例 3 学校图书室原有图书 1400 册,今年图书增加了 12,,。

现在图书室有多少册图书的外延。

虽然该类题目在教材中没有例题,但我们要充分挖掘资源,积累经验,对比训练,注重知识的整合,引导学生与分数应用题相联系,灵活解答;第 5,题是六年级下册第二单元圆柱与圆锥这一章的相关题目,是本单元知识点的重点题目之一。

22010 年试卷六应用题 1.工厂有一批煤,原计划每天烧 6 吨,可以烧 70 天。

由于改进了技术,现在每天只烧 5.6 吨,这批煤可以烧多少天, 2.一列客车和一列货车,同时从甲乙两地相对开出,经过 6 小时相遇。

小学六年级奥数系列讲座:比的应用(含答案解析)

小学六年级奥数系列讲座:比的应用(含答案解析)

比的应用(一)一、知识要点我们已经学过比的知识,都知道比和分数、除法其实是一回事,所有比与分数能互相转化。

运用这种方法解决一些实际问题可以化难为易,化繁为简.二、精讲精练【例题1】甲数是乙数的2/3,乙数是丙数的4/5,甲、乙、丙三数的比是( ):():()。

【思路导航】甲、乙两数的比2:3乙、丙两数的比4:5甲、乙、丙三数的比8:12:15答:甲、乙、丙三数的比是8:12:15。

练习1:1.甲数是乙数的4/5,乙数是丙数的5/8,甲、乙、丙三数的比是( ):():()。

2.甲数是乙数的4/5,甲数是丙数的4/9,甲、乙、丙三数的比是():():()。

3.甲数是丙数的3/7,乙数是丙数的2又1/2,甲、乙、丙三数的比是():():()。

【例题2】光明小学将五年级的140名学生,分成三个小组进行植树活动,已知第一小组和第二小组人数的比是2:3,第二小组和第三小组人数的比是4:5.这三个小组各有多少人?【思路导航】先求出三个小组人数的连比,再按求出的连比进行分配。

①一、二两组人数的比2:3 二、三两组人数的比4:5一、二、三组人数的比8:12:15②总份数:8+12+15=35③第一组:140×8/35=32(人)④第二组:140×12/35=48(人)⑤第三组:140×15/35=60(人)答:第一小组有32人,第二小组有48人,第三小组有60人。

练习2:1.某农场把61600公亩耕地划归为粮田与棉田,它们之间的比是7:2,棉田与其他作物面积的比6:1.每种作物各是多少公亩?2.黄山小学六年级的同学分三组参加植树。

第一组与第二组的人数的比是5:4,第二组与第三组人数的比是3:2.已知第一组的人数比二、三组人数的总和少15人。

六年级参加植树的共有多少人?3.科技组与作文组人数的比是9:10,作文组与数学组人数的比是5:7。

已知数学组与科技组共有69人。

数学组比作文组多多少人?【例题3】甲、乙两校原有图书本数的比是7:5,如果甲校给乙校650本,甲、乙两校图书本数的比就是3:4。

六年级数学比应用题

六年级数学比应用题

六年级数学比应用题一、简单的比的计算应用题(1 - 5题)1. 已知甲、乙两数的比是3:5,甲数是12,求乙数。

- 解析:- 因为甲、乙两数的比是3:5,设乙数为x,则(甲)/(乙)=(3)/(5)。

- 已知甲数是12,即(12)/(x)=(3)/(5)。

- 根据比例的性质,内项之积等于外项之积,可得3x = 12×5。

- 解得x=(12×5)/(3)=20。

2. 某班男、女生人数比是4:3,男生有24人,女生有多少人?- 解析:- 设女生有x人,因为男、女生人数比是4:3,所以(24)/(x)=(4)/(3)。

- 由比例性质可得4x = 24×3。

- 解得x=(24×3)/(4)=18人。

3. 一种药水是把药粉和水按照1:100的比配成的。

要配制这种药水4040克,需要药粉多少克?- 解析:- 药粉和水的比是1:100,那么药水就是1 + 100=101份。

- 这种药水共4040克,那么一份就是4040÷101 = 40克。

- 药粉占1份,所以需要药粉40克。

4. 学校图书馆里科技书和故事书的比是3:4,科技书有180本,故事书有多少本?- 解析:- 设故事书有x本,因为科技书和故事书的比是3:4,所以(180)/(x)=(3)/(4)。

- 根据比例性质3x=180×4。

- 解得x=(180×4)/(3)=240本。

5. 甲、乙两个数的比是5:6,它们的和是66,求甲、乙两数。

- 解析:- 甲、乙两个数的比是5:6,设甲数是5x,乙数是6x。

- 它们的和是66,则5x + 6x=66。

- 即11x = 66,解得x = 6。

- 所以甲数5x = 5×6 = 30,乙数6x=6×6 = 36。

二、比在几何中的应用题(6 - 10题)6. 一个长方形的长和宽的比是5:3,长是25厘米,宽是多少厘米?- 解析:- 设宽是x厘米,因为长和宽的比是5:3,所以(25)/(x)=(5)/(3)。

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项~比例解决问题【含答案】

苏教版数学六年级下册专项-比例解决问题1.一个精密零件,长5厘米,画在图纸上长0.4米.这张图纸的比例尺是多少?2.填空并按要求作图。

(1)以AB为轴,将三角形ABC旋转一周能形成________。

(填几何体名称)(2)在适当的位置按2∶1的比画出三角形ABC放大后的图形。

(3)在适当的位置按1∶2的比画出长方形缩小后的图形。

3.在一幅比例尺是1∶4000000的地图上量得甲、乙两地的距离是16厘米。

若画在比例尺是1∶8000000的地图上,两地间的图上距离是多少厘米?4.画一画,填一填。

(1)按3∶1的比画出图形A放大后得到的图形B。

(2)按1∶2的比画出图形B缩小后得到的图形C。

我发现:放大或缩小前后的图形()变了,但()没有变,而且图形各部分长度是按一定的比变化的。

5.在一张比例尺是1∶150的建筑图纸上,量得一座大楼的长是6分米,这座大楼的实际长与宽的比是3∶1,这座大楼的实际宽是多少米?6.下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。

(单位:分米)12.根据图中提供的信息,完成下列问题。

(1)自来水厂要从水库取水,取水管道怎样铺最短,请在图中画出来。

(2)自来水厂到城区的送水管道经测算最短是2000米,请你测算:自来水厂到水库的取水管道最短需多少米?13.在一幅地图上,用5厘米长的线段表示实际距离100千米,这幅地图的比例尺是多少?如果甲市至乙市的铁路线路长150千米,那么这段铁路线路在这幅地图上的长度是多少厘米?14.江苏省云龙湖景区杏花坞广场是人们夏天避暑纳凉的佳处。

