2016年广东省广州市中考数学试题

合集下载

广州市2016年中考数学试卷(Word版)

广州市2016年中考数学试卷(Word版)

秘密★启用前2016年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;同时填写考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示()A.支出20元B.收入20元C.支出80元D.收入80元2.图1所示几何体的左视图是()3.据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A.6.59×104B.659×104C. 65.9×105D. 6.59×106图2A4. 某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )A .101 B . 91 C . 31 D . 21 5. 下列计算正确的是( )A .)0(22≠=y yx y x B .)0(2212≠=÷y xy y xy C .)0,0(532≥≥=+y x xy y x D .6223)(y x xy =6. 一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。

2016年广东省中考数学试卷(初中毕业考试数学试题附详细答案)

2016年广东省中考数学试卷(初中毕业考试数学试题附详细答案)

2016年广东省初中毕业考试数学试题一、选择题(本大题10小题,每小题3分,共30分)1. 2-的相反数是( )A. 2B. 2-C. 12D. 12- 2. 如题2图所示,a 与b 的大小关系是( )A.a b <B. a b >C. =a bD. 2b a = (题2图)3. 下列所述图形中,是中心对称图形的是( )A. 直角三角形B. 平行四边形C. 正五边形D. 正三边形4. 据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将 27 700 000用科学记数法表示为( )A. 70.27710⨯B. 80.27710⨯C.72.7710⨯D.82.7710⨯5. 如题5图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( )A. 2B. 22C. 12+D. 212+ (题5图)6. 某公司拓展部有5个员工,他们每月的工资分别为3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是( )A. 4000元B. 5000元C. 7000元D. 10000元7. 在平面直角坐标系中,点P (-2,-3)所在的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限8. 如题8图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( )A. 34B. 43C. 35D. 459. 已知方程238x y -+=,则整式2x y -的值是为( )A. 5B. 10C. 12D. 1510.如题10图,在正方形ABCD 中,点P 从点A 出发,沿正方形的边顺时针方向运动一周,则△APC 的面积y 与点P 运动的路程x 形成的函数关系图像大致是( )A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11. 9的算术平方根是 . 12.分解因式:24m -= . 13.不等式组1222132x x x x -≤-⎧⎪-⎨>⎪⎩的解集是 . 14.如题14图,把一个圆锥沿母线OA 剪开,展开后得到一个扇形AOC 后,已知圆锥的高h 为12cm ,OA=13cm ,则扇形AOC 中AC 的长是 cm (计算结果保留π).15.如题14图,矩形ABCD 中,对角线AC=23,E 为BC 边上一点,BC=3BE ,将矩形ABCD 沿AE 所在的直线折叠,B 点恰好落在对角线AC 上的'B 处,则AB= .(题14图) (题15图) (题16图)16.如题16图,点P 是四边形ABCD 外接圆⊙O 上任意一点,且不与四边形顶点重合,若AD 是⊙O 的直径,AB=BC=CD ,连接PA ,PB ,PC ,若PA=a ,则点A 到PB 和PC 的距离之和AE+AF= .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:()1o 132016sin302-⎛⎫--+-- ⎪⎝⎭18.先化简,再求值:223626699a a a a a a +-⋅+++-,其中31a =-.19.如题19图,已知△ABC中,D为AB的中点.(1)请用尺规作图法作AC的中点E,并连结DE(保留作图痕迹,不要求做法);(2)在(1)的条件下,若DE=4,求BC的长.四、解答题(二)(本大题3小题,每小题7分,共21分)20.某工程队修建一条1200m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务. (1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?21.如题21图,Rt△ABC中,∠B=30°,∠ACB=90°,CD⊥AB交AB于点D,以CD为较短的直角边向△CDB的同侧作Rt△DEC,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt△FGC,∠FCG=90°,继续用同样的方法作Rt△HIC,∠HCI=90°,若AC=a,求CI的长.题21图22.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球,乒乓球,篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育项目的学生人数,随机抽取了部分学生进行调查,并将通过点差获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图 回答问题:(1)这次活动一共调查了 名学生; (2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于 度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 人.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如题23图,在直角坐标系中,直线1+=kx y ()0≠k 与双曲线()02>=x xy 相交于点P (1,m ). (1)求k 的值;(2)若点Q 与点P 关于直线x y =成轴对称,则点Q 的坐标是Q ( );(3)若过P ,Q 二点的抛物线与y 轴的交点为M (0,35),求该抛物线的函数解析式,并求出 抛物线的对称轴方程.题23图24.如题24图,⊙O 是△ABC 的外接圆,BC 是⊙O 的直径,∠ABC=30°,过点B 作⊙O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E ,过点A 作⊙O 的切线AF ,与直径BC 的延长 线交于点F.(1)求证:△ACF ∽△DAE ;(2)若43AOC =△S ,求DE 的长; (3)连接EF ,求证:EF 是⊙O 的切线.题24图25.如题25图,BD 是正方形ABCD 的对角线,BC=2,边BC 在其所在的直线上平移,将通过平移得到 的线段记为PQ ,连接PA ,QD ,并过点Q 作QO ⊥BD ,垂足为O ,连接OA,OP.(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形?(2)请判断OA 、OP 之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设OPB △S y =,BP=x (0≤x ≤2),求y 与x 之间的函数关系式,并求出y 的最大值.题25图(1) 题25图(2)2016年广东省初中毕业考试数学答案一、选择题(本大题10小题,每小题3分,共30分)1. 2-的相反数是( A )A. 2B. 2-C. 12D. 12- 2. 如题2图所示,a 与b 的大小关系是( A )A.a b <B. a b >C. =a bD. 2b a = (题2图)3. 下列所述图形中,是中心对称图形的是( B )A. 直角三角形B. 平行四边形C. 正五边形D. 正三边形7. 据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27 700 000人,将 27 700 000用科学记数法表示为( C )A. 70.27710⨯B. 80.27710⨯C.72.7710⨯D.82.7710⨯8. 如题5图,正方形ABCD 的面积为1,则以相邻两边中点连线EF 为边的正方形EFGH 的周长为( B )A. 2B. 22C. 12+D. 212+ (题5图)9. 某公司拓展部有5个员工,他们每月的工资分别为3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数是( B )A. 4000元B. 5000元C. 7000元D. 10000元7. 在平面直角坐标系中,点P (-2,-3)所在的象限是( C )A. 第一象限B. 第二象限C. 第三象限D. 第四象限9. 如题8图,在平面直角坐标系中,点A 的坐标为(4,3),那么cos α的值是( D )A. 34B. 43C. 35D.459. 已知方程238x y-+=,则整式2x y-的值是为( A )A. 5B. 10C. 12D. 1511.如题10图,在正方形ABCD中,点P从点A出发,沿正方形的边顺时针方向运动一周,则△APC的面积y与点P运动的路程x形成的函数关系图像大致是( C )A. B. C. D.二、填空题(本大题6小题,每小题4分,共24分)11. 9的算术平方根是 3 .12.分解因式:24m-= .13.不等式组1222132x xx x-≤-⎧⎪-⎨>⎪⎩的解集是 .14.如题14图,把一个圆锥沿母线OA剪开,展开后得到一个扇形AOC后,已知圆锥的高h为12cm,OA=13cm,则扇形AOC中AC的长是 10π cm(计算结果保留π).15.如题15图,矩形ABCD中,对角线AC=23,E为BC边上一点,BC=3BE,将矩形ABCD沿AE所在的直线折叠,B点恰好落在对角线AC上的'B处,则AB= .(题14图)(题15图)(题16图)17.如题16图,点P是四边形ABCD外接圆⊙O上任意一点,且不与四边形顶点重合,若AD是⊙O 的直径,AB=BC=CD,连接PA,PB,PC,若PA=a,则点A到PB和PC的距离之和AE+AF=31a+.三、解答题(一)(本大题3小题,每小题6分,共18分)()()22m m+-31x-<≤317.计算:()1o 132016sin302-⎛⎫--+-- ⎪⎝⎭ 解:原式 = 3-1+2= 418.先化简,再求值:223626699a a a a a a +-⋅+++-,其中31a =-.解:原式= 当31a =-时,19.如题19图,已知△ABC 中,D 为AB 的中点.(1)请用尺规作图法作AC 的中点E ,并连结DE (保留作图痕迹,不要求做法);(2)在(1)的条件下,若DE=4,求BC 的长.解:由(1)得:点E 是AC 的中点∵ 点D 是AB 的中点∴ DE 是△ABC 的中位线∴ DE=12BC ∴ BC=2DE=8 四、解答题(二)(本大题3小题,每小题7分,共21分)20.某工程队修建一条1200m 的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.(1)求这个工程队原计划每天修建道路多少米?(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比 原计划增加百分之几?解:(1)设原计划每天修建道路x 米,依题意得:1200120041.5x x=+,解得:=100x 经检验:=100x 是原方程的解.答:...(2)依题意得:1200÷100-2=10(天)(1200÷10-100)÷100×100% = 20%答:...23.如题21图,Rt △ABC 中,∠B=30°,∠ACB=90°,CD ⊥AB 交AB 于点D ,以CD 为较短的直角边向△CDB 的同侧作Rt △DEC ,满足∠E=30°,∠DCE=90°,再用同样的方法作Rt △FGC ,∠FCG=90°,继续用同样的方法作Rt △HIC ,∠HCI=90°,若AC=a ,求CI 的长.解:∵ ∠B=30°,∠ACB=90°,∴ ∠A=90°-∠B=60°又∵ CD ⊥AB∴ ∠ADC=90°在Rt △ADC 中, ∴ o 3=cos60=2CD AC a ⋅ 题21图 同理可得:24.某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球,乒乓球,篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育项目的学生人数,随机抽取了部分学生进行调查,并将通过点差获得的数据进行整理,绘制出以下两幅不完整的统计图.请根据统计图 回答问题:(1)这次活动一共调查了 250 名学生;(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于108度;(4)若该学校有1500人,请你估计该学校选择足球项目的学生人数约是 480 人.五、解答题(三)(本大题3小题,每小题9分,共27分)23.如题23图,在直角坐标系中,直线1+=kx y ()0≠k 与双曲线()02>=x xy 相交于点P (1,m ). (1)求k 的值;(2)若点Q 与点P 关于直线x y =成轴对称,则点Q 的坐标是Q ( 2,1 );(3)若过P ,Q 二点的抛物线与y 轴的交点为M (0,35),求该抛物线的函数解析式,并求出 o 333=cos60=4FC CD a a ⋅⋅=o 3333=F cos60=4HC C a a ⋅=⋅cos =CD A AC ∠抛物线的对称轴方程.解:(1)把(1,m )代入x y 2=得:m =2. 把(1,2)代入1+=kx y 得:12+=k ,解得:1=k .∴ k 的值为1.(2)Q (2,1) 题23图(3)设抛物线的解析式为c bx ax y ++=2,把P ,Q ,M 三点坐标代入得:∴ 抛物线的对称轴方程为∴抛物线的函数解析式为35322++-=x x y . 直线432=-=a b x .26.如题24图,⊙O 是△ABC 的外接圆,BC 是⊙O 的直径,∠ABC=30°,过点B 作⊙O 的切线BD ,与CA 的延长线交于点D ,与半径AO 的延长线交于点E ,过点A 作⊙O 的切线AF ,与直径BC 的延长 线交于点F.(1)求证:△ACF ∽△DAE ;(2)若43AOC =△S ,求DE 的长; (3)连接EF ,求证:EF 是⊙O 的切线.(1)证明:∵ BC 是⊙O 的直径 解得:21=x ∴ ∠BAC=∠BAD=90° ∴ OB=OC=21=x 又∵ ∠ABC=30° ∴ BC=2∴ ∠ACB=90°-∠ABC=60° 在Rt △DBC 中,∠DCB=60°∵ OA=OC tan ∠DCB=BC DB ,即2DB 3= ∴ △AOC 是等边三角形 解得:DB= 32 题24图∴ ∠OAC=60° ∵ △AOC 是等边三角形∵ BD 、AF 是⊙O 的切线 ∴ ∠AOC=60°∴ OB ⊥BD ,OA ⊥AF ∴ ∠BOE=∠AOC=60°∴ ∠DBC=∠OAF=90° 在Rt △BOE 中,∴ ∠D=90°-∠ACB=30°, tan ∠BOE=OB BE ,即1BE 3=, 解得:BE= 3 ∠CAF=90°-∠OAC=30° ∴ DE=DB+BE=33332=+ ∴ ∠D=∠CAF (3)解:过O 作OH ⊥EF ,垂足为H.∵ ∠BAO=∠BAC-∠OAC=30° 由(1)得:OB ⊥BD ,OA ⊥AF ∴ ∠DAE=∠BAD+∠BAO=120° ∴ ∠OBE=∠OAF=90°又∵ ∠ACF=180°-∠ACB=120° ∵ ∠BOE=∠AOF ,OB=OA∴ ∠ACF=∠DAE ∴ △BOE ≌△AOF (AAS )∴ △ACF ∽△DAE ∴ OE=OF(2)解:过A 作AG ⊥BC 交BC 于点G, ∵ ∠EOF=180°-∠AOC=120°由(1)得:△AOC 是等边三角形 ∴ ∠OEF=∠OFE=21(180°-∠EOF )=30° ∴ OA=OC=OB 又∵ ∠DEA=∠OAC-∠D=30°∴ OG=CG=OA 21OC 21= ∴ ∠DEA=∠OEH 设OG=CG=x ,则OA=OC=2x ,在 ∴ EO 是∠BEH 的角平分线Rt △AOG 中,AG= x ∴ OH=OB∵ ∴ OH 是⊙O 的半径 ∴ ∴ EF 是⊙O 的切线 27.如题25图,BD 是正方形ABCD 的对角线,BC=2,边BC 在其所在的直线上平移,将通过平移得到的线段记为PQ ,连接PA ,QD ,并过点Q 作QO ⊥BD ,垂足为O ,连接OA,OP.(1)请直接写出线段BC 在平移过程中,四边形APQD 是什么四边形?(2)请判断OA 、OP 之间的数量关系和位置关系,并加以证明;(3)在平移变换过程中,设OPB △S y =,BP=x (20≤≤x ),求y 与x 之间的函数关系式,并求 出y 的最大值.433221AOC =⋅⋅=x x S △3OG OA 22=-43AOC =△S。

