3-8.曲率及其应用

合集下载

角膜曲率

角膜曲率

角膜曲率仪测定角膜前表面曲率可为选择合适的软性角膜接触镜基弧提供依据,也可通过角膜曲率仪检查了解角膜散光度,为验光提供参考依据。

利用角膜曲率仪检测角膜前表面曲率半径,以毫米(mm,)表示。

软性角膜接触镜的验配,通常是将垂直和水平的曲率半径相加除以2,得平均值,再根据不同镜片的特性增加5%—10%的角膜曲率半径值即为所选用软性角膜接触镜的基弧。

例如,测得被检者角膜曲率半径平均值为7.6mm,如选用强生月抛型镜片,其基弧有8.4mm及8.8mm供选择,我们应选用基弧为8.4mm的镜片。

消费者常见的眼睛角膜曲率为7.0mm—8.5mm。

软性角膜接触镜常见的基弧有:博士伦软性角膜接触镜8.3mm、8.5mm、8.7mm;视康软性角膜接触镜8.6mm;卫康软性角膜接触镜8.4mm、8.6mm等。

角膜小曲率,选择过大基弧镜片。

如某消费者角膜曲率为7.3mm,但选配了8.7mm的博士伦软性角膜接触镜,将直接导致镜片松紧度过松、覆盖度差、中心定位不良、移动度过大,造成眼睛异物感,瞬目后因镜片偏位而发生视力模糊等不良后果。

角膜大曲率,选择过小基弧镜片。

如某消费者角膜曲率为8.0mm,但选配了8.4mm的卫康软性角膜接触镜,将直接导致镜片松紧度过紧、移动度过小,造成镜片下的泪液长时间不能排出,代谢产物积聚诱发角膜上皮毒性反应及角膜缺氧,进而因镜片的边缘压迫阻断角膜缘血管网的血供,导致紧镜综合征。

然而镜片移动小在早期并无不适感,不易发现,但镜片移动过小最为验配所忌。

如消费者的眼睛角膜曲率小于7.0mm或大于8.5mm,是不适合配戴软性角膜接触镜的。

如果没有角膜曲率仪,就无从知晓消费者的角膜曲率半径,当然无法判断应该为消费者选配多大基弧镜片,或者根本就不能配隐形眼镜。

验配员仅凭想象,主观臆断为消费者选配自己店内利润高的镜片,必然让消费者受到不可挽回的伤害。

在医疗器械经营许可证的办理中,大多数眼镜店都配备了角膜曲率计。

但是对于它的使用及具体作用还有很多人不是太了解,下面就角膜曲率计的使用及作用作下介绍。

《物理光学》§3-8用牛顿环测量透镜的曲率半径

《物理光学》§3-8用牛顿环测量透镜的曲率半径

分振幅干涉的基本内容回顾
由于两相干光束会聚角为2 由于两相干光束会聚角为2α, α楔形板的楔角。 λ 则,等厚条纹的间距为 则,等厚条纹的间距为 e = 2nα 由 Δ=2nhcosθ2(+λ/2)=m λ可知 =2nhcosθ (+λ 随着θ 随着θ2的增大,条纹将会发生弯曲,其规 律是朝向楔棱方向凸出。 薄膜的干涉与此原理相同,也是等厚条纹。 薄膜的干涉与此原理相同,也是等厚条纹。
D2 N= ∆C 4λ
§3-9 平面干涉仪
§3-9 平面干涉仪
是利用两个表面(一个是标准平面,一个是被检 平面)之间的楔形空气层产生的等厚干涉条纹检 L G G 验平面零件的仪器。 M 一、 原理: S 如图:
1 2
O ①标准平板G1; ①标准平板G1; 通常有很小的楔角,目的是使上表面和下表面的 反射光束分开一定角度,使上表面反射光束移出 视场之外。 ②被检测平板和标准平板之间的楔角和方向可以 通过它所在的调节盘进行调节,因而条纹间距和 方向可以随之变化。
分振幅干涉的基本内容回顾
一、平行平板——等倾条纹 平行平板——等倾条纹 由于光程差Δ=2nhcosθ (+λ 由于光程差Δ=2nhcosθ2(+λ/2)=m λ 故:若nh是均匀的,则条纹 故:若nh是均匀的,则条纹是θ2的函数; 即, θ2相同,则Δ相同、 m相同; 相同,则Δ 此时在观察屏上将形成环形条纹; 条纹是入射光对平行平板倾角相同的点的 条纹是入射光对平行平板倾角相同的点的 轨迹,且其定域面在无穷远处,须用望远 系统或在透镜焦平面上来观察其干涉图。
分振幅干涉的基本内容回顾
两类分振幅干涉装置产生的定域干涉图 (条纹)分别对应于: 平行平板——等倾条纹 平行平板——等倾条纹 楔形平板——等厚条纹 楔形平板——等厚条纹 其共同特点在于: 其共同特点在于: 光程相差Δ=2nhcosθ (+λ/2)的两束相干 光程相差Δ=2nhcosθ2(+λ/2)的两束相干 光分别由同一入射光在平板的上下两表面 产生。 其不同点在于: 其不同点在于:

7 空间曲线的曲率和挠率——【多元函数微分学】

7 空间曲线的曲率和挠率——【多元函数微分学】
空间曲线的曲率
弧微分公式 曲率的概念与曲率的计算 曲率圆与曲率半径
2007年8月
南京航空航天大学 理学院 数学系
1
一、弧微分公式
(1) 曲线弧由直角坐标方程给出:
弧长元素(弧微分) :
ds (dx)2 (dy)2 1 y2 dx
2007年8月 南京航空航天大学 理学院 数学系
2
(2) 曲线弧由参数方程给出:
M
s
R M
可见: R 愈小, 则K 愈大 , 圆弧弯曲得愈厉害 ;
R 愈大, 则K 愈小 , 圆弧弯曲得愈小 .
2007年8月
南京航空航天大学 理学院 数学系
6
2.曲率的计算公式 K d .
ds
设y f ( x)二阶可导,
有 arctan y,
tan y,
d
y 1 y2
dx,
ds 1 y2dx. k
y 3.
(1 y2 )2
2007年8月 南京航空航天大学 理学院 数学系
7
设曲线方程为
x (t),
y
(t
),
(t), (t)二阶可导,
dy (t) , dx (t)
d2y dx2
(t )
(t) (t) 3(t)
(t) .
k
(t )
(t )
(t) (t)
3
.
[ 2(t ) 2(t )]2
y
a1
cost
一拱的弧长。
0 t 2
解 由公式得
l 2 [a(1 cost)]2 (a sin t)2 dt 0
o
2a
2
2a
1 costdt 2a 2 sin t dt

极限曲率法及其应用

极限曲率法及其应用

石油学报 1997年7月ACT A PETROLEI SINICA第18卷 第3期*苏义脑,1976年毕业于武汉钢铁学院机械系,分别于1982年、1988年获硕士、博士学位。

现为石油勘探开发科学研究院教授级高级工程师,博士生导师。

通讯处:北京学院路910信箱。

邮政编码:100083。

极限曲率法及其应用苏义脑*(石油勘探开发科学研究院 北京)摘 要 水平井井眼轨道预测和控制问题的技术关键是准确计算各种造斜工具的造斜能力。

在综合分析定向井轨道预测方法和水平井预测控制特点的基础上,提出了一种计算导向动力钻具和各种转盘钻钻具组合造斜能力的新方法——“极限曲率法”,并对国际上当前流行的“三点定圆法”及极限曲率法作了讨论和对比;给出了极限曲率法在计算工具造斜能力和工具选型、系列工具的总体设计和井眼轨道的预测控制这三方面的应用实例,表明该方法是一种与实践相符程度较高、实用性较好的新方法。