广场绿地面积与铺装面积的比是6∶5,其中铺装面积共5000平方米,绿地面积有多少平方米?15.甲乙两城相距150千米,在一幅地图上量得甲乙两城之间的距离是5厘米,同时在这幅地图上量得乙丙两城之间的距离是8厘米。

乙丙两城之间的实际距离是多少千米?20.下图中A点是游乐场所在的位置,B点是电影院所在的位置,两地实际距离相距2千米。

六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)(北师大)

六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)(北师大)

六年级数学下册典型例题系列之第二单元比例的应用部分(解析版)编者的话:《六年级数学下册典型例题系列》是基于教材知识点和常年考点考题总结与编辑而成的,该系列主要包含典型例题和专项练习两大部分。

典型例题部分是按照单元顺序进行编辑,主要分为计算和应用两大部分,其优点在于考题典型,考点丰富,变式多样。

专项练习部分是从常考题和期末真题中选取对应练习,其优点在于选题经典,题型多样,题量适中。

本专题是第二单元比例的应用部分。

本部分内容主要考察比例的应用,包括比例的一般应用题和图形的放大与缩小等内容,内容和题型较少,更多有关比例应用题的内容请参考编者《第四单元正比例和反比例的应用部分基础篇》与《第四单元正比例和反比例的应用部分提高篇》,一共划分为四个考点,建议作为本章重点进行讲解,欢迎使用。

【考点一】根据对应边的比,列方程解决问题。

【方法点拨】该类题型主要考察图形的放大与缩小,要以对应边的比为等量建立方程求解。

【典型例题】将下图左边的三角形按比例缩小后得到右边的三角形,求未知数x。

解析:解:3.2∶1.6=4.8∶x3.2x=1.6×4.8x=7.68÷3.2x=2.4【对应练习1】下图中小平行四边形按比放大后得到大平行四边形,求大平行四边形的高。

(单位:分米)解析:解:设大平行四边形的高为x分米。

3.2∶1.2=12.8∶x3.2x=1.2×12.83.2x=15.36x=15.36÷3.2x=4.8答:大平行四边形的高是4.8分米。

【对应练习2】把左边的长方形按比例放大后得到右边的图形,右边长方形的宽是多少?(单位:厘米)解析:解:设右边长方形的宽是x厘米。

20∶12=50∶x20x=12×5020x=600x=30答:边长方形的宽是30厘米。

【对应练习3】将下图的三角形一定的比缩小后得到右边的三角形,求未知数x的值。

(单位∶厘米)解析4.5∶x=6∶3.6解:6x=4.5×3.66x=16.2x=16.2÷6x=2.7答:未知数x的值是2.7厘米。

比例的应用题六年级

比例的应用题六年级

比例的应用题六年级一、按比例分配问题。

1. 学校把栽70棵树的任务,按照六年级三个班的人数分配给各班,一班有46人,二班有44人,三班有50人。

三个班各应栽树多少棵?- 解析:首先求出三个班的总人数:46 + 44+50=140(人)。

然后计算各班人数占总人数的比例,一班:(46)/(140),二班:(44)/(140),三班:(50)/(140)。

最后用树的总数乘以各班所占比例得到各班应栽树的棵数。

- 一班应栽树:70×(46)/(140) = 23(棵);- 二班应栽树:70×(44)/(140)=22(棵);- 三班应栽树:70×(50)/(140)=25(棵)。

2. 一种混凝土是由水泥、沙子和石子按2:3:5的比例混合而成的。

如果要配制20吨这种混凝土,需要水泥、沙子和石子各多少吨?- 解析:首先求出总份数:2 + 3+5 = 10份。

然后计算每份的重量:20÷10 = 2吨。

最后根据各自的份数求出水泥、沙子和石子的重量。

- 水泥:2×2 = 4吨;- 沙子:2×3 = 6吨;- 石子:2×5 = 10吨。

3. 某工厂有三个车间,第一车间、第二车间、第三车间的人数比是8:12:21,第一车间比第二车间少80人,三个车间共有多少人?- 解析:设第一车间有8x人,第二车间有12x人。

根据第一车间比第二车间少80人,可列方程12x-8x = 80,解得x = 20。

则三个车间总人数为(8 +12+21)×20=41×20 = 820人。

二、比例尺问题。

4. 在比例尺是1:6000000的地图上,量得A、B两地的距离是5厘米。

一辆汽车以每小时75千米的速度从A地开往B地,需要多少小时?- 解析:根据比例尺公式,实际距离=图上距离÷比例尺,所以A、B两地的实际距离为5÷(1)/(6000000)=5×6000000 = 30000000厘米=300千米。

六年级关于比例的应用题

六年级关于比例的应用题

六年级关于比例的应用题一、比例应用题。

1. 一辆汽车3小时行驶180千米,照这样的速度,行驶300千米需要几小时?- 解析:首先根据速度 = 路程÷时间,求出汽车的速度。

已知汽车3小时行驶180千米,那么速度为180÷3 = 60(千米/小时)。

设行驶300千米需要x小时,因为速度一定,路程和时间成正比例,所以可列出比例式180:3 = 300:x,即180x=300×3,180x = 900,解得x = 5小时。

2. 用同样的方砖铺地,铺20平方米要320块,如果铺42平方米,要用多少块方砖?- 解析:因为每块方砖的面积是一定的,所以方砖的块数和铺地的面积成正比例。

设铺42平方米要用x块方砖。

可列出比例式20:320 = 42:x,20x=320×42,20x = 13440,解得x = 672块。

3. 配制一种农药,药粉和水的比是1:500。

- 现有水6000千克,配制这种农药需要药粉多少千克?- 解析:药粉和水的比是1:500,设需要药粉x千克,可列出比例式1:500=x:6000,500x = 6000,解得x = 12千克。

- 现有药粉3.6千克,配制这种农药需要水多少千克?- 解析:设需要水y千克,根据比例1:500 = 3.6:y,y=3.6×500 = 1800千克。

4. 学校操场长120米,宽80米,画在比例尺为1:4000的图纸上,长和宽各应画多少厘米?- 解析:因为比例尺=图上距离:实际距离,所以图上距离 = 实际距离×比例尺。

