光纤激光器与放大器设计案例
大模场面积光纤高功率光纤激光器与光纤放大器
大模场面积光纤高功率光纤激光器与光纤放大器随着大功率半导体激光技术的发展,半导体激光泵浦的固体激光器(DPSSL)在很大程度上克服了灯泵浦固体激光器的效率低、规模难以扩大、亮度随规模扩大而增大有限、介质热变形导致的光束质量下降等问题。
随着半导体激光器阵列价格的下降和固体激光器性能的提高,高功率DPSSL必将获得更为广泛的应用。
虽然DPSSL相对于CO2和灯泵Nd:YAG具有很大的优越性和竞争力,但由于在激光产生时总有一部分能量以无辐射跃迁的方式转换为热,对于常规的棒状DPSSL,高功率时存在严重的热透镜和热致双折射效应,从而使得光束质量下降。
这部分热能量如何从棒状激光介质中散发、排除,成为获得高光束质量、高功率输出的关键。
将块状激光介质做成薄片或拉成细长光纤形状,将会有效增大散热表面积,使表面积/体积比大大提高,有利于固体激光器散热问题的解决,这就是高功率固体激光器发展的两个重要方向:薄片激光器和光纤激光器。
通常所说的光纤激光器,就是采用光纤作为激光介质的激光器,通过在光纤基质材料中掺杂不同的稀土离子,获得所对应波段的激光输出。
对于常规的单模光纤激光器,要求注入到纤芯的泵浦光也必须为单模,这限制了泵浦光的入纤效率,导致光纤激光器的输出功率和效率较低。
双包层光纤的提出,为提高光纤激光器的输出功率和转换效率提供了有效的技术途径,改变了光纤激光器只能作为一种小功率光子器件的历史。
考虑到量子转换效率、抗激光损伤阈值和基底损耗等原因,掺镱石英双包层光纤是实现高功率光纤激光器或放大器的最佳选择。
随着双包层光纤制作工艺和高功率半导体激光泵浦技术的发展,单根双包层光纤激光器的输出功率逐步提高,连续输出功率已经达到千瓦级。
大模场面积双包层光纤双包层光纤中折射率呈典型的阶跃式分布,对于圆形的掺杂纤芯,双包层光纤激光器能否实现单模激光输出,取决于纤芯的直径d和数值孔径NA0,实际的单模条件为归一化频率。
要保证双包层光纤激光器实现单模激光输出,纤芯的参数必须满足上述条件。
高功率IPG光纤激光器应用简介
高功率IPG光纤激光器应用简介一、IPG光纤激光器简介1.光纤激光器简介光纤激光器是指用掺稀土元素玻璃光纤作为增益介质的激光器,光纤激光器可在光纤放大器的基础上开发出来:在泵浦光的作用下光纤内极易形成高功率密度,造成激光工作物质的激光能级“粒子数反转”,当适当加入正反馈回路(构成谐振腔)便可形成激光振荡输出。
2.光纤激光器的优势首先是使用成本低,光纤激光器替代了不稳定或高维修成本的传统激光器。
其次,光纤激光的柔性导光系统,非常容易与机器人或多维工作台集成。
第三,光纤激光器体积小,重量轻,工作位置可移动。
第四,光纤激光器可以达到前所未有的大功率(至五万瓦级)。
第五,在工业应用上比传统激光器表现更优越。
它有适用于金属加工的最佳波长和最佳的光束质量,而且光纤激光器在每米焊接和切割上的费用最低。
第六,一器多机,即一个激光器通过光纤分光成多路多台工作。
第七,免维护,使用寿命长。
最后,由于其极高的稳定性,大大降低了运行中对激光质量监控的要求。
简单来说就是高功率下的极好光束质量,高光束质量下的极好电光效率,高功率高光束质量下的极小体积、可移动性和柔性。
3.IPG简介全球最大的光纤激光制造商IPG Photonics由Valentin Gapontsev博士于1991年创建,总部设在美国东部麻省。
IPG在德国、美国、俄罗斯和意大利设有生产、研发基地,并在全球设有销售和服务网点,覆盖美国、英国、欧洲、印度、日本、韩国、新加坡和中国,并于2006年在美国纳斯达克上市。
十八年来,IPG致力于纵向合成,所有的核心配件均为IPG研发、生产和拥有,同时也是唯一一个能为客户提供高性价比的光纤和半导体激光器的厂家。
高功率是IPG的优势。
全世界已有上千台IPG的高功率(>1KW)光纤激光器在汽车制造、船舶制造、海上平台和石油管道、航空航天和技术加工等工业领域中得以应用。
在日本,我们向丰田、三菱、住友在内的客户售出了数百台IPG的大功率光纤激光器。
《光纤激光器》PPT课件 (2)
光纤激光器根本原理
光纤激光器和其他激光器一样,由能产生光子的增益介 质,使光子得到反响并在增益介质中进展谐振放大的光 学谐振腔和鼓励光跃迁的泵浦源三局部组成。
光纤激光器的开展
1985年英国南安普敦大学的研究组取得突出成绩。他 们用 MCVD方法制作成功单模光纤激光器 ,此后他们先后 报道了光纤激光器的调Q、锁模、单纵模输出以及光纤放 大方面的研究工作。英国通信研究实验室(BTRL )于 1987 年展示了用各种定向耦合器制作的精巧的光纤激光器装置, 同时在增益和激发态吸收等研究领域中也做了大量的根底 工作,在用氟化锆光纤激光器获得各种波长的激光输出谱线 方面做了开拓性的工作。世界上还有很多研究机构活泼在 这个研究领域 ,如德国汉堡技术大学 ,日本的 NTT、 三菱 , 美国的 贝尔实验室 ,斯坦福大学等。
共振腔还有另一个作用:在共振腔内形成的受激光一 局部通过共振腔端面发射出去成为受激光发射,另外一局 部被端面反射回来,在共振腔内继续激发出受激辐射。所 以,只要在共振腔内的激光材料始终保持粒子数反转条件, 就可以获得连续的受激光发射。
3.功率源