广东省广州市2016年中考数学真题试题(含参考答案)

广东省广州市2016年中考数学真题试题(含参考答案)

秘密★启用前2016年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;同时填写考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示()A、支出20元B、收入20元C、支出80元D、收入80元[难易]较易[考点]正数与负数的概念与意义[解析]题中收入100元记作+100,那么收入就记为正数,支出就记为负数,所以-80就表示支出80元,所以答案C正确[参考答案]C2.图1所示几何体的左视图是()[难易]较易[考点]视图与投影——三视图[解析]几何体由两个圆锥组合而成,根据圆锥的三视图就可以得到题中图的左视图为A[参考答案] A3.据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A、6.59⨯104B、659⨯104C、65.9⨯105D、6.59⨯106[难易]较易[考点]科学计数法[解析]由科学记数法的定义可知6590000=6.59⨯106,所以D正确[参考答案] D4.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A、110 B、19 C、13D、12[难易]较易[考点]概率问题[解析]根据题意可知有10种等可能的结果,满足要求的可能只有1种,所以P(一次就能打该密码)=1 10[参考答案] A5.下列计算正确的是()A、x2y2=xy(y≠0) B、xy2÷12y=2xy(y≠0)C、=x≥0,y≥o) D、(xy3)2=x2y6[难易]较易[考点]代数式的运算[解析] A、显然错误; B、xy2÷12y=xy2∙2y=2xy3;C、,不是同类二次根式,不能进行加减法;D、根据幂的乘方运算法则就可以得出答案.[参考答案] D6.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。

