2021年1月15日四川省高2021届绵阳二诊理科数学试题答题卡
四川省绵阳市2021届新高考数学二模试卷含解析
四川省绵阳市2021届新高考数学二模试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.百年双中的校训是“仁”、“智”、“雅”、“和”.在2019年5月18日的高三趣味运动会中有这样的一个小游戏.袋子中有大小、形状完全相同的四个小球,分别写有“仁”、“智”、“雅”、“和”四个字,有放回地从中任意摸出一个小球,直到“仁”、“智”两个字都摸到就停止摸球.小明同学用随机模拟的方法恰好在第三次停止摸球的概率.利用电脑随机产生1到4之间(含1和4)取整数值的随机数,分别用1,2,3,4代表“仁”、“智”、“雅”、“和”这四个字,以每三个随机数为一组,表示摸球三次的结果,经随机模拟产生了以下20组随机数:141 432 341 342 234 142 243 331 112 322 342 241 244 431 233 214 344 142 134 412由此可以估计,恰好第三次就停止摸球的概率为( ) A .14B .15C .25D .35【答案】A 【解析】 【分析】由题意找出满足恰好第三次就停止摸球的情况,用满足恰好第三次就停止摸球的情况数比20即可得解. 【详解】由题意可知当1,2同时出现时即停止摸球,则满足恰好第三次就停止摸球的情况共有五种:142,112,241,142,412.则恰好第三次就停止摸球的概率为51204p ==. 故选:A. 【点睛】本题考查了简单随机抽样中随机数的应用和古典概型概率的计算,属于基础题. 2.已知函数()xf x e b =+的一条切线为(1)y a x =+,则ab 的最小值为( ) A .12e-B .14e-C .1e-D .2e-【答案】A 【解析】 【分析】求导得到'()xf x e =,根据切线方程得到ln b a a =,故2ln ab a a =,设()2ln g x x x =,求导得到函数在120,e -⎛⎫ ⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,故()12min g x g e -⎛⎫= ⎪⎝⎭,计算得到答案.【详解】()x f x e b =+,则'()x f x e =,取0x e a =,()0a >,故0ln x a =,()0f x a b =+.故(ln 1)a b a a +=+,故ln b a a =,2ln ab a a =.设()2ln g x x x =,()()'2ln 2ln 1g x x x x x x =+=+,取()'0g x =,解得12x e -=.故函数在120,e -⎛⎫ ⎪⎝⎭上单调递减,在12e ,-⎛⎫+∞ ⎪⎝⎭上单调递增,故()12min 12g x g e e -⎛⎫==- ⎪⎝⎭. 故选:A . 【点睛】本题考查函数的切线问题,利用导数求最值,意在考查学生的计算能力和综合应用能力. 3.已知复数z 满足()14i z i -=,则z =( ) A .22 B .2C .4D .3【答案】A 【解析】 【分析】由复数除法求出z ,再由模的定义计算出模. 【详解】44(1)22,221(1)(1)i i i z i z i i i +===-+=--+. 故选:A . 【点睛】本题考查复数的除法法则,考查复数模的运算,属于基础题. 4.双曲线的离心率为,则其渐近线方程为A .B .C .D .【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果. 详解:因为渐近线方程为,所以渐近线方程为,选A.点睛:已知双曲线方程求渐近线方程:.5.已知等差数列{}n a 中,51077,0a a a =+=,则34a a +=( ) A .20 B .18C .16D .14【答案】A 【解析】 【分析】设等差数列{}n a 的公差为d ,再利用基本量法与题中给的条件列式求解首项与公差,进而求得34a a +即可. 【详解】设等差数列{}n a 的公差为d .由51077,0a a a =⎧⎨+=⎩得11147,960a d a d a d +=⎧⎨+++=⎩,解得115,2a d =⎧⎨=-⎩.所以341252155(2)20a a a d +=+=⨯+⨯-=.故选:A 【点睛】本题主要考查了等差数列的基本量求解,属于基础题.6.函数2sin cos ()20x x xf x x =+在[2,0)(0,2]ππ-⋃上的图象大致为( ) A . B .C .D .