操场长120米=12000厘米,宽80米=8000厘米。

长应画12000×(1)/(4000)=3厘米,宽应画8000×(1)/(4000) = 2厘米。

5. 一个机器零件长5毫米,画在图纸上是4厘米,求这幅图纸的比例尺。

- 解析:首先统一单位,4厘米= 40毫米。

比例尺=图上距离:实际距离=40:5 = 8:1。

六年级数学下册典型例题系列之第四单元:比例的应用题专项练习一(解析版)人教版

六年级数学下册典型例题系列之第四单元:比例的应用题专项练习一(解析版)人教版

2021-2022学年六年级数学下册典型例题系列之 第四单元:比例的应用题专项练习一(解析版)1.(2019·河北沧州·六年级期末)一堵墙,量得25层砖高1米50厘米,这堵墙有150层砖。

这堵墙高多少米?【解析】解:设这堵墙高x 米,1米50厘米 1.5=米1.525150x = 25 1.5150x =⨯1.515025x ⨯= 9x =答:这堵墙高9米。

2.(2021·河北保定·小升初真题)数学兴趣小组的同学测得一座塔的影长是22.5米,同时把一根1米长的标竿直立在地上,测得影长0.9米。

这座塔高多少米?(用比例解)【解析】解:设这座塔高x 米。

x ∶22.5=1∶0.90.9x =22.50.9x ÷0.9=22.5÷0.9x =25答:这座塔高25米。

3.(2021·河南·中牟县教育体育局教学研究室六年级期末)2020年我国正式进入5G 时代。

目前5G 正以更快的速度、更稳定的连接与更大的容量融入各行各业。

小明原来用4G 下载电影《流浪地球》需要8分钟,而他现在用5G 下载这部电影所用的时间与用4G 下载所用时间的比是1∶100。

那么他用5G 下载这部电影要用多少秒?(用比例解)【解析】解:设他用5G下载这部电影要用x秒。

8分钟=480秒x∶480=1∶100100x=480x=480÷100x=4.8答:他用5G下载这部电影要用4.8秒。

4.(2021·广东肇庆·小升初真题)一批啤酒用载重8吨的汽车运,需要15辆,如果改用载重10吨的汽车运,需要多少辆?(用比例解)【解析】解:设如果改用载重10吨的汽车运,需要x辆。

10x=8×1510x=120解得x=12答:需要12辆。

5.(2021·广东河源·小升初真题)用500kg海水可以晒15kg海盐,照这样计算,用10吨海水可以晒多少kg海盐?(用比例的方法解答)【解析】10吨=10000千克解:设10000千克海水可以晒x千克海盐。

小学六年级数学 比的应用题训练 PPT课件 例题+针对性练习(带答案)

小学六年级数学 比的应用题训练 PPT课件 例题+针对性练习(带答案)
【解析】因为产值=价格×产量,所以 甲产值:乙产值=(甲价格×甲产量):(乙价格×乙产量) 两厂的产值比为:(11×6):(10×5)=66:50 甲厂产值为:6960×66/(66+50)=3960(元) 乙厂产值为:6960×50(66+50)=3000(元) 答:两厂的产值分别是3960万元和3000万元。
【解析】根据路程的比和速度的比求出时间的比,从而求 出王刚和李华所用的时间,再求出各自所走的路程。 王刚和李华所用时间的比 1/4:2/10=5:4 王刚所用的时间 1÷(5-4)×5=5(小时) 甲地到丙地的路程 4×5=20(千米) 甲、乙两地的路程 20×(1+2)=60(千米)
练习5: 1.一辆汽车在甲、乙两站间行驶,往返一次共用去4小时(停车时间不算 在内)。汽车去时每小时行45千米,返回时每小时行30千米。甲、乙两地 相距多少千米?
答案:72千米
2.甲做3000个零件比乙做2400个零件多用1小时,甲、乙工作效率的比 是6:5。甲、乙每小时各做多少个?
答案:100个
3.下图是甲、乙、丙三地的路线图。已知甲地到丙地的路程与乙地到丙地 的路程的比是2:3。一辆货车以每小时40千米的速度从甲地开往丙地,一 辆客车同时以每小时50千米的速度从乙地开往丙地,客车比火车迟1小时 到达丙地。求甲、乙两地的路程?
六年级上学期数学 比的应用专题训练
【例题1】甲、乙两个学生放学回家,甲要比乙多走1/5的 路,而乙走的时间比甲少1/11,求甲、乙两人速度的比。
【解析】因为 速度=路程÷时间,所以,甲、乙速度的比 =甲路程/甲时间:乙路程/乙时间 (1)甲、乙路程的比:(1+1/5):1=6:5 (2)甲、乙时间的比:1:(1-1/11)=11:10 (3)甲、乙速度的比:6/11:5/10=12:11 答:甲、乙速度的比是12:11。

【精品】六年级(上)数学应用题及解析-类型二 比的应用人教新课标版(2014秋)

【精品】六年级(上)数学应用题及解析-类型二  比的应用人教新课标版(2014秋)