主题词 水平井 轨道控制 轨道预测 分析研究1 前 言井眼轨道预测是井眼轨道控制技术的基础和重要组成部分。

对定向井井眼轨道的预测方法,目前国内外主要有[1]:(1)根据经验评选钻具组合的造斜率并以此预测井斜变化;(2)把钻头侧向力作为定量指标来预测井斜变化;(3)把钻头合力方向作为实际钻进方向;(4)把钻头轴线方向作为实际钻进方向;(5)把“平衡曲率”作为钻进曲率以确定钻进方向;(6)用岩石—钻头的相互作用模型确定钻进方向;(7)用力—位移模型确定钻进方向。

钻井实践表明,在上述几种方法中,如(6)、(7),固然可以作为精确的预测方法和手段,但预测程序中要用到地层、钻头的很多特征参数以作为输入参数,而这些参数在实际中较难准确地加以确定,因此其实际应用受到限制;如(2)、(3)、(4),因未考虑地层因素的影响,其预测结果往往误差较大;如(5),井眼实钻轨道并不会遵循“平均曲率”,在理论上和实践上均有一定问题;对(1),由于是根据经验,将使这种方法应用的普遍性受到较大限制。

材料力学填空与判断题解

材料力学填空与判断题解

实用文档第1 章 绪论一、是非判断题1-1 材料力学是研究构件承载能力的一门学科。

( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。

( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。

( √ )1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(×) 1-5 外力就是构件所承受的载荷。

( × )1-6 材料力学研究的内力是构件各部分间的相互作用力。

( × )1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

( √ ) 1-8 压强是构件表面的正应力。

( × ) 1-9 应力是横截面上的平均内力。

( × )1-10 材料力学只研究因构件变形引起的位移。

( √ ) 1-11 线应变是构件中单位长度的变形量。

( × ) 1-12 构件内一点处各方向线应变均相等。

( × )1-13 切应变是变形后构件中任意两根微线段夹角的变化量。

( × ) 1-14 材料力学只限于研究等截面直杆。

( × )1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。

如果还有另一种变形,必定是这四种变形的某种组合。

( √ )第 2 章 轴向拉伸与压缩 一、是非判断题2-1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。

(×) 2-2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。

(×) 2-3 虎克定律适用于弹性变形范围内。

(×) 2-4 材料的延伸率与试件尺寸有关。

(√)2-5 只有超静定结构才可能有装配应力和温度应力。

(√) 二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

材料力学填空与判断题解

材料力学填空与判断题解

第一章 绪论第1 章 绪论一、是非判断题1-1 材料力学是研究构件承载能力的一门学科。

( √ ) 1-2 材料力学的任务是尽可能使构件安全地工作。

( × ) 1-3 材料力学主要研究弹性范围内的小变形情况。

( √ )1-4 因为构件是变形固体,在研究构件的平衡时,应按变形后的尺寸进行计算。

(×) 1-5 外力就是构件所承受的载荷。

( × )1-6 材料力学研究的内力是构件各部分间的相互作用力。

( × )1-7 用截面法求内力时,可以保留截开后构件的任一部分进行平衡计算。

( √ ) 1-8 压强是构件表面的正应力。

( × ) 1-9 应力是横截面上的平均内力。

( × )1-10 材料力学只研究因构件变形引起的位移。

( √ ) 1-11 线应变是构件中单位长度的变形量。

( × ) 1-12 构件内一点处各方向线应变均相等。

( × )1-13 切应变是变形后构件中任意两根微线段夹角的变化量。

( × ) 1-14 材料力学只限于研究等截面直杆。

( × )1-15 杆件的基本变形只是拉(压)、剪、扭和弯四种。

如果还有另一种变形,必定是这四种变形的某种组合。

( √ )第 2 章 轴向拉伸与压缩 一、是非判断题2-1 使杆件产生轴向拉压变形的外力必须是一对沿杆轴线的集中力。

(×) 2-2 拉杆伸长后,横向会缩短,这是因为杆有横向应力存在。

(×) 2-3 虎克定律适用于弹性变形范围内。

(×) 2-4 材料的延伸率与试件尺寸有关。

(√)2-5 只有超静定结构才可能有装配应力和温度应力。

(√) 二、填空题2-6 承受轴向拉压的杆件,只有在(加力端一定距离外)长度范围内变形才是均匀的。

2-7 根据强度条件][σσ≤可以进行(强度校核、设计截面、确定许可载荷)三方面的强度计算。

2-8 低碳钢材料由于冷作硬化,会使(比例极限)提高,而使(塑性)降低。

曲率与挠率的关系及其应用

曲率与挠率的关系及其应用
_ α ( s) = ε γ( s) .
2 (- κ β) = - κ β, 于是 β( s) = - β( s) , 进而 对该式两边关于 s 求导 , 得κ( s)β = ε
_
_
_
_
_
_
_ γ( s) = α( s) × β( s) = ε γ ×( - β( s) ) = ε α ( s) . _ _ _ τ ( ) κ _ κ β( s) d s = ε s d s β( s) = 1 κ β( s) . 于 再对该式两边关于 s 求导 , 可得 - τ( s)β( s) = ε κ λ τ ( ) λ τ ( ) d s ds s s 1 1 κ ( s) = φ( s)κ, 是τ( s) = . 由于 s 是 s 的函数 , 故τ( s) = τ( s ( s) ) = τ( s) , 令 φ( s) = , 则τ λ τ( s) λ τ( s) 1 因此对于 Γ , 满足τ( t) = φ( t)κ( t) 的 φ( s) = , 其中τ是 Γ 的侣线 Γ 的挠率 , 而λ是常数 . λ τ( s) 3 公式τ( t) = φ( t)κ( t) 的应用 命题 2 一条非直线的曲线Γ ∶_ r = _ r ( t) 成为平面曲线的充要条件是Γ 的曲率和挠率所满足 的关系式τ( t) = φ( t)κ( t) 中的函数 φ( t) = 0 . 证明 必要性 :因Γ是非直线的平面曲线 , 故τ( t) = 0 ,κ( t) ≠0 , 于是由关系式可知φ( t) = 0 . 充分性 :因关系式中的 φ( t) = 0 , 故τ( t) = 0 , 这说明曲线Γ 是平面曲线 . 命题 3 一条曲线Γ ∶_ r = _ r ( s) ( 其中 s 为自然参数) 成为圆的充要条件是Γ 的曲率和挠率所 满足的关系式τ( t) = φ( t)κ( t) 中的函数 φ( s) = 0 且κ = C ( 其中 C 为非零常数) . 证明 必要性 :设曲线Γ为圆 , 于是Γ 的方程可写为 _ r ( s) = { aco s s , asin s , 0} ( 其中 a > 0 为常 1 数且 s 为自然参数) . 经计算圆的曲率和挠率分别为κ( s) = = C 和τ( s) = 0 , 于是满足相应关系

大口径球面反射镜曲率半径的精确测量

大口径球面反射镜曲率半径的精确测量

第7卷 第1期2014年2月  中国光学 Chinese Optics Vol.7 No.1 Feb.2014 收稿日期:2013⁃10⁃14;修订日期:2013⁃12⁃16 基金项目:中国科学院三期创新重大研究资助项目(No.O65X32C060)文章编号 2095⁃1531(2014)01⁃0163⁃06大口径球面反射镜曲率半径的精确测量陈宝刚∗,明 名,吕天宇(中国科学院长春光学精密机械与物理研究所,吉林长春130033)摘要:介绍了大口径球面反射镜曲率半径的传统测量方法,提出了利用组合测杆结合激光干涉仪测量球面反射镜曲率半径的新方法。

首先利用激光干涉仪检测球面反射镜的面型,调整干涉仪与被测镜的位置,使被测镜达到零条纹干涉状态,然后架设合理长度组合测杆,调整组合测杆靠近干涉仪端测量球头的位置,使之达到零条纹干涉状态,再使组合测杆另一端测头与镜面接触完成测量,通过计算分析即可得到被测球面镜的曲率半径。

