应用动量守恒定律研究人船模型问题
高中物理教研论文巧解人船模型问题(最全)word资料
高中物理教研论文巧解人船模型问题(最全)word资料巧解人船模型问题——平均动量守恒定律的应用1.平均动量守恒定律当系统在全过程中动量守恒时,则这一系统在全过程中的平均动量也守恒。
在符合动量守恒的条件下,如果物体做变速运动,为了求解位移,可用平均动量及其守恒规律来处理。
2. 人船模型如果系统是由两(或多)个物体组成的,合外力为零,且相互作用前合动量为零,我们称为人船模型。
(1)一人一船模型:如图1所示人由左端走到右端的过程中, 由动量守恒定律,得 02211=-v m v m由于在全过程动量都守恒,所以有 0211=---v m v m同乘以时间t ,得 0211=---t v m t v m即 2211s m s m =此为一人一船模型的平均动量守恒方程,且知位移与质量成反比。
又由图知 L s s =+21,解得两物体位移分别为L m m m s 2121+= Lm m m s 2112+=(2)二人一船模型:如图2所示,a 、b 两人交换位置过程中,设船c 向左运动,同理可得平均动量守恒定律的方程c c b b a a s m s m s m +=3.一题三法求解人船模型例题 如图2所示,a 、b 两人质量分别为a m 和b m ,船c 的质量为c m ,船长为L ,现在a 、b 交换位置,求船c 在该过程的位移?法1 由二人一船模型得 c c b b a a s m s m s m +=位移关系 L s s c a =+ L s s c b =-联立解得Lm m m m m s cb a ba c ++-=此解法作图较简单,但位移关系和解方程都较复杂。
法2 如图3所示,先令b 不动,a 走到右端,由一人一船模型,得 Lm m m m s cb a ac ++=1再令a 不动,让b 走到左端,在该过程中同理可得L m m m m s cb a bc ++=2由图知L m m m m m s s s cb a ba c c c ++-=-=21此解法把问题化为两个一人一船模型,根据位移和质量的反比关系可直得到结果。
人船模型解析版
人船模型一、模型建构1、人船问题:人船系统在相互作用下各自运动,运动过程中该系统所受到的合外力为零,即人和船组成的系统在运动过程中动量守恒。
2、两类问题第一类:直线运动的人船模型如图,质量为M 的船停在静止的水面上,船长为L ,一质量为m 的人,由船头走到船尾,若不计水的阻力,则整个过程人和船相对于水面移动的距离?设人在运动过程中,人和船相对于水面的速度分别为v 和u 由动量守恒定律得:mv Mu =由于人在走动过程中任意时刻人和船的速度v 和u 均满足上述关系mv M u =x t ν=,y u t=可得:mx My =x y L +=解得:M x L m M =+ my L m M=+第二类:曲线运动的人船模型如图所示,小球质量为m ,轨道质量为M ,半径为R ,将m 静止释放,不计阻力,分析结论.一、解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量 二、解题方法: 动量守恒定律 三、解题关键点: 1、确定哪个方向动量守恒 2、确定两物体位移关系 四、解题易错点位移关系运动到最低点,水平方向上动量守恒动量守恒:mv m=Mv M移动距离:mv m t=Mv M t即mx m =Mx M 位移之和:x m+x M =R联立解得:x m=Mm+M R,x M =mm+M R运动到另外一端最高点,水平方向上动量守恒动量守恒:mv m=Mv M移动距离:mv m t=Mv M t即mx m =Mx M位移之和:x m+x M =2R联立解得:x m=Mm+M·2R,x M =mm+M·2R.二、例题精析例1、气球质量200kg截有质量为50kg的人,静止在空中距地面20m 高的地方,气球下悬一质量不计的绳子,此人想从气球上沿绳慢慢下滑至地面,为安全到达地面,则这根绳至少多长?解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量解题思路:1、确定系统动量守恒2、列平均速度动量守恒式3、列两物体位移关系式4、求解未知量【解答】解:人与气球组成的系统竖直方向动量守恒由动量守恒得:m1v1﹣m2v2=0即:m1﹣m2=0绳子长度:L=s气球+s人解得:L=25m例2、如图所示,质量分别为m1和m2(m1>m2)的两个人分别站在静止于光滑水平面上的质量为M的小车的两端,小车长为L,当两人交换位置时,车将向哪个方向移动?移动多大距离?【解答】设当两人交换位置时,车将向右移动的距离为x。
动量守恒(人船模型专题)教学提纲
S2
S1
b
块由斜面顶部无初速滑到底部 时,劈移动的距离是S2多少?