九年级试题—2016广州中考数学真题试卷及答案解析

九年级试题—2016广州中考数学真题试卷及答案解析

秘密★启用前广州市2016年初中毕业生学业考试数学广州爱智康中考数学教研团队本试卷分选择题和非选择题两部分,共三大题25小题,满分150分.考试时间120分钟.注意事项:1.答卷前,考生务必在答题卡第1面、第3面、第5面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入100元记作100-元表示()+元,那么80A.支出20元B.收入20元C.支出80元D.收入80元【考点】正数、负数.【分析】正数与负数可以表示相反的意义.正数表示收入,则负数应表示支出.【解答】C.2.如图所示,几何体的左视图是()A.B.C.D.【考点】三视图.【分析】由图可知该几何体由上下两个圆锥拼接而成,再结合圆锥左视图可推出答案.【解答】A3.据统计,2015年广州地铁日均客运量约为6590000人次,将6590000用科学技术法表示为( )A .46.5910⨯B .465910⨯C .565.910⨯D .66.5910⨯【考点】科学记数法.【分析】科学记数法的表示形式为10n a ⨯,n 的绝对值与小数点移动的位数相同.当原数绝对值大于1时,n是正数;当原数绝对值小于1时,n 是负数.【解答】D4.某个密码锁的密码由三个数字组成,每个数字都是0~9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是( ) A .110B .19C .13D .12【考点】概率.【分析】依题意,仅需确定最后一个数字.最后一个数字总共有0~9的十种等可能情况,因此一次就能打开密码锁的概率为110. 【解答】A5.下列计算正确的是( )A .22x xy y=(0y ≠)B .2122xy xy y÷=(0y ≠) C .235x y xy +=(0x ≥,0y ≥) D .3226()xy x y =【考点】幂的乘方,分式乘除法,二次根式的加减. 【分析】A 、根据幂的乘方法则得出结果,即可作出判断;B 、根据分式乘除法法则得出结果,即可作出判断;C 、根据二次根式加减法法则得出结果,即可作出判断;D 、根据幂的乘方与积的乘方法则得出结果,即可作出判断【解答】D6.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地.当他按原路匀速返回时,汽车的速度v 千米/小时与时间t 小时的函数关系式是( )A .320v t =B .320v t = C .20v t =D .20v t=【考点】反比例函数的解析式.【分析】根据公式:=⨯路程速度时间,可算得甲乙两地之间的距离为320千米;根据公式:=路程速度时间,可得出答案.【解答】B7.如图,已知ABC △中,10AB =,8AC =,6BC =,DE 是AC 的垂直平分线,DE 交AB 于点D ,连接CD ,则CD =( )A .3B .4C .4.8D .5【考点】勾股定理;中位线;垂直平分线. 【分析】∵10AB =,8AC =,6BC =∴222AB AC BC =+,90ACB ∠=︒ ∵DE 是AC 的垂直平分线∴90AED ∠=︒,点E 是AC 的中点,AD DC = ∴ED BC ∥∴ED 是ABC △的中位线,D 为AB 中点 ∴152AD AB == ∴5CD AD ==【解答】D8.若一次函数y ax b =+的图像经过第一、二、四象限,则下列不等式中总是成立的是( )A .0ab >B .0a b ->C .20a b +>D .0a b +>【考点】一次函数图像与系数的关系.【分析】因为该一次函数的图像经过第一、二、四象限,因此0a <,0b >. 【解答】A ∵0a <,0b >,∴0ab <,所以A 错;B ∵0a <,0b >,∴0a b -<,所以B 错;C ∵20a >,0b >,∴20a b +>,所以C 对; D∵0a <,0b >,∴a b +无法确定大小,所以D 错.9.对于二次函数2144y x x =-+-,下列说法正确的是( )A .当0x >时,y 随x 的增大而增大B .当2x =时,y 有最大值3-C .图像的顶点坐标为(27)--,D .图像与x 轴有两个交点【考点】二次函数的顶点坐标、性质和图像 【分析】A由题可知,该二次函数开口向下,对称轴为2x =;因此当2x <时,y 随x 的增大而增大,当2x >时,y 随x 的增大而减小.所以A 错;B 因为二次函数开口向下,因此有最大值;将2x =代入解析式可算得3y =-.所以B 对;C 计算可得顶点坐标为(23)-,.所以C 错; D计算可得30∆=-<,因此该二次函数与x 轴没有交点.所以D 错.【解答】BEDCBA10.定义新运算:(1)a b a b =-★,若a ,b 是方程2104x x m -+=(1m <)的两根,则b b a a -★★的值为( )A .0B .1C .2D .与m 有关【考点】新定义题型;解含参一元二次方程.【分析】若a ,b 是方程2104x x m -+=(1m <)的两根,则1a b +=,由定义新运算可得2222(1)(1)()()(1)()(11)0b b a a b b a a a b a b a b a b a b =---=--+=---=-+-=--=原式.【解答】A第二部分 非选择题(共120分)二、填空题(共6小题,每小题3分,满分18分) 11.分解因式:22a ab +=__________.【考点】因式分解(提公因式法).【分析】原式提公因式a ,即可得(2)a a b +,因此答案为(2)a a b +,熟练掌握因式分解的方法是解本题的关键.【解答】(2)a a b +12.代数式9x -有意义时,实数x 的取值范围是__________.【考点】二次根式有意义的条件.【分析】二次根式有意义的条件是被开方数要大于等于0,故90x -≥,即9x ≤. 【解答】9x ≤13.如图,ABC △中,AB AC =,12cm BC =,点D 在AC 上,4cm DC =,将线段DC 沿CB 方向平移7cm得到线段EF ,点E ,F 分别落在边AB ,BC 上,则EBF △的周长为__________.【考点】平移的性质,等腰三角形的性质.【分析】线段平移过后的大小和方向不变,线段DC 沿CB 方向平移得到线段EF ,故EF DC =,EF DC ∥,在ABC △中AB AC =,等边对等角,故B C ∠=∠,又EF DC ∥,所以EFB DCF ∠=∠,EFB ABC ∠=∠,等角对等边,故EB EF =.【解答】线段DC 沿CB 方向平移得到线段EF ,故4cm EF DC ==,EF DC ∥,∴EFB DCF ∠=∠又∵AB AC =,∴DCF ABC ∠=∠,EFB ABC ∠=∠,4cm EB EF == ∵12cm BC =,7cm FC =,∴5cm BF BC FC =-= ∴EBF △的周长为45413cm EB BF EF ++=++=.FE DCBA14.方程1223x x =-的解是__________.【考点】解分式方程【分析】原分式方程两边同时乘以2(3)x x -,得322x x -=⨯,解得1x =-,检验:当1x =-时,2(3)0x x -≠,∴1x =-是原分式方程的解【解答】1x =-15.如图,以点O 为圆心的两根同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,123AB =,6OP =则劣弧AB 的长为__________(结果保留π).【考点】切线的性质,垂径定理,三角函数,弧长公式.【分析】弦AB 为小圆的切线,点P 为切点,故OP AB ⊥,1632AP BP AB ===, 在Rt AOP △中, tan =3AP AOP OP ∠=,60AOP ∠=︒,12OA =,则120AOB ∠=︒,120128180180AB n r l πππ⨯⨯===. 【解答】8π16.如图,正方形ABCD 的边长为1,AC ,BD 是对角线,将DCB △绕点D 顺时针旋转45︒得到DGH △,HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形; ②AED GED △≌△ ③112.5DFG =︒∠;④ 1.5BC FG +=其中正确的结论是__________.【考点】旋转的性质,正方形和等腰直角三角形的性质,菱形和全等三角形的性质与判定.【分析】DCB △旋转45︒得到DGH △,故DGH DCB △≌△,45DHG DBC ∠=∠=︒,90DGH DCB ∠==︒又∵45DAC ∠=︒,∴AF EG ∥在Rt AED △和Rt GED △中,AD GD =,ED ED =,Rt Rt AED GED △≌△, ∴ADE GDE ∠=∠.故②正确;在ADF △与GDF △中,AD GD =,ADF GDF ∠=∠,FD FD =POBAHGFEDC BAADF GDF △≌△,∴45DGF DAF ∠=∠=︒,又∵45DBA ∠=︒,∴FG AE ∥∴四边形AEGF 是平行四边形,又AF GF =,∴四边形AEGF 是菱形,故①正确;122.52GDF ADB ∠=∠=︒,45DGF ∠=︒,∴112.5DFG ∠=︒,③正确;21FG AE HA HD AD BD AD ===-=-=-,1212BC FG +=+-=,故④不正确.【解答】①②③三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤). 17.(本题满分9分)解不等式组()25324x x x <⎧⎪⎨+≥+⎪⎩,并在数轴上表示解集.【考点】解一元一次不等式组【分析】首先解出每一个不等式,两个不等式的解集的公共部分就是不等式组的解集 【解答】解:()25324x x x <⎧⎪⎨+≥+⎪⎩①②解①得:52x <解②得:1x ≥- 则不等式的解集是:512x -≤<在数轴上表示为:18.(本题满分9分)如图,矩形ABCD 的对角线AC ,BD 相交于点O ,若AB AO =,求ABD ∠的度数.【考点】矩形的性质、等边三角形性质【分析】根据矩形的对角线相等且互相平分,得出AOB △是等边三角形,再由等边三角形的性质得出答案 【解答】解:∵四边形ABCD 是矩形,∴AO BO =∵AB AO =,∴AO BO AB ==,∴ABO △是等边三角形,∴60ABO BOA OAB ∠=∠=∠=︒,即60ABD ∠=︒52–1–2123ODC BA19.(本题满分10分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲91 80 78乙81 74 85丙79 83 90(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%,计算各小组的成绩,哪个小组的成绩最高?【考点】数据的统计与分析【分析】(1)本题是一个统计问题,根据平均数的公式即可得到结果;(2)根据加权平均数的算法即可得到结果【解答】解:(1)甲组:918078833++=乙组:817485803++=丙组:798390843++=848380>>第一名:丙组,第二名:甲组,第三名:乙组答:甲组平均分是83分,甲组平均分是80分,甲组平均分是84分(2)甲组:9140%8030%7830%83.8⨯+⨯+⨯=乙组:8140%7430%8530%80.1⨯+⨯+⨯=丙组:7940%8330%9030%83.5⨯+⨯+⨯=83.883.580.1>>答:甲组平均分是83.8分,甲组平均分是80.1分,甲组平均分是83.5分,甲组的成绩最高20.