对该方法的基本测量原理进行了研究分析,并对口径为600mm 的望远镜球面主镜的曲率半径进行了多次测量,测得其曲率半径均值为2836.774mm,标准偏差为0.071mm。

最后对该方法的测量不确定度进行了分析,找出了影响测量精度的主要因素,合成标准不确定度为0.061mm。

关 键 词:光学测量;球面反射镜;曲率半径;组合测杆;大口径中图分类号:O436.1;TH744 文献标识码:A doi:10.3788/CO.20140701.0163Precise measurement of curvature radius for sphericalmirror with large apertureCHEN Bao⁃gang ∗,MING Ming,LYU Tian⁃yu(Changchun Institute of Optics ,Fine Mechanics and Physics ,Chinese Academy of Sciences ,Changchun 130033,China )∗Corresponding author ,E⁃mail :cbg 0813@ Abstract :Conventional testing methods for the curvature radius of spherical mirror with large aperture are in⁃troduced briefly,and a novel method using combined rods and laser interferometer is proposed.Firstly,the surface figure of spherical mirror is tested with laser interferometer.The position of interferometer and tested mirror is adjusted to make the focus of the exit wave front and the center of curvature of tested mirror to be confocal.Then the suitable combined rods are setup,and the position of probe spheric head which is close to interferometer is adjusted to make the focus of the exit wave front and the center of the probe spheric head con⁃focal.Next,another probe spheric head is adjusted to contact the surface of the tested mirror.The curvature radius of the spheric mirror can be calculated by the data.The basic principle of the testing method is ana⁃lyzed.A telescope spheric primary mirror with a aperture of 600mm is tested many times with this method.The average radius of curvature is calculated to be 2836.774mm,and the root mean square is 0.071mm.Fi⁃nally,the measurement uncertainty of this method is analyzed,and the main factors affecting the measurementaccuracy are found out,and the composed standard uncertainty is0.061mm.Key words:optical testing;spherical mirror;radius of curvature;combined rods;large aperture1 引 言 光学球面曲率半径的精密测量是光学加工检测过程中的重要环节,作为大口径球面反射镜的一个重要参数,其曲率半径的高精度测量是一个急待解决的关键技术。