分析和解答:劈和小物块组成的系统水平方向不受外力,
故水平方向动量守恒,且初始时两物均静止,设物块的水平
位移为s1,故由动量守恒定律
可得 ms1=Ms2
由几何关系可得:s1=b-s2
联立上式得 s2=mb/(M+m) 即为M发生的位移。
小结
动量守恒定律的应用Ⅰ
人船模型及应用
制作:朱正泽
复习
动量守恒定律的要点: 1、内容: 如果一个系统不受外力或所受外力之和
为零,则这个系统的总动量保持不变. 2、矢量表达式:
m1v1+m2v2=m1v1′ห้องสมุดไป่ตู้m2v2′
3、条件:系统不受外力或所受外力之和为零。
[演示1]一只小船,停在静水中,船头有一个人从船 头走向船尾,不计水的阻力。
S1
S2
代入数据联立解得:S1=8m, S2=2m
如图所示,质量为M=200kg,长为b=10m的平板车静止在光滑的水平面 上,车上有一个质量为m=50kg的人,人由静止开始从平板车左端走到 右端,求此过程中,车相对地面的位移大小?
[变式练习1]若将此题中的人换成相同
a
质量,长为a=2m的小车 m
b
(如图所示),结果又如何? M
解:由题意仍有:
—SS—12
=
M —m—
此时,小车不能视为质点
S1
S2
由几何关系知相对位移为(b-a),所以有
S1+S2=(b-a) 代入数据联立解得:S1=6.4m, S2=1.6m
m [变式3]斜面
一个质量为M,底面边长为 b
人船模型
O O ′ A B O ″ O bR 2R 人、船问题模型(C)动量守恒定律的两个推论:推论1:当系统的动量守恒时,任意一段时间内的平均动量也守恒;推论2:当系统的动量守恒时,系统的质心保持原来的静止或匀速直线运动状态不变。
例题、如图所示,长为l 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,不计水的阻力。
当人从船头走到船尾的过程中,船和人对地的移位各是多大? 解一:设人行走的平均速度为v 1,在时间t 内从船头走到船尾对地位移为S 1,人行走时航速(平均)为v 2,位移为S 2,据动量守恒有 mv 1-Mv 2=0即 mS 1/t-MS 2/t=0 ∴S 1/S 2=M/m而S 1+S 2=l 解得S 1=Ml/(M+m) S 2=ml/(M+m)解二:系统质心位置保持不动,开始时人、船质心为O ′。
且OO ′=A O M m ', OO ′+O ′A=l/2 ∴ l m M M O O +=' 当人从船头走到船尾时,由于对称2l m M m O O ⋅+='' ∴ 船的位移l m M m O O S ⋅+='=22, l mM M S l S ⋅+=-=21 1.静止在空中的气球质量为M ,下面拖一条质量不计的软梯,质量为m 的人站在软梯上端距地面高为h 。
求:⑴人安全不能确定地面软梯的最小长度⑵若软梯长为h ,则人从软梯上端到下端时,人距地面还有多高?2.一质量为M 、底面边长为b 的三角形劈块静止于光滑水平地面上,如图。
有一质量为m 的物块由斜面顶部无初速滑到底部的过程中,劈块移动的距离是多少?3.某人在一只静止于水面上的小船上练习射出。
船、人连同枪(不包括子弹)及靶的总质量为M ,靶立于船头,枪内有n 颗质量均为m 的子弹,枪口到靶的距离为l ,子弹射出枪口时相对地面的速度为v ,在发射后一颗子弹时,前一颗子弹已陷入靶中,则在发射完n 颗子弹后小船后退的距离是多少?4.质量为m 、半径为R 的小球,放在半径为2R 、质量为2m 的大空心球内,大球开始静止在光滑水平面上。
人船模型
人船模型在利用动量守恒定律解题的题型中有一种特殊的题型,那就是反冲。
这种题型可归结为“人船模型”问题,其特点是:整个系统由两个物体组成,开始系统处于静止状态,然后仅在内力作用下各自向相反的方向运动,用一句成语把这个过程概括为“一分为二”。
“一分为二”分的是两个相互作用物体的“相对位移”但并不是平分,除非两个物体的质量相同。
这样即使不画图也能分析出来。
例1.质量为m 的人站在船尾上,船的质量为M ,长为L ,整个静止在水面上(水的阻力不计),现在从船尾向船头走去,当人走到船头时,船移动的距离为多少?解析:(本题分的是船长L )人在船上走动,无论人怎样走动(匀速、变速),选人和船为系统平均动量守恒。
m v 人=M 船vm t v M t v 船人=mS 人=MS 船m(L -S 船)=M S 船S 船=Mm mL + 变式:质量为200Kg ,长为3.2m 的小船静止在水面上,船尾站着一个质量为70 Kg 的人,船头站着一个质量为50 Kg 的人,不计水的阻力,当两个人交换位置后,船的位移大小是多少?解析:两人交换位置相当于20 Kg 的人从船尾走到船头只不过船的质量不是200 Kg 而是300Kg以下解法同上,S 船=M m mL +=300202.320+⨯m=0.2m 例2.一个质量为M ,底面长为b 的三角形劈静止于光滑的水平桌面上,如图,有一质量为m 的小球由斜面顶部无初速滑到底部时,劈移动的距离为多少?S 人S 船S 人S 船 50Kg 70 Kg解析:球和劈组成系统在水平方向上动量守恒(本题分的是底边长m 球v =M 劈vmS 球=MS 劈m(b-S 劈)=MS 劈S 劈=b Mm m + 例3.