(本题满分10分)已知22()4()a b abA ab a b +-=-(a ,0b ≠且a b ≠).(1)化简A ;(2)若点()P a b ,在反比例函数5y x=-的图象上,求A 的值. 【考点】(1)因式分解;(2)反比例函数. 【分析】(1)分子利用完全平方公式22()2a b a ab b ±=±+化简后可得2()a b -,再分子分母进行约分可得1A ab=; (2)因为点()P a b ,在反比例函数5y x=-的图象上,所以把点()P a b ,代入解析式,可得5b a =-,再把5b a =-代入(1)式化简结果1A ab =,即可得到:15A =-.【解答】(1)解:2222222222()4242()1()()()()a b ab a ab b ab a ab b a b A ab a b ab a b ab a b ab a b ab+-++--+-=====----(2)因为点()P a b ,在反比例函数5y x=-的图象上,所以把点()P a b ,代入解析式, 可得5b a =-,再把5b a =-代入(1)式化简结果1A ab =,即可得到:15A =-.21.(本题满分12分)如图,利用尺规作图,在ABC △的边AC 上方作CAE ACB =∠∠,在射线AE 上截取AD BC =,连接CD ,并证明:CD AB ∥.(尺规作图要求保留作图痕迹,不写作法)【考点】尺规作图,全等三角形的判定,平行线的判定.【分析】尺规作图步骤:①分别以A 、C 为圆心,以一定长度为半径作弧,分别交AC 边于点P 、M ,交CB边于点N ;②以P 为圆心,MN 长度为半径作弧,交弧于点E ,作射线AE ;③以A 为圆心,BC 长度为半径作弧交射线AE 于点D ,连接CD ,即为所求.通过作图,可以得到CAE ACB =∠∠,AD BC =,在结合公共边AC CA =,可得ACD CAB △≌△(SAS ),则ACD CAB =∠∠,所以CD AB ∥.【解答】(1)如图所示,为所求图形.(2)又(1)可得CAE ACB =∠∠,AD BC =,在ADC △和CBA △中, AD BC CAE ACB AC CA =⎧⎪=⎨⎪=⎩∠∠ ∴ACD CAB △≌△(SAS ),∴ACD CAB =∠∠,则:CD AB ∥CBAPNM D E ABC22.(本题满分12分)如图,某无人机于空中A 处探测到目标B ,D ,从无人飞机A 上看目标B ,D 的俯角分别为30︒,60︒,此时无人机的飞行高度AC 为60m .随后无人机从A 处继续水平飞行303m 到达A '处. (1)求A ,B 之间的距离;(2)求从无人机A '上看目标D 的俯角的正切值.【考点】勾股定理,锐角三角函数.【分析】(1)因为从无人飞机A 上看目标B 的俯角分别为30︒,且AA BC '∥,可得30B =︒∠.在Rt ABC △中,60m AC =,可得2260120m AB AC ==⨯=.(2)过A '作A E AA ''⊥交BC 的延长线于点E ,可得四边形AA EC '为矩形,60m A E AC '==,303m CE AA '==.由题可得60ADC =︒∠,因为60m AC =,可求得60203m tan tan 60AC DC ADC ===︒∠.从无人机A '上看目标D 的俯角AA D A DE ''=∠∠,在Rt A DE '△中,602tan 35203303A E A DE DE ''===+∠,则从无人机A '上看目标D 的俯角的正切值为235. 【解答】(1)因为从无人飞机A 上看目标B 的俯角分别为30︒,且AA BC '∥,可得30B =︒∠.在Rt ABC △中,60m AC =,可得2260120m AB AC ==⨯=.(2)过A '作A E AA ''⊥交BC 的延长线于点E ,可得四边形AA EC '为矩形,∴60m A E AC '==,303m CE AA '==.由题可得60ADC =︒∠,因为60m AC =, 可求得60203m tan tan 60AC DC ADC ===︒∠.从无人机A '上看目标D 的俯角AA D A DE ''=∠∠,在Rt A DE '△中,602tan 35203303A E A DE DE ''===+∠,则从无人机A '上看目标D 的俯角的正切值为235.A 'DCBA60°30°E30°60°ABCD A '23.(本题满分12分)如图,在平面直角坐标系xOy 中,直线3y x =-+与x 轴交于点C ,与直线AD 交于点45()33A ,,点D 的坐标为(01)D ,.(1)求直线AD 的解析式;(2)直线AD 与x 轴交于点B ,若点E 是直线AD 上一动点(不与点B 重合),当BOD △与BCE △相似时,求点E 的坐标.【考点】一次函数(待定系数法求解析式),相似(相似的性质——对应边成比例)、等面积法 【分析】(1)求一次函数解析式利用待定系数法,把两点A 、D 的坐标代入解出方程组即可;(2)三角形相似,注意对应关系不同,则有不同情况,多个答案.本题易漏解,需要分类讨论,不是直角,所以只需分①BOD BCE △∽△或②BOD BEC △∽△两种即可,同时第二种情况求出BE 、CE 长度,还需要过E 做垂直于x 轴的高,用面积法求出点E 的纵坐标,代入一次函数解析式求出横坐标【解答】(1)依题意设直线AD 的解析式为y kx b =+,又点45()33A ,,(01)D ,代入可得45331k b b ⎧+=⎪⎨⎪=⎩ 解得:121k b ⎧=⎪⎨⎪=⎩即直线AD 的解析式为112y x =+ (2)有(1)可知直线AD 为112y x =+, 令0y =,解得2x =-,即交点(20)B -, 同理,亦可求点(30)C ,又CBE ∠不是直角, ①当BOD BCE △∽△时,如图,过点C 作1E C x ⊥于交直线AD 于1E , 有1BO OD BC CE =,则151522BC OD CE BO ⋅⨯=== ∴15(3)2E ,xyOD CAxyBOD CAE 1②当BOD BEC △∽△时如图,过点C 作2CE AD ⊥于点2E ,并过点2E 作2E H x ⊥轴于点H , 有22BO OD BDBE E C BC==, 则252255BC BO BE BD ⋅⨯===,21555OD BC E C BD ⋅⨯===, 在2Rt BE C △中, 22221122BE C S BC E H BE CE =⋅=⋅△ 则2222BE CE E H BC⋅==, 令2y =,代入直线AD :112y x =+可得2x = 即点2(22)E ,综上,当BOD △与BCE △相似时,点5(3)2E ,或(22)E ,24.(本题满分14分)已知抛物线2(12)13y mx m x m =+-+-与x 轴相交于不同的两点A ,B . (1)求m 的取值范围;(2)证明该抛物线一定经过非坐标轴的一点P ,并求出点P 的坐标; (3)当184m <≤时,由(2)求出的点P 和点A ,B 构成的ABP △的面积是否有最值,若有,求出最值及相对应的m 值;若没有,请说明理由.【考点】二次函数与代数结合,考察学生对于参数的理解,可类比一次函数恒过定点来解决.第3小问考查求面积最值问题,涉及坐标来表示线段,通过配方求函数最值.【分析】由于函数与x 轴交于不同两点,故只需二次函数判别式来判定即可.关于函数过定点问题需要理解过定点的意义即为当x 为某个值时,y 与m 无关,另外还需注意P 不在坐标轴上.第3问中函数与轴有两个交点,两交点的线段距离公式即为AB a∆=,或利用韦达定理来表示AB 长度,当AB 最大时,面积即为最大.xyH E 2BACD O【解答】(1)当0m =时,函数为一次函数,与x 轴只有一个交点,不符合条件,舍去当0m ≠时,若函数与x 轴交于不同两点,即方程2(12)130mx m x m +-+-=有两个不相等实数解,∴222(12)4(13)1816(14)0m m m m m m ∆=---=-+=-> ∴140m -≠,∴14m ≠综上,m 的取值范围为:0m ≠且14m ≠. (2)2(12)13y mx m x m =+-+-,分离参数m 得:2(23)1y m x x x =--++,抛物线过定点说明在这一点y 与m 无关显然当2230x x --=时,y 与m 无关,解得此时 13x =,21x =-当13x =时,4y =,定点坐标(34), 当21x =-时,0y =,定点坐标为(10)-, 由于P 不在坐标轴上,故(34)P ,(3)22212(13)144412A B m m m m m m m AB x x a m m --∆-+-+=-===2()-4 22221816(14)1414m m m m m m m m-+--====-∵184m <≤,∴1148m ≤<,∴311408m-≤-<,∴131048m -≤<∴AB 最大时,13148m -=,解得,8m =或863m =(舍去) ∴当8m =时,AB 有最大值318,此时ABP S ∆最大;没有最小值. 则面积最大为:11313142284ABP p S AB y =⋅=⨯⨯=△25.(本题满分14分)如图,点C 为ABD △外接圆上的一动点(点C 不在弧BAD 上,且不与点B ,D 重合),45ACB ABD ∠=∠=︒.(1)求证:BD 是该外接圆的直径; (2)连接CD ,求证:2AC BC CD =+;(3)若ABC △关于直线AB 对称图形为ABM △,连接DM ,试探究2DM ,2AM ,2BM 三者之间满足的等量关系,并证明你的结论.【考点】圆的综合,旋转【分析】(1)根据在同圆中,相等的圆周角对应的弦相等,得到ABD △是等腰直角三角形,即可得到BD 是该圆的直径;(2)在等腰直角三角形中会存在2的关系,所以需要构造出以AC 为直角边,BC CD +总长度为斜边的等腰直角三角形.所以过A 点作AE 垂直AC 且,AE AC =,连接BE ,只要证明E B C 、、共线且EB CD =即可求证.(3)在直角三角形中,由勾股定理得到直角三角形三边的平方关系,所以构造与AM DM BM 、、相关的直角三角形.AMC △、ABD △是等腰三角形,可以顺时针旋转AMD △使得AD 与AB 重合,得到ABM '△,连接MM ',得到AM AM '=,且90MAM '∠=︒,所以45AMM AM M ''∠=∠=︒,得到90BMM '∠=︒,在Rt BMM '△中即可得到2222DM AM BM =+.【解答】解:(1)在外接圆中,∵45ACB ABD ∠=∠=︒,∴AB AD =,45ADB ABD ∠=∠=︒∴90BAD ∠=︒,则:BD 是该外接圆的直径(2)过A 点作AE AC ⊥且AE AC =,连接EB ,如图所示AE AC ⊥且AB AD ⊥,BAC ∠是公共角,∴EAB DAC ∠=∠在AEB △和ACD △中 AB AD BAE DAC AE AC =⎧⎪∠=∠⎨⎪=⎩AEB ACD △≌△(SAS )∴EB CD =,ABE ADC ∠=∠,∵180ABC ADC ∠+∠=︒,∴180ABC ABE ∠+∠=︒ ∴E 、B 、C 三点共线DCB AEABCD∴EC BC EB BC CD =+=+,在Rt AEC △中,2AC EC =,则有:2AC BC CD =+(3)把AMD △绕点A 顺时针旋转90︒使得AD 与AB 重合,连接MM ',得到ABM '△则AM AM '=,BM DM '=且90MAM '∠=︒在等腰直角AMM '△中,2MM AM '= ∴222M M AM '=∴45AMM AM M ''∠=∠=︒ 由对称图形性质可知: 45AMB ACB ∠=∠=︒ ∴90BMM '∠=︒在Rt BMM '△中 ∵222M B M M BM ''=+ ∴2222DM AM BM =+.M 'MDCBA。