为了使激光器产生激光输出,必须使共振腔中 激光材料的增益到达阈值增益,也就是说要使粒子 数反转到达一·定的程度,称为阈值反转密度。
Er3+(4F13/2—4I15/2)有1.54 m发射谱线,与Nd激光 器一样,用0.514 m的激光泵浦,便可产生振荡,其荧 光光谱有1.534和1.549 m峰,寿命8—12ms。 Er激光 为三能级激光,因此用块状材料实现连续振荡比较困难, 但用纤维激光器,可实现空运连续振荡,阈值30mw左右。 插入衍射光栅,也可在1.53—1.55 m范围内实现波长可
4-光放大器和光纤激光器课件
光放大器的发展最早可追溯到1923年A·斯梅尔卡 预示的自发喇曼散射,而后,科学家在半个世纪的时 间里做了大量研究。1987年英国南安普敦大学和美国A T&T 贝尔实验室报道了离子态的稀土元素铒在光纤中 可以提供1.55µm波长处的光增益,这标志着掺铒光纤 放大器(EDFA)的研究取得突破性进展。1989年现 安捷伦科技有限公司制成首件半导体光放大器(Semiconductor Optical Amplifier,SOA)产品。
光放大器是可将光纤线路上微弱的光信号 直接放大的器件,它的出现免去了光在放大时 必须经过的光/电/光转换,使光纤通信技术产 生了质的飞跃。
8
光放大器是基于受激辐射或受激散射的原 理来实现对微弱入射光进行放大的,其机制与 激光器类似。当光介质在泵浦电流或泵浦光作 用下产生粒子数反转时就获得了光增益。
15
目前在线路中使用的光放大技术主要是采用E DFA,EDFA 属于掺杂稀有元素的光纤放大器家 族中的一种,此外其他可能的掺杂元素还包括钕 (通常用于高功率的激光器)和镱(它们通常和 铒一起混合用)等元素。目前已经商品化并获得 大量应用的是EDFA。
16
拉曼放大器(FRA)
FRA的工作原理是基于受激拉曼散射(SRS)的 非线性效应,在光纤中光功率较高时就会产生受激 拉曼散射。FRA利用强的光源对光纤进行激发,使 光纤产生非线性效应,在受激发的一段光纤的传输 过程中得到放大。它的主要缺点是需要大功率的半 导体激光器做泵浦源(约0.5-1w),因而其实用化 受到了一定的限制。
脉冲整形
电信号
光信号
电光转换
6
光/电/光中继器需要光接收机和光发送机来分 别完成光电变换和电光变换,其设备复杂,维护 不便,速度慢。随着光纤通信的速率不断提高, 这种光电光中继器的成本也随之提高,使得光纤 通信系统的成本增加,性价比下降。
光纤拉曼放大技术
在这方面应用高功率光纤激光器作为抽
运源显示出了明显的优势。虽然用波长 合适的半导体激光器可以直接抽运光纤 拉曼放大器,但能发射光纤拉曼放大所 需关键抽运波长的半导体激光器种类非 常有限,目前主要是~1.4μ m的LD,而 且LD通常受到其固有特性的限制,输出 功率也较低,无法满足远距离大容量通 讯,特别是跨洋通讯光缆等拉曼放大的 要求。
我国在“十五”863计划中明确提出研制
宽带光纤拉曼放大器,要求在2003年11 月底前掌握波分服用(WDM)超长距离 光传输的系统技术,研制出宽带拉曼光 纤放大器。
宽带拉曼光纤放大器对抽运源 的要求主要有以下几点:
(1)要有较高的输出功率,对于分立式放大
器抽运功率要达到1W左右,分布式放大器的 抽运功率也需200mW以上; (2)要有合适的输出波长,抽运波长的选取 主要依据所需拉曼增益谱的中心波长而定。对 于石英光纤,拉曼增益峰的抽运光与信号光频 移约13.2THz(110nm),同时为了得到宽带、 平坦的增益曲线,通常也需采用多波长抽运。 为了使系统更简化,也希望实现一台抽运源能 提供多波长的高功率抽运,同时要求输出波长 稳定。为了抑制受激布里渊散射,各个抽运源 的线宽要大于1nm;
这种放大器及其相关产品的研发快速发展,如
Lucent公司利用拉曼放大和EDFA混合放大器 传输1.6Tbit/s(40×40Gbit/s)信号达400km, Alcated 公 司 利 用 拉 曼 放 大 器 获 得 了 32×190Gbit/s信号传输450km无中继;Masuda 等利用多波长抽运和多级放大,在1.55μ m附 近获得132nm透明增益带宽;Suzuki等利用多 波长分布式光纤拉曼放大器将信道间隔为 50GHz、32×10 Gbit/s的DWDM信号传输了 640km。
mopa光纤激光器的原理与结构
mopa光纤激光器的原理与结构MOPA光纤激光器是一种基于光纤技术的激光器,它具有独特的原理和结构。
本文将介绍MOPA光纤激光器的工作原理和结构,并探讨其在实际应用中的优势和局限性。
让我们来了解一下MOPA光纤激光器的工作原理。
MOPA激光器是由Master Oscillator(母振荡器)和Power Amplifier(功率放大器)两部分组成的。
母振荡器产生一个相对较低功率的激光信号,而功率放大器将这个信号放大到较高功率。
这种结构使得MOPA光纤激光器具有灵活的调控能力和高功率输出的特点。
MOPA光纤激光器的结构相对简单。
它由光纤、光纤连接器、泵浦光源、泵浦光纤、光纤耦合器、光纤放大器、输出耦合器等组件组成。
其中,泵浦光源产生高能量的泵浦光,通过泵浦光纤输送到光纤放大器中,光纤放大器将泵浦光能量转化为激光能量,并通过输出耦合器输出。
MOPA光纤激光器相比传统的固态激光器具有许多优势。