类型二比的应用【知识讲解】1.比的意义:两个数相除又叫做两个数的比2.按比例分配:把一个数量按照一定的比来进行分配,这种方法通常叫做按比例分配如:已知两个量之比为a:b,则设这两个量分别为ax,bx3.和比的应用题有关的概念(1)求每份数的方法和÷份数和=每份数相差数÷相差份数=每份数部分数÷对应份数=每份数(2)图形求比的常见公式长方体:(长+宽+高)的和=棱长和÷4 长方形:(长+宽)的和=周长÷2 (3)相遇问题速度和=路程÷相遇时间【典型例题】【例1】学校新购买了一批桌椅.一套桌椅的价钱是90元,其中椅子的价钱和桌子的价钱的比是7:11,桌子和椅子的价钱分别是多少元?【分析】首先求出总份数,用它作公分母,用比的各项分别作分子求出椅子、桌子的价钱各总钱数的几分之几,然后根据一个数乘分数的意义,用乘法解答【答案】7+11=18(份),90×,,答:桌子的价钱是55元,椅子的价钱是35元【巩固练习】一、选择1.把50克糖放入850克水中,糖与水的比是()A.1:16 B.1:17 C.1:182.把10克糖溶在100克水中,水与糖水的比是()A.1:10 B.1:11 C.9:10 D.10:113.一份稿件,小丽需12分钟打完,小华需16分钟.小丽与小华工作效率的最简比是()A.12:16 B.16:12 C.4:34.甲种笔3元钱买4枝,乙种笔3枝4元钱,甲、乙两种笔单价的比是()A.4:3 B.3:4 C.4:4 D.9:165.有语文、数学课本共20本,它们的比不可能是()A.3:2 B.5:2 C.4:1 D.3:76.把10克糖溶在190克水中,糖与糖水的比是()A.1:10 B.1:11 C.9:10 D.1:207.笔筒里红铅笔和黑铅笔一共有12支,红铅笔与黑铅笔的比不可能是()A.1:2 B.1:3 C.1:4 D.无选项8.把25克的盐放在200克的水中溶化成盐水,那么盐和盐水的重量比是()A.1:8 B.1:9 C.1:109.甲、乙两个数的和是300,甲、乙两数的比是5:7,甲数是()A.120 B.125 C.175 D.18010.一个三角形三边比是2:3:3,其中一边长是6厘米,它的周长是()厘米.A.24 B.16或24 C.18二、解答1.一种糖水,糖和水按照1:150配制的;要配制这样的糖水15100克,需要水多少克?2.一种糖水,糖和水按照1:150配制的;现有糖100克,可以配制这样的糖水多少克?3.中国农历中的“夏至”是一年中白昼最长,黑夜最短的一天.这一天,北京的白昼时间与黑时间的比是5:3.白天和黑夜分别是多少小时?4.小明和小华共收集了96枚邮票,他们各自邮票的比是13:11.小明和小华各有多少邮票?5.张阿姨在端午节一共包了蛋黄粽与肉粽75个,蛋黄粽与肉粽的比是2:3.张阿姨包了多少个肉粽?6.一个手机信号发射接收塔埋在地下与露出地面部分的比是3:18,埋在地下的部分是4米,那么这个塔的全长是多少米?7.东风小学师生为残疾人捐款3450元,其中老师捐款1050元,低、中、高年级捐款的钱数比是3:4:5,高年级捐款多少元?8.一个三角形,三个内角的度数比是1:2:3,这是一个什么三角形?9.蕉坝中心完小六年级三个班共植树120棵,已知六(1)、(2)、(3)班植树的棵树比为1:3:2,三个班各植树多少棵?10.某繁华街道上,停着小轿车、小客车、公共汽车共200辆,这三种车的辆数比是2:3:5,每种车各有多少辆?11.建筑工地要搅拌混凝土15吨,水泥、石子和沙的比是3:3:4,需要准备多少吨水泥?12.在学校的数学竞赛活动中,一共有126人获奖.其中获得一、二、三等奖的人数比是1:2:3.获得一、二等奖的各有多少人?13.王村三个养猪专业户共养猪840头,养猪头数之比是9:10:11求各户养猪的头数14. 某小学在“献爱心--为汶川地震区捐款”活动中,六年级五个班共捐款8000元,其中一班捐款1500元,二班比一班多捐款200元,三班捐款1600元,四班与五班捐款数之比是3:5.四班和五班各捐款多少元?15.一个长方形游泳池的周长是300米,长和宽的比是2:1,这个游泳池的面积是多少平方米?16.一个直角三角形周长是24厘米,三条边长的比是3:4:5,这个三角形的面积是多少平方厘米?17.成年人的足长与身高的比大约是1:7.某小区发生了一起盗窃事件,在犯罪现场留下了一个长24厘米的足印,经过周密侦查,锁定了四名犯罪嫌疑人,下表是这四名犯罪嫌疑人的身高记录犯罪嫌疑人王某张某刘某李某身高(厘米)180 175 169 160请你根据以上信息计算说明,这四人中,谁的嫌疑最大?18.学校美术组的人数是书法组的54,美术组的人数与数学组人数的比是3:5,书法组有30人,数学组有多少人?19.盒子里有三种颜色的球,黄球个数与红球个数的比是2:3,红球个数与白球个数的比是4:5,已知三种颜色的球共175个,红球有多少个?20. 把一条路按3:5:9分给甲、乙、丙三个修路队去修.已知甲队比乙队少修16km ,这条路全长多少千米?21. 小红有邮票60张,小明有邮票52张,小明给小红多少张邮票后,小红与小明的邮票数之比是9:5?22.实验小学的同学们为灾区捐款,六(1)班共捐款2450元,已知女生和男生捐款钱数的比是2:3男生比女生多捐款多少元?参考答案一、1.【解析】:50克糖完全溶解在850克水里,求糖与水的比,从而求解50: 850=(50÷50):(850÷50)=1:17【答案】:B2.【解析】:10克糖完全溶解在100克水里,糖水为(10+100)克,进而根据题意,求出糖与糖水的比,进行选择即可100:(10+100),=100:110,=(100÷10):(110÷10),=10:11【答案】:D3.【解析】:先设这份稿件为“1”,求出甲乙各自的工作效率后就能求出两人工作效率的比,再将比化成最简比即可,(1÷12):(1÷16)=112:116=4:3【答案】:C4.【解析】:先依据“总价÷数量=单价”分别计算出它们的单价,进而依据比的意义,即可得解,3÷4=34(元),4÷3=43(元),34:43=(34×12):(43×12)=9:16【答案】:D5.【解析】:语文、数学课本共20本,本题的四个选项都是最简整数比,那么语文数学本数比的前项和后项相加的和应能整除20,即是20的因数,20的因数有:1、2、4、5、10、20,而B选项5+2=7,7不是20的因数;据此解答【答案】:B6.【解析】:10克糖完全溶解在190克水里,糖水为(10+190)克,进而根据题意,求出糖与糖水的比:10:(10+190)=10:200=(10÷10):(200÷10),=1:20【答案】:D7.【解析】:因为红铅笔和黑铅笔一共有12支,所以红铅笔与黑铅笔的比可能是:1:11,2:10=1:5,3:9=1:3,4:8=1:2,5:7,7:5,2:1,3:1,5:1,11:1【答案】:C8.