广东省广州市 2016年中考数学真题试卷附解析

广东省广州市 2016年中考数学真题试卷附解析

秘密★启用前2016年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;同时填写考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2016·广东广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示()A、支出20元B、收入20元C、支出80元D、收入80元[难易]较易[考点]正数与负数的概念与意义[解析]题中收入100元记作+100,那么收入就记为正数,支出就记为负数,所以-80就表示支出80元,所以答案C正确[参考答案]C2.(2016·广东广州)图1所示几何体的左视图是()[难易]较易[考点]视图与投影——三视图[解析]几何体由两个圆锥组合而成,根据圆锥的三视图就可以得到题中图的左视图为A[参考答案] A3.(2016·广东广州)据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A、6.59´104B、659´104C、65.9´105D、6.59´106[难易]较易[考点]科学计数法[解析]由科学记数法的定义可知6590000=6.59´106,所以D正确[参考答案] D4.(2016·广东广州)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A、110 B、19 C、13D、12[难易]较易[考点]概率问题[解析]根据题意可知有10种等可能的结果,满足要求的可能只有1种,所以P(一次就能打该密码)=1 10[参考答案] A5.(2016·广东广州)下列计算正确的是()A、x2y2=xy(y¹0) B、xy2¸12y=2xy(y¹0)C、x³0,y³o)D、(xy3)2=x2y6[难易]较易[考点] 代数式的运算[解析] A 、显然错误; B 、xy 2¸12y=xy 2·2y =2xy 3;C 、D 、根据幂的乘方运算法则就可以得出答案. [参考答案] D6.(2016·广东广州)一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。