如图质量为m ,半径为R 的小球,放在半径为2R ,质量为2m 的大空心球内,大球开始静止在光滑水平面上,当小球从图示位置无初速地沿大球内壁滚到最低点时,大球移动的距离是多少?解析:小球和大球在水平面上动量守恒( m 小v =2m 大vmS 小=2mS 大S 小=2S 大R-S 大=2S 大S 大=31R 例4.如图所示,AB 为一光滑水平横杆,杆上套一质量为m 1 的小圆环,环上系一长为L 质量不计的细绳,绳的另一端拴一质量为m 2的小球,现将绳拉直,且与AB 平行,由此位置释放小球,当摆到与水平方向夹角为θ的位置时,求环移动距离为多少?解析:(分的是绳长L ) m 1S 环=M 2S 球m 1S 环=M 2(L-Lcos θ-S 环)S 环=212cos 1(m m L m +-)θ 劈球S 小+S 大 A B。
在四种常见模型中应用动量守恒定律(解析版)
在四种常见模型中应用动量守恒定律导练目标导练内容目标1人船模型和类人船模型目标2反冲和爆炸模型目标3弹簧模型目标4板块模型【知识导学与典例导练】一、人船模型和类人船模型1.适用条件①系统由两个物体组成且相互作用前静止,系统总动量为零;②动量守恒或某方向动量守恒.2.常用结论设人走动时船的速度大小为v 船,人的速度大小为v 人,以船运动的方向为正方向,则m 船v 船-m 人v 人=0,可得m 船v 船=m 人v 人;因人和船组成的系统在水平方向动量始终守恒,故有m 船v 船t =m 人v 人t ,即:m 船x 船=m 人x 人,由图可看出x 船+x 人=L ,可解得:x 人=m 船m 人+m 船L ;x 船=m 人m 人+m 船L3.类人船模型类型一类型二类型三类型四类型五1有一条捕鱼小船停靠在湖边码头,小船又窄又长(估计一吨左右),一位同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,轻轻从船尾上船,走到船头后停下来,而后轻轻下船,用卷尺测出船后退的距离为d ,然后用卷尺测出船长L ,已知他自身的质量为m ,则渔船的质量()A.m (L +d )dB.md (L -d )C.mL dD.m (L -d )d【答案】D【详解】因水平方向动量守恒,可知人运动的位移为(L -d )由动量守恒定律可知m (L -d )=Md解得船的质量为M =m (L -d )d故选D 。
2如图所示,滑块和小球的质量分别为M 、m 。
滑块可在水平放置的光滑固定导轨上自由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为L ,重力加速度为g 。
开始时,轻绳处于水平拉直状态,小球和滑块均静止。
现将小球由静止释放,下列说法正确的是( )。
A.滑块和小球组成的系统动量守恒B.滑块和小球组成的系统水平方向动量守恒C.滑块的最大速率为2m 2gLM (M +m )D.滑块向右移动的最大位移为mM +mL【答案】BC【详解】A .小球下摆过程中竖直方向有分加速度,系统的合外力不为零,因此系统动量不守恒,A 错误;B .绳子上拉力属于内力,系统在水平方向不受外力作用,因此系统水平方向动量守恒,B 正确;C .当小球落到最低点时,只有水平方向速度,此时小球和滑块的速度均达到最大,取水平向右为正方向,系统水平方向动量守恒有Mv 1-mv 2=0由系统机械能守恒有mgL =12mv 22+Mv 21解得滑块的最大速率v 1=2m 2gLM (M +m ),C 正确;D .设滑块向右移动的最大位移为x ,根据水平动量守恒得M x t -m 2L -x t =0解得x =2mM +mL ,D 错误;故选BC 。
高中物理 人船模型 易懂
重难点 人船模型1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒。
在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。
这样的问题即为“人船模型”问题。
2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0。
(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1。
(3)应用x 1x 2=v 1v 2=m 2m 1时要注意:v 1、v 2和x 1、x 2一般都是相对地面而言的。
方法讲解例1(第一个层次)如图所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=L ,解得x 1=M m +M L ,x 2=m m +M L 。
答案:m m +M L M m +ML方法讲解例2(第二个层次)如图所示,船长为2L 、质量为M 的小船停在静水中,在船中央有一个旗杆,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,则船和人相对地面的位移各为多少?解析:因为动量守恒,当人向左运动时,船向右运动。
