高考高三数学总复习教案:集合的概念

合集下载

《集合概念》教案

《集合概念》教案

《集合概念》教案课时:1教学目标:1. 理解集合的概念并能够正确描述集合。

2. 掌握集合元素的表示方法。

3. 能够根据条件判断某个元素是否属于某个集合。

教学重点:1. 集合的概念及表示方法。

2. 集合元素的判断。

教学难点:1. 集合元素的判断。

教学方法:1. 提问法。

2. 案例分析法。

教学准备:1. 教材、课件和笔记。

教学过程:1. 导入(5分钟)通过向学生提问几个事件或物体的例子,引导学生思考并探讨这些事件或物体能不能构成集合。

2. 概念讲解(10分钟)解释集合的概念:集合是指把具有一定特征的元素放在一起构成的整体。

3. 集合元素的表示(10分钟)a. 通过案例分析的方式,让学生观察物体的特征,并用集合的表示方法表示出来。

b. 引导学生总结集合元素的表示方法。

4. 集合元素的判断(15分钟)a. 讲解集合元素的判断方法:根据已知条件,判断某个元素是否属于某个集合。

b. 给出几个案例让学生进行判断,并解释判断的原因。

5. 练习(15分钟)a. 给学生一些具体的观察任务,让他们根据观察结果判断某个物体是否属于某个集合。

b. 提出一些判断题,让学生分组讨论并给出答案。

6. 总结与拓展(5分钟)通过小结集合概念和判断方法,引导学生思考集合的应用场景,并进一步拓展集合概念。

7. 作业布置(5分钟)布置相关习题作业,巩固学生对集合概念的理解和集合元素的判断方法。

教学反思:通过本节课的教学,学生了解了集合的概念、集合元素的表示方法和集合元素的判断方法。

同时,通过案例分析和练习,学生可以将集合概念应用到实际生活中,并培养了学生的观察和判断能力。

在布置作业时,需要选择一些贴近学生实际生活的题目,以提高学生的学习兴趣。

高中数学集合高考复习教案

高中数学集合高考复习教案

高中数学集合高考复习教案
第一节:基本概念复习
1. 集合的概念及表示方法
2. 集合间的关系:包含关系、相等关系、并集、交集、差集
3. 集合运算的性质:交换律、结合律、分配律
第二节:集合的性质和运算
1. 集合的运算法则
2. 集合的基本性质:幂集、互补集、交换律、结合律、分配律
3. 集合的运算问题
第三节:集合的应用
1. 集合与命题逻辑关系
2. 集合与问题求解
3. 集合与实际问题的应用
第四节:集合的数学结构
1. 集合的基数和基数运算
2. 集合的运算规律
3. 集合的应用题目
第五节:综合练习
1. 复习集合的基本概念和运算
2. 解决综合性的集合问题
3. 完成集合的应用题目
以上内容为高中数学集合高考复习教案范本,希望对您的复习有所帮助。

祝您考试顺利!。

集合的概念教案5篇

集合的概念教案5篇

集合的概念教案5篇集合的概念教案篇1第二教时教材:1、复习2、《课课练》及《教学与测试》中的有关内容目的:复习集合的概念;巩固已经学过的内容,并加深对集合的理解。

过程:一、复习:(结合提问)1.集合的概念含集合三要素2.集合的表示、符号、常用数集、列举法、描述法3.集合的分类:有限集、无限集、空集、单元集、二元集4.关于“属于”的概念二、例一用适当的方法表示下列集合:1.平方后仍等于原数的数集解:{x|x2=x}={0,1}2.比2大3的数的集合解:{x|x=2+3}={5}3.不等式x2-x-64.过原点的直线的集合解:{(x,y)|y=kx}5.方程4x2+9y2-4x+12y+5=0的解集解:{(x,y)| 4x2+9y2-4x+12y+5=0}={(x,y)| (2x-1)2+(3y+2)2=0}={(x,y)| (1/2,3)}6.使函数y=有意义的实数x的集合解:{x|x2+x-60}={x|x2且x3,xr}三、处理苏大《教学与测试》第一课含思考题、备用题四、处理《课课练》五、作业《教学与测试》第一课练习题集合的概念教案篇2一、说教材(1)说教材的内容和地位本次说课的内容是人教版高一数学必修一第一单元第一节《集合》(第一课时)。

集合这一课里,首先从初中代数与几何涉及的集合实例入手,引出集合与集合的元素的概念,并且结合实例对集合的概念作了说明。

然后,介绍了集合的常用表示方法,集合元素的特征以及常用集合的表示。

把集合的初步知识安排在高中数学的最开始,是因为在高中数学中,这些知识与其他内容有着密切联系,它们是学习、掌握以及使用数学语言的基础。

从知识结构上来说是为了引入函数的定义。

因此在高中数学的模块中,集合就显得格外的举足轻重了。

(2)说教学目标根据教材结构和内容以及教材地位和作用,考虑到学生已有的认知结构与心理特征,依据新课标制定如下教学目标:1.知识与技能:掌握集合的基本概念及表示方法。

高考数学一轮复习 1.1集合教案-人教版高三全册数学教案

高考数学一轮复习 1.1集合教案-人教版高三全册数学教案

课题 第一章 集合与常用逻辑用语 第一节 集 合教学目标:知识与技能:了解集合的含义,元素与集合的属于关系,理解集合之间的包含与相等关系,理解子集与补集的关系。

过程与方法:会求两个集合的交,并,补集,能使用韦恩图表达集合的关系及运算。

情感、态度与价值观:教学过程中,要让学生充分体验集合的具体应用,应用集合解决实际问题的方法。

教学重点:集合的交,并,补关系及运算教学难点:使用韦恩图表达集合的关系及运算教 具:多媒体、实物投影仪教学过程:一、复习引入:1.集合的含义与表示方法2.集合间的基本关系3.集合的基本运算二、例题讲解例1判断下面结论是否正确(请在括号中打“√”或“×”).(1)已知集合A={x|y=x2},B={y|y=x2},C={(x,y)|y=x2},则A=B=C.( )(2)含有n 个元素的集合的子集个数是2n ,真子集个数是2n-1,非空真子集的个数是2n-2.( )(3)A ∩B= 的充要条件是A=B= .( )(4)A ∩B=A ⇔A ⊆B.( )(5)A ∪B=A ⇔B ⊆A.( )(6) (A ∪B)=( A)∩( B).( )【解析】(1)错误.集合A 是函数y=x2的定义域,即A=(-∞,+∞);集合B 是函数y=x2的值域,即B=[0,+∞);集合C 是满足方程y=x2的实数x,y 的集合,也可以看作是函数y=x2图象上的点组成的集合,因此这三个集合互不相等.(2)正确.空集的子集个数为1个,即 ;含有1个元素的集合{a1}的子集个数为2个,即 ,{a1};含有2个元素的集合{a1,a2}的子集个数为4个,即 ,{a1},{a2},{a1,a2}……归纳可得含有n 个元素的集合的子集个数为2n 个,故其真子集个数是2n-1,非空真子集的个数是2n-2.(3)错误.A ∩B= 时,只要集合A,B 没有公共元素即可,不一定是A=B= .(4)正确.当A ⊆B 时,显然A ∩B=A ;当A ∩B=A 时,对任意x ∈A ,得x ∈A ∩B ,得x ∈B ,即x ∈A ⇒x ∈B ,故A ⊆B .(5)正确.当B ⊆A 时,显然A ∪B=A ; ∅∅当A∪B=A时,对任意x∈B,则x∈A∪B,得x∈A,即x∈B⇒x∈A,即B⊆A.(6)正确.设x∈ (A∪B),则x (A∪B),得x A且x B,即x∈ A且x∈ B,即x∈( A)∩( B),即 (A∪B)⊆( A)∩( B);反之,当x∈( A)∩( B)时,得x∈ A且x∈ B得x A且x B,得x (A∪B),得x∈ (A∪B),即 (A∪B) ( A)∩( B).根据集合相等的定义得 (A∪B)=( A)∩( B).答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√考向 1 集合的基本概念【典例1】(1)(2012·新课标全国卷)已知集合A={1,2,3,4,5}, B={(x,y)|x∈A,y∈A,x-y ∈A},则B中所含元素的个数为( )(A)3 (B)6 (C)8 (D)10(2)已知A={a+2,(a+1)2,a2+3a+3},若1∈A,则实数a构成的集合B的元素个数是( )(A)0 (B)1 (C)2 (D)3【思路点拨】(1)集合B中的元素是满足x∈A,y∈A,x-y∈A的有序实数对,根据要求分类列举求解.(2)据1∈A逐个讨论求解a值,根据集合元素的互异性得集合B中元素的个数.【规范解答】(1)选D.方法:x=2时,y=1,x-y=1,此时(x,y)=(2,1),此时(x,y)有1个;x=3时,y=1,2,此时x-y=2,1,(x,y)有2个;x=4时,y=1,2,3,此时x-y=3,2,1,(x,y)有3个;x=5时,y=1,2,3,4,此时x-y=4,3,2,1,(x,y)有4个.所以集合B中的元素个数为1+2+3+4=10.(2)选B.若a+2=1,则a=-1,代入集合A,得A={1,0,1},与集合元素的互异性矛盾;若(a+1)2=1,得a=0或-2,代入集合A,得A={2,1,3}或A={0,1,1},后者与集合元素的互异性矛盾,故a=0符合要求;若a2+3a+3=1,则a=-1或-2,代入集合A,得A={1,0,1}或A={0,1,1},都与集合元素的互异性相矛盾.综上可知,只有a=0符合要求,故集合B中只有一个元素.【互动探究】在本例(1)的集合B中如果去掉x-y∈A的限制条件,其他条件均不变,则集合B中含有的元素个数是多少?【解析】当x=1时,y=1,2,3,4,5,同理当x=2,3,4,5时,y=1,2,3,4,5,所以集合B中含有5×5=25个元素【变式训练】定义集合运算:A*B={z|z=xy,x∈A,y∈B}.设A={1,2},B={0,2},则集合A*B的所有元素之和为( )(A)0 (B)2 (C)3 (D)6【解析】选D.根据指定的法则,集合A*B中的元素是A,B中的元素的乘积,根据集合元素的性质,得A*B={0,2,4},故集合A*B中所有元素之和为6.考向 2 集合间的基本关系【典例2】(1)(2014·三明模拟)已知集合A={x|x2-3x+2=0,x ∈R},B={x|0<x<5,x ∈N},则满足条件A ⊆C ⊆B 的集合C 的个数为 ( )(A)1 (B)2 (C)3 (D)4(2)若集合A={1,a,b},B={a,a2,ab},且A ∪B=A ∩B,则实数a 的取值集合是 .【思路点拨】(1)求出A,B 中的元素,由A ⊆C ⊆B,知集合C 的个数由B 中有A 中没有的元素个数决定.(2)A ∪B=A ∩B ⇔A=B ,得出关于a,b 的方程组,解出a,b ,再根据集合元素的性质加以检验得出结论.【规范解答】(1)选D.A={x|x2-3x+2=0,x ∈R}={1,2},B={x|0<x<5,x ∈N}={1,2,3,4},由A ⊆C ⊆B,方法一:则C 中含有除1,2之外的3,4两元素中的0个、1个、2个,即C 的个数可以看作是集合{3,4}的子集的个数,有22=4个.方法二:则C 可能为{1,2},{1,2,3},{1,2,4},{1,2,3,4}共4个(2)方法一:因为A ∪B=A ∩B,所以A=B ,所以{1,b}={a2,ab}, 所以 解得 反代回A,B 集合知,只有 适合,所以 即实数a 的取值集合是{-1}.【变式训练】(1)已知M={x|x-a=0},N={x|ax-1=0},若M ∩N=N ,则实数a 的值为( )(A)1 (B)-1 (C)1或-1 (D)0或1或-1【解析】选D .M ∩N=N ⇔N ⊆M .当a=0时,N= ,符合要求, 当a ≠0时,只要 即a=±1即可. (2)设集合A={x,y,x+y},B={0,x2,xy},若A=B ,则实数对(x,y)的取值集合是_________.【解析】由A=B ,且0∈B ,故集合B 中的元素x2≠0,xy ≠0,故x ≠0,y ≠0,那么只能是集合A 中的x+y=0,此时就是在条件x+y=0下,{x,y}={x2,xy}, 答案:{(1,-1),(-1,1)}考向 3 集合的基本运算【典例3】(1)(2012·福建高考)已知集合M={1,2,3,4},N={-2,2},下列结论成立的是( )(A)N ⊆M (B)M ∪N=M (C)M ∩N=N (D)M ∩N={2}(2)(2012·辽宁高考)已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则( A)∩( B)为( )(A){5,8} (B){7,9} (C){0,1,3} (D){2,4,6}【思路点拨】(1)根据集合M ,N 中元素的特点逐一验证.(2)可以根据补集定义求出 A, B ,再根据交集定义得出结论,还可以利用Venn 图解决.【规范解答】(1)选D.显然M ∩N={2}. (2)选B.方法:集合( A)∩( B)= (A ∪B)={7,9}.如图所示:【拓展提升】小结:集合的运算律 221ab,1a b ab b a =⎧⎧=⎨⎨==⎩⎩,或,∅1a a =,(1)交换律:A∪B=B∪A,A∩B=B∩A.(2)结合律:(A∪B)∪C=A∪(B∪C);(A∩B)∩C=A∩(B∩C).(3)分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C).【变式训练】(1)已知集合M={y|y=2x},集合N={x|y=lg(2x-x2)},则M∩N=( )(A)(0,2) (B)(2,+∞)(C)[0,+∞] (D)(-∞,0)∪(2,+∞)【解析】选A. 集合M为函数y=2x的值域,即M=(0,+∞),集合N是函数y=lg(2x-x2)的定义域,由不等式2x-x2>0,解得N=(0,2),所以M∩N=(0,2).三,布置作业思考辨析,考点自测,知能巩固。