【解析】:要求盐和盐水的重量比,只要先写出它们的比,再化简即可得答案,25:(25+200)=25:225=1:9【答案】:B10.【解析】:先求出其中的一份,再用一份的数量乘以份数即可,6÷2=3(厘米)3×(2+3+3)=3×8=24(厘米)或6÷3=22×(2+3+3)=2×8=16(厘米)答:它的周长是16或24厘米【答案】:B二、解答1.【解析】首先根据题意,可得水占糖水的重量的,然后根据分数乘法的意义,用糖水的重量乘水占糖水重量的分率,解答即可【答案】:解:15100×=15000(克)答:需要水15000克2. 【解析】把这种糖水的总质量看作单位“1”,则糖占总量的,现有糖的量已知,用对应量除以对应分率,就是能配制成的糖水的总量【答案】:解:100÷=15100(克)答:可以配制这样的糖水15100克3. 【解析】先求出白昼时间与黑夜时间的总份数,再求出白天和黑夜分别占总份数的几分之几,最后求出白天和黑夜各多少小时,列式解答即可【答案】:解:3+5=8(份),24×=15(小时),24×=9(小时).答:白天15小时,黑夜9小时4. 【解析】由“他们各自邮票的比是13:11”可求出两人邮票的总份数,进而求得每人邮票数各占总数的几分之几【答案】:解:96×=52(张)96×=44(张)答:小明有邮票52张,小华有44张邮票5. 【解析】把张阿姨包的两种粽子的总个数看作单位“1”,其中肉粽占总个数的,根据分数乘法的意义,用总个数乘肉粽个数所占的分率,就是肉粽的个数【答案】:解:75×=75×=45(个)答:张阿姨包了45个肉粽6. 【解析】由题意可知:把这个发射接收塔的总长度看作单位“1”,则埋在地下的部分占总长度的,已知一个数的几分之几是多少,求这个数,用除法计算即可【答案】:解:4÷,=4÷,=4÷,=28(米);答:这个塔的全长是28米7.【解析】从小学师生捐款中减去老师捐款1050元,即为低、中、高年级捐款的钱数,然后求得低、中、高年级的捐款数的总份数,再求得高年级捐款数所占捐款总数的几分之几,最后求得高年级捐款数,列式解答即可【答案】:解:(3450﹣1050)×,=2400×,=1000(元);答:高年级捐款1000元8.【解析】三角形的内角和为180°,进一步直接利用按比例分配求得份数最大的角,进而按照三角形的分类解答即可【答案】:解:180×=90(度),根据直角三角形的含义可知:该三角形是直角三角形;9.【解析】把三班植树的总棵数看作单位“1”,把它平均分成(1+2+3)份,即6份,其中六(1)班植的棵数占,六(2)班植的棵数占,六(3)班植的棵数占,根据分数乘法的意义,用总棵数分别乘六(1)、(2)、(3)班植的棵数所占的分率,就是六(1)、(2)、(3)班植的棵数【答案】:解:1+3+2=6120×=20(棵)120×=60(棵)120×=40(棵)答:六(1)班植树20棵,六(2)班植树60棵,六(3)班植树40棵10.【解析】首先求得小轿车、小客车、公共汽车的总份数,再求得三种汽车占总数的几分之几,最后求得各自的辆数,列式解答即可【答案】:解:小轿车:200×=40(辆); 小客车:200×=60(辆); 公共汽车:200×=100(辆). 答:小轿车有40辆,小客车有60辆,公共汽车有100辆11. 【解析】已知这种混凝土水泥、石子和沙的比是3:3:4,由此可知水泥占混凝土的,根据一个数乘分数的意义,用乘法解答【答案】:解:15×=15×=4.5(吨),答:需要准备水泥4.5吨12.【解析】首先求出总份数,用它作公分母,用比的各项分别作分子求出获一、二、三等奖的人数各占总人数的几分之几,然后根据一个数乘分数的意义,用乘法解答【答案】1+2+3=6(份),126×;;(人);答:获一等奖的有21人,二等奖的有42人,三等奖的有63人13.【答案】:252111099840=++⨯(头) 2801110910840=++⨯(头) 3081110911840=++⨯(头) 14.【解析】:根据题意先求出四班与五班捐款的总数,再按照3:5进行分配,进一步求出四班和五班捐款的钱数【答案】:四班与五班捐款的总数:8000-1500-(1500+200)-1600=8000-1500-1700-1600=3200(元),四班捐款的钱数:3200×353+ =3200×38 =1200(元)五班捐款的钱数:3200-1200=2000(元)答:四班捐款1200元,五班捐款2000元15.【解析】根据长方形的周长是300米,可以求出长和宽的和,再根据长和宽的比,即可求出长和宽,最后利用长方形的面积公式,即可解答【答案】300÷2=150(米),150×=100(米),150﹣100=50(米),100×50=5000(平方米);答:这个长方形游泳池的占地面积是5000平方米16.【解析】:要求三角形的面积,可先求出直角三角形的两条直角边分别是多少厘米,然后根据三角形的面积计算公式求出三角形的面积【答案】:2543424543324÷⎪⎭⎫ ⎝⎛++⨯⨯⎪⎭⎫ ⎝⎛++⨯=24(平方厘米) 答:这个三角形的面积是24平方厘米17.[分析]:根据“成年人的足长与身高的比大约是1:7”,可以看作成年人的身高是足长的7倍,以此推算出犯罪嫌疑人的身高该题具备探索性和趣味性,同时运用了估算的知识[答案]:24×7=168(cm ),四人中刘某的身高最接近168 cm答:刘某的嫌疑最大18.【解析】:先根据“美术组的人数是书法组的54”,把书法组的人数看作单位“1”,利用乘法求出美术组的人数,再根据“美术组与数学组人数的比是3:5”求出数学组的人数【答案】:535430⨯÷⨯=40(人)答:数学组有40人19.[分析]:先通过建立连比得出红球份数与总份数之间的关系黄球:红球=2:3=8:12,红球:白球=4:5=12:15,所以,黄球:红球:白球=8:12:15可以看作把三种球平均分成35份,红球占其中的12份最后利用按比例分配的知识计算得出结果[答案]:黄球:红球:白球=8:12:158+12+15=35 3512175⨯=60(个)或175÷35×12=60(个) 答:红球有60个20. 【解析】:由甲乙之比是3:5,和甲队比乙队少修16km ,可求出每份是多少千米,再求出总份数是多少千米,用乘法解答【答案】:16÷(5-3)=16÷2,=8(千米);8×(3+5+9)=8×17,=136(千米)答:这条路全长136千米21.【解析】:根据题意,可先把小红与小明的邮票总数先按9:5分配,从而求出小红和小明最后的邮票张数,然后再求出小明需要给小红多少张邮票【答案】:()605995260-+⨯+=12(张)或()955526052+⨯+-=12(张) 答:小明给小红12张邮票后,小红与小明的邮票数之比是9:522.【解析】:由“女生和男生捐的钱数的比是2:3”可知,男生比女生多捐了总钱数的3223+-【答案】:49051245032232450=⨯=+-⨯(元) 答:男生比女生多捐490元。