设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止。
因整个过程中动量守恒,所以有mv 1=Mv 2设整个过程中的平均速度大小为v -1、v -2,则有m v -1=M v -2前半和后半程是一样的;上式两边乘以时间t ,有m v -1t =M v -2t ,即mx 1=Mx 2且x 1+x 2=2L ,解得x 1=2M m +M L ,x 2=2m m +M L 。
动量守恒定律在“人船模型”的运用.doc
动量守恒定律在“人船模型”的运用动量守恒定律比牛顿运动定律的适用范围更广泛,是自然界的基本守恒规律之一,它既适用于宏观物体,也适用于微观粒子;既适用于低速运动物体,也适用于高速运动物体,因此,是高中物理的重点教学之一,也是高考的重要考点之一。
利用此定律只需考虑相互作用的物体作用前后动量变化的关系,从而省去了具体细节的讨论,使同学们解决一些力学问题时更简单、快捷。
“人船模型”问题是一种十分常见的题型,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给同学们的解题带来意想不到的效果。
1.动量守恒定律及其两个推论:动量守恒定律:如果一个系统不受外力或所受外力的矢量和为零,那么这个系统的总动量保持不变。
推论1:若系统的动量守恒,则系统任意一段时间内的平均动量也守恒推论2:若系统的动量守恒,则系统的质心将保持原来匀速直线运动或静止的状态不变2.人船模型“人船模型”是由人和船两个物体构成的系统。
选取人和船为研究对象,该系统在人和船相互作用下各自运动,由于忽略水的阻力,运动过程中该系统所受到的合外力为零,即人和船组成的系统在水平方向上动量始终是守恒的。
以下分别以“一人一船”、“二人一船”模型以及人船模型的简单变形进行讨论:(1)“一人一船”模型:如图1所示,静水面上停有质量m 2,长为L 的小船,质量为m 1的人从船头走到船尾,忽略水的阻力。
人从船头走到船尾的过程中,由水平方向动量守恒可得:02211=-v m v m 由于在整个过程动量都守恒,所以根据推论1有:0211=---v m v m同乘以时间t ,得:0211=---t v m t v m , 即:2211s m s m =此为“一人一船”模型的动量守恒方程,且知人船之间的位移与质量成反比。
又由图知人船位移之和为L ,即:L s s =+21, 解得两物体位移分别为L m m m s 2121+=L m m m s 2112+= (2)“二人一船”模型如图2所示,小船c 停在静水面上,a 、b 两人从长为L 的小船上交换位置过程中,设船c 向左运动,同理可得动量守恒定律的方程: c c b b a a s m s m s m +=(3)“人船模型”的变形变形1:如图所示,质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,现人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离?分析:由于开始人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零,即竖直方向系统总动量守恒。
3.动量守恒定律的应用人船模型
3. 推论: m1s1=m2s2 4. 使用时应明确v1、 v2 、s1、s2 必须是 相对同一参照系(一般取地面)的大小.
例题9:某人在船上练习射击,人 在船的一端,靶在船的另一端,相
距为L,人、船、枪(不含子弹) 、靶的总质量为M,枪膛每颗子弹 的质量为m,共有子弹n发。当人把
2. 不需考虑过程的细节, 只需考虑初末
状态
教学目的
1、理解平均动量的概念及平均动量守 恒特点。 2、掌握“人船模型”的原理及方法。 3、会应用“人船模型”求位移等相关 物理问题。
人船模型
利用平均动量守恒求位移
播放动画
平均动量守恒求位移“模型”推导
解:以船和人为系统作为研究对象; 由于不计水的阻力,所以系统的动量守恒
课后讨论:
1.m越大,则S船也越大;反之,M越大, S船越小。
2.当M﹥﹥m时,S船→0;如:人在万吨 巨轮上行走时,S船→0;当M﹤﹤m时, 也可得到S船≈L
3.不论人怎样走动(匀速、变速),当
人从船头走至船尾时,船移动的距离 相同,而且人动船动,人停船停。
思考题:
1、一质量为M的船,静止于湖水 中,船身长L,船的两端点有质量 分别为m1和m2的人,且m1=m2,当 两人交换位置后,船身位移的大小 是多少?(不计水的阻力)
总结 :人船模型的综合 一发、散人船及人车模型(水平 二方、向劈)(斜面,弧面)和物块(水平 方三向、)气球和人(竖直方 四向、)圆环和球及圆环和环(水 处平理方此向类)题,除熟记推论外,关键是 画草图,确定位移s1和s2的关系。
作业
1.如图2所示,在光滑水平地面上,有两 个光滑的直角三形木块A和B,底边长 分别为a、b,质量分别为M、m,若M = 4m,且不计任何摩擦力,当B滑到底 部时,A向后移了多少距离?