首先,由于采用光纤作为传输介质,MOPA光纤激光器具有较高的光束质量和较窄的光谱线宽,能够产生较为纯净的激光输出。
其次,光纤的柔性使得光纤激光器在实际应用中更加便捷和灵活。
此外,光纤激光器具有较高的光电转换效率和较长的使用寿命,能够满足工业生产中对高效、稳定激光源的需求。
然而,MOPA光纤激光器也存在一些局限性。
首先,由于光纤的特性,光纤激光器在高功率输出时容易受到光纤损伤的影响,需要特殊的光纤材料和结构设计来克服这个问题。
其次,光纤激光器的成本相对较高,对于一些低成本应用来说可能不太适合。
此外,光纤激光器在一些特殊波长的输出上受到限制,需要进一步的技术突破和创新。
让我们来看一下MOPA光纤激光器的应用领域。
由于其高功率、高光束质量和稳定的特性,MOPA光纤激光器被广泛应用于激光雕刻、激光打标、激光焊接、激光切割等领域。
特别是在精细加工、电子制造、汽车制造等行业中,MOPA光纤激光器展示出了其独特的优势。
MOPA光纤激光器是一种基于光纤技术的激光器,具有灵活的调控能力和高功率输出的特点。
包层泵浦fs光纤放大器的实验研究
第17卷 第9期强激光与粒子束Vol.17,No.9 2005年9月H IGH POWER L ASER AND PA R TICL E B EAMS Sep.,2005 文章编号: 100124322(2005)0921341203包层泵浦f s光纤放大器的实验研究3沈 华1,2, 丁广雷1,2, 王屹山1, 赵 卫1(1.中国科学院西安光学精密机械研究所瞬态光学与光子技术国家重点实验室,陕西西安710068;2.中国科学院研究生院,北京100039) 摘 要: 在实验上对双包层光纤放大器进行了研究。
采用新型内包层为六边形的铒镱共掺双包层光纤作为放大介质,用带尾纤的半导体激光器进行泵浦,对f s光脉冲进行放大。
当用2.5W的入纤功率泵浦50cm长的双包层铒镱光纤时,把平均功率为10.8mW、重复频率20.84M Hz的激光放大到176mW,增益为12.2dB,相应的单脉冲能量为8.1nJ,放大后脉冲宽度为480f s,峰值功率为16kW。
关键词: 铒镱共掺; 双包层光纤; f s脉冲; 光纤放大器 中图分类号: TN248.1 文献标识码: A f s激光脉冲具有极高的峰值功率,与物质相互作用会产生许多新现象和新研究领域,如强光光学、超快速非线性光学、光孤子通信、T Hz脉冲雷达、多光子电离、激光等离子体等。
对于波长1.5μm的通讯波段,f s激光脉冲由于它极短的脉冲宽度和与之相伴的宽带宽,将为提高光学时分复用和波分复用的信道数目提供方便,从而大大增加光纤通讯的容量。
目前普通的f s光纤激光器件主要采用单模光纤作为激光介质,对泵浦源的激光模式要求高,并且泵浦功率不高,耦合效率低,输出功率只有几mW,这比f s固体激光器低几个数量级。
掺铒光纤放大器(EDFA)具有增益高、噪声小、偏振不敏感、输出功率大、与传输速率无关等特点,能补偿长距离传输后光纤的损耗。
1985年英国南安普顿大学首先研制了掺铒光纤放大器[1]。
基于MOPA结构的1064nm单频光纤激光器
基于MOPA结构的1064nm单频光纤激光器朱志坚; 薛竣文; 王玉珂; 孙鲁; 苏秉华【期刊名称】《《激光技术》》【年(卷),期】2019(043)006【总页数】4页(P800-803)【关键词】激光技术; 光纤激光器; 单频; 受激布里渊散射【作者】朱志坚; 薛竣文; 王玉珂; 孙鲁; 苏秉华【作者单位】北京理工大学光电学院北京 100081; 北京理工大学珠海学院光电成像技术与系统教育部重点实验室(珠海分室) 珠海 519088【正文语种】中文【中图分类】TN248.1引言光纤激光器具有体积小、易维护、光束质量高和免调节的优点,广泛应用于光纤通信、汽车制造、雕刻、打标和激光切割等领域[1-4]。
作为光纤激光技术领域一个重要的分支,单频激光器除了上述优点外,还具有超窄光谱线宽、超长相干长度等特征,在引力波探测、相干激光雷达和非线性频率转换等领域有着重要的应用前景。
单频光纤激光器一般采用线性短腔和环形腔结构[5]。
2012年,华南理工大学的ZHANG等人报道了一种输出波长为1080nm的分布布喇格反射(distributed Bragg reflection,DBR)短腔单频光纤激光器,最大功率达到90mW[6]。
2016年,天津大学的SHI等人基于石英玻璃光纤的光纤激光系统,实现了930nm到2μm波段的单纵模运转[7]。
光纤线性短腔和环形腔在一定程度上受谐振腔长度、光纤芯径、损伤阈值和调模现象等因素影响,难以实现高功率稳定输出。
主振荡功率放大器(master oscillator power amplifier,MOPA)结构具有将窄线宽的小功率种子光进行放大的作用,输出光特性可由种子光进行控制,可实现单频窄线宽激光的高功率稳定输出[8-9]。
此外,全光纤MOPA结构可实现模块化,能对多种窄线宽种子源进行放大。
在MOPA光纤激光器的实现中,输出光的光束质量和输出功率受到多种因素的约束。
其中,放大自发辐射(amplified spontaneous emission,ASE)和自激振荡对输出光的光束质量有显著的影响,而受激布里渊散射(stimulated Brillouin scattering,SBS)则主要限制激光的高功率输出。