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析在小学数学的学习中,比的应用是一个重要的知识点。

尤其是在六年级,我们经常会遇到与比相关的应用题。

本文将对这些题型进行解析,希望能帮助同学们更好地理解和掌握比的应用。

一、定义和概念我们需要理解什么是比。

比是指两个量之间的关系,通常用冒号或斜线表示。

例如,A与B的比是3:2,或者A是B的1.5倍。

二、常见的题型解析1、比例分配问题比例分配问题是比的应用中最常见的一种题型。

例如,有10个苹果,分给A、B、C三个人,要求他们之间的分配比例是2:3:5。

我们需要找出每个人应该得到多少个苹果。

解决这种问题的方法是先找出各个部分占总量的比例,然后按照比例分配。

以这个例子为例,A、B、C三人分别得到的苹果数为:10×(2/(2+3+5))、10×(3/(2+3+5))、10×(5/(2+3+5))。

2、倍数问题倍数问题是比的应用中另一种常见的题型。

例如,A的年龄是B的1.5倍,B的年龄是C的2倍,求A、B、C的年龄关系。

解决这种问题的方法是通过设未知数来找出数量关系。

以这个例子为例,我们可以设A的年龄为x,那么B的年龄就是1.5x,C的年龄就是1.5x/2=0.75x。

这样就可以清楚地看出他们之间的年龄关系。

3、比率问题比率问题是比的应用中另一种常见的题型。

例如,在生产过程中,某产品的合格率是90%,求合格品与不合格品的数量比。

解决这种问题的方法是利用数量关系来计算。

以这个例子为例,假设总产量为100件,那么合格品数量为90件,不合格品数量为10件。

所以合格品与不合格品的数量比为9:1。

三、解题思路和步骤在解决比的应用问题时,我们通常需要遵循以下步骤:1、读懂题目:首先需要认真阅读题目,理解题目中给出的信息和要求。

2、确定关系:根据题目中给出的比例或倍数关系,确定各个量之间的关系。

3、设未知数:如果需要,可以设未知数来帮助解决问题。

4、建立方程:根据题目中的数量关系建立方程。

小学奥数:比例应用题(二).专项练习及答案解析[汇编]

小学奥数:比例应用题(二).专项练习及答案解析[汇编]

1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题比例与百分数作为一种数学工具在人们日常生活中处理多组数量关系非常有用,这一部分内容也是小升初考试的重要内容.通过本讲需要学生掌握的内容有:一、比和比例的性质性质1:若a: b=c:d,则(a + c):(b + d)= a:b=c:d;性质2:若a: b=c:d,则(a - c):(b - d)= a:b=c:d;性质3:若a: b=c:d,则(a +x c):(b +x d)=a:b=c:d;(x为常数)性质4:若a: b=c:d,则a×d = b×c;(即外项积等于内项积)正比例:如果a÷b=k(k为常数),则称a、b成正比;反比例:如果a×b=k(k为常数),则称a、b成反比.二、主要比例转化实例①x ay by bx a;x ya b;a bx y;②x ay bmx amy b;x may mb(其中0m);③x ay bx ax y a b;x y a bx a;x y a bx y a b;L④x ay b,y cz dx acz bd;::::x y z ac bc bd;⑤x的ca等于y的db,则x是y的adbc,y是x的bcad.三、按比例分配与和差关系⑴按比例分配例如:将x个物体按照:a b的比例分配给甲、乙两个人,那么实际上甲、乙两个人各自分配到的物体数量与x的比分别为:a a b和:b a b,所以甲分配到axa b个,乙分配到bxa b个.⑵已知两组物体的数量比和数量差,求各个类别数量的问题例如:两个类别A、B,元素的数量比为:a b(这里a b),数量差为x,那么A的知识点拨教学目标比例应用题(二)元素数量为axa b,B的元素数量为bxa b,所以解题的关键是求出a b与a或b的比值.四、比例题目常用解题方式和思路解答分数应用题关键是正确理解、运用单位“l”。

六年级【小升初】小学数学专题课程《比和比例问题》(含答案)

六年级【小升初】小学数学专题课程《比和比例问题》(含答案)

16、比和比例问题知识要点梳理一、比例尺应用题在比例尺应用题中,图上距离、实际距离和比例尺三者之间的关系式是:图上距离∶实际距离=比例尺,三个相关的量中,知道任意两个量,就可以根据关系式,求出另一个量。

在计算中,要注意各种量的单位要统一。

二、按比例分配的应用题把一个数量按照一定的比分配成几部分。

按比例分配应用题是在比的意义、比与分数的关系的基础上解决的。

关键是要根据各部分之比,确定各部分量与总量之间的关系,即各部分占总量的几分之几,然后按照“求一个数的几分之几是多少”的问题。

三、正、反比例应用题正比例应用题中的各种相关联的数量有正比例关系,关系式是:yx=k(一定);反比例应用题中的各种相关联的数量有反比例关系,关系式是:x·y=k(一定)。

四、解答正、反比例应用题的一般方法与步骤1.找出题目中两种相关联的量,并分析判断是成正比例,还是成反比例。

2.设未知数为x,并注明单位名称。

3.根据比值(一定)或积(一定)建立比例式,并解比例。

4.检验,写答语。

考点精讲分析典例精讲考点1 按比例分配的应用题【例1】希望小学要种一批树共390棵,按照三个班的人数来分配。

一班有42人,二班有45人,三班有43人,三个班各应植树多少棵?【精析】这是一道把390棵植树任务按三个班人数之比42:45:43进行分配的问题。

要分的总数是390,总份数是42+45+43=130。

其中一班占总数的42130,二班占总数的45130,三班占总数的43130,要求各班应植树的棵数,实际上是分别求390的42130,45130,43130各是多少。

【答案】解法一:按比例分配法42+45+43=130390×42130=126(棵)390×45130=135(棵)390×43130=129(棵)解法二:份数解法390÷(42+45+43)=3(棵)3×42=126(棵)3×45=135(棵)3×43=129(棵)答:一班应植树126棵,二班应植树135棵,三班应植树129棵。

分数比的应用题六年级及解析

分数比的应用题六年级及解析

六年级上册数学:找准量率对应,速解分数与比的应用题解析【应用题1】甲、乙两地相距550km,客车和货车分别从两地相向而行,5小时后相遇,货车与客车的速度之比为5:6,则客、货车的速度分别是多少?【解析】①客、货车的速度和(总量)=两地路程÷相遇时间=550÷5=110(km/时)②设货车速度为5份,客车速度为6份,那么它们的速度和为5+6=11份,则货车速度对应的分率为5/11,客车速度对应的分率为6/11。

③分量一客车速度=总量速度和×客车速度分率=110×6/11=60(㎞/时),分量二货车速度=总量速度和×货车速度分率=550×5/11=50(㎞/时)【应用题2】有甲、乙两筐苹果,甲筐苹果重40千克,乙筐苹果重30千克,要使甲、乙两筐苹果的质量比是3:2,应该从乙筐拿出多少千克苹果放入甲筐?【解析】①两筐苹果的总量为40+30=70(kg),并保持不变。