【答案】A 【解析】 【分析】首先判断函数的奇偶性,再根据特殊值即可利用排除法解得; 【详解】解:依题意,22sin()()cos()sin cos ()()2020x x x x x xf x f x x x ----=+=+=-,故函数()f x 为偶函数,图象关于y 轴对称,排除C ; 而2()020f ππ=-<,排除B ;2(2)05f ππ=>,排除D.故选:A . 【点睛】本题考查函数图象的识别,函数的奇偶性的应用,属于基础题.7.在直角坐标平面上,点(),P x y 的坐标满足方程2220x x y -+=,点(),Q a b 的坐标满足方程2268240a b a b ++-+=则y bx a--的取值范围是( ) A .[]22-,B .4747,33⎡⎤---+⎢⎥⎣⎦C .13,3⎡⎤--⎢⎥⎣⎦ D .6767,33⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】 【分析】由点(),P x y 的坐标满足方程2220x x y -+=,可得P 在圆()2211x y -+=上,由(),Q a b 坐标满足方程2268240a b a b ++-+=,可得Q 在圆()()22341x y ++-=上,则PQ y bk x a-=-求出两圆内公切线的斜率,利用数形结合可得结果. 【详解】Q 点(),P x y 的坐标满足方程2220x x y -+=,P ∴在圆()2211x y -+=上,(),Q a b Q 在坐标满足方程2268240a b a b ++-+=,Q ∴在圆()()22341x y ++-=上,则PQ y bk x a-=-作出两圆的图象如图, 设两圆内公切线为AB 与CD , 由图可知AB PQ CD k k k ≤≤, 设两圆内公切线方程为y kx m =+,则1341k m k m =⇒+=-+-=, Q 圆心在内公切线两侧,()34k m k m ∴+=--+-,可得2m k =+,1==,化为23830k k ++=,43k -±=,即4433AB CD k k --+==,PQ y b k x a -≤=≤- y bx a --的取值范围⎣⎦,故选B.【点睛】本题主要考查直线的斜率、直线与圆的位置关系以及数形结合思想的应用,属于综合题. 数形结合是根据数量与图形之间的对应关系,通过数与形的相互转化来解决数学问题的一种重要思想方法,尤其在解决选择题、填空题时发挥着奇特功效,大大提高了解题能力与速度.运用这种方法的关键是运用这种方法的关键是正确作出曲线图象,充分利用数形结合的思想方法能够使问题化难为简,并迎刃而解. 8.已知集合U =R ,{}0A y y =≥,{}1B y y ==,则U A B =I ð( )A .[)0,1B .()0,∞+C .()1,+∞D .[)1,+∞【答案】A 【解析】 【分析】求得集合B 中函数的值域,由此求得U B ð,进而求得U A B ⋂ð. 【详解】由11y =≥,得[)1,B =+∞,所以()U ,1B =-∞ð,所以[)U 0,1A B =I ð.故选:A 【点睛】本小题主要考查函数值域的求法,考查集合补集、交集的概念和运算,属于基础题.9.已知函数log ()a y x c =+(a ,c 是常数,其中0a >且1a ≠)的大致图象如图所示,下列关于a ,c 的表述正确的是( )A .1a >,1c >B .1a >,01c <<C .01a <<,1c >D .01a <<,01c <<【答案】D 【解析】 【分析】根据指数函数的图象和特征以及图象的平移可得正确的选项. 【详解】从题设中提供的图像可以看出()01,log 0,log 10a a a c c <<>+>, 故得01,01c a <<<<, 故选:D . 【点睛】本题考查图象的平移以及指数函数的图象和特征,本题属于基础题.10.以下两个图表是2019年初的4个月我国四大城市的居民消费价格指数(上一年同月100=)变化图表,则以下说法错误的是( )(注:图表一每个城市的条形图从左到右依次是1、2、3、4月份;图表二每个月份的条形图从左到右四个城市依次是北京、天津、上海、重庆)A .3月份四个城市之间的居民消费价格指数与其它月份相比增长幅度较为平均B .4月份仅有三个城市居民消费价格指数超过102C .四个月的数据显示北京市的居民消费价格指数增长幅度波动较小D .仅有天津市从年初开始居民消费价格指数的增长呈上升趋势 【答案】D 【解析】 【分析】采用逐一验证法,根据图表,可得结果. 【详解】A 正确,从图表二可知,3月份四个城市的居民消费价格指数相差不大 B 正确,从图表二可知,4月份只有北京市居民消费价格指数低于102 C 正确,从图表一中可知,只有北京市4个月的居民消费价格指数相差不大 D 错误,从图表一可知上海市也是从年初开始居民消费价格指数的增长呈上升趋势 故选:D 【点睛】本题考查图表的认识,审清题意,细心观察,属基础题. 11.3481(3)(2)x x x+-展开式中x 2的系数为( ) A .