考研数学一二三大纲详解教材分析

考研数学一二三大纲详解教材分析

高等数学考研指定教材:同济大学数学系主编高等数学上下册第六版第一章函数与极限7天考小题学习内容复习知识点与对应习题大纲要求第一节:映射与函数一般章节函数的概念,常见的函数有界函数、奇函数与偶函数、单调函数、周期函数、复合函数、反函数、初等函数具体概念和形式.集合、映射不用看;双曲正弦,双曲余弦,双曲正切不用看习题1-1:4,5,6,7,8,9,13,15,16重点1.理解函数的概念,掌握函数的表示法,并会建立应用问题中的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极第二节:数列的极限一般章节数列定义,数列极限的性质唯一性、有界性、保号性本节用极限定义证明极限的题目考纲不作要求,可不看,如P26例1,例2,例3,定理1,2,3的证明都不作要求,但要理解;定理4不用看习题1-2:1第三节:函数的极限一般章节函数极限的基本性质不等式性质、极限的保号性、极限的唯一性、函数极限的函数局部有界性,函数极限与数列极限的关系等 P33例4,例5例7不用做,定理2,3的证明不用看,定理4不用看习题1-3:1,2,3,4第四节:无穷大与无穷小重要无穷小与无穷大的定义,它们之间的关系,以及与极限的关系无穷小重要,无穷大了解例2不用看,定理2不用证明习题1-4:1,6第五节:极限的运算法则掌握极限的运算法则6个定理以及一些推论注意运算法则的前提条件是否各自极限存在定理1,2的证明理解,推论1,2,3,定理6的证明不用看P46例3,例4,P47例6习题1-5:1,2,3,4,5重点第六节:极限存在准则理解两个重要极限重要两个重要极限要牢记在心,要注意极限成立的条件,不要混淆,应熟悉等价表达式,要会证明两个重要极限,函数极限的存在问题夹逼定理、单调有界数列必有极限,利用函数极限求数列极限,利用夹逼法则求极限,求递归数列的极限准则1的证明理解,第一个重要极限的证明一定要会,另一个重要极限的证明不用看,柯西存在准则不用看P51例1习题1-6:1,2,4第七节:无穷小的比较重要无穷小阶的概念同阶无穷小、等价无穷小、高阶无穷小、k阶无穷小,重要的等价无穷小尤其重要,一定要烂熟于心以及它们的重要性质和确定方法定理1,2的证明理解P57例1P58例5习题1-7:全做限.9.理解函数连续性的概念含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理,并会应用这些性质.第八节:函数的连续性与间断点重要,基本必考小题函数的连续性,间断点的定义与分类第一类间断点与第二类间断点,判断函数的连续性连续性的四则运算法则,复合函数的连续性,反函数的连续性和间断点的类型;例1-例5习题1-8:1,2,3,4,5重点第九节:连续函数的运算与初等函数的连续性了解连续函数的运算与初等函数的连续性包括和,差,积,商的连续性,反函数与复合函数的连续性,初等函数的连续性定理3,4的证明不用看例4-例8 习题1-9:1,2,3,4,5,6重点第十节:闭区间上连续函数的性质重要,不单独考大题,但考大题特别是证明题会用到理解闭区间上连续函数的性质:有界性与最大值最小值定理,零点定理与介值定理零点定理对于证明根的存在是非常重要的一种方法.一致连续性不用看例1-例2习题1-10:1,2,3,5要会用5题的结论自我小结总复习题一:除了7,8,9以外均做,3,5,11,14重点本章测试题-检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第二章导数与微分6天小题的必考章节学习内容复习知识点与对应习题大纲要求第一节: 导数的概念重要导数的定义、几何意义、物理意义数三不作要求,可不看,数三要知道导数的经济意义:边际与弹性,单侧与双侧可导的关系,可导与连续之间的关系非常重要,经常会出现在选择题中,函数的可导性,导函数,奇偶函数与周期函数的导数的性质,按照定义求导及其适用的情形,利用导数定义求极限. 会求平1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些面曲线的切线方程和法线方程.导数定义年年必考例1-例6习题2-1:3,4,5,6,7,8,11,15,16,17,18,19,重点20物理量,理解函数的可导性与连续性之间的关系.第二节:函数的求导法则考小题复合函数求导法、求初等函数的导数和多层复合函数的导数,由复合函数求导法则导出的微分法则,幂、指数函数求导法,反函数求导法,分段函数求导法基本求导法则与求导公式要非常熟定理1,3的证明不用看,例1,17不用做,定理2的证明理解,例6,7,8重点做习题2-2:除2,3,4,12不用做,其余全做,13,14重点做 2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.第三节:高阶导数重要,考的可能性很大高阶导数和N阶导数的求法归纳法,分解法,用莱布尼兹法则用泰勒展开式求高阶导例1-例7 习题2-3:5,6,7,11不用做,其余全做,4,12重点做第四节:隐函数及由参数方程所确定的函数的导数考小题由参数方程确定的函数的求导法数三不用看,变限积分的求导法,隐函数的求导法相关变化率不用看例1-例10习题2-4:9,10,11,12均不用做,数三5,6,7,8也可以不做,其余全做,4重点做第五节:函数的微分考小题函数微分的定义,微分运算法则,微分几何意义微分在近似计算中的应用不用看,考纲不作要求例1-例6 习题2-5:5,6,7,8,9,10,11,12均不用做,其余全做自我小结总复习题二:4,10,15,16,17,18均不用做,其余全做,2,3,6,7,14重点做,数三不用做12,13第二章测试题第三章微分中值定理与导数的应用8天考大题难题经典章节学习内容复习知识点与对应习题大纲要求第一节:微分中值定理最重要,与中值定理应用有关的证明题微分中值定理及其应用费马定理及其几何意义,罗尔定理及其几何意义,拉格朗日定理及其几何意义、柯西定理及其几何意义四个定理要会证明,及其重要例1,习题3-1:除了13,15不用做,其余全部重点做1.理解并会用罗尔Rolle定理、拉格朗日Lagrange中值定理和泰勒Taylor定理,了解并会用柯西Cauchy中值定第二节:洛必达法则重要,基本必考洛比达法则及其应用洛比达法则要会证明,重要例1-例10,习题3-2:全做,1,3,4重点做理.2.掌握用洛必达法则求未定式极限的方法.3.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用.4.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.5.了解曲率和曲率半径的概念,会计算曲率和曲率半径.第三节:泰勒公式掌握其应用泰勒中值定理,麦克劳林展开式可不看公式的证明例1-例3 习题3-3:8,9不用做,其余全做10123重点做第四节:函数的单调性与曲线的凹凸区间考小题求函数的单调性、凹凸性区间、极值点、拐点、渐近线选择题及大题会用到例1-例12习题3-4:3125,512,812,9135,102不用做,其余全做,3,4,5,6,13,15重点做第五节:函数极值与最大值最小值考小题为主函数的极值一个必要条件,两个充分条件,最大最小值问题.函数性的最值和应用性的最值问题,与最值问题有关的综合题例5,6,7不用看习题3-5:123698,9,10,11,12,13,14,15,16均不用做,其余全做第六节:函数图形的描绘重要简单了解利用导数作函数图形一般出选择题及判断图形题,对其中的渐进线和间断点要熟练掌握,一元函数的最值问题三种情形;例1-例3 习题3-6:2-5第七节:曲率数三不作要求,仅数一、数二要求曲率、曲率的计算公式,与曲率相关的问题弧微分、曲率中心计算公式、渐屈线、渐伸线不用看例1-例3,习题3-7:1-6第八节:方程近似解不用看自我小结总复习题三:数一、数二全做,数三15不用做;其中22,3,7,8,9,10,34,113,12,17,18,20重点做第三章测试题总结第四章不定积分7天重要,本章数二考大题可能性更大学习内容复习知识点与对应习题大纲要求第一节:不定积分的概念与原函数与不定积分的概念与基本性质它们各自的定义,之间的关系,求不定积分与求微分1.理解原函数概念,理解不定积分性质重要或导数的关系,基本的积分公式,原函数的存在性,原函数的几何意义和力学意义数三不作要求例1-例16 习题4-1:1,2,3,4,6的概念.2.掌握不定积分的基本公式,掌握不定积分换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.第二节:换元积分法重要,第二类换元积分法更为重要不定积分的换元积分法,第二类换元法例1-例27习题4-2:1,212389101325均不用做,其余全做第三节:分部积分法考研必考不定积分的分部积分法例1-例10 习题4-3:1-24第四节:有理函数积分重要有理函数积分法,可化为有理函数的积分, 例1-例8 习题4-4:1-24不定积分计算总复习题四:1-40第五节:积分表的使用不用看自我小结总结本章第五章定积分6天重要,考研必考学习内容复习知识点与对应习题大纲要求第一节:定积分的概念与性质理解定积分的概念与性质可积存在定理定积分的7个性质理解及熟练应用,性质7积分中值定理要会证明定积分近似计算不用看习题5-1:1,2,3,6,8,9,10均不用做,其余全做,5,11,12重点做1.理解原函数概念,理解定积分的概念.2.掌握定积分的基本公式,掌握定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式及简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解广义反常积分的概念,会计算广义反常积分.第二节:微积分基本公式重要微积分的基本公式积分上限函数及其导数极其重要,要会证明牛顿-莱布尼兹公式重要,要会证明例5不用做,例6极其重要,记住结论习题5-2:6124567,7,8均不用做,其余全做,2数三不做,92,10,11,12,13重点做第三节:定积分的换元积分法与分部积分法重要,分部积分法更为重要定积分的换元法与分部积分法例1-例10 例5,例6,例7,例12经典例题,记住结论习题5-3:1123612141516,71389不用做,其余全做,重点做147****2526,2,6,77101213第四节:反常积分考小题反常积分无界函数反常积分与无穷限反常积分例1-例5习题:5-4:全做,3题结论记住第五节:反常积分的审敛法不用看总复习题五:13,2345,15,16不用做,其余全做,重点做3,5,7,8,9,101238910,13,14,17自我小结总结本章第六章定积分的应用4天考小题为主学习内容复习知识点与对应习题大纲要求第一节:定积分的元素法理解定积分元素法 1. 掌握用定积分表达和计算一些几何量与物理量平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心等及函数的平均值等.第二节:定积分在几何学上的应用面积最重要一元函数积分学的几何应用求平面曲线的弧长与曲率仅数一看,求平面图形的面积,求旋转体的体积,求平行截面为已知的立体体积数三不作要求,求旋转面的面积定积分的几何应用相关计算定积分应用的一些计算习题6-2:数一全做;数二、数三21-30不用做第三节:定积分在物理学上的应用数三不用看,数一数二了解定积分的物理应用用定积分求引力,用定积分求液体静压力,用定积分求功;综合题目的求解;数三不用看,数一数二了解例1-例5 习题6-3:数一、数二做总复习题六:数一全做;数二6不用做;数三只做3,4,5自我小结总结本章第七章常微分方程 9天本章对数二相对重要,必考章节学习内容复习知识点与对应习题大纲要求第一节:微分方程基本概念了解微分方程及其阶、解、通解、初始条件和特解,例1、2、3、4,例2数三不用看习题7-1:134,224,32,423,51.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量第二节:可分离变量的微分方程理解可分离变量的微分方程的概念及其解法例1、2、3、4,例2,3,4数三不作要求习题7-2:1,2第三节:齐一阶齐次微分方程的形式及其解法次方程理解例2不用看,可化为齐次的方程不用看习题7-3:1,2代换解某些微分方程.4.会用降阶法解下列微分方程:和.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.第四节:一阶线性微分方程重要,熟记公式一阶线性微分方程、伯努利方程仅数一考,记住公式即可,例1,3,4,习题7-4:1,2,3,8仅数一做第五节:可降解的高阶微分方程仅数一、数二考,理解全微分方程会求全微分方程会用降阶法解下列微分方程:和,例1—6习题:7-5:数三不用做、数一数二只做1,2第六节:高阶线性微分方程理解线性微分方程解的结构重要微分方程的特解、通解二阶线性微分方程举例不用看;常数变易法不用看定理1,2,3,4重点看习题7-6:1,3,4第七节:常系数齐次线性微分方程最重要,考大题特征方程,微分方程通解中对应项例1,2,3,6,7例4,5不用做习题7-7:1,2第八节:常系数非齐次线性微分方程最重要,考大题会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程例1-4,例5不用看习题7-8:1,2,6重点做第九节:欧拉方程仅数一考,了解欧拉方程的通解习题7-9:数一只做5,8 第十节不用看自我小结总复习题十二:1124,22,313578,434,5,7,8,10其中8,10仅数一做第八章空间解析几何和向量代数4天仅数一考,考小题,了解学习内容复习知识点与对应习题大纲要求第一节:向量及其向量概念,向量的线性运算,空间直角坐标系,利用坐标作向量的线性运算,向量1.理解空间直角坐标系,理解向量的概念及其表示.线性运算的模、方向、投影例1-例2.掌握向量的运算线性运算、数量积、向量积、混合积,了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系平行、垂直、相交等解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程. 9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.第二节:数量积,向量积,混合积向量的数量积,向量的向量积例1-例7习题7-2:3,4,6,9,10第三节:曲面及其方程曲面方程旋转曲面、柱面、二次曲面;旋转轴为坐标轴的旋转曲面的方程,常用的二次曲面方程及其图形,空间曲线的参数方程和一般方程,空间曲线在坐标面上的投影曲线方程例1-例5 习题7-3:,8,9,10第四节:空间曲线及其方程空间直线及其方程空间直线的对称式方程与参数方程,两直线的夹角,直线与平面的夹角例1-例4 习题7-4:2,3,5,6第五节:平面及其方程平面, 平面方程,两平面之间的夹角例1-例5习题7-5:1,2,3,5,6,9第六节:空间直线及方程直线与直线的夹角以及平行,垂直的条件,点到平面和点到直线的距离,球面,母线平行于坐标轴的柱面例1-例7 习题7-6:1-9,11,12自我小结总复习题七:1,9-21第九章多元函数微分法及其应用 10天考大题的经典章节,但难度一般不大学习内容复习知识点与对应习题大纲要求第一节:多元函数基本概念了解二元函数的极限、连续性、有界性与最大值最小值定理、介值定理例1—8,习题8—1:2,3,4,5,6,81.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续性的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形第二节:偏导数理解偏导数的概念,高阶偏导数的求解重要例1—8,习题8—2:1,2,3,4,6,9第三节:全微分理解全微分的定义,可微分的必要条件和充分条件全微分在近似计算中应用不用看例1,2,3,习题8—3:1,2,3,4第四节:多元复合函数求导,全微分形式的不变性多元复合函数的求导法则理解,重要例1—6,习题8—4:1—12 式的不变性.4.理解方向导数与梯度的概念并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.会用隐函数的求导法则.7.了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.第五节:隐函数的求导公式理解,小题隐函数存在的3个定理方程组的情形不用看例1—4,习题8—5:1—9第六节:多元函数微分学的几何应用仅数一考,考小题了解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程一元向量值函数及其导数不用看例2—7,习题8—6: 1—9第七节:方向导数与梯度仅数一考,考小题方向导数与梯度的概念与计算例1—5,习题8—7:1—8,10第八节:多元函数的极值及其求法重要,大题的常考题型多元函数极值与最值的概念,二元函数极值存在的必要条件和充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值例1-9,习题8—8:1—10第九节:二元函数的泰勒公式仅数一考,了解n阶泰勒公式,拉格朗日型余项极值充分条件的证明不用看第十节最小二乘法不用看例1,习题8—9:1,2,3自我小结总复习题八:1—3,5,6,8,11—19本章测试题——检验自己是否对本章的复习合格合格成绩为80分以上,如果合格继续向前复习,如果不合格总结自己的薄弱点还要针对性的对本章的内容进行复习或者到总部答疑;第十章重积分7天重要,数二、数三相对于数一,本章更加重要,数二、数三基本必考大题学习内容复习知识点与对应习题大纲要求第一节:二重积分的概念与性质了解二重积分的定义及6个性质习题9—1:1,4,51. 理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法直角坐标、极坐标,会计算三重积分直角坐标、柱面坐标、球面坐标.3.会用重积分、曲线积分及曲面积分求一些几何量与物理量曲面面积、质量、质心、形心、转动惯量、引力.第二节:二重积分的计算法重要,数二、数三极其重要会利用直角坐标、极坐标计算二重积分二重积分换元法不用看例1-6,习题9—2:1,2,4,6,7,8,12,14,15,16第三节:三重积分仅数一考,理解三重积分的概念,利用直角坐标、柱面坐标、球面坐标计算三重积分的计算三重积分的计算重要例1-4,习题9—3:1,2,4—10第四节:重积分的应用仅数一考,了解曲面的面积、质心、转动惯量、引力第五节含参变量的积分不用看例1—7,习题9—4:2,5,6,8,10,11,14自我小结总复习题九:1,2,3,6,7,8,9,10总结第十一章曲线积分与曲面积分8天仅数一考,数二、数三均不考,数一考大题,考难题的经典章节学习内容复习知识点与对应习题大纲要求第一节:对弧长的曲线积分重要弧长的曲线积分的概念理解,性质了解及计算重要例1、2,习题10—1:1,3,4,51.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.2.掌握计算两类曲线积分的方法.3.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.4.了解两类曲面积分的概第二节:对坐标的曲线积分重要对坐标的曲线积分概念理解、性质了解及计算重要,两类曲线积分的联系了解例1-5,习题10—2:3—8第三节:格林公式及掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数,其应用重要曲线积分的基本定理不用看例1-7,习题10—3:1-6念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,会用高斯公式,斯托克斯公式计算曲面、曲线积分.5.了解散度与旋度的概念,并会计算.6.会用重积分、曲线积分及曲面积分求一些几何量与物理量平面图形的面积、体积、曲面面积、弧长、功及流量等.第四节:对面积的曲面积分重要对面积的曲面积分的概念理解、性质了解与计算重要例1、2,习题10—4:1,4,5,6,7,8第五节:对坐标的曲面积分重要对坐标的曲面积分的概念理解、性质了解及计算重要,两类曲面积分之间的联系了解例1-3,习题10—5:3,4第六节:高斯公式重要、通量不用看与散度了解会用高斯公式计算曲面、曲线积分,散度的概念及计算沿任意闭曲面的曲面积分为零的条件不用看例1-5,习题10—6:1,3第七节:斯托克斯公式重要、环流量不用看与旋度了解会用斯托克斯公式计算曲面、曲线积分,旋度的概念及计算空间曲面积分与路径无关的条件不用看例1-4,习题10—7: 1, 2自我小结总复习题十:1-4,6, 7总结第十二章无穷级数6天数二不考,数一、数三考大题,考难题经典章节学习内容复习知识点与对应习题大纲要求第一节:常数项级数的概念和性质一般考点级数收敛、发散的定义,收敛级数的基本性质考选择题柯西审敛原理不用看例1-3,习题11—1:1—41.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条第二节:常数项级数的审敛法理解正项级数及其审敛法;交错级数及其审敛法、绝对收敛与条件收敛绝对收敛级数的性质不用看例1-10,习题11—2:1—5第三节:幂级数重要函数项级数的概念了解;幂级数及其收敛性最重要;幂级数的运算乘、除不用看。