所以甲筐质量增加后为:70×3/(3+2)=42(kg)。

②甲筐增加量为:42一40=2(kg),这就是应该从乙筐拿出来放入甲筐的苹果量。

当然也可以先求乙筐减少后的质量70×2/(3+2)=28(㎏),拿给甲筐的质量为30一28=2(Kg)。

【应用题3】爸爸的年龄是爷爷的7/15,又是小芳年龄的7/2,爷爷今年75岁,小芳今年几岁?【解析】①爸爸今年多少岁?(求75的7/15是多少,用乘法计算。

)75x7/15=35(岁)②小芳今年几岁?(已知一个数的7/2是35,求这个数,用除法计算。

)35÷7/2=10(岁)【应用题4】某养禽场有鸡、鸭共12000只,鸡比鸭多2/5,这个养禽场鸡、鸭各有多少只?【解析】设鸭的只数为单位"1”,则鸡的只数对应的分率为1+2/5,这样鸭的只数=12000÷(1+1+2/5)=5000只,鸡的只数=5000×(1+2/5)=7000只,或者12000一5000=7000只。

2021-2022学年六年级数学上册典型例题系列之第四单元比的应用题基础部分(解析版)

2021-2022学年六年级数学上册典型例题系列之第四单元比的应用题基础部分(解析版)

2021-2022学年六年级数学上册典型例题系列之第四单元比的应用题基础部分(解析版)编者的话:本专题是第四单元《比》的应用题“基础部分”,该部分内容是在《比的计算题部分》基础上进行总结和编辑的,内容主要是结合分数应用题以及各类型应用题公式来求比,考题多以填空和选择题型为主,共有十三个考点,全部是考试试卷出现过的类型考题,其中不易理解的是分率与比的结合、混合溶液中求比两种类型题目,建议着重讲解,整体题型难度随考点依次提升,欢迎使用。

【考点一】较简单的求比应用题。

【方法点拨】较简单的比的应用题根据问题所求的比找到对应数值,再化简即可,主要注意按照题目的顺序来写比并化简。

【典型例题】五年级一班有男生12人,女生7人,那么:(1)男女人数之比为( ),比值为( );(2)男生人数与全班总人数之比为( );(3)女生人数与全班总人数之比为( );(4)男女生人数差与全班总人数之比是( )。

解析:(1)12:7,712;(2)12:19;(3)7:19;(4)5:19【对应练习1】渡江路小学六年级有240个学生,其中有100个女生,男生与女生的人数的最简整数比是( ),比值是( )。

解析:7:5;57【对应练习2】在150克水中放入15克盐,则水与盐的最简整数比是( ),水与盐水的最简整数比是( )。

解析:10:1;10:11【对应练习3】1克糖放49克水中,糖和糖水的比是( )。

解析:1:50【对应练习4】一个长方形的长是20m,宽是13m,这个长方形的长和周长的比是( )。

解析:10:33【对应练习5】建筑工地上有300吨水泥,150吨黄沙和200吨石子,求这个建筑工地上的水泥、黄沙和石子的比,并把它们化成最简整数比解析:6:3:4【考点二】已知一个数是另一个数的几分之几,求比。

【方法点拨】已知一个数是另一个数的几分之几,先找到一个数和另一个数的份数,然后根据份数求对应的比。

【典型例题】 钢琴班有若干男女生,其中男生人数是女生人数的74,那么: (1)男生人数:女生人数=( );(2)男生人数:全班人数=( );(3)女生人数:全班人数=( );(4)女生人数是男生人数的( );(5)男生人数相当于全班数的( )。

小学六年级比例应用题及答案

小学六年级比例应用题及答案

小学六年级比例应用题及答案【篇一:人教版六年级数学《比例》试题及答案】一、填一填1、()叫做比例。

2、在一个比例中,两个内项正好互为倒数,已知一个外项是3、北京到天津的实际距离是120千米,在比例尺是2,则另一个外项是()。

51的地图上,两地的图上距离是()厘米。

50000004、如果2a=3b,那么a:b=():()。

5、用12的因数中的任意四个数组成一个比例是()。

6、 3:()=6:10=():357、在总价、单价和数量三种量中,当()一定时,()与()成正比例当()一定时,()与()成正比例当()一定时,()与()成反比例8、配置一种淡盐水,盐占盐水的119,盐与水的比是()。

二、判断对错1、如果甲数是乙数的15(甲、乙均不为0),甲与乙的比是1:5。

()。

2、用同样的方砖铺地,铺地面积与方砖块数成反比例。

()3、一项工程,甲独做要10小时,乙独做要8小时,甲、乙工作效率的之比是()4、圆的面积与它的半径成正比例关系。

()5、求比例中的未知项,叫做解比例。

()6、一幅地图的比例尺是1:500000m。

()三、选一选,将正确答案的序号填在括号里。

1、一个加数一定,和与另一个加数()。

a、成正比例 b成反比例c不成比例2、出粉率一定,面粉质量与小麦质量成()a、成正比例 b成反比例c不成比例3、在一副平面图上,用图上距离2cm表示实际距离200m,这幅图的比例尺是()a、1:100b、 1:1000c 1:100005:4 14、按1:5将长方形缩小,就是将长方形的面积缩小到原来的()a、111b、c、 525105、用3、4、16、12四个数组成比例,正确的是()a、3:16=4:12b、3:4=12:16c、16:12=4:3四、算一算,解比例 x:10=11123: 0.4:x=1.2:2 = 432.4x五、画一画,操作题。

学校要建一个长100m,宽60m的长方形操场用1:1000的比例尺画出操场的平面图。

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析

小学六年级比的应用应用题题型解析一、比的意义:比是指两个数相除的结果,也称为两个数的比值。

比与除法、分数之间有什么关系呢?比:a:b=a÷b除法:a÷b分数:a/b比与除法和分数的不同点在于,比表示的是两个数之间的倍数关系,除法是一种运算,而分数则是一个数。