-1280 B .4864 C .-4864 D .1280【答案】A 【解析】 【分析】根据二项式展开式的公式得到具体为:()23174268811322x C x C x x ⎡⎤⎡⎤⎛⎫⎛⎫-+⋅-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出33x 项,第二个括号里出1x项,或者第一个括号里出4x ,第二个括号里出21x ,具体为:()23174268811322x C x C x x ⎡⎤⎡⎤⎛⎫⎛⎫-+⋅-⎢⎥ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦⎢⎥⎣⎦化简得到-1280 x 2 故得到答案为:A. 【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第1r +项,再由特定项的特点求出r 值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第1r +项,由特定项得出r 值,最后求出其参数.12.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右焦点分别为1F 、2F ,过1F 的直线l 交双曲线的右支于点P ,以双曲线的实轴为直径的圆与直线l 相切,切点为H ,若113F P F H =,则双曲线C 的离心率为( )A .2B .C .D 【答案】A 【解析】 【分析】在12PF F ∆中,由余弦定理,得到2||PF ,再利用12||||2PF PF a -=即可建立,,a b c 的方程. 【详解】由已知,1||HF b ===,在12PF F ∆中,由余弦定理,得2||PF ===1133PF HF b ==,12||||2PF PF a -=,所以32b a =,32b a ⇒=e =∴= 故选:A. 【点睛】本题考查双曲线离心率的计算问题,处理双曲线离心率问题的关键是建立,,a b c 三者间的关系,本题是一道中档题.二、填空题:本题共4小题,每小题5分,共20分。
2021年1月15日四川省高2018级2021届绵阳二诊理科数学试题及参考答案附答题卡
绵阳市高中2018级第二次诊断性考试理科数学参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.1—5 DADCB 6—10 CCCAB 11—12 DA二、填空题:本大题共4小题,每小题5分,共20分.13.-i 14.0.8 15.3 16.②④三、解答题:本大题共6小题,共70分.17.解:(1)证明:∵211(2)n n n n a a a a ++=+,∴2211112(2)()0n n n n n n n n a a a a a a a a ++++−−=−+=.又数列{a n }各项均为正数,∴10n n a a ++>,∴120n n a a +−=,即12n na a +=. …………………………………………………4分 数列{a n }是首项a 1=1,公比为2的等比数列.∴数列{a n }的通项公式为12n n a −=. …………………………………………6分(2)∵1(1)1221112n nn n a q S q −−===−−−, ∴S 2n =22n -1, ………………………………………………………………… 8分 ∵S 2n >1609n a , ∴29(21)802n n −>⨯,即(921)(29)0n n ⨯+−>,∴290n −>,又*n N ∈ ,∴正整数n 的最小值为4. …………………………………………………12分18.解:(1)由题意得,1=(23456)45x ⨯++++=,1=(35 6.5810.5) 6.65y ⨯++++=,……………………2分1()()18n i i i xx y y =−−=∑,21()10n i i x x =−=∑,……………………………………4分1.8b =, 6.6 1.840.6a y bx =−=−⨯=−, ………………………………………5分∴y 关于x 的线性回归方程 1.8.6ˆ0yx =−. ……………………………………6分(2)由(1)所得回归方程计算2月至7月份预测生产量依次为3,4.8,6.6,8.4,10.2,12.可得,其中“甲级月”有3个,“乙级月”有3个.……………………… 9分 记6个月中随机抽取2个月均为“乙级月”为事件A ,∴P(A )=232631155C C ==.