光纤放大器的设计与性能分析
光纤放大器的设计与性能分析光纤放大器(Optical Fiber Amplifier,OFA)是一种将输入信号放大并输出的光学器件。
它利用光纤中的受激辐射(Stimulated Emission)的原理来实现信号的放大,广泛应用于光通信、光传感等领域。
以下将对光纤放大器的设计与性能进行分析。
一、光纤放大器的设计要点1.放大介质:光纤放大器的核心是光纤,可以使用具有高掺杂浓度的光纤来增加放大效果。
常用的放大介质有掺铒光纤、掺镱光纤等。
2.泵浦光源:光纤放大器需要泵浦光源来提供能量,激发放大介质中的激发态粒子。
常用的泵浦光源有半导体激光器和光纤光源。
3.反射镜:在光纤放大器的两端放置反射镜,形成光纤光路的闭合环境,提高光信号的传输效率。
二、光纤放大器的性能分析1.增益与噪声:光纤放大器的核心指标是增益和噪声。
增益是指输入信号经过放大器后的输出信号与输入信号之间的功率比值。
噪声是指输入信号经过放大器后引入的额外噪声功率。
通常,光纤放大器要追求高增益和低噪声。
2.带宽与增益平坦度:光纤放大器在不同频率下的增益应保持一致,即增益应具有较宽的频率响应特性。
增益平坦度定义了增益在特定频段内的变化情况。
为了满足光通信系统对信号频谱带宽的要求,光纤放大器需要具有宽带宽和较好的增益平坦度。
3.动态范围:光纤放大器的输入信号功率范围称为动态范围,它表示了放大器能够处理的输入信号功率的范围。
较大的动态范围可以提高放大器的适应性和鲁棒性。
4.功耗:光纤放大器的功耗也是一个重要指标,特别是在大规模部署时。
低功耗的设计可以减少系统的能耗,提高整体效率。
5.稳定性与可靠性:光纤放大器在应用中需要具有较高的稳定性和可靠性。
放大器的输出功率应该与输入信号功率的变化无关,以确保信号传输的稳定性。
三、光纤放大器的优化与改进1.增益改进:可以通过优化光纤的材料和结构,或是采用双光子吸收等技术来提高增益。
2.噪声降低:可以通过减小斯托克斯自发辐射(Spontaneous Emission)和链路中散射等方式来降低噪声。
实验五 光纤激光器与光纤放大器的设计实验
实验五 光纤激光器与光纤放大器的设计实验一、实验目的1、掌握掺铒有源光纤的增益放大特性;2、掌握光纤激光器的原理及其基本结构,掌握光纤激光器的设计及其波长调谐方法;3、掌握光纤放大器的原理及其基本结构,掌握光纤放大器的设计以及基本特性参数的测试方法。
二、实验原理(一)光纤激光器的基本结构光纤激光器和其它激光器一样,由能产生光子的增益介质、使光子得到反馈并在增益介质中进行谐振放大的光学谐振腔和激励光跃迁的泵浦源三部分组成。
纵向泵浦的光纤激光器的结构如图1所示。
图1 光纤激光器原理示意图一段掺杂稀土金属离子的光纤被放置在两个反射率经过选择的腔镜之间,泵浦光从左面腔镜耦合进入光纤。
左面镜对于泵浦光全部透射和对于激射光全反射,以便有效利用泵浦光和防止泵浦光产生谐振而造成输出光不稳定。
右面镜对于激射光部分透射,以便造成激射光子的反馈和获得激光输出。
这种结构实际上就是Fabry-perot 谐振腔结构。
泵浦波长上的光子被介质吸收,形成粒子数反转,最后在掺杂光纤介质中产生受激发射而输出激光。
激光输出可以是连续的,也可以是脉冲形式的,依赖于激光工作介质。
对于连续输出,激光上能级的自发发射寿命必须长于激光下能级以获得较高的粒子数反转。
通常当激光下能级的寿命超过上能级时只能获得脉冲输出。
光纤激光器有两种激射状态,一种是三能级激射,另一种是四能级激射,图2(a)、(b)分别表示三能级和四能级系统的跃迁系统的简化能级图。
两者的差别在于较低能级所处的位置。
在三能级系统中,激光下能级即为基态,或是极靠近基态的能级。
而在四能级系统中激光下能级和基态能级之间仍然存在一个跃迁,通常为无辐射跃迁,电子从基态提升到高于激光上能级的一个或多个泵浦带,电子一般通过非辐射跃迁到达激光上能级。
泵浦带上的电子很快弛豫到寿命比较长的亚稳态,在亚稳态上积累电子造成粒子数多于激光下能级,既形成粒子数反转。
电子以辐射光子的形式放出能量回到基态。
这种自发发射的光子被光学谐振腔反馈回增益介质中诱发受激发射,产生与诱发这一过程的光子性质完全相同的光子,当光子在谐振腔内所获得的增益大于其在腔内损耗时,就会产生激光输出。
可调谐超稳定窄带宽光纤激光器
可调谐超稳定窄带宽光纤激光器李子强;吕辉【摘要】介绍了一种基于商用掺铒光纤放大器、光纤布拉格光栅和可变光衰减器的可调谐、超稳定、窄带宽光纤激光器的实现方案及性能。
研究结果表明,该光纤激光器的输出功率稳定性好(1 h之内的稳定度<0.92%),线宽窄(<52 pm),边模抑制比高(约30 dB),调谐范围超过20 nm。
整个系统不仅可以用作窄带宽光纤激光器,还可以作为宽带自发辐射输出光源和掺铒光纤放大器,且该系统易于实现,很容易在普通实验室里搭建。