2019-2020年高三数学总复习 集合的概念和表示方法教案 理

2019-2020年高三数学总复习 集合的概念和表示方法教案 理

2019-2020年高三数学总复习集合的概念和表示方法教案理教材分析集合概念的基本理论,称为集合论.它是近、现代数学的一个重要基础.一方面,许多重要的数学分支,如数理逻辑、近世代数、实变函数、泛函分析、概率统计、拓扑等,都建立在集合理论的基础上.另一方面,集合论及其反映的数学思想,在越来越广泛的领域中得到应用.在小学和初中数学中,学生已经接触过集合,对于诸如数集(整数的集合、有理数的集合)、点集(直线、圆)等,有了一定的感性认识.这节内容是初中有关内容的深化和延伸.首先通过实例引出集合与集合元素的概念,然后通过实例加深对集合与集合元素的理解,最后介绍了集合的常用表示方法,包括列举法,描述法,还给出了画图表示集合的例子.本节的重点是集合的基本概念与表示方法,难点是运用集合的两种常用表示方法———列举法与描述法正确表示一些简单的集合.教学目标1. 初步理解集合的概念,了解有限集、无限集、空集的意义,知道常用数集及其记法.2. 初步了解“属于”关系的意义,理解集合中元素的性质.3. 掌握集合的表示法,通过把文字语言转化为符号语言(集合语言),培养学生的理解、化归、表达和处理问题的能力.任务分析这节内容学生已在小学、初中有了一定的了解,这里主要根据实例引出概念.介绍集合的概念采用由具体到抽象,再由抽象到具体的思维方法,学生容易接受.在引出概念时,从实例入手,由具体到抽象,由浅入深,便于学生理解,紧接着再通过实例理解概念.集合的表示方法也是通过实例加以说明,化难为易,便于学生掌握.教学设计一、问题情境1. 在初中,我们学过哪些集合?2. 在初中,我们用集合描述过什么?学生讨论得出:在初中代数里学习数的分类时,学过“正数的集合”,“负数的集合”;在学习一元一次不等式时,说它的所有解为不等式的解集.在初中几何里学习圆时,说圆是到定点的距离等于定长的点的集合.几何图形都可以看成点的集合.3. “集合”一词与我们日常生活中的哪些词语的意义相近?学生讨论得出:“全体”、“一类”、“一群”、“所有”、“整体”,……4. 请写出“小于10”的所有自然数.0,1,2,3,4,5,6,7,8,9.这些可以构成一个集合.5. 什么是集合?二、建立模型1. 集合的概念(先具体举例,然后进行描述性定义)(1)某种指定的对象集在一起就成为一个集合,简称集.(2)集合中的每个对象叫作这个集合的元素.(3)集合中的元素与集合的关系:a是集合A中的元素,称a属于集合A,记作a∈A;a不是集合A中的元素,称a不属于集合A,记作aA.例:设B={1,2,3},则1∈B,4B.2. 集合中的元素具备的性质(1)确定性:集合中的元素是确定的,即给定一个集合,任何一个对象是否属于这个集合的元素也就确定了.如上例,给出集合B,4不是集合的元素是可以确定的.(2)互异性:集合中的元素是互异的,即集合中的元素是没有重复的.例:若集合A={a,b},则a与b是不同的两个元素.(3)无序性:集合中的元素无顺序.例:集合{1,2}与集合{2,1}表示同一集合.3. 常用的数集及其记法全体非负整数的集合简称非负整数集(或自然数集),记作N.非负整数集内排除0的集合简称正整数集,记作N*或N+;全体整数的集合简称整数集,记作Z;全体有理数的集合简称有理数集,记作Q;全体实数的集合简称实数集,记作R.4. 集合的表示方法[问题]如何表示方程x2-3x+2=0的所有解?(1)列举法列举法是把集合中的元素一一列举出来的方法.例:x2-3x+2=0的解集可表示为{1,2}.(2)描述法描述法是用确定的条件表示某些对象是否属于这个集合的方法.例:①x2-3x+2=0的解集可表示为{x|x2-3x+2=0}.②不等式x-3>2的解集可表示为{x|x-3>2}.③Venn图法例:x2-3x+2=0的解集可以表示为(1,2).5. 集合的分类(1)有限集:含有有限个元素的集合.例如,A={1,2}.(2)无限集:含有无限个元素的集合.例如,N.(3)空集:不含任何元素的集合,记作.例如,{x|x2+1=0,x∈R}=.注:对于无限集,不宜采用列举法.三、解释应用[例题]1. 用适当的方法表示下列集合.(1)由1,2,3这三个数字抽出一部分或全部数字(没有重复)所组成的一切自然数.(2)平面内到一个定点O的距离等于定长l(l>0)的所有点P.(3)在平面a内,线段AB的垂直平分线.(4)不等式2x-8<2的解集.2. 用不同的方法表示下列集合.(1){2,4,6,8}.(2){x|x2+x-1=0}.(3){x∈N|3<x<7}.3. 已知A={x∈N|66-x∈N}.试用列举法表示集合A.(A={0,3,5})4. 用描述法表示在平面直角坐标中第一象限内的点的坐标的集合.[练习]1. 用适当的方法表示下列集合.(1)构成英语单词mathematics(数字)的全体字母.(2)在自然集内,小于1000的奇数构成的集合.(3)矩形构成的集合.2. 用描述法表示下列集合.(1){3,9,27,81,…}.(2)四、拓展延伸把下列集合“翻译”成数学文字语言来叙述.(1){(x,y)|y=x2+1,x∈R}.(2){y|y=x2+1,x∈R}.(3){(x,y)|y=x2+1,x∈R}.(4){x|y=x2+1,y∈N*}.点评这篇案例注重新、旧知识的联系与过渡,以旧引新,从学生的原有知识、经验出发,创设问题情境;从实例引出集合的概念,再结合实例让学生进一步理解集合的概念,掌握集合的表示方法.非常注重实例的使用是这篇案例的突出特点.这样做,通俗易懂,使学生便于学习和掌握.例题、练习由浅入深,对培养学生的理解能力、表达能力、思维能力大有裨益.拓展延伸注重数学语言的转化和训练,注重区分形似而质异的数学问题,加强了学生对数学概念的理解和认识.2019-2020年高三数学总复习频率与概率教案理教材分析频率与概率是两个不同的概念,但是二者又有密切的联系.如何从二者的异同点中抽象出概率的定义是本案例的主要内容.本节课蕴涵了具体与抽象之间的辩证关系.讲授过程中对教材处理稍有不当,可能直接影响学生对本节重点(即概念的理解)的掌握程度.因此,如何设计合适的实例,怎样引导学生理解和总结是处理好本节的关键,也是处理好本节教材的难点.教学目标通过本节课教学,使学生能理清频率和概率的关系,并能正确理解概率的意义,增强学生的对立与统一的辩证思想意识.任务分析由于频率在大量重复试验的前提下可以近似地叫作这个事件的概率,因此本节课应从具有大量重复试验的实例入手.为加深学生的理解程度,可采用学生亲自参与到试验中去,从操作中去体会,去总结.概率可看作频率理论上的期望值,从数量上反映了随机事件发生的可能性大小.因此,为巩固学生总结出的知识,最后还要回归到实例中去,让学生去运用,以符合认知过程.教学设计一、问题情境在日常生活中,我们经常遇到某某事件发生的概率是多少,如xx年2月5日《文汇报》登载的两则消息.本报讯记者梁红英报道:2月3日晚6点19分,一彩民购买的“江浙沪大乐透”彩票,同时投中10注一等奖,独揽48571620元巨额奖金,创下中国彩票史上个人一次性奖额之最.……据有关人士介绍,该彩民当时花了200元买下100注“江浙沪大乐透”彩票,分成10组,每组10注,每组的自选号码相同.结果,其中1组所选号码与前晚“江浙沪大乐透”xx015期开奖号码完全一致.本报讯记者江世亮报道:……对这种似乎不可能发生事件的发生,从数学概率论上将作何解释?为此,记者于昨日午夜电话连线采访了本市一位数学建模专家,他说,以他现在不完全掌握的情况来分析,像这名幸运者同时获得10个大奖的概率,可称得上一次万亿分之一的事件,通俗地讲就是接近于零.对文中的“万亿分之一”我们怎样理解呢?再如:天气预报说“明天降雨的概率是80%,我们明天出门要不要带伞?收音机里广播报道xx年冬某地“流行性感冒的发病率为10%”,我们这里要不要采取预防措施?……对这些在传播媒体上出现的数字80%,10%等,我们该作何理解呢?二、建立模型为了解决诸如以上的实际问题,我们不妨先从熟悉的频率的概念入手.首先,将全班同学平均分成三组,第一组做掷硬币试验,次数越多越好,观察掷出正面向上的次数,然后把试验结果和计算结果分别填入下表.表28-1第二组做抓阄试验.写五个阄,即分别标号为1,2,3,4,5,有放回地抓,每次记录下号数,次数越多越好.不妨统计一下各号数所占频率.第三组做摸围棋子试验.预先准备黑、白围棋子若干,然后给该组学生黑子30粒,白子10粒,让该组学生有放回地摸,次数为100次,每次摸出1粒,并记录下每次摸到的棋子的颜色,求出白子出现的频率.试验结束,让各组学生回答试验结果.第一组正面向上的频率必然接近,第二组结果肯定是每个号出现的频率接近,而第三组结果肯定位于附近.各组学生所得结果可能大于预定数,也可能小于预定数,但都比较接近.让学生讨论:出现与上述结果比较接近的数字受何因素影响?(学生思考,讨论,教师投影以下表格)历史上有些学者还做了成千上万次掷硬币的试验,结果如下表所示:表28-2观察上表后,引导学生总结:在多次重复试验中,同一事件发生的频率在某一个数值附近摆动,而且随着试验次数的增加,一般摆动幅度的越小,而且观察到的大偏差也越少,频率呈现一定的稳定性.通过三组试验,我们可以发现:虽然,,三个数值不等,但是三个试验存在共性,即随机事件的频率随试验次数的增加稳定在某一数值附近.同时还可看出,不同的随机事件对应的数值可能不同.我们就用这一数值表示事件发生的可能性大小,即概率.(引出概率定义)定义可采用学生口述、教师补充的方式,然后可以投影此定义:一般地,在n次重复进行的试验中,事件A发生的频率,当n很大时,总是在某个常数附近摆动,随着n的增加,摆度幅度越来越小,这时就把这个常数叫作事件A的概率,记为P(A).学生可考虑如下问题:(1)概率P(A)的取值范围是什么?(2)必然事件、不可能性事件的概率各是多少?(3)频率和概率有何关系?其中重点是问题(3),应启发、引导学生总结出:在大量重复试验的前提下,频率可以近似地称为这个事件的概率,而概率可看作频率在理论上的期望值,它从数量上反映了随机事件发生的可能性大小.为加深对二者关系的理解,可以进行如下类比:给定一根木棒,谁都不怀疑它有“客观”的长度,长度是多少?我们可以用尺或仪器去测量,不论尺或仪器多么精确,测得的数值总是稳定在木棒真实的“长度”值的附近.事实上,人们也是把测量所得的值当作真实的“长度”值.这里测量值就像本节中的频率,“客观”长度就像概率.概率的这种定义叫作概率的统计定义.在实践中,经常采用这种方法求事件的概率.三、解释应用[例题]1. 把第三组试验中的黑棋子减少10粒,即20粒黑子,10粒白子,那么摸到黑子的概率约为多少?学生通过多次试验,可以发现此概率约为.2. 为确定某类种子的发芽率,从一批种子中抽出若干批做发芽试验,其结果如下:表28-3从以上的数据可以看出,这类种子的发芽率约为0.9.[练习]某射击手在同一条件下进行射击,结果如下:表28-4(1)计算表中击中靶心的各个频率.(表中各频率分别为0.8,0.95,0.88,0.92,0.89,0.91)(2)这个射手射击一次,击中靶心的概率约是多少?(由此(1)可知,这个射手射击一次,击中靶心的概率约是0.9)四、拓展延伸“某彩票的中奖概率为”是否意味着买1000张彩票就一定能中奖?从概率的统计定义出发,我们先来考虑此题的简化情形:在投掷一枚均匀硬币的随机试验中,正面出现的概率是,这是否意味着投掷2次硬币就会出现1次正面呢?根据经验,我们投掷2次硬币有可能1次正面也不出现,即出现2次反面的情形,但是在大量重复掷硬币的试验中,如掷10000次硬币,则出现正面的次数约为5000次.买1000张彩票相当于做1000次试验,结果可能是一次奖也没中,或者中一次奖,或者多次中奖.所以“彩票中奖概率为”并不意味着买1000张彩票就一定能中奖.只有当所买彩票的数量n非常大时,才可以将大量重复买彩票这个试验看成中奖的次数约为(比如说买1000000张彩票,则中奖的次数约为1000),并且n越大,中奖次数越接近于.由此我们可以说,对于小概率事件,从理论上来讲,发生的可能性很小,甚至在一定条件下可能不会发生.但是,实际上小概率事件仍有发生的可能,如本节开头提到的万亿分之一的概率事件就发生了.点评针对这节课以概念为主,而又抽象的特点,案例设计了以学生动手试验为主,引导学生体会概念的教学方法,同时对这节中较抽象的内容:频率和概率的关系做了形象的类比,以便学生理解.这篇案例增加了试验内容,其目的是更有力地帮助学生理解定义.另外,例题与练习的配备有利于学生加深对这节内容的理解.因此,这节课的整体设计符合学生对新知识认识的规律,符合新课程标准的精神.。