…………………………………………………………12分 19.解:(1)在△APC 中, 30PAC ∠=,AC =,由余弦定理得CP 2=AP 2+AC 2-2AP ×AC ×cos ∠PAC ,即CP 2=AP 2+3-AP ×cos30°, ……………………………………………2分 又AP +CP =2,联立解得AP =1,CP =1. ………………………………………………………4分 ∴∠APC =120°. ……………………………………………………………………6分 (2)∵∠APC =120°,∴∠APB =60°.∵cos B =∴sin B = ……………………………………………………………………8分 在△APB 中,由正弦定理sin sin AB AP APB B=∠,∴AB = …………………………………………………………………………10分 在△APB 中,由余弦定理2222cos AB AP PB AP PB APB =+−⋅⋅∠,得7=1+PB 2-2PBcos60°,即PB 2-PB -6=0,解得BP =3.∴△APB的面积为11sin 1322AP BP APB ⨯⨯∠=⨯⨯=12分 20.解:(1)由21()()2g x f x mx =+=(22)4ln m x x +−,x >0, 得4(22)4(1)2()(22)=2m x m x g x m x x x+−+−'=+−=⋅. ……………………………2分 ①当1≤m −时,(1)2()20=≤m x g x x+−'⨯, 此时g (x )在(0),+∞上单调递减, g (x )在(0),+∞上不可能有两个零点,故1≤m −不合题意. ……………………4分②当m>-1时,f(x)在区间2(0)1,m+上单调递减,在区间2()1,+m∞+上单调递增.……………………………5分要使得函数g(x)在(0),+∞上有两个零点,则22()44ln011gm m=−<++,解得2e1em−−<<.综上,实数m的范围是2e1em−−<<.………………………………………6分(2)4(2)(2)()(22)mx xf x m mxx x−−'=+−−=−,x>0.①当0<m<1时,函数f(x)在2(2),m上单调递增,在(0,2),2(),+m∞上单调递减,当44xm>+时,函数f(x)在2(),+m∞上单调递减.∴14()(22)4ln(4)02f x x m mx x fm=+−−<+<,∴f(x)≥0,在x>0恒成立不成立,即0<m<1不合题意.……………………8分②当m≥1时,函数f(x)在2(2),m上单调递增,函数f(x)在2(0),m,(2),+∞上单调递减,当442xm>+>时,f(x)在(2),+∞上单调递减,∴14()(22)4ln(4)02f x x m mx x fm=+−−<+<,∴f(x)≥0在x>0恒成立不成立,即m≥1不合题意.………………………………………………………………10分③当m≤0时,函数f(x)在(0,2)上单调递减,在(2),+∞上单调递增,∴要使得f(x)≥0的充要条件是f(2)≥0,解得m≥2ln2-2,∴2ln2-2≤m≤0.综上所述,实数m的范围是[2ln2-2,0].……………………………………12分21.解:(1)由题意得425)25(21p p x A +=+=,25||p DF −=.……………………2分 由抛物线的定义可知2||p x AF A +=, 则由AF DF =,解得2=p .∴抛物线C 的方程为x y 42=.…………………………………………………5分(2)设直线l 1的方程为m kx y +=, 则5(55)(5)(0)2k m G k m E P m ++,,,,,. ∴以DG 为直径的圆E :2225(5)(5)()24k m k m x y ++−+−=, 即22(5)(5)0x y k m y −+−+=. …………………………………………………7分联立24y x y kx m ⎧=⎨=+⎩,,消去y 整理得0)42(222=+−+m x km x k . ……………8分 ∵l 1与曲线C 相切,∴04)42(222=−−=∆m k km ,化简得1=km . …………………………………………………………………9分 设直线l 2与的方程为y tx m =+,H (x 1,y 1),Q(x 2,y 2).联立22(5)(5)0y tx m x y k m y =+⎧⎨−+−+=⎩,,消去y ,整理得22(1)(510)2550t x tm kt x km ++−−+−=, ∴12222015521km x x t t ⋅=−=++. …………………………………………………11分∵1PH =,2PQ =, ∴22122(1)(1)20120PH PQ t x x t t ⋅=+⋅=+⋅=+, 即|PH |•|PQ |为定值20.