%This paper introduces the performances of an ultrastable tunable narrow-band fiber laser and its implementation scheme.Based on the commercially available Er-doped fiber amplifier,fiber Bragg grating and variable optical attenuator,this fiber laser has high output power stability (<0.92% within one hour),narrow linewidth (<52 pm),high sidemode suppres-sion ratio (~30 dB)and large tunable range (over 20 nm).The entire system can not only be used as a narrowband fiber laser but also as a wideband amplified spontaneous emission light source and an Er-doped fiber amplifier.Furthermore,this system can be easily realized in an ordinary laboratory.【期刊名称】《光通信研究》【年(卷),期】2014(000)004【总页数】3页(P61-63)【关键词】光纤激光器;特定激光系统设计;激光光谱学【作者】李子强;吕辉【作者单位】湖北工业大学理学院,武汉 430068;湖北工业大学理学院,武汉430068【正文语种】中文【中图分类】TN2560 引言窄带宽光纤激光器在连续太赫兹波生成、微波光子、光通信、高分辨率光谱学和光传感领域都有潜在的应用前景[1-5],因此成为研究热点。
《光纤通信技术》课程教学大纲、教案、课程日历
《光纤通信技术》课程教学大纲、教案、课程日历第一章:光纤通信概述1.1 光纤通信的定义和发展历程1.2 光纤通信的优势和局限性1.3 光纤通信的应用领域1.4 光纤通信的发展趋势第二章:光纤的基础知识2.1 光纤的组成和结构2.2 光纤的种类和特性2.3 光纤的传输原理2.4 光纤的耦合和衰减第三章:光纤通信系统的组成3.1 光源和光发射器3.2 光接收器和解调器3.3 光放大器和光纤放大器3.4 光波分复用器和光开关第四章:光纤通信系统的性能评估4.1 系统性能指标4.2 信道容量和误码率4.3 系统噪声和损耗4.4 系统优化和升级第五章:光纤通信技术的应用5.1 光纤通信在通信领域的应用5.2 光纤通信在数据传输中的应用5.3 光纤通信在有线电视中的应用5.4 光纤通信在互联网和数据中心中的应用第六章:光纤通信系统的传输技术6.1 直接序列扩频传输技术6.2 频率分割复用传输技术6.3 时间分割复用传输技术6.4 波长分割复用传输技术第七章:光纤通信系统的网络架构7.1 点对点光纤通信网络7.2 星型光纤通信网络7.3 环型光纤通信网络7.4 光纤通信网络的规划和设计第八章:光纤通信系统的保护与恢复8.1 光纤通信系统的保护技术8.2 光纤通信系统的恢复技术8.3 故障检测与定位技术8.4 系统冗余设计第九章:光纤通信技术的最新进展9.1 光量子通信技术9.2 光纤激光器技术9.3 光纤传感器技术9.4 光纤通信技术的未来发展趋势第十章:实验与实践10.1 光纤通信系统的基本实验10.2 光纤通信系统的性能测试与评估10.3 光纤通信网络的搭建与维护10.4 实际案例分析与讨论第十一章:光纤通信系统的维护与管理11.1 光纤通信设备的维护与管理11.2 光纤通信网络的监测与维护11.3 光纤通信系统的安全与保护11.4 光纤通信技术的标准化与规范第十二章:光纤通信技术在特定领域的应用12.1 光纤通信在军事通信领域的应用12.2 光纤通信在航空航天领域的应用12.3 光纤通信在海洋探测领域的应用12.4 光纤通信在医疗健康领域的应用第十三章:光纤通信技术的国际化发展13.1 国际光纤通信技术的标准与协议13.2 跨国光纤通信网络的构建与运营13.3 国际合作与竞争在光纤通信领域的影响13.4 光纤通信技术在全球范围内的普及与发展第十四章:光纤通信技术的创新与研发14.1 新型光纤材料与技术的研发14.2 光纤通信设备的创新设计14.3 光纤通信系统的智能化与自动化14.4 光纤通信技术在未来的挑战与机遇第十五章:课程总结与展望15.1 光纤通信技术课程回顾15.2 光纤通信技术的关键问题和挑战15.3 光纤通信技术的未来发展趋势15.4 学生实践和研究的方向与建议重点和难点解析本文档详细介绍了《光纤通信技术》课程的教学大纲、教案和课程日历,涵盖了光纤通信的概述、基础知识、系统组成、性能评估、应用领域、传输技术、网络架构、保护与恢复、最新进展、实验与实践、维护与管理、特定领域应用、国际化发展、创新与研发以及课程总结与展望等十五个章节。
掺铒光纤放大器、激光器讲义
实验 I 掺铒光纤放大器原理及光谱特性测量实验
实验内容
1. 980nm 泵浦激光器的光谱测量; 2. DFB 信号激光器的光谱和输出功率测量; 3. 掺铒光纤放大器(EDFA)组装; 4. EDFA 的自发辐射光谱(噪声谱,ASE)测量; 5. DFB 激光器信号光的放大,EDFA 的增益测量和计算; (信噪比,泵浦光的利用率,增益饱和效应等)
实验仪器
1.980nm 泵浦激光器(LD) 2.掺铒光纤(EDF) 3.波分复用器件(WDM)