高中数学复习学(教)案(第1讲)集合的概念

高中数学复习学(教)案(第1讲)集合的概念

第一章 集合与简易逻辑§1.1 集合的概念【高考要求】1、理解集合、子集、真子集的概念;了解属于、包含、相等关系的意义;2、掌握有关的术语和符号,并会用它们正确表示一些简单的集合;3、学会运用数形结合、分类讨论的思想方法分析和解决有关集合的问题,形成良好的思维品质。

【知识点归纳】一 、集合的基本概念及表示方法:1、集合的描述性定义:一般地,某些指定的对象集在一起就成为一个集合,也简称集,通常用大写的字母A B C 、、表示,并且用大括号表示集合(即:把集合中的对象放在大括号内)。

2、元素的定义:集合中的每一个对象叫做集合的一个元素,通常用小写的字母a b c 、、表示。

注意:构成集合的元素除了常见的数、式、点等数学对象之外,还可以是其他任何对象,甚至还可以是集合。

如:{}{}{}{}1,2,3A =。

3、集合中元素的特征:(1)确定性:是指集合中的元素必须是确定的,即任何一个对象都能判断它是或不是某一个集合中的元素,二者必居其一。

如“接近于0的实数”接近由于没有一个确定的界限,故0.001是否属于这个集合不能判断,所以这不能组成一个集合。

(2)互异性:是指集合中的元素互不相同,即同一个集合中不能出现同一个元素两次及两次以上,如:{}21,0,a 表示一个集合,即1a ≠±且0a ≠。

(3)无序性:集合中的元素无先后顺序,如:{}1,2与{}2,1是同一个集合。

4、集合的分类:(1)按元素的多少分:有限集(元素个数是有限个),无限集(元素个数是无限个),空集(不含任何元素)。

(2)按元素的属性分:如:数集(元素是数)、点集(元素是点)等。

5、集合的表示方法:(1)列举法:将集合中的元素一一列举出来的方法;其一般形式为:{}12,,,n a a a(2)描述法:用确定的条件表示某些对象是否属于这个集合的方法。

其一般形式为: {}代表元素代表元素满足的条件或具有的性质。

(3)图示法;(4)区间法。

集合的概念教案

集合的概念教案

集合的概念教案课题:集合的概念教学目标:1. 理解集合的基本概念和表示方法。

2. 掌握集合的基本运算:交集、并集和补集。

3. 能够运用集合的概念解决简单的实际问题。

教学重难点:1. 集合的表示方法。

2. 集合的基本运算。

教学准备:1. 教学课件和投影设备。

2. 集合运算的实际例子。

教学过程:Step1:导入新知识 (5分钟)教师用实际例子引入集合概念。

比如,教师问学生喜欢的水果有哪些,学生会举出苹果、梨子、橘子等。

教师解释这些水果的集合可以表示为{苹果,梨子,橘子},每个水果就是集合中的一个元素。

Step2:集合的基本概念 (10分钟)教师向学生介绍集合的基本概念。

集合是由一些确定的或者不确定的事物组成的整体,这些事物称为集合的元素。

元素之间没有顺序关系,每个元素只出现一次。

Step3:集合的表示方法 (15分钟)教师介绍集合的表示方法:列举法和描述法。

列举法是把集合的所有元素一一列举出来;描述法是通过描述集合元素的特点来表示集合。

例如,集合{1,2,3,4}可以用列举法表示,也可以用描述法表示为“小于5的自然数”。

Step4:集合的运算 (15分钟)教师介绍集合的基本运算:交集、并集和补集。

交集表示两个集合共有的元素,用符号∩表示;并集表示两个集合所有的元素,用符号∪表示;补集表示一个集合中不包含在另一个集合中的元素。

通过实际例子和图示向学生解释这些运算的意义。

Step5:实际问题解决 (10分钟)教师引导学生运用集合的概念解决简单的实际问题,如:某班级有50人,其中30人会打篮球,20人会踢足球,有几人既会打篮球又会踢足球?Step6:检查与总结 (5分钟)教师与学生一起检查学生在学习过程中的问题并进行总结。