……………………………………………………………12分22.解:(1)∵曲线C 1的直角坐标方程为(x -2)2+y 2=6,∴曲线C 1的极坐标方程为24cos 20ρρθ−−=. …………………………………4分 将曲线C 2的参数方程消参得x 2-y 2=4(x ≥2),∴曲线C 2的极坐标方程为2cos 24(cos 2)ρθρθ=≥. ……………………………5分(2)曲线C 1的极坐标方程为24cos 20-ρρθ−=,将直线l :()22=ππθαα−<<,ρ∈R 代入上式,得24cos 20ρα−−=,∴124cos ρρα+=,1220ρρ=−<. ………………………………………………7分设1OA ρ=,2OB ρ=.∴12||||AB ρρ=−=∵曲线C 2的极坐标方程为2cos 24(cos 2)ρθρθ=≥,设点()C ρα,,∴||OC =∵||||AB OC =, ……………………………………………………………………9分 ∴24cos 28cos250αα+−=, 解得1cos22α=. ∵22ππα−<<, ∴66或-ππαα==. …………………………………………………………………10分23.解:(1)当x ≥3时,f (x )=x -3+x -2=2x -5.由f (x )<3,得x <4,综合得3≤x <4.当2<x <3时,f (x )=3- x +x -2=1.由f (x )<3,得1<3恒成立,综合得2<x <3.当x ≤2时,f (x )=3- x +2-x =5-2x .由f (x )<3,得x >1,综合得1<x ≤2.综上,不等式f (x )<3的解集为(1,4). ……………………………………………5分 (2)证明:∵()32(3)(2)1f x x x x x −+−−−−==≥,(当且仅当2≤x ≤3时,取“=”)∴函数f (x )的最小值为1,即m =1.∴ab +bc +ac =abc .∴ab +bc +ac =()ab bc ac a b c abc ++⨯++)(c b a cb a ++⋅++=()111 3()()()b ac b c a a b b c a c=++++++ ≥3+2+2+2=9.(当且仅当a =b =c 时取“=”)∴9ab bc ca ++≥. ………………………………………………………………10分。
2021年四川省绵阳市游仙区中考数学二诊试卷 (解析版)
2021年四川省绵阳市游仙区中考数学二诊试卷一、选择题(本大题共12个小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1.4的平方根是()A.±2B.2C.±D.2.下列函数的图象既是轴对称图形,又是中心对称图形的是()A.y=x2B.y=C.y=|x﹣2|D.y=3.“中国疫苗,助力全球战疫”.据中国外交部数据显示,中国已向53个提出要求的发展中国家提供了疫苗援助,并正在向20多个国家出口疫苗.预计2021年我国生产的新冠疫苗总产能将会超过20亿剂,必将为全球抗疫作出重大贡献.将数据“20亿”用科学记数法表示为()A.2×108B.2×109C.2×1010D.20×1084.如图是立方体的展开图,在立方体中“仙”的对面上的字是()A.人B.杰C.地D.灵5.某天7名学生在进入校门时测得体温(单位:℃)分别为:36.5,36.7,36.4,36.3,36.4,36.2,36.3,对这组数据描述正确的是()A.众数是36.4B.中位数是36.3C.平均数是36.4D.方差是1.96.为降低成本,某出租车公司推出了“油改气”措施,如图,y1,y2分别表示燃油汽车和燃气汽车行驶路程S(单位:千米)与所需费用y(单位:元)的关系,已知燃油汽车每千米所需的费用比燃气汽车每千米所需费用2倍多0.2元,设燃气汽车每千米所需费用为x元,则可列方程为()A.B.C.D.7.一次函数y=kx+b(k≠0)与二次函数y=ax2+2ax+c(a≠0)在同一平面直角坐标系中的图象如图所示,则下列说法错误的是()A.ax2+2ax﹣b>kx﹣c时,n<x<mB.当x≥0时,ax2+2ax+c≤cC.若(﹣,y1)在二次函数y=ax2+2ax+c图象上,则y1<cD.﹣ac+bk>08.在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(8,0),B(8,6),C(0,6).已知矩形OA1B1C1O与矩形OABC位似,位似中心是原点O,且矩形OA1B1C1的面积等于矩形OABC面积的4倍,则点B1的坐标为()A.(8,6)B.