8-3 毕奥-萨伐尔定律

8-3 毕奥-萨伐尔定律

B
ad d
o I ad o I d x ln 2 a d 2 ax
a
[小结 ]
1.毕奥—萨伐尔定律:
0 Idl r dB 4π r 3
大 小:dB
2.几种常见载流导线的磁感强 度(记住结论): (1)载流长直导线的磁场:
0 Idl sin
4π r2 方 向:与 dl r ˆ一致
N 0 IR2 ( 2 x R )2
2 2 3
2) x 0 , B 的方向不变( I 和 B 成右手螺旋关系)
3)x 0 B
0 I
2R
4)x R
B
0 IR
2x
3
2
, B
0 IS
2π x
3
三 磁矩
如图所示,有一平面圆电流,其面积 为S,电流为I 取元电流平面的单位正法线矢量为 en , 它与电流I的流向遵守右手螺旋定则
4π R1
例3 圆形载流导线的磁场
Y
Id l
R
O
I Z
x

r
dB dB

dl r
X
建立坐标,取 电流元。
p dB// p
o I dB dl 2 4 r dB// dB cos
dB dB sin
sin 1
o Idl r dB 3 4 r
0 I 解: B B B B 1 2 3 B 2 R 2 向里为正参考方向 R b a B 0 B2 B3 方向 0 I 0 I 0 (cos cos ) 2r 2 4r 2 0 I d l dB 0 I 0 I 4 R 2 4r 4r