2016广州中考数学试卷及答案解析

2016广州中考数学试卷及答案解析

秘密★启用前广州市2016 年初中毕业生学业考试数学广州爱智康中考数学教研团队本试卷分选择题和非选择题两部分,共三大题25 小题,满分150 分.考试时间120 分钟.注意事项:1.答卷前,考生务必在答题卡第1 面、第3 面、第5 面上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;填写考场试室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题同的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号;不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图.答案必须写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;改动的答案也不能超出指定的区域.不准使用铅笔、圆珠笔和涂改液.不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分选择题(共30 分)一、选择题(本大题共10 小题,每小题3 分,满分30 分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数,如果收入100元记作100 元,那么80 元表示()A.支出20元B.收入20 元C.支出80 元D.收入80 元【考点】正数、负数.【分析】正数与负数可以表示相反的意义.正数表示收入,则负数应表示支出.【解答】C.2.如图所示,几何体的左视图是()A.B.C.D.【考点】三视图.【分析】由图可知该几何体由上下两个圆锥拼接而成,再结合圆锥左视图可推出答案.【解答】A1 / 143.据统计,2015 年广州地铁日均客运量约为6 590 000 人次,将6 590 000 用科学技术法表示为()A.6.59104 B.659104 C.65.9105 D.6.59106【考点】科学记数法.【分析】科学记数法的表示形式为a10n,n的绝对值与小数点移动的位数相同.当原数绝对值大于1 时,n 是正数;当原数绝对值小于1 时,n是负数.【解答】D4.某个密码锁的密码由三个数字组成,每个数字都是0 ~ 9 这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码锁的概率是()A.110 B.1913C.D.12【考点】概率.【分析】依题意,仅需确定最后一个数字.最后一个数字总共有0 ~ 9 的十种等可能情况,因此一次就能打开密码锁的概率为110 .【解答】A5.下列计算正确的是()A.x x 12(y 0 )B.xy2 xy2 (y0 )y y2y2C.2 x 3 y 5 xy(x 0 ,y 0)D.(xy3 )2 x2 y6【考点】幂的乘方,分式乘除法,二次根式的加减.【分析】A、根据幂的乘方法则得出结果,即可作出判断;B、根据分式乘除法法则得出结果,即可作出判断;C、根据二次根式加减法法则得出结果,即可作出判断;D、根据幂的乘方与积的乘方法则得出结果,即可作出判断【解答】D6.一司机驾驶汽车从甲地去乙地,他以80 千米/小时的平均速度用了4 小时到达乙地.当他按原路匀速返回时,汽车的速度v千米/小时与时间t小时的函数关系式是()A.v 320t B.v 320 C.v 20t D.v 20t t【考点】反比例函数的解析式.路程时间【分析】根据公式:路程= 速度时间,可算得甲乙两地之间的距离为320 千米;根据公式:=速度,可得出答案.【解答】B2/ 147.如图,已知△ABC中,AB10 ,AC8 ,BC 6 ,DE是AC的垂直平分线,DE交AB于点D,连接CD,则CD()C A.3B.4 EC.4.8D.5 A BD【考点】勾股定理;中位线;垂直平分线.【分析】∵AB10 ,AC8 ,BC 6∴AB2 AC2 BC2 ,ACB90∵DE是AC的垂直平分线∴AED90,点E是AC的中点,AD DC∴ED∥BC∴ED是△ABC的中位线,D为AB中点∴ 1 5AD AB2∴CD AD 5【解答】D8.若一次函数y ax b的图像经过第一、二、四象限,则下列不等式中总是成立的是()A.ab0 B.a b0 C.a2 b0 D.a b0【考点】一次函数图像与系数的关系.【分析】因为该一次函数的图像经过第一、二、四象限,因此a0 ,b0 .【解答】A ∵a0 ,b0 ,∴ab0 ,所以A 错;B ∵a0 ,b0 ,∴a b0 ,所以B 错;C ∵a2 0 ,b0 ,∴a2 b0 ,所以C 对;D ∵a0 ,b0 ,∴a b无法确定大小,所以D 错.9.对于二次函数 1 2 4y x x,下列说法正确的是()4A.当x0 时,y随x的增大而增大B.当x 2 时,y有最大值 3C.图像的顶点坐标为( 2,7 ) D.图像与x轴有两个交点【考点】二次函数的顶点坐标、性质和图像【分析】A 由题可知,该二次函数开口向下,对称轴为x 2 ;因此当x 2 时,y随x的增大而增大,当x 2 时,y随x的增大而减小.所以A 错;B 因为二次函数开口向下,因此有最大值;将x 2 代入解析式可算得y 3 .所以B 对;C 计算可得顶点坐标为( 2, 3 ).所以C 错;D 计算可得 3 0 ,因此该二次函数与x轴没有交点.所以D 错.【解答】B3/ 1410.定义新运算:a★b a(1b) ,若a,b是方程 2 1 0x x m(m1)的两根,则b★b a★a的值4为()A.0 B.1 C.2 D.与m有关【考点】新定义题型;解含参一元二次方程.1【分析】若a,b是方程x2 x m(m1)的两根,则a b1,由定义新运算可得4原式.b(1b) a(1a) b b a a a b(a b) (a b)(a b1) (a b)(11) 02 2 2 2【解答】A第二部分非选择题(共120 分)二、填空题(共6 小题,每小题3 分,满分18 分)11.分解因式:2a2 ab__________.【考点】因式分解(提公因式法).【分析】原式提公因式a,即可得a( 2a b) ,因此答案为a( 2a b) ,熟练掌握因式分解的方法是解本题的关键.【解答】a( 2a b)12.代数式9 x有意义时,实数x的取值范围是__________.【考点】二次根式有意义的条件.【分析】二次根式有意义的条件是被开方数要大于等于0,故9 x0 ,即x9 .【解答】x913.如图,△ABC中,AB AC,BC12 cm ,点D在AC上,DC 4 cm ,将线段DC沿CB方向平移7 cm 得到线段EF,点E,F分别落在边AB,BC上,则△EBF的周长为__________.AE DB CF【考点】平移的性质,等腰三角形的性质.【分析】线段平移过后的大小和方向不变,线段DC沿CB方向平移得到线段EF,故EF DC,EF∥DC,在△ABC中AB AC,等边对等角,故B C,又EF∥DC,所以EFB DCF,EFB ABC,等角对等边,故EB EF.【解答】线段DC沿CB方向平移得到线段EF,故EF DC 4 cm ,EF∥DC,∴EFB DCF又∵AB AC,∴DCF ABC,EFB ABC,EB EF 4 cm∵BC12 cm ,FC7 cm ,∴BF BC FC 5 cm∴△EBF的周长为EB BF EF 4 5 4 13 c m .4 / 1414.方程1 2的解是__________.2x x 3【考点】解分式方程【分析】原分式方程两边同时乘以2x(x3) ,得x 3 22x,解得x1,检验:当x1时,2x(x3) 0 ,∴x1是原分式方程的解【解答】x 115.如图,以点O为圆心的两根同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB12 3 ,OP 6 则劣弧AB的长为__________(结果保留).OA BP【考点】切线的性质,垂径定理,三角函数,弧长公式.【分析】弦AB为小圆的切线,点P为切点,故OP AB, 1 6 3AP BP AB,在Rt△AOP中,2tan AOP= 3 l.,AOP60,OA12,则AOB120,n r120 12 8APOP AB180 180【解答】816.如图,正方形ABCD的边长为1,AC,BD是对角线,将△DCB绕点D顺时针旋转45得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG,则下列结论:①四边形AEGF是菱形;②△AED≌△GED③∠DFG112.5;④BC FG 1.5其中正确的结论是__________.AH DFEGB C【考点】旋转的性质,正方形和等腰直角三角形的性质,菱形和全等三角形的性质与判定.【分析】△DCB旋转45得到△DGH,故△DGH≌△DCB,DHG DBC45,DGH DCB90又∵DAC45,∴AF∥EG在Rt△AED和Rt△GED中,AD GD,ED ED,Rt△AED≌Rt△GED,∴ADE GDE.故②正确;在△ADF与△GDF中,AD GD,ADF GDF,FD FD5 / 14△≌△,∴DGF DAF 45,又∵DBA 45,∴FG∥AEADF GDF∴四边形AEGF是平行四边形,又AF GF,∴四边形AEGF是菱形,故①正确;1,DGF 45,∴DFG 112.5,③正确;GDF ADB22.52FG AE HA HD AD BD AD 2 1,BC FG 1 2 1 2 ,故④不正确.【解答】①②③三、解答题(本大题共9 小题,满分102 分,解答应写出文字说明、证明过程或演算步骤).17.(本题满分9 分)解不等式组2x 5,并在数轴上表示解集.3 x 2 x 4【考点】解一元一次不等式组【分析】首先解出每一个不等式,两个不等式的解集的公共部分就是不等式组的解集【解答】解:2x 53 x 2 x4 ①②解①得: 5x2解②得:x 1则不等式的解集是:1x 5 2在数轴上表示为:–2–10 1 2 35218.(本题满分9 分)如图,矩形ABCD的对角线AC,BD相交于点O,若AB AO,求∠ABD的度数.A DOB C【考点】矩形的性质、等边三角形性质【分析】根据矩形的对角线相等且互相平分,得出△AOB是等边三角形,再由等边三角形的性质得出答案【解答】解:∵四边形ABCD是矩形,∴AO BO∵AB AO,∴AO BO AB,∴△ABO是等边三角形,∴ABO BOA OAB60,即ABD606 / 1419.(本题满分10 分)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛.现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如下表:小组研究报告小组展示答辩甲91 80 78乙81 74 85丙79 83 90(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40% ,小组展示占30% ,答辩占30% ,计算各小组的成绩,哪个小组的成绩最高?【考点】数据的统计与分析【分析】(1)本题是一个统计问题,根据平均数的公式即可得到结果;(2)根据加权平均数的算法即可得到结果【解答】解:(1)甲组:9180 78 833乙组:8174 85 803丙组:79 8390 84384 83 80第一名:丙组,第二名:甲组,第三名:乙组答:甲组平均分是83分,甲组平均分是80 分,甲组平均分是84 分(2)甲组:9140% 8030% 7830% 83.8乙组:8140% 7430% 8530% 80.1丙组:7940% 8330% 9030% 83.583.8 83.5 80.1答:甲组平均分是83.8 分,甲组平均分是80.1分,甲组平均分是83.5 分,甲组的成绩最高7/ 1420.(本题满分10 分)已知A (a b ) 4ab2ab(a b)2(a,b 0 且a b).(1)化简A;(2)若点P( a,b) 在反比例函数y 5的图象上,求A的值.x【考点】(1)因式分解;(2)反比例函数.【分析】(1)分子利用完全平方公式(a b ) a 2 2ab b2 化简后可得(a b)2 ,再分子分母进行约分可得1A ;ab(2)因为点P( a,b) 在反比例函数y 5 的图象上,所以把点P( a,b) 代入解析式,可得b 5, 5 的图象上,所以把点P( a,b) 代入解析式,可得b5x a 再把b 5 代入(1)式化简结果A 1 ,即可得到: 1A .a ab 5【解答】(1)解:(a b ) 4ab a 2ab b 4ab a 2ab b(a b) 12 2 2 2 2 2Aab(a b) ab(a b) ab(a b) ab(a b) ab2 2 2 2(2)因为点P( a,b) 在反比例函数y 5的图象上,所以把点P( a,b) 代入解析式,x可得b 5 ,再把b 5 代入(1)式化简结果A 1 ,即可得到: 1A .a a ab 521.(本题满分12 分)如图,利用尺规作图,在△ABC的边AC上方作∠CAE ∠ACB,在射线AE上截取AD BC,连接CD,并证明:CD∥AB.(尺规作图要求保留作图痕迹,不写作法)A CB【考点】尺规作图,全等三角形的判定,平行线的判定.【分析】尺规作图步骤:①分别以A、C为圆心,以一定长度为半径作弧,分别交AC边于点P、M,交CB 边于点N;②以P为圆心,MN长度为半径作弧,交弧于点E,作射线AE;③以A为圆心,BC长度为半径作弧交射线AE于点D,连接CD,即为所求.通过作图,可以得到∠CAE ∠ACB,AD BC,在结合公共边AC CA,可得△ACD≌△CAB(SAS),则∠ACD ∠CAB,所以CD∥AB.【解答】(1)如图所示,为所求图形.D (2)又(1)可得∠CAE ∠ACB,AD BC,在△ADC和△CBA中,E AD BCA∠CAE∠ACBAC CA PMCNB∴△ACD≌△CAB(SAS),∴∠ACD ∠CAB,则:CD∥AB8/ 1422.(本题满分12 分)如图,某无人机于空中A处探测到目标B,D,从无人飞机A上看目标B,D的俯角分别为30,60,此时无人机的飞行高度AC为60 m .随后无人机从A处继续水平飞行30 3 m 到达A处.(1)求A,B之间的距离;(2)求从无人机A上看目标D的俯角的正切值.30°60°AA'B D C【考点】勾股定理,锐角三角函数.【分析】(1)因为从无人飞机A上看目标B的俯角分别为30,且AA∥BC,可得∠B 30.在Rt△ABC中,AC 60 m ,可得AB 2AC 260 120 m .(2)过A作A E AA交BC的延长线于点E,可得四边形AA EC为矩形,A E AC 60 m ,CE AA .由题可得∠ADC 60,因为AC 60 m ,可求得30 3 mDC AC 60tan ADC tan 60∠.从无人机A上看目标D的俯角∠AA D ∠A DE,在20 3 mRt△A DE中,tan 60 2 3A E∠,则从无人机A上看目标D的俯角的正A DEDE20 3 30 35切值为2 3.5【解答】(1)因为从无人飞机A上看目标B的俯角分别为30,且AA∥BC,可得∠B 30.在Rt△ABC中,AC 60 m ,可得AB 2AC 260 120 m .30°60°AA'BED C(2)过A作A E AA交BC的延长线于点E,可得四边形AA EC为矩形,∴A E AC 60 m ,CE AA 30 3 m .由题可得∠ADC 60,因为AC 60 m ,可求得DCAC 60tan ADC tan 60∠20 3 m ..从无人机A上看目标D的俯角∠AA D ∠A DE,在Rt△A DE中,∠,则从无人机A上看目标D的俯角的正切值为2 3A E60 2tan A DE 3DE20 3 30 3 5 59/ 1423.(本题满分12 分)如图,在平面直角坐标系xOy中,直线y x 3 与x轴交于点C,与直线AD交于点( 4 5 )A,,点D的3 3坐标为D( 0,1).(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当△BOD与△BCE相似时,求点E的坐标.yADxO C【考点】一次函数(待定系数法求解析式),相似(相似的性质——对应边成比例)、等面积法【分析】(1)求一次函数解析式利用待定系数法,把两点A、D的坐标代入解出方程组即可;(2)三角形相似,注意对应关系不同,则有不同情况,多个答案.本题易漏解,需要分类讨论,不是直角,所以只需分①△BOD∽△BCE或②△BOD∽△BEC两种即可,同时第二种情况求出BE、CE长度,还需要过E做垂直于x轴的高,用面积法求出点E的纵坐标,代入一次函数解析式求出横坐标【解答】(1)依题意设直线AD的解析式为y kx b,又点( 4 5 )A,,D( 0,1)3 3代入可得4 5k b3 3b 1解得: 1k2b 1即直线AD的解析式为1y x 12y1y x 1,2(2)有(1)可知直线AD为令y 0 ,解得x 2 ,即交点B ( 2,0 ) 同理,亦可求点C( 3,0 )又CBE不是直角,BDOAE1Cx①当△BOD∽△BCE时,如图,过点C作E C x于交直线AD于E,1 1有B O OD,则CE1BC OD 5 1 5BC CE1BO 2 2∴5E( 3,)1210/ 14②当△BOD∽△BEC时如图,过点C作C E AD于点2 E,并过点E作E H x轴于点H,2 2 2有BO OD BD,BE E C BC2 2则BE2BC BO 5 225 ,BD 5E C2OD BC 1 55 ,BD 5在R t△BE C中,21 1S BC E H BE CE△BE2C 2 2 22 2BE CE则E H 2 22 2 ,BC令y 2 ,代入直线AD: 1 1y x 可得x 22即点E,2 ( 2 2 )综上,当△BOD与△BCE相似时,点( 3 5 )E,或E( 2,2 )2yAE2DBxO H C24.(本题满分14 分)已知抛物线y mx 2 (12m)x 13m与x轴相交于不同的两点A,B.(1)求m的取值范围;(2)证明该抛物线一定经过非坐标轴的一点P,并求出点P的坐标;(3)当14m 8 时,由(2)求出的点P和点A,B构成的△ABP的面积是否有最值,若有,求出最值及相对应的m值;若没有,请说明理由.【考点】二次函数与代数结合,考察学生对于参数的理解,可类比一次函数恒过定点来解决.第3 小问考查求面积最值问题,涉及坐标来表示线段,通过配方求函数最值.【分析】由于函数与x轴交于不同两点,故只需二次函数判别式来判定即可.关于函数过定点问题需要理解过定点的意义即为当x为某个值时,y与m无关,另外还需注意P 不在坐标轴上.第3 问中函数与轴有两个交点,两交点的线段距离公式即为AB,或利用韦达定理来表示AB长度,当AB最a大时,面积即为最大.11/ 14【解答】(1)当m 0 时,函数为一次函数,与x轴只有一个交点,不符合条件,舍去当m 0时,若函数与x轴交于不同两点,即方程mx 2 (12m)x 13m 0 有两个不相等实数解,∴(12m)2 4m (13m ) 18m 16m 2 (14m)2 0∴14m 0 ,∴ 1m4综上,m的取值范围为:m 0且1m .4(2)y mx 2 (12m)x 13m,分离参数m得:y m x x x ,抛物线过定点说明在这一点y与m无关( 2 3) 12显然当x 2 2x 3 0 时,y与m无关,解得此时x ,1 3 x 2 1当x 时,y 4 ,定点坐标( 3,4 )1 3当x 时,y 0 ,定点坐标为( 1,0 )2 1由于P不在坐标轴上,故P( 3,4 )(3)()-41 2 (1 3 ) 1 4 4 4 12m m m m m2 m m22AB x xA B2a m m18m 16m (14m) 14m 12 2m m m m2 24∵1 8 ,∴1 1 <4 ,∴31 1 4 01 31m <,∴0< 44 8 m8 m m8∴AB最大时,1 31 84 ,解得,m 8 或m (舍去)m8 63∴当m 8 时,AB有最大值318,此时S A BP最大;没有最小值.则面积最大为: 1 1 31 4 31S AB y△ABP p2 2 8 412/ 1425.(本题满分14 分)如图,点C为△ABD外接圆上的一动点(点C不在弧BAD上,且不与点B,D重合),ACB ABD 45.(1)求证:BD是该外接圆的直径;(2)连接CD,求证:2AC BC CD;(3)若△ABC关于直线AB对称图形为△ABM,连接DM,试探究DM2 ,AM2 ,BM2 三者之间满足的等量关系,并证明你的结论.AB DC【考点】圆的综合,旋转【分析】(1)根据在同圆中,相等的圆周角对应的弦相等,得到△ABD是等腰直角三角形,即可得到BD是该圆的直径;(2)在等腰直角三角形中会存在 2 的关系,所以需要构造出以AC为直角边,BC CD总长度为斜边的等腰直角三角形.所以过A点作AE垂直AC且,AE AC,连接BE,只要证明E、B、C共线且EB CD即可求证.(3)在直角三角形中,由勾股定理得到直角三角形三边的平方关系,所以构造与AM、DM、BM相关的直角三角形.△AMC、△ABD是等腰三角形,可以顺时针旋转△AMD使得AD与AB重合,得到△ABM ,连接MM,得到AM AM,且MAM 90,所以AMM AM M45,得到BMM 90,在Rt△BMM中即可得到DM 2 2AM 2 BM2 .【解答】解:(1)在外接圆中,∵ACB ABD 45,∴AB AD ,ADB ABD 45∴BAD 90,则:BD是该外接圆的直径(2)过A点作AE AC且AE AC,连接EB,如图所示AE AC且AB AD,BAC是公共角,∴EAB DACA在△AEB和△ACD中EAB ADBAE DACAE ACDB△AEB≌△ACD(SAS)C∴EB CD,ABE ADC,∵ABC ADC 180,∴ABC ABE 180∴E、B、C三点共线13/ 14∴EC BC EB BC CD,在Rt△AEC中,2AC EC,则有:2AC BC CD(3)把△AMD绕点A顺时针旋转90使得AD与AB重合,连接MM,得到△ABM 则AM AM,BM DM且MAM 90M'在等腰直角△AMM 中,MM 2AMM∴M M 2 2AM2∴AMM AM M 45由对称图形性质可知:A AMB ACB 45∴BMM 90在Rt△BMM中∵M B 2 M M 2 BM2B D ∴DM 2 2AM 2 BM2 .C14/ 14。