4.耦合器 (Coupler) 5. 单色仪 (Monochromator) 6.光功率计 (Optical Power Meter) 7.计算机数据采集系统(DAQ)
实验原理
一、半导体激光器(LD)原理概述
2n m
m=1,2…
需要指出的是,这种反射不是由某个反射面提供,而是由周期性波纹结构提供了相
反行进的两种光波模式的相互耦合,耦合的程度由周期性调制的射器型 LD 的结构示意图
图 2 中的下图是 Bragg 反射器型的半导体激光器的示意图,它与 DFB 型激光器的 区别是它的周期性折射率调制结构不是做在有源层上表面, 而是在有源层波导两外测的 无源波导上,这样的结构不仅具有激光振荡波长稳定,线宽窄,还可以避免使用复杂的 二次外延生长工艺,并且由于 Bragg 光栅做在无源波导上,不会引起有源层原子晶格的 破坏,降低量子效率。 当介质实现了粒子数反转(即介质具备了增益), 光波在来回反射中得到不断的加强 和增长,当增益满足阈值条件以后(即增益大于所有损耗),就会产生激光。这种光栅式 的结构实际上起到了一个选频谐振腔的作用,它所发射的激光的波长,完全由光栅的周 期 决定。所以,可以通过改变光栅的周期来调整发射波长,并获得极窄的线宽(单纵 模振荡) 。这一点,F-P 型 LD 是不可能做到的,F-P 型 LD 的发射波长只能位于自发辐 射的中心频率附近。 由此可见 DFB LD 和 F-P 型 LD 相比, 其发射频率的选择范围很宽, 可以在自发发射频率范围内自由地选择发射波长。 目前 DFB LD 已成为中长距离光纤通信应用的主要激光器,特别是在 1.3 m 和 1.55 m 光纤通信系统中。在光纤有线电视(CATV)传输系统中,DFB LD 已成为不可替 代的光源。 实验中使用的 980nm 泵浦光源是一种 F-P 腔结构的半导体激光器,其最大激光输出 功率为 120mW。作为信号光源的是一种 1550nm 波段的 DFB 半导体激光器,最大激光 输出功率为 2mW。
OptiSystem仿真模型案例
OptiSystem仿真模型案例OptiSystem 仿真软件模型案例目录1 1.1 光发送机简介1.2 光发送机设计模型案例:铌酸锂(LiNbO3)型Mach-Zehnder调制器的啁啾(Chirp)分析2 2.1 光接收机简介2.2 光接收机设计模型案例:PIN光电二极管的噪声分析3 3.1 光纤简介3.2 光纤设计模型案例:自相位调制(SPM)导致脉冲展宽分析4 4.1 光放大器简介4.2 光放大器设计模型案例:EDFA的增益优化5 5.1 光波分复用系统简介5.2 光波分复用系统使用OptiSystem设计模型案例:阵列波导光栅波分复用器(AWG )的设计分析6 6.1 光波系统简介6.2 光波系统使用OptiSystem设计模型案例:40G单模光纤的单信道传输系统设计7 8.1 色散简介8.2 色散补偿模型设计案例:使用理想色散补偿元件的色散补偿分析89.1 孤子和孤子系统简介9.2 孤子系统模型设计案例:9 结语1 光发送机(Optical Transmitters)设计1.1 光发送机简介一个基本的光通讯系统主要由三个部分构成,如下图1.1所示:图1.1 光通讯系统的基本构成1)光发送机2)传输信道3)光接收机作为一个完整的光通讯系统,光发送机是它的一个重要组成部分,它的作用是将电信号转变为光信号,并有效地把光信号送入传输光纤。
光发送机的核心是光源及其驱动电路。
现在广泛应用的有两种半导体光源:发光二级管(LED)和激光二级管(LD)。
其中LED输出的是非相干光,频谱宽,入纤功率小,调制速率低;而LD是相干光输出,频谱窄,入纤功率大、调制速率高。
前者适宜于短距离低速系统,后者适宜于长距离高速系统。
一般光发送机由以下三个部分组成:1) 光源(OpticalSource):一般为LED和LD。
2) 脉冲驱动电路(Electrical Pulse Generator):提供数字量或模拟量的电信号。
高功率光纤激光器的研究进展
第3 7卷 第 7期 20 0 7年 7月
激 光 与 红 外
LA E S R & I RARE NF D
V0 . 7. . 1 3 No 7
J l ,0 7 uy 2 0
文章编 号 :0 15 7 (0 7 0 -590 10 - 8 2 0 ) 70 8 -4 0
Y b石英双包层光纤是实现高功率光纤激光器或放 大器 的最佳 选择 。 大模面积 ( M , 称 大模场 ) 纤 的设计 成 L A亦 光 功, 也是高性 能光纤发展 中的一个重大创新 。L A M 光纤 的纤 芯 密度 大 为 降 低 , 效 地 抑 制 了久 难 解决 有
的热光问题。采用低数值孔径 ( A) M N L A光纤 的激 光器和放大器, 以获得更高功率 的衍射限光束质 可 量 的激 光 输 出。最 近 几 年 , 由于 双 包 层 、 模 面积 、 大 高性能掺杂光纤制造技术进展和可靠的 L D激光泵
Re e r h Pr g e s o g po r Fi e s r s a c o r s fHi h— we b r La e s
CHEN a . a Mi o h i
( ot hn eerhIstt f l t -pi , e ig10 1 , hn ) N r C iaR sac ntueo e r ot s B in 0 0 5 C ia h i E co展