曲率半径检查

曲率半径检查

用曲率半径检查车身曲面曲率半径的概念:过曲面上一点及其法线的一个平面与曲面的交线在该点的曲率半径就为曲面在该点的一个曲率半径。

平面绕法线旋转一周,可以与曲面产生无数条交线,相应的就有无数个曲率半径。

在这些曲率半径当中有一个最大半径和最小半径。

高斯曲率是(r*R)/sqrt(|r*R|)。

平均曲率是2*r*R/(r+R)。

参见图8-19。

曲率半径检查时,希望其颜色变化要均匀、流畅。

不能有突变(造型要求这样时)除外。

在检查时可以通过移动活动滑块使颜色变化的部分移动到想关注的位置,这样可以更好的发现问题,以便改正。

图8-19 曲面曲率半径的概念通过曲面曲率半径分布图分析常用的主要有以下几种方法:高斯曲率半径分布图、最大最小曲率半径分布图、曲面U、V方向或指定方向曲率半径分布图。

曲率半径检查方式的选择:根据所要检查曲面的具体情况选择合适的曲率半径检查方式,如图8-20所示选择最小曲率半径检查方式。

图8-20 最小曲率半径分布图如果选择最大曲率半径分析如图8-21所示,因为下面的最大曲率半径在下部的圆台上是无穷大,上部分球面的半径是一个定值,所以用最大曲率半径检查时,上面的颜色一样,而下面的颜色又是另一个样,导致我们没有办法评价曲面的质量。

图8-21 最大曲率半径分布图以下主要结合实例来介绍各种曲面曲率半径分布图分析的各种方法:1)在对曲面整体光顺行进行分析时,一般使用曲面高斯曲率半径分布图分析,如图8-22所示:图8-22 某车型翼子板高斯曲率半径分布图2)在对几个最大曲率半径变化均匀的曲面进行分析时,一般使用最大曲率半径分布图检查。

如图8-23所示:图8-23 最大曲率半径分布图3)在对几个最小曲率半径变化均匀的曲面进行分析时,一般使用最小曲率半径分布图检查。

如图8-24所示:图8-24 最小曲率半径分布图4)经常用到的还有曲面U、V方向曲率半径分布图分析曲面的质量,如图8-25所示:图8-25 曲面U方向曲率半径分布图。

全国硕士研究生入学统一考试数学一考试大纲

全国硕士研究生入学统一考试数学一考试大纲

全国硕士研究生入学统一考试数学一考试大纲高等数学一、函数、极限、连续考试内容:函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:,函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念含左连续与右连续,会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质有界性、最大值和最小值定理、介值定理,并会应用这些性质.二、一元函数微分学考试内容:导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值和最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔Rolle定理、拉格朗日Lagrange中值定理和泰勒Taylor定理,了解并会用柯西中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容:原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿一莱布尼茨公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常广义积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等及函数的平均值.四、向量代数和空间解析几何考试内容:向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程、直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算线性运算、数量积、向量积、混合积,了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系平行、垂直、相交等解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容:多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性. 4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容:二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法直角坐标、极坐标,会计算三重积分直角坐标、柱面坐标、球面坐标. 3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系. 4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数. 6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等.七、无穷级数考试内容:常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间指开区间和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶系数与傅里叶级数狄利克雷定理函数的傅里叶级数函数的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5. 了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系. 6.了解函数项级数的收敛域及和函数的概念. 7.理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质和函数的连续性、逐项求导和逐项积分,会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sinx, cosx,ln1+x 及1+xα的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将函数展开为傅里叶级数,会将函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容:常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利Bernoulli方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉Euler方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解概念.2.掌握变量可分离的微分方程及一阶线性微分方程解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程4.会用降阶法解下列形式的微分方程:.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程. 7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行列展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行列展开定理计算行列式.二、矩阵考试内容:矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵,以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质,以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容:向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩4.理解向量组等价的概念,理解矩阵的秩与其行列向量组的秩之间的关系.5.了解维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特Schmidt方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容:线性方程组的克莱姆法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克莱姆法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法. 4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容: 矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求:1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容:二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.考研老师私人扣扣:概率论与数理统计一、随机事件和概率考试内容:随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间基本事件空间的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式,以及贝叶斯公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布、几何分布、超几何分布、泊松分布及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布、正态分布、指数分布及其应用,5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容:多维随机变量及其分布二维离散型随机变量的概率分布、边缘分布和条件分布二维连续型随机变量的概率密度、边缘概率密度和条件密度随机变量的独立性和不相关性常用二维随机变量的分布两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质. 理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布的概率密度,理解其中参数的概率意义.4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望均值、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征数学期望、方差、标准差、矩、协方差、相关系数的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫不等式切比雪夫大数定律伯努利大数定律辛钦大数定律棣莫弗-拉普拉斯定理列维-林德伯格定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律独立同分布随机变量序列的大数定律 .3.了解棣莫弗-拉普拉斯定理二项分布以正态分布为极限分布和列维-林德伯格定理独立同分布随机变量序列的中心极限定理 .六、数理统计的基本概念考试内容:总体个体简单随机样本统计量样本均值样本方差和样本矩卡方分布 T分布 F分布分位数正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为:2.了解卡方分布、T分布 F分布的概念及性质,了解上侧分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容:点估计的概念估计量与估计值矩估计法最大似然估计法估计量的评选标准区间估计的概念单个正态总体的均值和方差的区间估计两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法一阶矩、二阶矩和最大似然估计法.3.了解估计量的无偏性、有效性最小方差性和一致性相合性的概念,并会验证估计量的无偏性.4.理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容:显着性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显着性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.考研老师私人扣扣:。