2016年广州市中考数学真题(含答案)

2016年广州市中考数学真题(含答案)

2016年市中考数学试卷(含答案)、选择题.(本大题共10小题,每小题3分,满分30分.)1. (3分)(2016?)中国人很早开始使用负数,中国古代数学著作《九章算术》的方程”一章,在世界数学史上首次正式引入负数. 如果收入100元记作+100元•那么-80元表示()A .支出20元B.收入20元C.支出80元D .收入80元2. (3分)(2016?)如图所示的几何体左视图是()3. (3分)(2016?)据统计,2015年地铁日均客运量均为 6 590 000人次,将6 590 000用科学记数法表示为()4 45 6A . 6.59X104 5B . 659 XI04 C. 65.9 XI0°D . 6.59 X10°4(3分)(2016?)某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同时,才能将锁打开.如果仅忘记了锁设密码的最后那个数字,那么一次就能打开该密码的概率是()A •岂二兰(¥尹0)B • xy 2寻2© (y^O) / 7 2yC . 2飞「:,一” ・..-,... ii D • (xy 3) 2=x 2y 66. ( 3分)(2016?) —司机驾驶汽车从甲地去乙地,他以平均 80千米/小时的速度用了 4个 小时到达乙地,当他按原路匀速返回时•汽车的速度 v 千米/小时与时间t 小时的函数关系是( )7. (3分)(2016?)如图,已知△KBC 中,AB=10 , AC=8 , BC=6 , DE 是AC 的垂直平分线, DE 交AB 于点D ,连接CD ,则CD=()& ( 3分)(2016?)若一次函数y=ax+b 的图象经过第一、二、四象限,则下列不等式中总 是成立的是()2A . ab >0B . a - b > 0C . a +b >0D . a+b > 09. ( 3分)(2016?)对于二次函数 y=-三買2+x - 4,下列说确的是()4A .当x > 0时,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图象的顶点坐标为(-2,- 7)D .图象与x 轴有两个交点2 110 . (3 分)(2016?)定义运算:aZb=a (1 - b ).若 a, b 是方程 x 2- x+ m=0 ( mv 0)的两 4 根,贝U b △ - a^i 的值为( )A . 0B . 1C . 2D .与 m 有关二 .填空题.(本大题共六小题,每小题 3分,满分18分.) 11 . (3 分)(2016?)分解因式:2a 2+ab= __________ .A . v=320tB . v=^^C . v=20tD . v= 20512. (3分)(2016?)代数式. _________________ 有意义时,实数x的取值围是.13. (3 分)(2016?)如图,虫BC 中,AB=AC , BC=12cm,点D 在AC 上,DC=4cm .将线段DC沿着CB的方向平移7cm得到线段EF,点E, F分别落在边AB , BC上,则住BF 的周长为___________________ cm.B F C14. (3分)(2016?)分式方程 * ■'的解是 ____________ .K- 315. (3分)(2016?)如图,以点O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,点P为切点,AB=12k:、;,OP=6,则劣弧AB的长为 _____________ .16. (3分)(2016?)如图,正方形ABCD的边长为1 , AC , BD是对角线.将ZDCB绕着点D 顺时针旋转45°得到ZDGH , HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②厶AED △△ED③厶DFG=112.5 °④BC+FG=1.5其中正确的结论是______________ .三、解答题B C17. (9分)(2016?)解不等式组并在数轴上表示解集3 U+2) >x+4Ita18. (9分)(2016?)如图,矩形ABCD的对角线AC,BD相交于点O,若AB=AO,求ZABD 的度数.19. (10分)(2016?)某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办玩转数学”比赛•现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为个小组打,各项成绩均按百分制记录•甲、乙、丙三个小组各项得分如表:小组研究报告小组展示答辩甲918078乙817485丙798390(1 )计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果按照研究报告占40%,小组展示占30%,答辩占30%计算各小组的成绩,哪个小组的成绩最高?(atb)2- 4ab20. (10 分)(2016?)已知A= (a, b和且a和)ab b)(1)化简A ;(2)若点P (a, b)在反比例函数y=-上的图象上,求A的值.21. (12分)(2016?)如图,利用尺规,在念BC的边AC上方作ZCAE= △KCB,在射线AE 上截取AD=BC,连接CD,并证明:CD △KB (尺规作图要求保留作图痕迹,不写作法)22. (12分)(2016?)如图,某无人机于空中A处探测到目标B , D,从无人机A上看目标B,D的俯角分别为30° 60°此时无人机的飞行高度AC为60m,随后无人机从A处继续飞行30 . 1m到达A处,(1 )求A, B之间的距离;(2)求从无人机A'上看目标D的俯角的正切值.23. (12分)(2016?)如图,在平面直角坐标系xOy中,直线y= - x+3与x轴交于点C,与直线AD 交于点A (2,丄),点D的坐标为(0, 1)3 3(1)求直线AD的解析式;(2)直线AD与x轴交于点B,若点E是直线AD上一动点(不与点B重合),当组OD与伯CE相似时,求点E的坐标.24. (14分)(2016?)已知抛物线y=mx2+ (1 - 2m) x+1 - 3m与x轴相交于不同的两点A、B(1 )求m的取值围;(2)证明该抛物线一定经过非坐标轴上的一点P,并求出点P的坐标;(3)当一v mW时,由(2)求出的点P和点A , B构成的岔BP的面积是否有最值?若有,求出该最值及相对应的m值.425. (14分)(2016?)如图,点C为△KBD的外接圆上的一动点(点C不在小’上,且不与点 B , D 重合),ZACB= A\BD=45 °(1)求证:BD是该外接圆的直径;(2)连结CD,求证:.:/AC=BC+CD ;(3 )若△KBC关于直线AB的对称图形为△XBM,连接DM,试探究DM2,AM 2,BM 2三者之间满足的等量关系,并证明你的结论.2016 年省市中考数学试卷参考答案一、选择题.1.C2.A3.D4.A5.D6.B7.D8.C9.B10.A二.填空题11.a(2a+b)12. x 毛13.1314. x= - 115.8 n.16.①②③.三、解答题17.解:解不等式2x v 5,得:x v上,解不等式3 (x+2 )次+4,得:x>~ 1 ,△不等式组的解集为:-1 卫,3将不等式解集表示在数轴上如图:』_____ i k i.i-2 ■ 1 0 1 2^3"2解:△四边形ABCD是矩形, △OA=OC , OB=OD , AC=BD ,△\O=OB ,△\B=AO ,△\B=AO=BO ,△ △BO是等边三角形,19.解:(1)由题意可得,△△BD=60甲组的平均成绩是:乙组的平均成绩是:(分),(分),丙组的平均成绩是:'■ :- •(分),从高分到低分小组的排名顺序是:丙>甲>乙;(2)由题意可得,甲组的平均成绩是:(分)40K-H30U30% '乙组的平均成绩是:(分)40S-H30U30% -2-1'丙组的平均成绩是:. (分),由上可得,甲组的成绩最高.20.△ib= - 5,解:图象如图所示,解:(1) A=(2) △点P (a, b)在反比例函数y - 上的图象上,21.△XD △:B ,△\D=BC ,△四边形ABCD 是平行四边形,△XB △CD .22.解:(1)由题意得:^\BD=30 ° ^\DC=60 ° 在 Rt ZABC 中,AC=60m ,AC 60皿^^= 丁 =120(m );2(2)过A 作A E △BC 交BC 的延长线于 E ,连接A'D , 则 A E=AC=60 , CE=AA '=30 .:,在 Rt ZABC 中,AC=60m , ZADC=60 °答:从无人机 A'上看目标D 的俯角的正切值是△ △AC= △XCB ,△an/ADNan 山 Dc=」=「;〔=#=訂.△DE=50 二(2)力直线AD与x轴的交点为(-2, 0), △OB=2,△点D的坐标为(0,1),△OD=1,△= - x+3与x轴交于点C (3, 0),△OC=3,△BC=5△BE=2 一 , CE= ! ■,或CE= =,厶23.解:(1)设直线AD的解析式为y=kx+b ,将A ( D ( 0,1)代入得:故直线AD的解析式为: y=3x+1 ;2△ △OD与△BCE相似,24.(1) 解:当m=0时,函数为一次函数,不符合题意,舍去;当m 旳时,△抛物线y=mx 2+ (1 - 2m ) x+1 - 3m 与x 轴相交于不同的两点 A 、B, 2 2 △ △ (1 - 2m ) - 4X n X (1 - 3m ) = (1 - 4m ) >0,△ - 4m 和,4(2) 证明:△抛物线 y=mx 2+ (1 - 2m ) x+1 - 3m ,△(=m (x 2- 2x - 3) +x+1 ,抛物线过定点说明在这一点 y 与m 无关,显然当x 2- 2x - 3=0时,y 与m 无关,解得:x=3或x= - 1,当x=3时,y=4,定点坐标为(3, 4);当x= - 1时,y=0,定点坐标为(-1, 0),△P 不在坐标轴上, △P ( 3, 4);(3)解:|AB|=|XA - XB|= ■Jb,- (1-2口)^-缶仃-血)4,此时△ABP的面积最大,没有最小值,则面积最大为:一|AB|y p_、2::g q 25.解:(1)△「=「・,△△CB_ ^\DB_45 °△△BD_45 °△△AD_90 °△3D是ZABD外接圆的直径;(2)在CD的延长线上截取DE_BC ,=1一1=1 丄-4|,ITni△——-- 4V 0,IT△AB|最大时,31解得:m=8, 或m= £63(舍去),△当m=8 时,31 |AB|有最大值——,△△BD= △kDB ,△\B=AD ,△△DE+ ^\DC=180 °△XBC+ ZADC=180 ° △ △BC= △XDE , 在△XBC 与^ADE中,fA&=AD{ ZABC=ZADE ,I BODE△ △BC △△DE ( SAS),△ △AC= ADAE ,△△AC+ △:AD= △DAE+ ZCAD ,△△AD= ©AE=90 °△ T i=丄i△A CD= ^BD=45 °△△AE是等腰直角三角形,△. AC=CE ,△ . ':AC=CD+DE=CD+BC ;(3)过点M作MF ZMB于点M,过点A作AF△MA于点A , MF与AF交于点F,连接BF ,由对称性可知:mMB=ACB=45 °△△MA=45 °△△MF是等腰直角三角形,△\M=AF,MF= . ':AM,△ △AF+ ZMAB= ^3AD+ ZMAB,△ △AB= △MAD , 在△XBF与△KDM中,Z FAB=Z JHAD,AB 二AD△ △BF △△DM ( SAS), △3F=DM ,在RtZBMF 中,2 2 2△3M2+MF2=BF2,2 2 2△3M 2+2AM 2=DM2.OC。

广东省2016年中考数学试题(含解答)

广东省2016年中考数学试题(含解答)

2016年广东省初中毕业生学业考试数 学一、选择题(本大题10小题,每小题3分,共30分) 1、-2的绝对值是( )A 、2B 、-2C 、12D 、1-2答案:A考点:绝对值的概念,简单题。

解析:-2的绝对值是2,故选A 。

2、如图1所示,a 和b 的大小关系是( ) 图1 A 、a <b B 、a >b C 、a=b D 、b =2a 答案:A考点:数轴,会由数轴上点的位置判断相应数的大小。

解析:数轴上从左往右的点表示的数是从小往大的顺序,由图可知b >a ,选A 。

3、下列所述图形中,是中心对称图形的是( )A 、直角三角形B 、平行四边形C 、正五边形D 、正三角形 答案:B考点:中心对称图形与轴对称图形。

解析:直角三角形既不是中心对称图形也不轴对称图形,正五边形和正三角形是轴对称图形,只有平行四边是中心对称图形。

4、据广东省旅游局统计显示,2016年4月全省旅游住宿设施接待过夜旅客约27700000人,将27700000用科学计数法表示为( )A 、70.27710⨯ B 、80.27710⨯ C 、72.7710⨯ D 、82.7710⨯ 答案:C考点:本题考查科学记数法。

解析:科学记数的表示形式为10na ⨯形式,其中1||10a ≤<,n 为整数,27700000=72.7710⨯。

故选C 。

5、如图,正方形ABCD 的面积为1,则以相邻两边 中点连接EF 为边的正方形EFGH 的周长为( )baABD C GFEA 、2B 、22C 、21+D 、221+ 答案:B考点:三角形的中位线,勾股定理。

解析:连结BD ,由勾股定理,得BD =2,因为E 、F 为中点,所以,EF =22,所以,正方形EFGH 的周长为22。

6、某公司的拓展部有五个员工,他们每月的工资分别是3000元,4000元,5000元,7000元和10000元,那么他们工资的中位数为( )A 、4000元B 、5000元C 、7000元D 、10000元 答案:B考点:考查中位数的概念。

广东省广州市2016年中考数学试题(含答案)

广东省广州市2016年中考数学试题(含答案)