教师可以提问学生理解得如何以及还有哪些问题需要解答。

Step7:作业布置 (5分钟)布置集合的相关练习作业,巩固所学的知识。

教学反思:集合的概念对于学生来说是一个相对抽象的概念,因此在教学中需要通过实际例子和图示来帮助学生理解。

高中数学集合复习教案

高中数学集合复习教案

高中数学集合复习教案一、教学目标1. 理解集合的概念,掌握集合的表示方法(列举法、描述法、图示法)。

2. 掌握集合之间的关系(包含、相等、子集、真子集、补集)。

3. 理解集合的基本运算(并集、交集、差集、对称差集)。

4. 能够运用集合的知识解决实际问题,提高逻辑思维能力。

二、教学内容1. 集合的概念与表示方法:列举法、描述法、图示法。

2. 集合之间的关系:包含、相等、子集、真子集、补集。

3. 集合的基本运算:并集、交集、差集、对称差集。

4. 集合在实际问题中的应用。

三、教学重点与难点1. 教学重点:集合的概念、表示方法、关系、基本运算。

2. 教学难点:集合的表示方法、集合关系的理解、集合运算的运用。

四、教学方法与手段1. 采用问题驱动法,引导学生主动探究集合的知识。

2. 利用多媒体课件,生动展示集合的图示法,帮助学生形象理解集合之间的关系和基本运算。

3. 开展小组合作活动,让学生在讨论中加深对集合知识的理解。

五、教学过程1. 导入:通过生活中的实例,引入集合的概念,激发学生的兴趣。

2. 讲解:讲解集合的表示方法、关系和基本运算,结合示例进行演示。

3. 练习:布置练习题,让学生巩固所学知识,并及时给予解答和反馈。

4. 应用:结合实际问题,让学生运用集合的知识解决问题,提高学生的应用能力。

5. 总结:对本节课的内容进行总结,强调重点和难点,为学生课后复习提供指导。

教案仅供参考,具体实施时可根据学生的实际情况进行调整。

六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习兴趣和积极性。

2. 练习作业:评估学生在练习作业中的表现,检查学生对集合知识的掌握程度。

3. 课后反馈:收集学生的课后反馈,了解学生在学习过程中的困惑和问题,为后续教学提供改进方向。

七、教学拓展1. 探讨集合的其他表示方法,如区间表示法、维恩图等。

2. 介绍集合论的基本原理和概念,如势、无限集合等。

3. 结合数学史,讲述集合论的起源和发展,提高学生对数学学科的认识。

集合的概念教案模板范文

集合的概念教案模板范文

一、教学目标1. 知识技能目标:- 理解集合的概念,掌握集合的三个基本特征。

- 了解常用数集及其表示方法。

- 学会运用列举法和描述法表示集合。

2. 过程与方法目标:- 通过实例分析,培养学生观察、分析、归纳的能力。

- 通过小组讨论,提高学生的合作意识和交流能力。

3. 情感态度与价值观目标:- 培养学生对数学知识的兴趣,激发学生探索数学世界的热情。

- 培养学生严谨、求实的科学态度。

二、教学重难点1. 教学重点:集合的概念、集合的三个特征、常用数集及其表示方法。

2. 教学难点:运用列举法和描述法正确表示集合。

三、教学过程(一)导入新课1. 情境导入:通过生活中的实例,如购物清单、图书分类等,引导学生初步感知集合的概念。

2. 问题提出:引导学生思考以下问题:- 什么是集合?- 集合有哪些特征?- 如何表示集合?(二)新课讲授1. 集合的概念:- 定义:集合是由一些确定的、互不相同的对象组成的整体。

- 特征:确定性、互异性、无序性。

2. 集合的表示方法:- 列举法:将集合中的所有元素列举出来,用大括号括起来表示。

- 描述法:用数学语言描述集合中元素的性质,用大括号括起来表示。

3. 常用数集:- 自然数集:包括所有正整数。

- 整数集:包括所有正整数、0和所有负整数。

- 有理数集:包括所有整数和所有分数。

- 无理数集:不能表示为两个整数比的数。

(三)巩固练习1. 完成课后习题,巩固所学知识。

2. 小组讨论:如何用列举法和描述法表示以下集合?- 所有大于5的偶数。

- 所有小于10的质数。

(四)课堂小结1. 回顾本节课所学内容,总结集合的概念、特征和表示方法。

2. 强调列举法和描述法的应用。

四、教学反思1. 教师在讲授过程中,要注意引导学生主动思考,积极参与课堂活动。

2. 通过实例分析,帮助学生理解抽象的数学概念。

3. 注重培养学生的合作意识和交流能力。

4. 及时总结教学效果,不断改进教学方法。

五、教学资源1. 多媒体课件:用于展示集合的概念、特征和表示方法。

高考数学 第1课时-集合的概念教案

高考数学 第1课时-集合的概念教案

集合的概念二.教学目标:理解集合、子集的概念,能利用集合中元素的性质解决问题,掌握集合问题的常规处理方法.三.教学重点:集合中元素的3个性质,集合的3种表示方法,集合语言、集合思想的运用.四.教学过程:(一)主要知识:1.集合、子集、空集的概念;2.集合中元素的3个性质,集合的3种表示方法;3.若有限集A 有n 个元素,则A 的子集有2n 个,真子集有21n -,非空子集有21n -个,非空真子集有22n -个.(二)主要方法:1.解决集合问题,首先要弄清楚集合中的元素是什么;2.弄清集合中元素的本质属性,能化简的要化简;3.抓住集合中元素的3个性质,对互异性要注意检验;4.正确进行“集合语言”和普通“数学语言”的相互转化.(三)例题分析:例1.已知集合2{1}P y x ==+,2{|1}Q y y x ==+,2{|1}E x y x ==+,2{(,)|1}F x y y x ==+,{|1}G x x =≥,则( D )解法要点:弄清集合中的元素是什么,能化简的集合要化简. 例2.设集合{},,P x y x y xy =-+,{}2222,,0Q x y x y =+-,若P Q =,求,x y 的值及集合P 、Q .解:∵P Q =且0Q ∈,∴0P ∈.(1)若0x y +=或0x y -=,则220x y -=,从而{}22,0,0Q x y =+,与集合中元素的互异性矛盾,∴0x y +≠且0x y -≠;(2)若0xy =,则0x =或0y =.当0y =时,{},,0P x x =,与集合中元素的互异性矛盾,∴0y ≠;当0x =时,{,,0}P y y =-,22{,,0}Q y y =-,由P Q =得220y y y y y -=⎧⎪=-⎨≠⎪⎩ ① 或220y y y y y -=-⎧⎪=⎨≠⎪⎩ ② 由①得1y =-,由②得1y =,∴{01x y ==-或{01x y ==,此时{1,1,0}P Q ==-. 例3.设集合1{|,}24k M x x k Z ==+∈, 1{|,}42k N x x k Z ==+∈,则 ( B ) 解法一:通分; 解法二:从14开始,在数轴上表示. 例4.若集合{}2|10,A x x ax x R =++=∈,集合{}1,2B =,且A B ⊆,求实数a 的取值范围.解:(1)若A φ=,则240a ∆=-<,解得22a -<<;(2)若1A ∈,则2110a ++=,解得2a =-,此时{1}A =,适合题意;(3)若2A ∈,则22210a ++=,解得52a =-,此时5{2,}2A =,不合题意; 综上所述,实数m 的取值范围为[2,2)-. 例5.设2()f x x px q =++,{|()}A x x f x ==,{|[()]}B x f f x x ==,(1)求证:A B ⊆;(2)如果{1,3}A =-,求B .解答见《高考A 计划(教师用书)》第5页.(四)巩固练习:1.已知2{|2530}M x x x =--=,{|1}N x mx ==,若N M ⊆,则适合条件的实数m 的集合P 为1{0,2,}3-;P 的子集有 8 个;P 的非空真子集有 6 个.2.已知:2()f x x ax b =++,{}{}|()22A x f x x ===,则实数a 、b 的值分别为2,4-. 3.调查100名携带药品出国的旅游者,其中75人带有感冒药,80人带有胃药,那么既带感冒药又带胃药的人数的最大值为 75 ,最小值为 55 .4.设数集3{|}4M x m x m =≤≤+,1{|}3N x n x n =-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集,如果把b a -叫做集合{}|x a x b ≤≤的“长度”,那么集合M N 的长度的最小值是112. 五.课后作业:《高考A 计划》考点1,智能训练4,5,6,7,8,9,11,12.。

《集合的概念》教案设计

《集合的概念》教案设计

《集合的概念》教案设计《《集合的概念》教案设计》这是优秀的教学设计文章,希望可以对您的学习工作中带来帮助!1.1.1集合的概念一、教学目标1、知识技能目标:(1)初步理解集合的概念,集合元素的三个特征,知道常用数集及其记法。

(2)初步了解“属于”关系的意义。

(3)初步了解有限集、无限集、空集的意义。

2、过程方法目标:(1) 从观察分析集合的元素入手,正确的理解集合.通过实例,初步体会元素与集合的“属于”关系。

(2)观察关于集合的几组实例,初步感受集合语言在描述客观现实和数学对象中的意义。

3、情感态度目标:(1)在学习运用集合语言的过程中,增强学生认识事物的能力。

(2)培养学生实事求是、扎实严谨的科学态度。

二、知识点1、集合等有关概念及其表示方法2、集合与元素之间的关系3、集合元素的三个特征4、集合分类(注意空集 )5、常用数集的表示法三、教学重点:集合的基本概念与表示方法,集合元素的三个特征.四、教学难点:集合与元素的关系,空集的意义五、课程引入与简单回顾:从前有个渔夫对数学非常感兴趣,但是就是不理解集合,偶然碰到了一位数学家,他就问这位数学家,集合是什么?数学家让这位渔夫去撒网打渔,当网收起时,大大小小的鱼被一网打尽,数学家笑着说,这就是集合!六、新授课1、概念:(1)对象:我们可以感觉到的客观存在以及我们思想中的事物或抽象符号,都可以称作对象。

如:教室里的桌子可以称作是对象咱们的教科书可以称作为对象某某笔袋里的文具也可以看作是对象……(2)集合:把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合。

(3)元素:构成集合中每个对象叫做这个集合的元素。

例1、小于10的自然数 0,1,2,3,4,5,6,7,8,9中的各个数都分别看作对象,所有这些对象汇集在一起构成一个整体,我们说这些对象构成一个集合,该集合的元素有:0,1,2,3,4,5,6,7,8,92、书P3举几个集合的例子(1)、参加亚特兰大奥运会的所有中国代表团的成员构成的集合(2)、方程 =1的解的全体构成的集合(3)、平行四边形的全体构成的集合(4)、平面上与一定点O的距离等于r的点的全体构成的集合。

高中数学教案《集合的概念》

高中数学教案《集合的概念》

教学计划:《集合的概念》一、教学目标1.知识与技能:学生能够理解集合的基本概念,掌握集合的表示方法(列举法、描述法),以及集合元素的基本性质(确定性、互异性、无序性)。

2.过程与方法:通过具体实例分析,引导学生观察、比较、归纳集合的特点,培养学生的抽象思维能力和逻辑推理能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养严谨的科学态度和良好的学习习惯,感受数学在解决实际问题中的应用价值。