齿廓在基圆上的曲率半径

齿廓在基圆上的曲率半径

齿廓在基圆上的曲率半径导言在机械领域中,齿轮是常用的传动装置。

齿轮的设计和制造涉及到很多参数,其中齿廓的曲率半径是一个重要的指标。

本文将深入探讨齿廓在基圆上的曲率半径的概念、计算方法以及其对齿轮性能的影响。

基本概念齿廓是齿轮上的齿形,它的形状会影响传动的性能。

在齿轮设计中,齿廓通常是通过一些基本曲线来描述的,如圆弧、渐开线等。

而齿廓在基圆上的曲率半径是描述齿廓曲率变化的一个指标。

齿廓曲线的生成齿廓曲线的生成有多种方法,其中最常用的是渐开线法和圆弧法。

下面将分别介绍这两种方法。

渐开线法渐开线法是一种通过不断滚动两个圆来生成齿廓的方法。

具体步骤如下:1.确定基圆和齿轮的模数、齿数等参数。

2.画一个与基圆相切的圆,该圆称为渐开线基圆。

3.从渐开线基圆的切点开始,将两个圆同时滚动,直到完整滚动一个齿的角度。

4.根据滚动过程中两个圆上的点的位置,连接这些点,得到齿廓曲线。

圆弧法圆弧法是一种通过一系列圆弧来逼近实际齿廓的方法。

具体步骤如下:1.确定基圆和齿轮的模数、齿数等参数。

2.根据齿廓类型选择合适的圆弧法公式。

3.根据公式计算出每个圆弧的半径、起点和终点坐标。

4.将所有圆弧连接起来,得到齿廓曲线。

齿廓在基圆上的曲率半径的计算齿廓在基圆上的曲率半径可以通过以下公式进行计算:r k=1ρk其中,r k为齿廓在基圆上的曲率半径,ρk为齿廓的曲率。

齿廓的曲率可以通过以下公式计算:ρ=(1+ϵ)⋅R 1+ϵ⋅cos(θ)其中,ρ为齿廓的曲率,ϵ为齿廓的压力角,R为基圆半径,θ为齿廓上的角度。

曲率半径对齿轮性能的影响齿廓在基圆上的曲率半径是齿轮设计中一个非常重要的参数,它会直接影响到齿轮的传动性能。

以下是曲率半径对齿轮性能的影响:1.噪音和振动:曲率半径越小,齿片的曲率变化越大,齿轮在传动中会产生更多的噪音和振动。

2.接触疲劳寿命:曲率半径较大的齿轮,齿面之间的接触应力分布较为均匀,有利于延长齿轮的寿命。

3.密封性能:曲率半径较大的齿轮,在传动过程中可以形成更好的润滑油膜,提高齿轮的密封性能。

工程力学第六章答案 梁的变形-工程力学梁的弯曲答案

工程力学第六章答案 梁的变形-工程力学梁的弯曲答案

第五章 梁的变形测试练习1. 判断改错题5—1—1 梁上弯矩最大的截面,挠度也最大,弯矩为零的截面,转角亦为零。

( )5-1—2 两根几何尺寸、支承条件完全相同的静定梁,只要所受荷栽相同,则两梁所对应的截面的挠度及转角相同,而与梁的材料是否相同无关。

( ) 5—1—3 悬臂梁受力如图所示,若A 点上作用的集中力P 在A B 段上作等效平移,则A 截面的转角及挠度都不变。

( )5—1—4 图示均质等直杆(总重量为W ),放置在水平刚性平面上,若A 端有一集中力P 作用,使A C 部分被提起,C B 部分仍与刚性平面贴合,则在截面C 上剪力和弯矩均为零.( )5-1—5 挠曲线近似微分方程不能用于求截面直梁的位移。

( ) 5-1—6 等截面直梁在弯曲变形时,挠度曲线的曲率最大值发生在转角等于零的截面处。

( ) 5—1—7两简支梁的抗刚度E I 及跨长2a 均相同,受力如图所示,则两梁跨中截面的挠度不等而转角是相等的. ( ) 5-1-8 简支梁在图示任意荷载作用下,截面C 产生挠度和转角,若在跨中截面C 又加上一个集中力偶M 0作用,则梁的截面C 的挠度要改变,而转角不变。

( )5—1-9 一铸铁简支梁,在均布载荷作用下,当其横截面相同且分别按图示两种情况放置时,梁同一截面的应力及变形均相同。

( ) 5—1—10 图示变截面梁,当用积分法求挠曲线方程时,因弯矩方程有三个,则通常有6个积分常量。

( )题5-1-3图题5-1-4图题5-1-8图题5-1-7图题5-1-9图2.填空题5—2—1 挠曲线近似微分方程EIx M x y )()("-= 的近似性表现在和。

5—2—2 已知图示二梁的抗弯度E I 相同,若使二者自由端的挠度相等,则=21P P 。

5—2—3 应用叠加原理求梁的变形时应满足的条件是:。

5—2—4 在梁的变形中挠度和转角之间的关系是。

5—2-5 用积分法求图示的外伸梁(B D 为拉杆)的挠曲线方程时,求解积分常量所用到的边界条件是,连续条件是.5—2—6 用积分法求图示外伸梁的挠曲线方程时,求解积分常量所用到边界条件是,连续条件是。

《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案

《材料科学与工程基础》习题和思考题及答案第二章2-1.按照能级写出N、O、Si、Fe、Cu、Br原子的电子排布(用方框图表示)。

2-2.的镁原子有13个中子,11.17%的镁原子有14个中子,试计算镁原子的原子量。

2-3.试计算N壳层内的最大电子数。

若K、L、M、N壳层中所有能级都被电子填满时,该原子的原子序数是多少?2-4.计算O壳层内的最大电子数。

并定出K、L、M、N、O壳层中所有能级都被电子填满时该原子的原子序数。

2-5.将离子键、共价键和金属键按有方向性和无方向性分类,简单说明理由。

2-6.按照杂化轨道理论,说明下列的键合形式:(1)CO2的分子键合(2)甲烷CH4的分子键合(3)乙烯C2H4的分子键合(4)水H2O的分子键合(5)苯环的分子键合(6)羰基中C、O间的原子键合2-7.影响离子化合物和共价化合物配位数的因素有那些?2-8.试解释表2-3-1中,原子键型与物性的关系?2-9.0℃时,水和冰的密度分别是1.0005 g/cm3和0.95g/cm3,如何解释这一现象?2-10.当CN=6时,K+离子的半径为0.133nm(a)当CN=4时,半径是多少?(b)CN=8时,半径是多少?2-11.(a)利用附录的资料算出一个金原子的质量?(b)每mm3的金有多少个原子?(c)根据金的密度,某颗含有1021个原子的金粒,体积是多少?(d)假设金原子是球形(r Au=0.1441nm),并忽略金原子之间的空隙,则1021个原子占多少体积?(e)这些金原子体积占总体积的多少百分比?2-12.一个CaO的立方体晶胞含有4个Ca2+离子和4个O2-离子,每边的边长是0.478nm,则CaO的密度是多少?2-13.硬球模式广泛的适用于金属原子和离子,但是为何不适用于分子?2-14.计算(a)面心立方金属的原子致密度;(b)面心立方化合物NaCl的离子致密度(离子半径r Na+=0.097,r Cl-=0.181);(C)由计算结果,可以引出什么结论?2-15.铁的单位晶胞为立方体,晶格常数a=0.287nm,请由铁的密度算出每个单位晶胞所含的原子个数。

研究生考研数学一考试大纲及解析(2022版)

研究生考研数学一考试大纲及解析(2022版)

全国研究生入学考试数学一考试大纲(附解析)2022版研究生数学一考试科目:高等数学、线性代数、概率论与数理统计考研考试形式和试卷结构一、试卷满分及考试时间:试卷满分为150分,考试时间为180分钟。

二、答题方式:答题方式为闭卷、笔试。

三、试卷内容结构:高等教学约60%;线性代数约20%;概率论与数理统计约20%。

四、试卷题型结构:单选题10小题,每小题5分,共50分填空题6小题,每小题5分,共30分解答题(包括证明题)7 小题,共70分高等数学一、函数、极限、连续函数的概念及表示法、函数的有界性、单调性、周期性和奇偶性、复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数、函数关系的建立;数列极限与函数极限的定义及其性质、函数的左极限和右极限、无穷小量和无穷大量的概念及其关系、无穷小量的性质及无穷小量的比较、极限的四则运算、极限存在的两个准则;单调有界准则和夹逼准则、两个重要极限:函数连续的概念、函数间断点的类型、初等函数的连续性、闭区间上连续函数的性质。

考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系。

2.了解函数的有界性、单调性、周期性和奇偶性。

3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念。

4.掌握基本初等函数的性质及其图形,了解初等函数的概念。

5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系。

6.掌握极限的性质及四则运算法则。

7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法。

8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限。

9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

二、一元函数微分学导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线、导数和微分的四则运算、基本初等函数的导数、复合函数、反函数、隐函数以及参数方程所确定的函数的微分法、高阶导数、一阶微分形式的不变性、微分中值定理、洛必达(L’Hospital)法则、函数单调性的判别、函数的极值、函数图形的凹凸性、拐点及渐近线、函数图形的描绘函数的最大值与最小值、弧微分及曲率的概念、曲率圆与曲率半径。