陈苗 海
( 华北光电技术研究所 , 北京 10 1 ) 005
摘
要 : 章扼 要地 介 绍 国际上 高功 率 光 纤激 光器 的进 展状 况 , 点介 绍近 几年 国 内外高 功率 文 重 光纤激光器与放大器的发展水平和动向。 关键 词 : 纤激 光器 ; 功率 光 纤激 光器 ; 镱双 包 层光 纤 ; 光 高 掺 大模 面 积 ; 子 晶体 光 纤 光 中图分 类号 :N 4 . T 28 1 文 献 标识 码 : A
单频光纤激光器的原理
单频光纤激光器的原理单频光纤激光器是一种将电能转化为高品质单频光能的装置。
其工作原理基于双石激x谐振腔和纤芯掺杂行稀土离子的光纤。
单频激光器通常由三部分组成:泵浦源、激光介质和反射镜。
泵浦源对激光介质提供足够的能量,激发介质中的离子跃迁能级。
然后,在两个具有高反射率的反射镜之间形成谐振腔,并将光反复放大,最终产生激光输出。
单频激光器中的泵浦源通常采用高功率二极管激光器。
二极管激光器产生的激光能较大,能够将介质中的离子激发至相关能级,从而获得激光输出。
泵浦能量的大小直接影响激光的输出功率。
激光介质是激光器中的关键部分,通常采用掺杂了稀土离子的光纤。
稀土离子是具有特殊能级结构的原子或离子,能够吸收泵浦激光并在跃迁过程中释放出辐射能量。
典型的稀土离子包括铒、钕、铽等。
激光器中的谐振腔起到放大激光的作用。
谐振腔由两个具有高反射率的反射镜构成,其中一个镜片是完全透明的,允许激光通过,而另一个镜片具有较高的反射率,将激光反射回腔体,形成振荡并放大激光信号。
单频激光器中的反射镜通常具有非常高的反射系数,以确保只有单一频率的激光信号被放大。
在激光器谐振腔内部,激光信号将通过光纤传输。
光纤是一种具有非常细小的纤芯和包层的光导体。
其中纤芯是稀土离子掺杂的区域,利用稀土离子的受激发射和自发辐射来实现激光放大。
包层的作用是确保激光束沿着光纤传播,减少光束的损耗和散射。
单频光纤激光器的工作过程如下:首先,高功率二极管激光器将激光通过耦合器耦合到光纤中,提供足够的泵浦能量。
然后,泵浦光被稀土离子吸收并激发至高能级,形成激光放大器。
放大后的光信号在两个反射镜之间来回反射,不断增强,同时,通过控制反射镜的反射率和谐振腔长度,可以实现特定频率的单频激光输出。
最后,谐振腔外的输出耦合器将激光输出到外部应用中。
总结来说,单频光纤激光器的工作原理基于泵浦源提供的能量,稀土离子在光纤中的激发和放大以及谐振腔的放大和反射作用。
通过优化这些关键组件的设计和参数,可以实现高品质的单频激光输出。
基于半导体光放大器的多波长光纤激光器的优化设计的开题报告
基于半导体光放大器的多波长光纤激光器的优化设计的开题报告一、研究背景多波长光纤激光器在通信、光学传感等领域中有着广泛的应用。
其中,基于半导体光放大器的多波长光纤激光器具有输出功率高、频率调谐范围广、紧凑、功耗小等优点,在光纤通信、全光网络、微型机器人、生物医学和军事应用等领域中有着广泛的应用。
然而,由于多波长光纤激光器中的激光腔结构、反射镜、光纤偏振等参数的复杂性,其性能的优化设计面临诸多挑战和困难。
二、研究目的和意义为了解决多波长光纤激光器中的优化设计问题,本研究旨在:1. 探究多波长半导体光放大器的特点和运行原理,以及其与光纤激光器集成的方法。
2. 分析多波长光纤激光器中关键参数的优化设计方法,包括激光腔的结构设计、反射镜的选取和光纤偏振的控制等。
3. 实验验证针对多波长光纤激光器的优化设计方法,比较其性能差异,为多波长光纤激光器的开发提供有效参考。
三、研究内容和方法1. 多波长半导体光放大器的特点和运行原理研究,通过分析其基本工作原理、特性和其与光纤激光器的集成方式等内容,为优化设计提供理论基础。
2. 多波长光纤激光器关键参数的优化设计方法研究,采用理论分析和数值模拟方法,分别研究激光腔结构的设计、反射镜选取和光纤偏振控制等参数的优化方法,并根据实际需求做出合理权衡。
3. 实验验证多波长光纤激光器在不同优化条件下的性能差异。
通过实验测试不同的优化设计方案,比较其稳定性、调谐范围、输出功率和光谱质量等性能,为优化设计提供参考。
四、预期结果预期研究成果包括:1. 对于多波长半导体光放大器的特点和运行原理进行深入剖析和说明。
2. 对多波长光纤激光器中关键参数的优化设计提供一系列的解决方案。
3. 实验验证不同优化设计方案在多波长光纤激光器中的性能差异,为实际应用提供参考依据。
五、论文结构本课题的论文结构包括:第一章绪论介绍多波长光纤激光器的研究背景、研究目的和意义、研究内容和方法,以及预期结果。
同时,简要介绍多波长光纤激光器的基本原理。
光纤激光器光参量啁啾脉冲放大现象
光纤激光器光参量啁啾脉冲放大现象
李晓莉;石顺祥;刘红军;王红英;赵卫
【期刊名称】《光子学报》
【年(卷),期】2008(37)4
【摘要】实验研究了采用信号光在一块非线性晶体内被同一束泵浦光放大两次的结构来实现光参量啁啾脉冲放大过程中对参量荧光的控制,实验得到了2×106的双通总增益,输出总能量为2mJ,信号光能量晃动小于3%rms,此时参量荧光仅占输出总能量的1%.采用这种放大结构,提高了短信号光与长泵浦光在时域上的匹配和转换效率,抑制了参量荧光,并提高了放大信号光的能量稳定性.