二、教学重点和难点●教学重点:集合的基本概念、表示方法以及集合元素的基本性质。

●教学难点:理解集合元素的互异性,并能在实际问题中准确应用集合的概念进行描述和推理。

三、教学过程1. 引入新课(约5分钟)●生活实例引入:通过学生熟悉的场景(如班级学生名单、水果分类等)引入集合的概念,让学生感受到集合在日常生活中的应用。

●提出问题:引导学生思考这些场景中的共同特点,即“整体”与“个体”的关系,从而引出集合的定义。

●明确目标:介绍本节课的学习目标,即理解集合的基本概念,掌握集合的表示方法和元素性质。

2. 讲授新知(约15分钟)●集合的定义:清晰阐述集合的定义,强调集合是由一些确定的、不同的元素所组成的整体。

●集合的表示方法:介绍列举法和描述法两种表示方法,通过实例展示如何具体使用这两种方法来表示集合。

●集合元素的基本性质:详细讲解集合元素的确定性、互异性和无序性,通过例题和练习加深学生对这些性质的理解。

3. 案例分析(约10分钟)●实例分析:选取几个具有代表性的实例(如班级学生集合、自然数集合等),分析这些实例中集合的构成和元素性质。

●师生互动:鼓励学生提出问题或疑惑,教师及时解答,促进学生对集合概念的理解。

●总结归纳:引导学生总结归纳集合的基本特点和表示方法,为后续学习打下基础。

4. 练习巩固(约15分钟)●课堂练习:设计多样化的练习题,包括选择题、填空题和解答题,让学生在练习中巩固集合的概念和表示方法。

●小组合作:鼓励学生分组讨论,共同解决难题,培养学生的团队合作精神和问题解决能力。

高三数学一轮复习(1)集合概念、子集

高三数学一轮复习(1)集合概念、子集

集合的概念及运算(1) 总第1个教案【复习目标】:准确理解和使用集合概念;理解元素与集合、集合与集合之间的关系,能识别给定集合的子集.学会对简单的含参变量的讨论. 【复习重点】:注重集合中元素的形式,集合元素的互异性、子集与真子集、空集的特殊性 【复习难点】:根据集合的含义求参数;分类讨论思想的培养 1、已知集合A ={}N a a a ∈<≤,40 ,用列举法能够表示为 2、已知集合A ={}m m m ++22,2,若A ∈3,则=m 3、下列集合表示同一集合的有(1)(){}2,3= M ,(){}3,2= N (2)(){}{}1,1,=+==+=y x y N y x y x M (3){}5,4 =M ,{}4,5 =N (4){}21,=M ,{}),(=21N 4、设集合A ={}R a a a x x ∈+-=,452,{}R b b b y y B ∈++==,2442 ,则A 、B 的关系是5、已知集合A =[)4,1,B =()a ,∞-,B A ⊆,则∈a 二、交流质疑 精讲点拔例1、 若R b a ∈,,集合{}⎭⎬⎫⎩⎨⎧=+b a ba b a ,,,,01,求a b -的值. 变式训练:已知集合A ={}b a b a a 2,,++,B ={}2,,acac a .若A =B ,求c 的值例2、已知集合A ={}R a x ax x ∈=+-,0232.(1) 若A 是空集,求a 的取值范围;(2) 若A 中只有一个元素,求a 的值,并将这个元素写出来;(3) 若A 中至多有一个元素,求a 的取值范围.变式练习:已知1≤a 时,集合[]a a -2,中有且只有3个整数,则a 的取值范围是_______.例3、(1)若集合{}{}01,062=+==-+ax x S x x x P =,且P S ⊆,求由a 的可取值组成的集合。

(2)集合{}52≤≤-x x A =,集合{}121-≤≤+m x m x B =.若A B ⊆,求实数m 的取值范围。

高中数学集合复习教案

高中数学集合复习教案

高中数学集合复习教案一、教学目标1. 理解集合的概念,掌握集合的表示方法。

2. 能够运用集合的基本运算(并集、交集、补集)解决实际问题。

3. 理解集合的性质,如无序性、确定性、互异性。

4. 能够运用集合的知识解决数学问题,提高逻辑思维能力。

二、教学内容1. 集合的概念与表示方法集合的定义集合的表示方法(列举法、描述法)2. 集合的基本运算并集:两个集合的并集包含所有属于两个集合的元素。

交集:两个集合的交集包含属于两个集合的元素。

补集:一个集合的补集是除去该集合之外的所有元素构成的集合。

3. 集合的性质无序性:集合中的元素没有先后顺序。

确定性:集合中的元素是明确的,没有重复。

互异性:集合中的元素彼此不同。

4. 集合的应用运用集合的基本运算解决实际问题。

运用集合的性质解决数学问题。

三、教学重点与难点1. 重点:集合的概念与表示方法,集合的基本运算,集合的性质。

2. 难点:集合的应用,解决实际问题。

四、教学方法1. 采用讲解法,引导学生理解集合的概念和表示方法。

2. 采用示例法,通过具体例子讲解集合的基本运算。

3. 采用练习法,让学生通过练习题巩固集合的知识。

4. 采用讨论法,引导学生运用集合的知识解决实际问题。

五、教学准备1. 教案、教材、PPT。

2. 练习题及答案。

3. 教学工具(黑板、粉笔)。

六、教学过程1. 导入:通过简单的例子引入集合的概念,激发学生的兴趣。

2. 讲解:讲解集合的概念、表示方法、基本运算和性质。

3. 练习:让学生完成一些练习题,巩固所学知识。

4. 应用:引导学生运用集合的知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调重点和难点。

七、课堂练习1. 选择题:下列哪个选项是集合的表示方法?A. {1, 2, 3}B. {1, 2, 3, 4}C. {1, 2, 3} U {4, 5, 6}D. {1, 2, 3} ∩{4, 5, 6}2. 填空题:设A = {1, 2, 3},B = {3, 4, 5},求A ∪B 的结果是______。

集合的概念 教案

集合的概念 教案

1.1集合的概念教学设计教材分析由于空间时间维度的不同, 同一个事物会有不同的解释, 如: 在平面内, 所有到定点的距离等于定长的点组成一个圆;而在空间中, 所有到定点的距离等于定长的点组成一个球面。

因此明确研究对象、确定研究范围是研究数学问题的基础。

为了简洁、准确地表达数学对象及研究范围, 我们需要使用集合的语言和工具。

作为高中数学的第一节, 本节主要通过实例研究研究集合的含义, 表示方法及表示方法, 比较简单。

教学目标与核心素养课程目标1.了解集合的含义;理解元素与集合的“属于”与“不属于”关系;熟记常用数集专用符号.2.深刻理解集合元素的确定性、互异性、无序性;能够用其解决有关问题.3.会用集合的两种表示方法表示一些简单集合。

感受集合语言的意义和作用。

数学学科素养1.数学抽象: 集合概念的理解, 描述法表示集合的方法;2.逻辑推理: 集合的互异性的辨析与应用;3.数学运算:集合相等时的参数计算, 集合的描述法转化为列举法时的运算;4.数据分析: 元素在集合中对应的参数满足的条件;5.数学建模: 用集合思想对实际生活中的对象进行判断与归类。

教学重难点重点: 集合的基本概念, 集合中元素的三个特性, 元素与集合的关系, 集合的表示方法.难点:元素与集合的关系, 选择适当的方法表示具体问题中的集合.课前准备教学方法: 以学生为主体, 采用诱思探究式教学, 精讲多练。

教学工具: 多媒体。

教学过程预习课本, 引入新课阅读课本2-5页, 思考并完成以下问题1.集合和元素的含义是什么?各用什么字母表示?2.集合有什么特性?3.元素和集合之间有哪两种关系?有什么符号表示?4.常见的数集有哪些?用什么字母表示?5.集合有哪两种表示方法?它们如何定义?6.它们各自有什么特点?7.它们使用什么符号表示?要求:学生独立完成, 以小组为单位, 组内可商量, 最终选出代表回答问题。

二、知识归纳、梳理1. 元素与集合的概念(1)元素: 一般地, 把研究对象统称为元素. 元素常用小写的拉丁字母a, b, c, …表示.(2)集合:把一些元素组成的总体叫做集合(简称为集). 集合通常用大写的拉丁字母A, B, C, …表示.(3)集合相等: 只要构成两个集合的元素是一样的, 就称这两个集合是相等的.4.把集合的元素一一列举出来出来, 并用花括号“{ }”括起来表示集合的方法叫做列举法.5. 描述法(1)定义: 用集合所含元素的共同特征表示集合的方法.(2)具体方法:在花括号内先写上表示这个集合元素的一般符号及取值(变化)范围, 再画一条竖线, 在竖线后写出这个集合中元素所具有的共同特征.三、典例分析、举一反三题型一集合的含义例1考查下列每组对象, 能构成一个集合的是()①某校高一年级成绩优秀的学生;②直角坐标系中横、纵坐标相等的点;③不小于3的自然数;④2018年第23届冬季奥运会金牌获得者.A. ③④B. ②③④C. ②③D. ②④【答案】B解题技巧: (判断一组对象能否组成集合的标准)判断一组对象能否组成集合, 关键看该组对象是否满足确定性, 如果此组对象满足确定性, 就可以组成集合;否则, 不能组成集合.同时还要注意集合中元素的互异性、无序性.跟踪训练一1. 给出下列说法:①中国的所有直辖市可以构成一个集合;②高一(1)班较胖的同学可以构成一个集合;③正偶数的全体可以构成一个集合;④大于2 013且小于2 018的所有整数不能构成集合.其中正确的有________. (填序号)【答案】①③题型二元素与集合的关系例2(1)下列关系中, 正确的有()①12∈R;②2∉Q;③|-3|∈N;④|-3|∈Q.A. 1个B. 2个C. 3个D. 4个(2)集合A中的元素x满足∈N, x∈N, 则集合A中的元素为________.【答案】(1) C (2) 0,1,2解题技巧: 判断元素与集合关系的两种方法(1)直接法:如果集合中的元素是直接给出, 只要判断该元素在已知集合中是否出现即可。