光学畸变8%-概述说明以及解释

光学畸变8%-概述说明以及解释

光学畸变8%-概述说明以及解释1.引言1.1 概述光学畸变是指在光学成像过程中,由于光线的折射和散射等原因导致图像出现形变或失真的现象。

在光学系统中,光线会在透镜或镜片等光学元件的作用下发生弯曲或散射,从而影响图像的准确传输和显示。

光学畸变的主要原因包括球差、彗差、色差、畸变等。

球差指透镜或曲面镜焦距与光线入射角度有关,导致不同位置的光线聚焦位置不同。

彗差是由于透镜或曲面镜的非中心对称性,引起光线聚焦位置的偏离。

色差是指不同波长的光线经过光学元件后,会出现聚焦位置不同的现象,导致图像产生色差。

畸变则是由于光线在光学元件中的传输路径与理想的传输路径不完全一致,导致图像出现形变的情况。

光学畸变对图像质量的影响是不可忽视的。

它会导致图像边缘的变形和扭曲,使得图像中的线条和形状失真。

这些畸变会损害图像的细节和清晰度,降低图像的分辨率和准确性。

在一些对图像质量要求较高的应用领域,如航空遥感、医学影像等,光学畸变的存在会严重影响到信息的获取和分析。

为了调整和修复光学畸变,科学家和工程师们提出了许多方法和技术。

其中包括使用复杂的光学系统来纠正畸变,比如利用非球面设计的透镜来抵消球差和彗差;使用多种波长的光源来减小色差;采用数字图像处理算法来校正畸变等。

这些方法的出现使得光学系统的图像质量得到了显著改善。

此外,光学畸变对光学设备的应用和发展也产生了深远的影响。

理解和控制光学畸变是设计和制造高质量光学设备的关键因素之一。

例如,在摄影镜头和望远镜等光学器件的制造过程中,光学畸变的控制成为了重要的技术指标。

光学畸变的研究也推动了光学元件和系统的创新,为光学仪器的性能提升和新兴应用的开发提供了基础。

综上所述,光学畸变是光学系统中不可避免的现象,对图像质量产生重要影响。

通过调整和修复光学畸变,我们可以提高图像的分辨率和准确度,并推动光学设备的发展和创新。

光学畸变的研究将继续对光学领域的发展产生重要作用。

文章结构部分的内容可以如下所示:1.2 文章结构本文分为引言、正文和结论三个部分。

第3-6节(曲率)

第3-6节(曲率)

注意: (1) 直线的曲率处处为零; (2) 圆上各点处的曲率等于半径的倒数,且 半径越小曲率越大.
2、曲率的计算公式
设y = f ( x )二阶可导 , 有 α = arctan y′,
Q tanα = y′,
y′′ dα = dx , 2 1 + y′
∴k = y′′ (1 + y′ )
3 2 2
MM ′ = ∆ s ,
C
M′.
∆S
M0

定义
o
S M .) α
∆α
) α + ∆α
x
∆α 弧段MM ′的平均曲率为 K = . ∆s
在 lim
∆α 曲线C 在点M 处的曲率 K = lim ∆s → 0 ∆ s ∆α dα dα
∆s → 0

∆s
=
ds
存在的条件下 , K =
ds
.
江西理工大学理学院
视飞行员在点o作匀速圆周运动, ∴ F =
O点处抛物线轨道的曲率半径
mv 2
ρ
.
江西理工大学理学院
y′ x = 0
x = 2000
x=0
= 0,
y′′ x = 0
1 = . 2000
得曲率为 k
x = x0
1 = . 曲率半径为 ρ = 2000 米. 2000
70 × 400 = 5600(牛) ≈ 571.4(千克 ), ∴F = 2000
故在终端A的曲率为
o
1 R ≈ 3 l2 2 (1 + ) 2 4R
x
kA =
y′′ (1 + y′ )
3 x = x0 2 2
l Q << 1, R
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、正文编写思路及特点:
思路:首先复习弧微分的相关知识,然后导出曲率概念。

特点:通过介绍生活中的实际现象,引出“弯曲程度”这一概念,使得抽象概念具体化,学生更容易接受。

二、授课部分
(一)复习引入
曲线的弧微分和曲线的凹凸性(弯曲方向)
(二)新课讲授 1、曲率的概念
曲线的弯曲程度对于工程学来说有着非常重要的作用,那么曲线的弯曲程度到底跟哪些因素相关呢?观察下图:
(1)图1中,12M M 与23M M 弧长相等,23M M 的切线转角β比12
M M 的切线转角α大,23M M 比12M M 弯曲程度大。

(2)图2中,12M M 与12N N 的切线转角相等,12N N 比12M M 弧长短,12N N 比12M M 弯曲程度大。

总结:曲线的弯曲程度与转角成正比与弧长成反比。

据此,我们给出曲率的定义。

当C 上的动点从M 移到M ′时,切线转过了角度Δα(称为转角),而所对应的弧增量Δs =
M M '.
定义1:若将单位弧段上切线转角的大小称为M M '的平均曲率,记为k ,则
k =
s
α
∆∆. 将上述平均曲率当Δs →0(即M ′→M )时的极限,即
k =0
lim
s ∆→s α∆∆=d d s
α
称为曲线C 在点M 处的曲率。

特别的,对于直线,倾角α始终不变,故Δα=0,从而k =0,即“直线不弯曲”。

对于圆,设半径为R ,由图4知,任意两点M ,M '处圆之切线所夹的角Δα等
于中心角MDM '∠,而MDM '∠=s
R
∆,于是
s α∆∆=s R s ∆∆=1
R
,故 k =0
lim
s ∆→s α∆∆=1
R
. 图4
即圆上任一点处的曲率都相等且等于其半径的倒数。

若半径无限增大,则曲率就无限趋近于零。

从这个意义上看,直线是半径为无穷大的圆。

2、曲率的计算方法
(1)一般曲线方程曲率计算公式
设曲线方程为()y f x =,且()f x 具有二阶导数.由于tan y α'=,
2csc 41)cos 1(2csc 21)(2
cos )cos 1(sin 4222
t a t a t dt
dx dx dy dt d dx y d t t a t a dx dy -=--=
==-= 故得曲率
2csc 41)
2
cot 1(2csc 412
3
24
t a t t a k =+= 令,3
π
=
t 得
a
k 21=
向学生简单介绍曲率在工程技术上的一些应用
(四)曲率的一些简单应用
(1)曲率圆与曲率半径
设光滑曲线C 上点M 处的曲率为k (k≠0).在C 上点M 作法线,
并在凹向一侧取点D ,使得R k
DM ==1
,以D 为圆心,R 为半径作
圆,⊙D 为曲线C 在点M 处的曲率圆,圆心D 称为C 在点M 处的曲率中心,R 称为C 在点M 处的曲率半径,如图5所示.
图5
故曲线y=f(x)在点M 的曲率圆有下列性质: (1)在点M 处的曲率与曲线的相同;
(2)在点M 处与曲线相切,且在切点附近有相同凹凸性.
由性质(2)还可知道,点M 处曲率圆的圆心位于曲线在该点的法线上.
小结:对于曲线)(x f y =在点0x 处,圆心为),(b a ,半径为R 的曲率圆的计算公式为
)()]([1)(02
00x f x f x f b '''++
=
)
(}
)]([1{)()]([1)
(02
32002
000x f x f R x f x f x f x a '''+=
'''+'-=
(2)曲率的应用实例
(选讲)例3 用圆柱形铣刀加工一弧长不大的椭圆形工件,该段弧的中点为椭圆长轴的顶点,该椭圆的方程为(单位为mm )
22
2214050
x y += 应选用多大直径的铣刀,可得较好的近似效果?(二级)
解 顶点坐标为)50,0(,将方程改写为
216004
5
x y -=
则 32
1,000=
''='==x x y y 代入曲率半径公式可得32=R (mm )
所以,应选用直径为64mm 的铣刀,可得较好的近似效果.
例4 某工件内表面的型线为y=0.4x 2,现要用砂轮磨削内表面,问应选多大直径的砂轮?(二级)
解 为使磨削时不会多磨掉不应磨去的部分,砂轮半径应不超过抛物线上各点处曲率半径的最小值,如图6所示.
图6
对于y=0.4x 2,有y′=0.8x,y″=0.8.曲率半径最小,应是曲率最大,而
k=
()3
22
0.810.8x ⎡⎤+⎣⎦
.
当x=0时,k 取最大值0.8,即顶点处曲率最大,因而有
R=1
k
=1.25, 故砂轮直径不得超过2.50单位长.
三、能力反馈部分(考查学生对曲线曲率求法的掌握情况)
(1)计算抛物线y=4x -x 2在它顶点处的曲率.(一级)。

相关文档
最新文档