【总页数】4页(P667-670)
【关键词】激光放大器;参量振荡器与放大器;超快激光;超快技术
【作者】李晓莉;石顺祥;刘红军;王红英;赵卫
【作者单位】西安电子科技大学技术物理学院;中国科学院西安光学机密机械研究所瞬态光学与光子技术国家重点实验室
【正文语种】中文
【中图分类】TN248.1
【相关文献】
1.光参量啁啾脉冲放大技术研究进展 [J],
2.稳定高质量光参量啁啾脉冲放大系统优化设计 [J], 邓青华;刘勇;丁磊;谢旭东;唐军;高松;陈远斌;陈林;刘建国;王正辉;卢振华
3.光参量啁啾脉冲放大过程中脉冲特性理论研究 [J], 黄小军;张树葵;袁晓东;王晓东
4.基于光束偏转的扫描式宽带光参量啁啾脉冲放大 [J], 叶荣;钟哲强;吴显云
5.堆积脉冲光参量啁啾脉冲放大器 [J], 李晓莉;石顺祥;赵卫;刘红军
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.6 Bent Large Mode Area Fiber
File: Bent large mode area fiber.fpw Here, we investigate how bending influences the propagation of light in a large mode area fiber. We use a simple step-index design, but other index profiles could be investigated as well. Diagram 1 shows how light evolves if the bending becomes stronger and stronger along the fiber, until all light is lost into cladding modes. Diagram 2 plots the propagation losses as a function of curvature radius for different modes. This calculation takes quite a few minutes, but the diagram delivers a lot of information.
ቤተ መጻሕፍቲ ባይዱ
8.2 Step-index Fibers
File: Step-index fibers.cf.fpw This script contains a simple custom form and conveniently allows the calculation of basic properties of step-index fibers. (It also serves as a nice demonstration for custom forms.) The user enters fiber parameters like core diameter and numerical aperture into the form, and calculated values like mode radii, mode areas and effective indices are displayed. Also, a number of diagrams can be made, e.g. for displaying intensity profiles.
8.7 Tapered Fiber
Files: Tapered fiber.fpw, Tapered fiber.cf.fpw We assume that light is into a guided mode of a fiber. After some distance of propagation, the fiber core gets continuously smaller due to tapering of the fiber. The simulation shows how the mode field adapts to the core size, unless the change of core size is too fast. Diagram 1 shows the field amplitudes in the yz plane. Diagram 2 shows how the beam parameters evolve along the fiber: the optical power, beam radius, mode area, etc. The version Tapered fiber.cf.fpw contains a custom form, with which the input parameters can be entered more conveniently.
8.4 Launching Light into a Multimode Fiber (Mode-based Simulation)
File: Fiber launch.fpw This script simulates the results of launching light into a fiber with several guided modes. The input beam is a Gaussian beam, which can be offset from the core center and tilted against the fiber axis. The script can calculate the resulting amplitudes of all modes, from which the intensity profile at the fiber output can be calculated efficiently (without numerical beam propagation!). Apart from a numerical output of the resulting mode powers, the following diagrams can be made: Diagram 1 shows the powers of all the guided modes as functions of the input beam position. Diagram 2 shows the powers of all the guided modes as functions of the input beam tilt. Diagram 3 shows the output intensity profile for a given beam offset. Diagram 4 shows the output intensity profile for a given beam tilt.
germanium concentration is assumed. The refractive index is interpolated between that of silica and germania according to the local germania content. The refractive indices of silica and germania are calculated from Sellmeier formulas, so that the wavelength dependence is included, which we need for calculating the chromatic dispersion. The mode solver (section 2.5) provides functions which deliver effective refractive indices, group indices, group velocity dispersion, etc., for all modes.
8
光纤激光器与放大器设计软件案例
8.1 Calculating Fiber Modes
File: Fiber modes.fpw (The form settings file Fiber modes.fpi allows one to do similar things in the forms mode.) For simplicity, this script demonstrates only the calculation of fiber modes with the integrated mode solver. The use of such modes in a fiber amplifier model is demonstrated in section 8.12. The script works with a refractive index profile defined with tabulated values. With a few lines of script code, these are read into an array, and the index function n_f(r) uses interpolated values from that array. It is shown then how to produce various diagrams displaying the modal properties of the fiber: A first diagram shows all radial functions. Different colors are used for different l values. The refractive index profile and the effective indices of the modes are also shown. The second diagram shows the intensity pattern of a selected mode. Diagram 3 shows the number of modes as a function of the wavelength. At 1.96 µm, the single-mode regime starts. Diagram 4 shows how the effective mode indices depend on the wavelength. One sees that all these indices reach the cladding index at their cut-off wavelength. Diagram 5 shows the fraction of power in the core for all modes versus wavelength.