高三数学人教版A版数学(理)高考一轮复习教案集合

高三数学人教版A版数学(理)高考一轮复习教案集合

第一节 集合1.集合的含义与表示(1)了解集合的含义、元素与集合的“属于”关系.(2)能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题. 2.集合间的基本关系(1)理解集合之间包含与相等的含义,能识别给定集合的子集. (2)在具体情境中,了解全集与空集的含义. 3.集合间的基本运算(1)理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集. (2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集. (3)能使用韦恩(Venn)图表示集合的关系及运算. 知识点一 集合的基本概念1.集合中元素的三个特性:确定性、互异性、无序性. 2.元素与集合的关系:属于或不属于,表示符号分别为∈和∉. 3.集合的三种表示方法:列举法、描述法、V enn 图法.易误提醒 在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.[自测练习]1.已知a ∈R ,若{-1,0,1}=⎩⎨⎧⎭⎬⎫1a ,a 2,0,则a =________.解析:1a ≠0,a ≠0,a 2≠-1,只有a 2=1.当a =1时,1a =1,不满足互异性,∴a =-1.答案:-1知识点二 集合间的基本关系描述关系 文字语言符号语言 集合间的基本关系子集 A 中任意一元素均为B 中的元素A ⊆B 或B ⊇A真子集A 中任意一元素均为B 中的元素,且B 中至少有一个元素A 中没有AB 或B A相等集合A与集合B 中的所有元素都相同A=B 必记结论若集合A中有n个元素,则其子集个数为2n,真子集个数为2n-1,非空真子集的个数为2n-2.易误提醒易忘空集的特殊性,在写集合的子集时不要忘了空集和它本身.[自测练习]2.已知集合A={x|x=a+(a2-1)i}(a∈R,i是虚数单位),若A⊆R,则a=()A.1 B.-1 C.±1 D.0解析:A⊆R,∴a2-1=0,a=±1.答案:C3.已知集合A={1,2,3,4},B={(x,y)|x∈A,y∈A,xy∈A},则集合B的所有真子集的个数为()A.512 B.256C.255 D.254解析:由题意知当x=1时,y可取1,2,3,4;当x=2时,y可取1,2;当x=3时,y可取1;当x=4时,y可取1.综上,B中所含元素共有8个,所以其真子集有28-1=255个.选C.答案:C知识点三集合的基本运算及性质并集交集补集图形表示符号表示A∪B={x|x∈A或x∈B}A∩B={x|x∈A,且x∈B}∁U A={x|x∈U,且x∉A}性质A∪∅=AA∪A=AA∪B=B∪AA∪B=A⇔B⊆AA∩∅=∅A∩A=AA∩B=B∩AA∩B=A⇔A⊆BA∪(∁U A)=UA∩(∁U A)=∅∁U(∁U A)=A易误提醒运用数轴图示法易忽视端点是实心还是空心.必记结论∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).[自测练习]4.(2015·广州一模)已知全集U ={1,2,3,4,5},集合M ={3,4,5},N ={1,2,5},则集合{1,2}可以表示( )A .M ∩NB .(∁U M )∩NC .M ∩(∁U N )D .(∁U M )∩(∁U N )解析:M ∩N ={5},A 错误;∁U M ={1,2},(∁U M )∩N ={1,2},B 正确;∁U N ={3,4},M ∩(∁U N )={3,4},C错误;(∁U M )∩(∁U N )=∅,D 错误.故选B.答案:B5.(2015·长春二模)已知集合P ={x |x ≥0},Q =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x +1x -2≥0,则P ∩(∁R Q )=( ) A .(-∞,2) B .(-∞,-1] C .(-1,0)D .[0,2]解析:由题意可知Q ={x |x ≤-1或x >2},则∁R Q ={x |-1<x ≤2},所以P ∩(∁R Q )={x |0≤x ≤2}.故选D.答案:D考点一 集合的基本概念|1.已知集合S ={x |3x +a =0},如果1∈S ,那么a 的值为( ) A .-3 B .-1 C .1D .3解析:∵1∈S ,∴3+a =0,a =-3. 答案:A2.设集合A ={1,2,4},集合B ={x |x =a +b ,a ∈A ,b ∈A },则集合B 中的元素个数为( )A .4B .5C .6D .7 解析:∵a ∈A ,b ∈A ,x =a +b ,∴x =2,3,4,5,6,8,∴B 中有6个元素,故选C. 答案:C3.(2015·贵阳期末)已知全集U ={a 1,a 2,a 3,a 4},集合A 是集合U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:若a 1∈A ,则a 2∈A ,则由若a 3∉A ,则a 2∉A 可知,a 3∈A ,假设不成立;若a 4∈A ,则a 3∉A ,则a 2∉A ,则a 1∉A ,假设不成立,故集合A ={a 2,a 3}.答案:{a2,a3}判断一个元素是某个集合元素的三种方法:列举法、特征元素法、数形结合法.考点二集合间的基本关系及应用|(1)已知全集A={x∈N|x2+2x-3≤0},B={y|y⊆A},则集合B中元素的个数为()A.2B.3C.4 D.5[解析]依题意得,A={x∈N|(x+3)(x-1)≤0}={x∈N|-3≤x≤1}={0,1},共有22=4个子集,因此集合B中元素的个数为4,选C.[答案] C(2)已知集合M={x|-1<x<2},N={x|x<a},若M⊆N,则实数a的取值范围是()A.(2,+∞) B.[2,+∞)C.(-∞,-1) D.(-∞,-1][解析]依题意,由M⊆N得a≥2,即所求的实数a的取值范围是[2,+∞),选B.[答案] B1.判断两集合的关系常有两种方法(1)化简集合,从表达式中寻找两集合间的关系.(2)用列举法表示各集合,从元素中寻找关系.2.已知两集合间的关系求参数时的两个关键点(1)将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.(2)合理利用数轴、Venn图帮助分析.1.(2015·辽宁五校联考)设集合P={x|x>1},Q={x|x2-x>0},则下列结论正确的是() A.P⊆Q B.Q⊆PC.P=Q D.P∪Q=R解析:由集合Q={x|x2-x>0},知Q={x|x<0或x>1},所以选A.答案:A考点三集合的基本运算|(1)(2015·高考全国卷Ⅱ)已知集合A={-2,-1,0,1,2},B={x|(x-1)(x+2)<0},则A∩B=()A.{-1,0}B.{0,1}C.{-1,0,1} D.{0,1,2}[解析]由于B={x|-2<x<1},所以A∩B={-1,0}.故选A.[答案] A(2)(2015·郑州期末)已知函数f(x)=2-x-1,集合A为函数f(x)的定义域,集合B为函数f(x)的值域,则如图所示的阴影部分表示的集合为________.[解析]本题考查函数的定义域、值域以及集合的表示.要使函数f(x)=2-x-1有意义,则2-x-1≥0,解得x≤0,所以A=(-∞,0].又函数f(x)=2-x-1的值域B=[0,+∞).阴影部分用集合表示为∁A∪B(A∩B)=(-∞,0)∪(0,+∞).[答案](-∞,0)∪(0,+∞)集合运算问题的四种常见类型及解题策略(1)离散型数集或抽象集合间的运算.常借助Venn图求解.(2)连续型数集的运算.常借助数轴求解.(3)已知集合的运算结果求集合.借助数轴或Venn图求解.(4)根据集合运算求参数.先把符号语言译成文字语言,然后适时应用数形结合求解.2.(2015·高考陕西卷)设集合M={x|x2=x},N={x|lg x≤0},则M∪N=()A.[0,1]B.(0,1]C.[0,1) D.(-∞,1]解析:∵M={x|x2=x}={0,1},N={x|lg x≤0}={x|0<x≤1},∴M∪N={x|0≤x≤1},故选A.答案:A考点四集合的创新问题|设集合A={1,2,3},B={2,3,4,5},定义A⊙B={(x,y)|x∈A∩B,y∈A∪B},则A⊙B中元素的个数是()A.7B.10C.25D.52[解析]A∩B={2,3},A∪B={1,2,3,4,5},由列举法可知A⊙B={(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5)},共有10个元素,故选B.[答案] B解决集合创新问题的三个策略(1)遇到新定义问题,应耐心读题,分析新定义的特点,弄清新定义的性质.(2)按新定义的要求,“照章办事”,逐条分析、验证、运算,使问题得以解决.(3)对于选择题,可以结合选项通过验证,用排除、对比、特值等方法求解.3.设P和Q是两个集合,定义集合P-Q={x|x∈P,且x∉Q},如果P={x|log2x<1},Q={x||x-2|<1},那么P-Q=()A.{x|0<x<1} B.{x|0<x≤1}C.{x|1≤x<2} D.{x|2≤x<3}解析:由log2x<1,得0<x<2,所以P={x|0<x<2};由|x-2|<1,得1<x<3,所以Q={x|1<x<3}.由题意,得P-Q={x|0<x≤1}.答案:B1.遗忘空集致误【典例】 设全集是实数集R ,A ={x |2x 2-7x +3≤0},B ={x |x 2+a <0}.若(∁R A )∩B =B ,则实数a 的取值范围是________.[解析] ∵A =⎩⎨⎧⎭⎬⎫x ⎪⎪ 12≤x ≤3,∴∁R A =⎩⎨⎧⎭⎬⎫x ⎪⎪x <12或x >3,当(∁R A )∩B =B 时,B ⊆∁R A 即A ∩B =∅.①当B =∅,即a ≥0时,满足B ⊆∁R A ; ②当B ≠∅,即a <0时, B ={x |--a <x <-a }, 要使B ⊆∁R A ,需-a ≤12,解得-14≤a <0.综上可得,实数a 的取值范围是a ≥-14.[答案] a ≥-14[易误点评] 由∁R A ∩B =B 知B ⊆∁R A ,即A ∩B =∅,又集合B 中元素属性满足x 2+a <0,当a ≥0时B =∅易忽视导致漏解.[防范措施] (1)根据集合间的关系求参数是高考的一个重点内容.解答此类问题的关键是抓住集合间的关系以及集合元素的特征.(2)已知集合B ,若已知A ⊆B 或A ∩B =∅,则考生很容易忽视A =∅而造成漏解.在解题过程中应根据集合A 分三种情况进行讨论.[跟踪练习] 已知U =R ,集合A ={x |x 2-x -2=0},B ={x |mx +1=0},B ∩(∁U A )=∅,则m =________.解析:A ={-1,2},B =∅时,m =0;B ={-1}时,m =1;B ={2}时,m =-12.答案:0,1,-12A 组 考点能力演练1.集合U ={0,1,2,3,4},A ={1,2},B ={x ∈Z |x 2-5x +4<0},则∁U (A ∪B )=( ) A .{0,1,3,4} B .{1,2,3} C .{0,4}D .{0}解析:因为集合B ={x ∈Z |x 2-5x +4<0}={2,3},所以A ∪B ={1,2,3},又全集U ={0,1,2,3,4},所以∁U (A ∪B )={0,4}.所以选C.答案:C2.已知集合A={0,1,2,3,4},B={x|x=n,n∈A},则A∩B的真子集个数为() A.5 B.6C.7 D.8解析:由题意,得B={0,1,2,3,2},所以A∩B={0,1,2},所以A∩B的真子集个数为23-1=7,故选C.答案:C3.(2015·太原一模)已知全集U=R,集合M={x|(x-1)(x+3)<0},N={x||x|≤1},则阴影部分表示的集合是()A.[-1,1)B.(-3,1]C.(-∞,-3)∪[-1,+∞)D.(-3,-1)x|-1≤x≤1,∴阴影部分表示的集解析:由题意可知,M={}x|-3<x<1,N={}合为M∩(∁U N)={}x|-3<x<-1.答案:D4.集合A={x|x-2<0},B={x|x<a},若A∩B=A,则实数a的取值范围是()A.(-∞,-2] B.[-2,+∞)C.(-∞,2] D.[2,+∞)解析:由题意,得A={x|x<2}.又因为A∩B=A,所以a≥2,故选D.答案:D5.(2015·山西质检)集合A,B满足A∪B={1,2},则不同的有序集合对(A,B)共有() A.4个B.7个C.8个D.9个解析:由题意可按集合A中的元素个数分类.易知集合{1,2}的子集有4个:∅,{1},{2},{1,2}.若A=∅,则B={1,2};若A={1},则B={2}或B={1,2};若A={2},则B ={1}或B={1,2};若A={1,2};则B=∅或B={1}或B={2}或B={1,2}.综上所述,不同的有序集合对(A,B)共有9个,故选D.答案:D6.(2015·广州模拟)设集合A={(x,y)|2x+y=6},B={(x,y)|3x+2y=4},满足C⊆(A∩B)的集合C的个数为________.解析:依题意得,A ∩B ={(8,-10)},因此满足C ⊆(A ∩B )的集合C 的个数是2. 答案:27.设集合S n ={1,2,3,…,n },若X ⊆S n ,把X 的所有元素的乘积称为X 的容量(若X 中只有一个元素,则该元素的数值即为它的容量,规定空集的容量为0).若X 的容量为奇(偶)数,则称X 为S n 的奇(偶)子集,则S 4的所有奇子集的容量之和为________.解析:∵S 4={1,2,3,4},∴X =∅,{1},{2},{3},{4},{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},{1,2,3},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}.其中是奇子集的为X ={1},{3},{1,3},其容量分别为1,3,3,所以S 4的所有奇子集的容量之和为7.答案:78.已知集合P ={-1,m },Q =⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34,若P ∩Q ≠∅,则整数m =________. 解析:由{-1,m }∩⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <34≠∅,可得-1<m <34,由此可得整数m =0. 答案:09.已知集合A ={x |x 2-2x -3≤0},B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R }. (1)若A ∩B =[0,3],求实数m 的值; (2)若A ⊆∁R B ,求实数m 的取值范围. 解:由已知得A ={x |-1≤x ≤3}, B ={x |m -2≤x ≤m +2}.(1)∵A ∩B =[0,3],∴⎩⎪⎨⎪⎧m -2=0,m +2≥3.∴m =2.(2)∁R B ={x |x <m -2或x >m +2},∴A ⊆∁R B , ∴m -2>3或m +2<-1,即m >5或m <-3. 因此实数m 的取值范围是{m |m >5或m <-3}.10.设全集I =R ,已知集合M ={x |(x +3)2≤0},N ={x |x 2+x -6=0}. (1)求(∁I M )∩N ;(2)记集合A =(∁I M )∩N ,已知集合B ={x |a -1≤x ≤5-a ,a ∈R },若B ∪A =A ,求实数a 的取值范围.解:(1)∵M ={x |(x +3)2≤0}={-3}, N ={x |x 2+x -6=0}={-3,2},∴∁I M ={x |x ∈R 且x ≠-3}, ∴(∁I M )∩N ={2}.(2)由(1)知A =(∁I M )∩N ={2},∵A ∪B =A ,∴B ⊆A ,∴B =∅或B ={2}, 当B =∅时,a -1>5-a ,∴a >3;当B ={2}时,⎩⎪⎨⎪⎧a -1=2,5-a =2,解得a =3,综上所述,实数a 的取值范围为{a |a ≥3}.B 组 高考题型专练1.(2014·高考课标全国卷Ⅰ)已知集合A ={x |x 2-2x -3≥0},B ={x |-2≤x <2},则A ∩B =( )A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)解析:由不等式x 2-2x -3≥0解得x ≥3或x ≤-1,因此集合A ={x |x ≤-1或x ≥3},又集合B ={x |-2≤x <2},所以A ∩B ={x |-2≤x ≤-1},故选A.答案:A2.(2014·高考课标全国卷Ⅱ)设集合M ={0,1,2},N ={x |x 2-3x +2≤0},则M ∩N =( ) A .{1} B .{2} C .{0,1}D .{1,2}解析:由已知得N ={x |1≤x ≤2},∵M ={0,1,2},∴M ∩N ={1,2},故选D. 答案:D3.(2015·高考全国卷Ⅰ)已知集合A ={x |x =3n +2,n ∈N },B ={6,8,10,12,14},则集合A ∩B 中元素的个数为( )A .5B .4C .3D .2解析:集合A ={x |x =3n +2,n ∈N },当n =0时,3n +2=2,当n =1时,3n +2=5,当n =2时,3n +2=8,当n =3时,3n +2=11,当n =4时,3n +2=14,∵B ={6,8,10,12,14},∴A ∩B 中元素的个数为2,选D.答案:D4.(2015·高考福建卷)若集合A={i,i2,i3,i4}(i是虚数单位),B={1,-1},则A∩B 等于()A.{-1} B.{1}C.{1,-1} D.∅解析:因为A={i,-1,-i,1},B={1,-1},所以A∩B={1,-1},故选C.答案:C5.(2015·高考浙江卷)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=() A.[0,1) B.(0,2]C.(1,2) D.[1,2]解析:∁R P={x|0<x<2},故(∁R P)∩Q={x|1<x<2}.答案:C6.(2015·高考重庆卷)已知集合A={1,2,3},B={2,3},则()A.A=B B.A∩B=∅C.A B D.B A解析:由真子集的概念知B A,故选D.答案:D。