二、比的化简:最简整数比是指比的前项和后项都是整数,且前项和后项的最大公因数是1的比。

比的基本性质是,比的前项和后项同时乘或除以一个相同的数(除以0以外),比值不变。

化简比的方法可以通过求出前后项的最大公因数,然后将前后项同时除以最大公因数得到。

三、比的应用:比可以应用到各种问题中,例如:1.已知总量及两个部分量间的比的关系,求各部分量。

比如,一个三角形的三个内角的度数比是1:2:6,问最大的角是多少度?可以使用平均分法或分数计算法来解决这个问题。

2.已知一个部分量及它与另一个部分量间的比,求总量。

例如,已知甲、乙两数的比是2:7,甲是108,求甲、乙两数之和。

可以使用平均分法或分数计算法来解决这个问题。

以上是关于比的意义、化简和应用的一些介绍,希望能对大家有所帮助。

一种什锦糖是由水果糖、奶糖、软糖按5∶3∶2混合而成的。

如果先称20千克的水果糖,奶糖与软糖各需多少千克?如果先称出15千克的奶糖,水果糖与软糖各需多少千克?解答。

1) 先称20千克的水果糖,根据混合比,奶糖和软糖的重量分别为20×3÷5=12千克和20×2÷5=8千克。

2) 先称15千克的奶糖,根据混合比,水果糖和软糖的重量分别为15×5÷3=25千克和15×2÷3=10千克。

应用三:已知一个部分量以及它与另一个部分量的比,求另一个部分量。

例题:XXX的爸爸今年的岁数和XXX的岁数比是11:3,XXX今年9岁,爸爸多少岁?解答:使用平均分法,XXX9岁,正好占了3份,那么可以先算出一份是多少,然后乘以爸爸岁数占的份数即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、比的意义:两个数相除又叫两个数的比
比与除法,分数的关系?
a:b=a÷b=
b
(b≠0)
比与除法,分数的不同点:比表示两个量或数之间的倍比关系,除法是一种运算,而分数则是一个数,除法是一种运算。

二、比的化简
最简整数比:比的前项和后项都是整数,并且比的前项和后项的最大公因数是1.
比的基本性质:比的前项和后项同时乘或除以一个相同的数(0除外),比值不变。

化简比的方法
三、比的应用
应用一:已知总量及两个部分量间的比的关系,求各部分量
例题:一个三角形,三个内角的度数比是1:2:6,这个三角形中最大的角是多少度?
平均分法
解析:可以把三角形的三个角的和看成(1+2+6)份,算出每一份多少度;其中一个三个角分别占1份,2份,6份
解答:180°÷(1+2+6)=20°三个角分别20°×1=20° 20°×2=40° 20°×6=120°
分数计算法
解析:三角形的三个角的和可以看成共9份,其中三个角分别占1
92
9
6
9
解答:1+2+6=9 三个角分别 180°×1
9
=20° 180°×
2
9
=40° 180°×
6
9
=120°
练习题:1、一个三角形的内角度数的比是3∶2∶1,按角分这是个什么三角形?
2、一个长方形周长是88cm,长与宽的比是4:7。

长方形的长、宽各是多少厘米?面积是多少?
3、一种什锦糖是按2份奶糖、5份水果糖和3份软糖混合成的。

要配制这样的什锦糖40kg,需要水果糖多少千克?
4、A,B两地相距480千米.甲乙两辆大巴同时从A,B两地相对开出,经过4.5小时,两车相遇后又相距120千米.这是甲乙两辆车所经过的路程比正好是8:7.甲.乙两辆车已经各行了多少千米?
应用二:已知一个部分量及它与另一个部分量间的比,求总量
例题:甲、乙两数的比是2:7,已知甲是108,甲、乙两数的和是多少?
平均分法:甲乙两数之和看成9份,甲是108;占了2份,所以可以求出一份,然后乘以总共的9份是多少就是甲乙两数之和
解答:108÷2=54 54×9=486
分数计算法:(可以列式也可以用方程,建议用方程)
甲是108,甲又占了总数的2
9
,所以总数=甲÷甲所占份数
解答:108÷2
9
=486
练习题:一种什锦糖是由水果糖、奶糖、软糖按5∶3∶2混合而成的。

(1)如果先称20千克的水果糖,奶糖与软糖各需多少千克?
(2)如果先称出15千克的奶糖,水果糖与软糖各需多少千克?
应用三:已知一个部分量以及它与另一个部分量的比,求另一个部分量。

例题:小明的爸爸今年的岁数和小明的岁数比是11:3,小明今年9岁,爸爸多少岁?
平均分法:小明9岁,正好占了3份,那么可以先算出一份是多少,然后乘以爸爸岁数占的份数即可 解答:9÷3=3 3×11=33岁
分数计算法:爸爸的年龄相当于小明的11÷3=
113 ,所以爸爸的岁数=小明的岁数×113 解答:9×113
=33岁 练习题:男工40人,男工与女工的比是4∶5,女工有多少人?一共有多少人?
应用四:已知两个部分量的比及差,求部分量或总量
某校一年级的学生人数比六年级的学生人数多60人,一、六年级的学生人数比是7:5,一、六年级各是多少人? 平均分法
例题:一、六年级人数比7:5可知,一年级比六年级多(7-5)份,正好是60,那么就可以先算出一份的量 解答:60÷(7-5)=30人 一年级:30×7=210人;六年级30×5=150人
分数计算法:一年级7份,六年级5份,一年级比六年级多了(7-5)÷5=
25,六年级人数比一年级少了(7-2)÷7=27
所以六年级人数:60÷
25=150人 一年级人数:60÷27=210人 练习题:
1、男工与女工的比是4∶5,女比男多4人,男、女各多少人?
2、明和小华存钱数的比是3:5,如果小明再存入400元,就和小华的存钱一样多。

小明原来存了多少钱
其他题型:
重点:比与除法、分数的联系要牢记,最后转化成比的应用题 题型一:甲是乙的
25,意思即是甲÷乙=25
;或甲:乙=2:5 一桶油用去的量占剩下的73,已知这桶油共有50千克,用去了多少千克?还剩下多少千克?
一套西装320元,其中裤子的价格是上衣的
5
3,上衣和裤子的价格各是多少元?
题型二:甲比乙多
27,可以看成乙是7份,甲是(7+2)份 ;甲比乙少27
,可以看成乙是7份,甲是(7-2)份 水是由氢和氧按按一定的质量比化合而成的,已知水中氢的质量比氧少78,那么7.2 kg 水中,含氢和氧各多少千克? (温馨提示:先算出氢与氧的质量比,然后按比的应用一解题)
补充填空题:
1、 4:3的后项加上6,要想比值不变,前项要加上( )
2、 一杯盐水,盐占盐水的9
1 ,盐和水的比是( ):( ) 3、3:8=( )÷24=24÷( )=( )%
4、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是( ),比值是( ),比值表示( ),这辆汽车行驶的时间和路程的比是( ),比值是( ),比值表示( )。

5、甲数是乙数的
5
4 ,甲数与乙数的比是( )。

6、一本书,看了17
5 ,看了的与没看的比是( )。

7、如果甲、乙、丙三个人的速度的比为:甲∶乙=4∶5,乙∶丙=6∶7。

那么甲:乙:丙=( ):( ):( )。

假设从A 地到B 地,甲走了20分钟,丙要走( )分钟。

8、两个正方体的棱长比为:2:3,那么他们的棱长和比为( ):( ),表面积比为( ):( ),体积比为( ):( )
9:两个圆形的半径比为1:3,那么他们的周长比为( ):( ),面积比为( ):( )。

相关文档
最新文档