动量守恒定律的应用人船模型
解:取人和气球为对象,系统开 始静止且同时开始运动,人下到 L 地面时,人相对地的位移为h, 设气球对地位移L,则根据推论 有 ML = mh H m L h h 得: M 因此绳的长度至少为H
地面
( M m) H Lh h M
例3、劈和物块
一个质量为M,底 面边长为 b 的劈静止 在光滑的水平面上, 见左图,有一质量为 m 的物块(可视为质点) 由斜面顶部无初速滑 到底部时,劈移动的 距离是多少?
m M
s1
b
s2
解:由推论知:mS1=MS2 而 S1+S2=b ∴ S2=mb/(M+m)
① ②
练习 一质量为M的船,静止于湖水中,船身
长为L,船的两端分别站立质量为和的人, 且m1>m2。当两人交换位置后,船的位移 是多少? 解析:设想把质量大的人看成两个人,其中一个人 的质量也为m2,则另一个人的质量为m=m1-m2,显 然当两个质量为的人互换位置后,船在原地不动。 由此题便可将本题转化为上题的物理模型。 设:船对地移动的距离为s1,质量为(m1-m2) 的人对地移动的距离为s2,则根据“人船模型”有: (M+2m2)s1=(m1_m2)s2 ① . s1+s2=L ② . . ∴ S =(m _m )L/(M+m +m )
则 ∴ ms1=Ms2
. _Ms /t 0=ms1/t 2
平均动量守恒的特点
1. 若系统在全过程中动量守恒(包括单 方向动量守恒),则这一系统在全过 程中平均动量也必定守恒。 2. 如果系统是由两个物体组成,且相 互作用前均静止,相互作用后均发 生运动, 则0=m1v1m2v2 (v1、v2是平 均速度大小)
再 见
高中物理“人船模型”问题的特点和分析
高中物理“人船模型”问题的特点和分析1.“人船模型”问题两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.这样的问题归为“人船模型”问题.2.人船模型的特点(1)两物体满足动量守恒定律:m 1v 1-m 2v 2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x 1x 2=v 1v 2=m 2m 1. (3)应用此关系时要注意一个问题:公式v 1、v 2和x 一般都是相对地面而言的.典例1 如图7所示,长为L 、质量为M 的小船停在静水中,质量为m 的人从静止开始从船头走到船尾,不计水的阻力,求船和人相对地面的位移各为多少?图7答案 m m +M L M m +ML 解析 设任一时刻人与船的速度大小分别为v 1、v 2,作用前都静止.因整个过程中动量守恒, 所以有m v 1=M v 2.而整个过程中的平均速度大小为v 1、v 2,则有m v 1=M v 2.两边乘以时间t 有m v 1t =M v 2t ,即mx 1=Mx 2.且x 1+x 2=L ,可求出x 1=M m +M L ,x 2=m m +ML . 典例2 如图8所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )图8A.mhM+m B.Mh M+mC.mh(M+m)tan αD.Mh (M+m)tan α答案C解析此题属“人船模型”问题.m与M组成的系统在水平方向上动量守恒,设m在水平方向上对地位移为x1,M在水平方向上对地位移为x2,因此有0=mx1-Mx2. ①且x1+x2=htan α.②由①②可得x2=mh(M+m)tan α,故选C.“人船模型”问题应注意以下两点1.适用条件:(1)系统由两个物体组成且相互作用前静止,系统总动量为零;(2)在系统内发生相对运动的过程中至少有一个方向的动量守恒(如水平方向或竖直方向).2.画草图:解题时要画出各物体的位移关系草图,找出各长度间的关系,注意两物体的位移是相对同一参考系的位移.。
动量守恒定律的应用之爆炸、反冲及“人船模型”(解析版)
动量守恒定律的应用之爆炸、反冲及“人船模型”1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,发生爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒。
(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸前后系统的总动能增加。
(3)位置不变:爆炸的时间极短,因而在作用过程中,物体产生的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸前的位置以新的动量开始运动。
2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动的现象。