《集合的概念》参考教案

《集合的概念》参考教案

《集合的概念》参考教案一、教学目标1. 让学生理解集合的概念,掌握集合的表示方法。

2. 培养学生运用集合语言描述现实生活中的数学问题。

3. 提高学生分析问题、解决问题的能力。

二、教学内容1. 集合的概念及表示方法。

2. 集合的基本运算(并集、交集、补集)。

3. 集合在实际问题中的应用。

三、教学重点与难点1. 重点:集合的概念,集合的表示方法,集合的基本运算。

2. 难点:理解集合的无限性,掌握集合的描述方法。

四、教学方法1. 采用讲授法,讲解集合的概念、表示方法和基本运算。

2. 利用案例分析法,引导学生运用集合语言解决实际问题。

3. 组织小组讨论,培养学生的合作意识。

五、教学准备1. 课件:集合的概念、表示方法、基本运算的图片和例子。

2. 练习题:涵盖集合的概念、表示方法和应用。

3. 小组讨论素材:现实生活中的集合问题。

教案部分:一、导入(5分钟)1. 引入集合的概念,通过展示图片(如苹果、橘子)让学生感受集合的特点。

2. 引导学生用集合的语言描述所展示的图片。

二、新课内容(20分钟)1. 讲解集合的表示方法,如列举法、描述法。

2. 讲解集合的基本运算:并集、交集、补集。

3. 通过示例,让学生理解集合的无限性。

三、案例分析(15分钟)1. 给出案例,让学生运用集合语言描述问题。

2. 引导学生分析问题,找出解决问题的关键。

3. 分组讨论,探讨解决问题的方法。

四、课堂练习(10分钟)1. 出示练习题,让学生独立完成。

2. 讲解练习题,巩固所学知识。

五、总结与布置作业(5分钟)1. 总结本节课所学内容,强调集合的概念、表示方法和基本运算。

2. 布置作业:巩固集合的概念和表示方法。

六、课后反思(教师)1. 学生对集合的概念和表示方法的理解程度。

2. 学生在实际问题中运用集合语言的能力。

3. 针对学生的掌握情况,调整教学策略。

六、教学拓展(15分钟)1. 介绍集合的其他表示方法,如维恩图。

2. 讲解集合的限制条件,如互异性、无序性。

高中数学教案集合定义

高中数学教案集合定义

高中数学教案集合定义教学目标:1. 了解集合的定义和基本概念。

2. 掌握集合的表示方法。

3. 能够进行集合的交、并、差、补等运算。

教学重点:1. 集合的定义和基本概念。

2. 集合的表示方法。

教学难点:1. 集合的运算。

教学准备:1. PowerPoint课件。

2. 黑板、粉笔。

3. 教科书。

教学步骤:一、导入(5分钟)教师用一个简单的例子引导学生认识集合的概念,如把同学们分为男生和女生两个集合,并让学生思考集合的概念。

二、讲解集合的定义(10分钟)1. 教师通过PPT介绍集合的定义:集合是具有某种共同特征的事物的总体。

2. 解释集合的基本概念:元素、空集、全集等。

三、集合的表示方法(10分钟)1. 教师讲解集合的表示方法:列举法、叙述法、图示法等。

2. 演示如何用各种表示方法表示一个集合。

四、集合的运算(15分钟)1. 教师讲解集合的交、并、差、补等运算的定义和性质。

2. 带领学生做一些简单的集合运算练习,加深学生的理解。

五、练习与讨论(10分钟)1. 学生们进行一些集合运算的练习题。

2. 学生们讨论解答过程,分享解题方法。

六、总结(5分钟)教师总结本节课的重点内容,强调集合的定义和基本运算方法。

七、作业布置(5分钟)布置集合相关的练习题作业,帮助学生巩固所学知识。

教学反思:本节课主要围绕集合的定义展开,通过讲解、练习和讨论,帮助学生建立对集合的认识,并掌握集合的表示方法和运算。

教师需要注重引导学生思考,激发学生的兴趣,让他们积极参与课堂,提高学生的学习兴趣和效果。

《集合的概念》参考教案

《集合的概念》参考教案

《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。

2. 培养学生运用集合知识解决实际问题的能力。

3. 培养学生合作交流、思考创新的能力。

二、教学内容:1. 集合的概念及表示方法。

2. 集合的元素特征。

3. 集合的分类。

三、教学重点与难点:1. 教学重点:集合的概念,集合的表示方法。

2. 教学难点:理解集合的元素特征,掌握集合的分类。

四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的概念。

2. 采用案例分析法,让学生通过实际例子理解集合的表示方法。

3. 采用合作交流法,培养学生团队协作能力。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的概念:讲解集合的定义,让学生理解集合的基本特征。