秘密★启用前2016年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;同时填写考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示()A、支出20元B、收入20元C、支出80元D、收入80元[难易]较易[考点]正数与负数的概念与意义[解析]题中收入100元记作+100,那么收入就记为正数,支出就记为负数,所以-80就表示支出80元,所以答案C正确[参考答案]C2.图1所示几何体的左视图是()[难易]较易[考点]视图与投影——三视图[解析]几何体由两个圆锥组合而成,根据圆锥的三视图就可以得到题中图的左视图为A[参考答案]A3.据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A、6.59´104B、659´104C、65.9´105D、6.59´106[难易]较易[考点]科学计数法[解析]由科学记数法的定义可知6590000=6.59´106,所以D正确[参考答案]D4.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A、110B、19C、13D、12[难易]较易[考点]概率问题[解析]根据题意可知有10种等可能的结果,满足要求的可能只有1种,所以P(一次就能打该密码)=1 10[参考答案]A5.下列计算正确的是()A、x2y2=xy(y¹0)B、xy2¸12y=2xy(y¹0)C、=x³0,y³o)D、(xy3)2=x2y6[难易]较易[考点]代数式的运算[解析] A 、显然错误; B 、xy 2¸12y=xy 2·2y =2xy 3;C 、,D 、根据幂的乘方运算法则就可以得出答案.[参考答案] D6. 一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;同时填写考场室号、座位号,再用2B 铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B 铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题 共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1. 中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示( ) A 、支出20元 B 、收入20元 C 、支出80元 D 、收入80元 2. 图1所示几何体的左视图是( )3. 据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为( )A 、6.59´104B 、659´104C 、65.9´105 D 、 6.59´1064. 某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是( )A 、110 B 、19 C 、13D 、12 5. 下列计算正确的是( )A 、x 2y2=xy (y ¹0) B 、xy 2¸12y =2xy (y ¹0)C 、x ³0,y ³o ) D 、(xy 3)2=x 2y 66. 一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。

当他按照原路返回时,汽车的速度v 千米/小时与时间t 小时的函数关系是( )A 、v=320tB 、v =320tC 、v=20tD 、v =20t7. 如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE 是AC 的垂直平分线,DE 交AB 于D ,连接CD ,CD =( )A 、3B 、4C 、4.8D 、5图2A8. 若一次函数y =ax +b 的图像经过第一、二、四象限,则下列不等式中总是成立的是( )A 、a 2+b >0B 、a -b >0C 、 a 2+b >0D 、a +b >09. 对于二次函数y =-14x 2+x -4,下列说法正确的是( ) A 、当x>0,y 随x 的增大而增大 B 、当x=2时,y 有最大值-3 C 、图像的顶点坐标为(-2,-7) D 、图像与x 轴有两个交点10. 定义新运算,,若a 、b 是方程x 2-x +14m =0的两根,则b *b -a *a 的值为 ( )A 、0B 、1C 、2D 、与m 有关第二部分(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,满分18分.) 11. 分解因式:22a +ab = .12.x 的取值范围是 .13. 如图3,△ABC 中,AB =AC ,BC =12cm ,点D 在AC 上,DC =4cm ,将线段DC 沿CB 方向平移7cm 得到线段EF ,点E 、F 分别落在边AB 、BC 上,则△EBF 的周长是cm.14. 方程12=2x x -3的解是 .15. 如图4,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P是切点,AB =OP =6则劣弧AB 的长为 .(结果保留π)图416. 如图5,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转45得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED ③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5H三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明或演算步骤.)25.(本小题满分14分)如图10,点C为△ABD外接圆上的一动点(点C不在错误!未找到引用源。

上,且不与点B,D重合),∠ACB=∠ABD=45°.(1)求证:BD是该外接圆的直径;(2)连结CD,求证:错误!未找到引用源。

AC=BC+CD;(3)若△ABC关于直线AB的对称图形为△ABM,连接DM,试探究错误!未找到引用源。

,错误!未找到引用源。

三者之间满足的等量关系,并证明你的结论.2016年广州市中考数学试卷参考答案与试题解析第一部分(选择题共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)17.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示()A、支出20元B、收入20元C、支出80元D、收入80元[难易]较易[考点]正数与负数的概念与意义[解析]题中收入100元记作+100,那么收入就记为正数,支出就记为负数,所以-80就表示支出80元,所以答案C正确[参考答案]C18.图1所示几何体的左视图是()[难易]较易[考点]视图与投影——三视图[解析]几何体由两个圆锥组合而成,根据圆锥的三视图就可以得到题中图的左视图为A[参考答案] A19.据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A、6.59´104B、659´104C、65.9´105D、6.59´106[难易]较易[考点]科学计数法[解析]由科学记数法的定义可知6590000=6.59´106,所以D正确[参考答案] D20.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A、110 B、19 C、13D、12[难易]较易[考点]概率问题[解析]根据题意可知有10种等可能的结果,满足要求的可能只有1种,所以P(一次就能打该密码)=1 10[参考答案] A21.下列计算正确的是()A、x2y2=xy(y¹0) B、xy2¸12y=2xy(y¹0)C、x³0,y³o) D、(xy3)2=x2y6[难易]较易[考点]代数式的运算[解析] A、显然错误; B、xy2¸12y=xy2·2y=2xy3;C、D、根据幂的乘方运算法则就可以得出答案. [参考答案] D22.一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。

当他按照原路返回时,汽车的速度v 千米/小时与时间t小时的函数关系是()A、v=320tB、v=320tC、v=20tD、v=20t[难易]较易[考点]反比例函数,行程问题[解析]由路程=速度´时间,可以得出甲乙两地的距离为320千米,返程时路程不变,由路程=速度´时间,得速度=路程¸时间,所以v=320 t[参考答案] B23.如图2,已知三角形ABC,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于D,连接CD,CD=( )A、3B、4C、4.8D、5图2A[难易] 中等[考点] 勾股定理及逆定理,中位线定理,中垂线的性质[解析] 因为AB=10,AC=8,BC=8,由勾股定理的逆定理可得三角形ABC 为直角三角形,因为DE 为AC 边的中垂线,所以DE 与AC 垂直,AE=CE=4,所以DE 为三角形ABC 的中位线,所以DE=12BC =3,再根据勾股定理求出CD=5 [参考答案] D 24. 若一次函数y =ax +b 的图像经过第一、二、四象限,则下列不等式中总是成立的是( )A 、a 2+b >0B 、a -b >0C 、 a 2+b >0D 、a +b >0[难易] 较易[考点] 一次函数,不等式 [解析] 因为一次函数y =ax +b 的图像经过第一、二、四象限,所以a <0,b >0,所以a <0,b >0,A 错;a -b <0,B 错;a 2>0,所以a 2+b >0,所以C 正确;a +b 的大小不能确定[参考答案] C 25. 对于二次函数y =-14x 2+x -4,下列说法正确的是( ) A 、当x>0,y 随x 的增大而增大 B 、当x=2时,y 有最大值-3 C 、图像的顶点坐标为(-2,-7) D 、图像与x 轴有两个交点[难易] 中等[考点] 二次函数的性质 [解析] 二次函数y =-14x 2+x -4=-14(x -2)2-3,所以二次函数的开口向下,当x =3时,取得最大值,最大值为-3,所以B 正确。

[参考答案] B26.定义新运算,,若a、b是方程x2-x+14m=0的两根,则b*b-a*a的值为 ( )A、0B、1C、2D、与m有关[难易]中等[考点]新定义运算,一元二次方程[解析]b*b-a*a=b(1-b)-a(1-a)=b-b2-a+a2,因为a,b为方程x2-x+14m=0的两根,所以a2-a+14m=0,化简得a2-a=-14m,同理b2-b=-14m,代入上式得原式=-(b2-b)+a2-a=-(-14m)+(-14m)=0[参考答案] A第二部分(非选择题共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)27.分解因式:22a+ab= .[难易]容易[考点]因式分解,提取公因式[解析]因式分解三大步骤:提取公因式,公式法,十字相乘,本题仅需要提取公因式,即2a2+ab=a(2a+b)[参考答案]a(2a+b)28.x的取值范围是 .[难易]容易[考点]根式有意义[解析]有意义题型主要有根式,分式有意义本题仅考察根式有意义,较简单,满足被开方式非负即可.即9-x³0,x£9[参考答案]x£929.如图3,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是cm.[难易] 容易[考点] 平移 ,等腰三角形等角对等边 [解析] ∵CD 沿CB 平移7cm 至EF∴=∴=-===∠=∠=∴∠=∠∴==∴=++=++=//,75,4,,444513EBF EF CD CF BF BC CF EF CD EFB C AB AC B C EB EF C EB EF BF [参考答案] 13 30. 方程12=2x x -3的解是 . [难易] 容易[考点] 分式方程[解析] 12x =2x -34x =x -33x =-3x =-1检验:将x =-1,代入2x (x -3)¹0,\x =-1是方程的解[参考答案] x =-131. 如图4,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P是切点,AB =OP =6则劣弧AB 的长为 .(结果保留π)图4[难易] 容易[考点] 勾股定理,三角函数,求弧长,垂径定理 [解析] 因为AB 为切线,P 为切点,︒︒∴⊥∴===∴=⊥=∴∠=∠=,6,12,260,60OP AB AP BP OP OB OP AB OB OP POB POA \劣弧AB 所对圆心角 ÐAOB =120°l AB =120180p r =23p ·12=8p [参考答案] 8p32. 如图5,正方形ABCD 的边长为1,AC 、BD 是对角线,将△DCB 绕点D 顺时针旋转45得到△DGH , HG 交AB 于点E ,连接DE 交AC 于点F ,连接FG ,则下列结论:①四边形AEGF 是菱形 ②△AED ≌△GED ③∠DFG =112.5︒ ④BC +FG =1.5其中正确的结论是 .(填写所有正确结论的序号)图5H【难易】中等【考点】图形的旋转,全等三角形,等腰直角三角形,菱形的判定 【解析】∵旋转∴HD=BD=2 ∴HA=12-∵∠H=45° ∠HAE=45° ∴△HAE 为等腰直角三角形 ∴AE=12- HE=22-∴EB=22)12(1-=-- 又∵∠EGB=90° ∠EBG=45° ∴△EGB 为等腰三角形,EG=12- ∵EA=EG 且EA ⊥DA ,EG ⊥DG ∴ED 平分∠ADG ∴∠EDG=22.5°又∵∠DCA=45° ∠CDG=45°∴∠CDF=∠CFD=67.5°, ∴CF=CD=1 , ∴AF=12-又∵∠EAC=∠BEG=45°,∴AF ∥EG 又∵AF=AE=EG=12-∴四边形AEGF 是菱形,且△AED ≌△GED∴∠FGD=∠ABD=45° ∠DFG=180°-∠FGD-∠FDG =112.5° BC+FG=2121=-+【参考答案】①②③三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明或演算步骤.)17.(本小题满分9分)解不等式组:2x <53(x +2)≥x +4⎧⎨⎩并在数轴上表示解集.【难易】简单 【考点】解不等式组【解析】解法常规,注意在数轴上表示解集。

相关文档
最新文档