(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向上动量守恒。
反冲运动中机械能往往不守恒。
(3)实例:喷气式飞机、火箭等都是利用反冲运动的实例。
3.“人船模型” (1)模型的适用条件物体组成的系统动量守恒且系统中物体原来均处于静止状态,合动量为0. (2)模型特点1)遵从动量守恒定律,如图所示.2)两物体的位移满足: m x 人t -M x 船t =0 x 人+x 船=L即x 人=M M +m L ,x 船=m M +m Lmv 人-Mv 船=0(3)利用人船模型解题需注意两点 1)条件①系统的总动量守恒或某一方向上的动量守恒。
②构成系统的两物体原来静止,因相互作用而反向运动。
③x 1、x 2均为沿动量方向相对于同一参考系的位移。
2)解题关键是画出草图确定初、末位置和各物体位移关系。
【典例1】如图所示,光滑水平面上有三个滑块A 、B 、C ,质量关系是m A =m C =m 、m B =m2.开始时滑块B 、C 紧贴在一起,中间夹有少量炸药,处于静止状态,滑块A 以速度v 0正对B 向右运动,在A 未与B 碰撞之前,引爆了B 、C 间的炸药,炸药爆炸后B 与A 迎面碰撞,最终A 与B 粘在一起,以速率v 0向左运动.求:(1)炸药爆炸过程中炸药对C 的冲量; (2)炸药的化学能有多少转化为机械能? 【答案】 (1)52mv 0,方向向左 (2)758mv 20【典例2】将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出,在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( )A .30 kg·m/sB .5.7×102 kg·m/sC .6.0×102 kg·m/sD .6.3×102 kg·m/s【答案】 A【解析】 燃气从火箭喷口喷出的瞬间,火箭和燃气组成的系统动量守恒,设燃气喷出后的瞬间,火箭的动量大小为p ,根据动量守恒定律,可得p -mv 0=0,解得p =mv 0=0.050 kg×600 m/s =30 kg·m/s ,选项A 正确.【典例3】如图所示,小车(包括固定在小车上的杆)的质量为M,质量为m的小球通过长度为L的轻绳与杆的顶端连接,开始时小车静止在光滑的水平面上,现把小球从与O点等高的地方释放,小车向左运动的最大位移是()A.2LMM+m B.2Lm M+mC.MLM+mD.mLM+m解题指导小球和小车在水平方向上不受外力作用,整个过程中在水平方向系统动量守恒,总动量始终为零,满足“人船模型”.【答案】B【典例4】载人气球静止于高h的空中,气球的质量为M,人的质量为m,若人沿绳梯滑至地面,则绳梯至少为多长?【答案】M+mM h。
应用动量守恒定律研究人船模型问题(含答案)
应用动量守恒定律研究人船模型问题“人船模型”是动量守恒定律的应用的一个经典模型,该模型应用的条件:一个原来处于静止状态的系统,当系统中的物体间发生相对运动的过程中,有一个方向上动量守恒。
例1.质量是M ,长为L 的船停在静止水中,若质量为m 的人,由船头走向船尾时,人行走的位移和船的位移是多少?解:不考虑水的粘滞阻力,人和船组成的系统在水平方向不受外力,系统在水平方向动量守恒,则 人船υυm M = ①人进船退,人停船停,人由船头走向船尾的这个过程中,始终满足①式,则全过程有Mm S S ===人船人船人船υυυυ ② 又 L S S =+人船 ③由②③得, L mM m S +=船 例2.一长为L ,质量为M 的船上两端分别站有甲、乙两人,质量分别为m 甲和m 乙.当两人交换位置后,船移动距离多大?其中m 甲>m 乙.解:(方法一)先作出如右草图,解法同上面例1,υυυM m m +=乙乙甲甲 ①MS S m S m +=乙乙甲甲 ② 乙S L S =+ ③L S S =+甲 ④由②③④得, L m m M m m S 乙甲乙甲++-= (方法二)等效法:把(乙甲m m -)等效为一个人,把(乙m M 2+)看成船,用例1结论,即得到L m m M m m S 乙甲乙甲++-=说明:无论甲、乙谁先走还是同时走,无论在运动过程中谁的速度大谁的速度小,也无论谁先到达船的另一头,最终的结果,船移动的方向和距离都是唯一确定的。
例3.小车静置在光滑水平面上,站在车上的人练习打靶,靶装在车上的另一端。
已知车、人、枪和靶的总质量为M (不含子弹),每颗子弹质量为m ,共n 发。
打靶时,每发子弹打入靶中,就留在靶里,且待前一发打入靶中后,再打下一发。
若枪口到靶的距离为d ,待打完n 发子弹后,小车移动的距离为_______。