3. 学习集合的表示方法:讲解集合的表示方法,如列举法、描述法等。

4. 练习与讨论:让学生通过实例练习表示集合,并讨论集合的元素特征。

《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。

2. 培养学生运用集合知识解决实际问题的能力。

3. 培养学生合作交流、思考创新的能力。

二、教学内容:1. 集合的概念及表示方法。

2. 集合的元素特征。

3. 集合的分类。

三、教学重点与难点:1. 教学重点:集合的概念,集合的表示方法。

2. 教学难点:理解集合的元素特征,掌握集合的分类。

四、教学方法:1. 采用问题驱动法,引导学生主动探究集合的概念。

2. 采用案例分析法,让学生通过实际例子理解集合的表示方法。

3. 采用合作交流法,培养学生团队协作能力。

五、教学过程:1. 导入新课:通过生活中的实例,引导学生思考集合的概念。

2. 讲解集合的概念:讲解集合的定义,让学生理解集合的基本特征。

3. 学习集合的表示方法:讲解集合的表示方法,如列举法、描述法等。

4. 练习与讨论:让学生通过实例练习表示集合,并讨论集合的元素特征。

《集合的概念》参考教案一、教学目标:1. 让学生理解集合的概念,掌握集合的表示方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂过关第一章集合与常用逻辑用语第1课时集合的概念(对应学生用书(文)、(理)1~2页)考情分析考点新知了解集合的含义;体会元素与集合的“属于”关系;能用自然语言、图形语言、集合语言(列举法或描述法)描述不同的数学对象或数学问题;了解集合之间包含与相等的含义;能识别给定集合的子集;了解全集与空集的含义.①学会区分集合与元素,集合与集合之间的关系.②学会自然语言、图形语言、集合语言之间的互化.③集合含义中掌握集合的三要素.4不要求证明集合相等关系和包含关系.1.(必修1P10第5题改编)已知集合A={m+2,2m2+m},若3∈A,则m=________.答案:—错误!解析:因为3∈A,所以m+2=3或2m2+m=3.当m+2=3,即m=1时,2m2+m=3,此时集合A中有重复元素3,所以m=1不合题意,舍去;当2m2+m=3时,解得m=—错误!或m =1(舍去),此时当m=—错误!时,m+2=错误!≠3满足题意.所以m=—错误!.2.(必修1P7第4题改编)已知集合{a|0≤a<4,a∈N},用列举法可以表示为________.答案:错误!解析:因为a∈N,且0≤a<4,由此可知实数a的取值为0,1,2,3.3.(必修1P17第6题改编)已知集合A=[1,4),B=(—∞,a),A B,则a∈________.答案:[4,+∞)解析:在数轴上画出A、B集合,根据图象可知.4.(原创)设集合A={x|x=5—4a+a2,a∈R},B={y|y=4b2+4b+2,b∈R},则A、B的关系是________.答案:A=B解析:化简得A={x|x≥1},B={y|y≥1},所以A=B.5.(必修1P 17第8题改编)满足条件{1}M{1,2,3}的集合M的个数是________.答案:4个解析:满足条件{1}M{1,2,3}的集合M有{1},{1,2},{1,3},{1,2,3},共4个.1.集合的含义及其表示(1)集合的定义:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合.其中集合中的每一个对象称为该集合的元素.(2)集合中元素的特征:确定性、互异性、无序性.(3)集合的常用表示方法:列举法、描述法、Venn图法.(4)集合的分类:若按元素的个数分类,可分为有限集、无限集、空集;若按元素的属性分类可分为点集、数集等.应当特别注意空集是一个特殊而又重要的集合,解题时切勿忽视空集的情形.(5)常用数集及其记法:自然数集记作N;正整数集记作N或N+;整数集记作Z;有理数集记作Q;实数集记作R;复数集记作C.2.两类关系(1)元素与集合之间的关系包括属于与不属于关系,反映了个体与整体之间的从属关系.(2)集合与集合之间的关系1包含关系:如果集合A中的每一个元素都是集合B的元素,那么集合A称为集合B的子集,记为A B或B A,读作“集合A包含于集合B”或“集合B包含集合A”.2真包含关系:如果A B,并且A≠B,那么集合A称为集合B的真子集,读作“集合A真包含于集合B”或“集合B真包含集合A”.3相等关系:如果两个集合所含的元素完全相同,即A中的元素都是B中的元素且B中的元素都是A中的元素,则称这两个集合相等.(3)含有n个元素的集合的子集共有2n个,真子集共有2n—1个,非空子集共有2n—1个,非空真子集有2n—2个.题型1正确理解和运用集合概念例1已知集合A={x|ax2—3x+2=0,a∈R}.(1)若A是空集,求a的取值范围;(2)若A中只有一个元素,求a的值,并将这个元素写出来;(3)若A中至多有一个元素,求a的取值范围.解:(1)若A是空集,则Δ=9—8a<0,解得a>错误!.(2)若A中只有一个元素,则Δ=9—8a=0或a=0,解得a=错误!或a=0;当a=错误!时这个元素是错误!;当a=0时,这个元素是错误!.(3)由(1)(2)知,当A中至多有一个元素时,a的取值范围是a≥错误!或a=0.错误!已知a≤1时,集合[a,2—a]中有且只有3个整数,则a的取值范围是________.答案:—1<a≤0解析:因为a≤1,所以2—a≥1,所以1必在集合中.若区间端点均为整数,则a=0,集合中有0,1,2三个整数,所以a=0适合题意;若区间端点不为整数,则区间长度2<2—2a<4,解得—1<a<0,此时,集合中有0,1,2三个整数,—1<a<0适合题意.综上,a的取值范围是—1<a≤0.错误!设集合M=错误!,N={x|x=错误!+错误!,k∈Z},则M________N.答案:真包含于题型2集合元素的互异性例2已知a、b∈R,集合A={a,a+b,1},B=错误!,且A B,B A,求a—b的值.解:∵ A B,B A,∴A=B.∵a≠0,∴a+b=0,即a=—b,∴错误!=—1,∴b=1,a=—1,∴a—b=—2.错误!已知集合A={a,a+b, a+2b},B={a,ac, ac2}.若A=B,则c=________.答案:—错误!解析:分两种情况进行讨论.1若a+b=ac且a+2b=ac2,消去b得a+ac2—2ac=0.当a=0时,集合B中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴ c2—2c+1=0,即c =1.但c=1时,B中的三元素又相同,此时无解.2若a+b=ac2且a+2b=ac,消去b得2ac2—ac—a=0.∵a≠0,∴2c2—c—1=0,即(c—1)(2c+1)=0.又c≠1,故c=—错误!.错误!集合A=错误!,集合B={a2,a+b,0},若A=B,求a2013+b2014的值.解:由于a≠0,由错误!=0,得b=0,则A={a,0,1},B={a2,a,0}.由A=B,可得a2=1.又a2≠a,则a≠1,则a=—1.所以a2013+b2014=—1.题型3根据集合的含义求参数范围例3集合A={x|—2≤x≤5},集合B={x|m+1≤x≤2m—1}.(1)若B A,求实数m的取值范围;(2)当x∈R时,没有元素x使x∈A与x∈B同时成立,求实数m的取值范围.解:(1)当m+1>2m—1即m<2时,B=满足B A;当m+1≤2m—1即m≥2时,要使B A成立,则错误!解得2≤m≤3.综上所述,当m≤3时有BA.(2)因为x∈R,且A={x|—2≤x≤5},B={x|m+1≤x≤2m—1},又没有元素x使x∈A与x∈B 同时成立,则1若B=,即m+1>2m—1,得m<2时满足条件;2若B≠,则要满足条件错误!解得m>4.或错误!无解.综上所述,实数m的取值范围为m<2或m>4.错误!已知集合A={y|y=—2x,x∈[2,3]},B={x|x2+3x—a2—3a>0}.若A B,求实数a的取值范围.解:由题意有A=[—8,—4],B={x|(x—a)(x+a+3)>0}.1当a=—错误!时,B=错误!,所以A B恒成立;2当a<—错误!时,B={x|x<a或x>—a—3}.因为A B,所以a>—4或—a—3<—8,解得a>—4或a>5(舍去),所以—4<a<—错误!;3当a>—错误!时,B={x|x<—a—3或x>a}.因为A B,所以—a—3>—4或a<—8(舍去),解得—错误!<a<1.综上,当A B时,实数a的取值范围是(—4,1).1.设集合A={x|x<2},B={x|x<a},且满足A真包含于B,则实数a的取值范围是____________.答案:(2,+∞)解析:利用数轴可得实数a的取值范围是(2,+∞).2.已知集合A={1,2,3,4,5},B={(x,y)|x∈A,y∈A,x—y∈A},则B中元素的个数为________.答案:10解析:B中所含元素有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4).3.若x∈A,则错误!∈A,就称A是“伙伴关系集合”,集合M=错误!的所有非空子集中具有伙伴关系的集合的个数是________.答案:3解析:具有伙伴关系的元素组是—1;错误!,2,所以具有伙伴关系的集合有3个:{—1},错误!,错误!.4.已知全集U=R,集合M={x|—2≤x—1≤2}和N={x|x=2k—1,k=1,2,…}的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有________个.答案:2解析:由题图示可以看出阴影部分表示集合M和N的交集,所以由M={x|—1≤x≤3},得M∩N={1,3},有2个.5.设P、Q为两个非空实数集合,定义集合P+Q={a+b|a∈P,b∈Q},若P={0,2,5},Q ={1,2,6},则P+Q中元素的个数为________.答案:8解析:(1)∵ P+Q={a+b|a∈P,b∈Q},P={0,2,5},Q={1,2,6},∴当a=0时,a+b的值为1,2,6;当a=2时,a+b的值为3,4,8;当a=5时,a+b的值为6,7,11,∴P+Q={1,2,3,4,6,7,8,11},∴P+Q中有8个元素.1.已知A={x|x2—2x—3≤0},若实数a∈A,则a的取值范围是________.答案:[—1,3]解析:由条件,a2—2a—3≤0,从而a∈[—1,3].2.现有含三个元素的集合,既可以表示为错误!,也可表示为{a2,a+b,0},则a2013+b2013=________.答案:—1解析:由已知得错误!=0及a≠0,所以b=0,于是a2=1,即a=1或a=—1,又根据集合中元素的互异性可知a=1应舍去,因此a=—1,故a2013+b2013=(—1)2013=—1.3.已知集合A={x|(x—2)[x—(3a+1)]<0},B=错误!.(1)当a=2时,求A∩B;(2)求使B真包含于A的实数a的取值范围.解:(1)A∩B={x|2<x<5}.(2)B={x|a<x<a2+1}.1若a=错误!时,A=,不存在a使B A;2若a>错误!时,2≤a≤3;3若a<错误!时,—1≤a≤—错误!.故a的取值范围是错误!∪[2,3].4.已知A={a+2,(a+1)2,a2+3a+3}且1∈A,求实数a的值.解:由题意知:a+2=1或(a+1)2=1或a2+3a+3=1,∴a=—1或—2或0,根据元素的互异性排除—1,—2,∴a=0即为所求.1.研究一个集合,首先要看集合中的代表元素,然后再看元素的限制条件,当集合用描述法表示时,注意弄清其元素表示的意义是什么.注意区分{x|y=f(x)}、{y|y=f(x)}、{(x,y)|y=f(x)}三者的不同.对于含有字母的集合,在求出字母的值后,要注意检验集合的元素是否满足互异性.2.空集是不含任何元素的集合,空集是任何集合的子集.在解题时,若未明确说明集合非空时,要考虑到集合为空集的可能性.例如:A B,则需考虑A=和A≠两种可能的情况.3.判断两集合的关系常有两种方法:一是化简集合,从表达式中寻找两集合间的关系;二是用列举法表示各集合,从元素中寻找关系.4.已知两集合间的关系求参数时,关键是将两集合间的关系转化为元素间的关系,进而转化为参数满足的关系.解决这类问题常常需要合理利用数轴、Venn图帮助分析.错误![备课札记]。

相关文档
最新文档