解:等效为人船模型,总质量为nm 的子弹,运动到小车的另一端,则小车移动的距离可直接由例1结论得到, d nm M nm S +=车 例4.如图所示,一辆小车静止在光滑水平面上在C 、D 两端置有油灰阻挡层,整辆小车质量1㎏,在车的水平底板上放有光滑小球A 和B,质量分别为m A =1㎏,m B =3㎏,A 、B 小球间置一被压缩的弹簧,其弹性势能为6J,现突然松开弹簧,A 、B 小球脱离弹簧时距C 、D 端均为0.6m.然后两球分别与油灰阻挡层碰撞,并被油灰粘住,问:(1)A 、B 小球脱离弹簧时的速度大小各是多少?(2)整个过程小车的位移是多少?解:(1)以向左为正方向0=+B B A A m m υυ ①p B B A A E m m =+222121υυ ② 由①②得,s m A /3=υs m B /1-=υ(2)(方法一)A 以s m A /3=υ向左运动,经0.2s 和C 碰撞时,B 只前进了0.2m ,离D还有0.4m ,A 和C 碰撞,水平方向动量守恒AC A A A m m m υυ)(+= 解得,s m AC /5.1=υ碰后瞬间,A 和C 就以共同速度s m AC /5.1=υ向左运动,B 继续以s m B /1=υ的速度向右运动。
专题29 动量守恒定律的应用之人船模型-2017-2018学年高一物理专题提升之力学 含解析 精品
【专题概述】“人船模型”类习题,是利用动量守恒定律解决位移问题的例子,在这类问题中,尽管人从船头走向船尾的具体运动形式未知,但人船系统在任何时刻动量都守恒,故可以用平均动量守恒来求解,则由11220m v m v -= 得 1122m s m s =使用时应明确:1s 、2s 必须是相对同一参照系的位移大小。
当符合动量守恒定律的条件,而又涉及位移而不涉及速度时,通常可用平均动量求解。
解此类题一定要画出反映位移关系的草图。
【典例精讲】典例1 如图所示,有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L.已知他的自身质量为m ,水的阻力不计,船的质量为( )A .B .C .D .【答案】B典例2 如图所示,一个倾角为α的直角斜面体静置于光滑水平面上,斜面体质量为M ,顶端高度为h ,今有一质量为m 的小物体,沿光滑斜面下滑,当小物体从斜面顶端自由下滑到底端时,斜面体在水平面上移动的距离是( )A. B. C. D.【答案】C典例3质量m=100 kg的小船静止在平静水面上,船两端载着m甲=40 kg、m乙=60 kg的游泳者,在同一水平线上甲向左、乙向右同时以相对于岸3 m/s的速度跃入水中,如图所示,水的阻力不计,则小船的运动速率和方向为( )A. 0.6 m/s,向左B. 3 m/s,向左C. 0.6 m/s,向右D. 3 m/s,向右【答案】A【解析】甲、乙和船组成的系统动量守恒,以水平向右为正方向,开始时系统总动量为零,根据动量守恒定律有0=-m甲v甲+m乙v乙+mv,代入数据解得v=-0.6 m/s,负号说明小船的速度方向向左,故选项A正确.【总结提升】“人船模型”的问题针对的时初状态静止状态,所以当人在船上运动时,由于整个装置不受外力的作用,所以这个装置的重心不会动,并且用了平均速度代替瞬时速度,从而推导出来位移之间的关系式子。
例析“人船”模型在动量守恒定律教学中的应用
例析“人船”模型在动量守恒定律教学中的应用作者:吴思岑闫嘉琪张健来源:《物理教学探讨》2017年第09期摘要:“模型法”是高中物理习题教学的基本方法之一。
本文从“人船”模型的建立出发,探讨了“人船”模型的特点、规律、实质及其应用。
关键词:人船模型;动量守恒;习题解析中图分类号:G633.7 文献标识码:A 文章编号:1003-6148(2017)9-0052-3“人船”模型是力学问题中一个十分典型的物理模型,也是动量守恒问题中的一种特殊情形。
其物理过程类似于反冲模型,以人在船上运动为原型,所以称为“人船模型”问题。
掌握其特点、规律和实质,可以解决很多“形异质同”的问题,对于培养模型解题法也是一个很好的典例。
1 模型的建立如图1所示,长为L,质量为M的小船静止在静水中,一个质量为m的人立在船头,不计水的阻力,当人由船头走到船尾的过程中,此船的位移是多少?解析在人從船头走到船尾的过程中,由于人和船组成的系统在水平方向上不受外力作用,所以系统在水平方向上动量守恒。
解答设人的速度大小为v1,船的速度大小为v2,如图1所示。
人运动的位移大小为s1,船运动的位移大小为s2,选人运动的方向为正方向,则有mv1-Mv2=0。
点评以上就是典型的“人船”模型,人和船相对于水面的位移只与人和船的质量有关,与运动情况无关。
2 模型的基本规律2.1 力学特征“人船”模型是由人和船两个物体构成的系统,该系统在人和船相互作用下各自运动。
人动船动、人停船停、人快船快、人慢船慢,虽然相互作用的过程中人与船的运动是变速的,但运动过程中系统所受到的合外力为零保证了在运动的过程中始终满足动量守恒定律。
2.2 适用条件(1)系统总动量守恒(常见情况是系统内两个物体原来均处于静止状态),或在系统内各物体发生相对运动的过程中,至少有一个方向上(如水平方向或竖直方向)合外力为零,即该方向上动量守恒。
(2)上式中s1、s2均为动量守恒方向且是对于同一参照物的位移。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分宜中学 卢海波
动量守衡定律是自然界最重要最普遍地归律之一,利用该定律只考虑相互作用物体作用前后动量变化地关系,省去了具体细节地讨论,为我们解决力学问题提供了一种简捷地方法和思路.资料个人收集整理,勿做商业用途人船模型问题是一种很常见地题形,在研究过程当中,如果能恰当地应用动量守恒定律进行解题,会给我们带来意想不到地效果.资料个人收集整理,勿做商业用途[例] 如图所示,静水面上停有一小船,船长 米,质量 千克,一人从船头走到船尾,人地质量 千克.那么,船移动地距离为多少?(水地阻力可以忽略不计)资料个人收集整理,勿做商业用途过程分析 当人从船头走到船尾,通过脚与船发生了作用(也可以认为走动过程就是人与船发生间歇性碰撞地过程).选取人和船为研究对象,由于不计水地阻力,所以系统在水平方向上动量守恒.资料个人收集整理,勿做商业用途解:设人从船头走到船尾,船对地地就离为,则人对地移动了 ,
根据动量守恒定律可得
( )
解得 ( ) *( ) 米
此题虽然很简单,但所展示地物理模型很重要,如果真正掌握了此题地解法,那么,下面几道题完全可以做到同法炮制,快速求解.资料个人收集整理,勿做商业用途[例] 一质量为地船,静止于湖水中,船身长,船地两端点有质量分别为和地人,且>,当两人交换位置后,船身位移地大小是多少?(不计水地阻力)资料个人收集整理,勿做商业用途过程分析 此题初看上去较上题繁杂得多,物理模型也迥然相异,但实质上是大同小异,如出一辙.试想,若把质量大地人换成两个人,其中一个人地质量为,另一个人地质量为 .由上一题可知,当两个质量都为地人互换位置之后,船将原地不动.这样一来,原来地问题就转化为上题所示地物理模型了,当质量为 地人从船地一端走到另一端,求船地位移.资料个人收集整理,勿做商业用途解:设船对地移动地位移为,则质量为 地人对地移动地位移就是 ,由动量守恒定律可得资料个人收集整理,勿做商业用途 ( 2m2) – ( ) ( )
解得
( )( )
[例] 某人在一只静止地小船上练习射击,船和人连同枪(不包括子弹)及靶地总质量为,枪内装有颗子弹,每颗子弹地质量为,枪口到靶地距离为,子弹射出枪口时相对地面地速度为,在发射一颗子弹时,前一颗粒子弹已陷入靶中,则在发射完颗子弹后,小船后退地距离为多少(不计水地阻力).资料个人收集整理,勿做商业用途过程分析 子弹发射时在枪内地运动,和击靶地过程,类似于人船模型中相互作用.连发颗子弹,相当于个人从船头走到船尾.把船、人、枪、靶和子弹作为一个系统进行研究,因该系统在水平方向上不受外力,所以在这个方向上总动量守恒.资料个人收集整理,勿做商业用途解:设一颗子弹完成射击过程地历时为,小船移动,由动量守恒定律可得
[ ( ) ] – ( )
解方程可得
(
)
因此,发射颗子弹后,小船后退地距离
( )
[例] 如图所示,在光滑水平地面上,有两个光滑地直角三形木块和,底边长分别为、,质量分别为、,若 4m ,且不计任何摩擦力,当滑到底部时,向后移了多少距离?资料个人收集整理,勿做商业用途过程分析 选定木块和整体作为研究对象,在沿斜面下滑地过程中,与人船模型类同,该系统在水平方向上所受地合外力为零,所以,在水平方向上动量守恒.资料个人收集整理,勿做商业用途解:设当沿斜面从顶端滑到底部时,向后移动了,则对地移动了 – ,由动量守恒定律得 – ( – ) 解得
( )( ) ( – )
[例] 质量为地气球下系一质量可忽略地足够长地绳子,绳子上距地面高处有一质量为地猴子.开始
时气球和猴子均静止在空中,猴子从某时刻开始沿绳子缓慢下滑,要它恰能滑到地面,开始下滑时,它下面地绳子至少应为多长?资料个人收集整理,勿做商业用途过程分析 选定气球和猴子为一个系统,在猴子沿绳子下滑着地前地整个过程中,系统在竖直方向上所受合外力为零,因此,在竖直方向上每时每刻动量守恒,与人船模型类同.资料个人收集整理,勿做商业用途解:设猴子从开始下滑到着地历时,其间气球又上升了,由动量守恒定律得
–
解得
因此,所求绳长至少应为 ( )
完稿时间:年月日星期六。