(8,6)或(﹣8,﹣6)C.(16,12)D.(16,12)或(﹣16,﹣12)9.把边长为2+的正方形沿过中心的一条直线折叠,两旁重叠部分恰为正八边形的一半,则这个正八边形的边EF的长为()A.1B.2C.D.210.如图,点A,B,C,D,E是⊙O上5个点,若AB=AO=2,将弧CD沿弦CD翻折,使其恰好经过点O,此时,图中阴影部分恰好形成一个“钻戒型”的轴对称图形,则“钻戒型”(阴影部分)的面积为()A.B.4π﹣3C.4π﹣4D.11.如果关于x的方程﹣2=有正整数解,且关于x的方程mx2﹣3x﹣1=0有两个不相等的实数根,若m的值为整数,则符合条件的m的值有几个()A.0B.1C.2D.312.如图,已知在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=11,BC=13,AB=12.动点P、Q分别在边AD和BC上,且BQ=2DP.线段PQ与BD相交于点E,过点E作EF∥BC,交CD于点F,射线PF交BC的延长线于点G,设DP=x.下列说法正确的有几个()(1)四边形PQCD为平行四边形时,x=;(2)=;(3)当点P运动时,四边形EFGQ的面积始终等于;(4)当OPQG是以线段PQ为腰的等腰三角形时,则x=、2或.A.1B.2C.3D.4二、填空题(本大题共6个小题,每小题4分,共24分,将答案填写在答题卡相应的横线上)13.在实数范围内分解因式:ab3﹣5ab=.14.在函数y=中,自变量x的取值范围是.15.如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,若∠1+∠3=82°,则∠2=.16.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业.如图是太阳能电池板支撑架的截面图,其中线段AB、CD、EF表示支撑角钢,太阳能电池板紧贴在支撑角钢AB上且长度均为320cm,AB坡度i=1:,BE =CA=60cm,支撑角钢CD、EF与地面接触点分别为D、F,CD垂直于地面,FE⊥AB 于点E.点A到地面的垂直距离为50cm,则支撑角钢EF的长度是cm.(结果保留根号)17.如图,在△ABC中,∠BAC=60°,其周长为20,⊙I是△ABC的内切圆,其半径为,则△BIC的外接圆直径为.18.已知二次函数y=x2﹣2x﹣3在t≤x≤t+3时的最小值是t,则t的值为.三、解答题(本大题共7个小题,共90分,解答应写出文字说明、证明过程或演算步骤)19.(16分)(1)计算:﹣2﹣2+﹣|﹣|.(2)先化简÷(+1﹣x),然后从﹣2≤x<3中选择一个你最喜欢的整数作为x的值代入求值.20.绵阳市为了解九年学生对森林防灭火知识的了解程度,在某校九年级学生中做了一次抽样调查,并将结果分为四个等级:A.非常了解:B.比较了解:C.基本了解:D.不了解.根据调查结果绘制了两幅尚不完整的统计图.请根据两幅统计图中的信息解答下列问题:(1)这次参与调查的学生中“基本了解”的人数为人;扇形图中C部分扇形圆心角度数为.(2)若该校九年级共有1500名学生,请你估计该校九年级学生中“非常了解”森林防灭火知识的学生大约有多少人?(3)九(9)班被调查的学生中A等级的有5人,其中3名男生2名女生.现打算从这5名学生中任意抽取2名进行电话采访,请用列表或画树状图的方法求拾好抽到两名男生的概率.21.如图,某养殖户利用一面长20m的墙搭建矩形养殖房,中间用墙隔成两间矩形养殖房,每间均留一道1m宽的门.墙厚度忽略不计,新建墙总长34m,设AB的长为x米,养殖房总面积为S.(1)求养殖房的最大面积.(2)该养殖户准备400元全部用于购买小鸡和小鹅养殖,小鸡每只5元,小鹅每只7元,并且小鸡的数量不少于小鹅数量的2倍.该养殖户有哪几种购买方案?22.菱形ABCD的边AD在x轴上,C点在y轴上,B点在第一象限.对角线BD、AC相交于H,AC=2,BD=4,双曲线y=过点H,交AB边于点E,直线AB的解析式为y=mx+n.(1)求双曲线的解析式及直线AB的解析式;(2)求双曲线y=与直线AB:y=mx+n的交点横坐标.并根据图象直接写出不等式>mx+n的解集.23.如图1,AB为⊙O的直径,C为弧BE的中点,AD和过点C的直线相交于D,交⊙O 于点E.连接OC,BE,相交于点F,DE=CF.(1)求证:CD是⊙O的切线;(2)连接AC,交BE于点P,若EP=2,CD=3,求直径AB的长;(3)猜想AE、AB和AD之间的数量关系,并证明.24.如图抛物线y=ax2+bx+c与x轴交于A(1,0)、B(4,0)两点,与y轴交于点C(0,﹣3),抛物线顶点为点D.(1)求抛物线的解析式;(2)P是抛物线上直线BC上方的一点,过点P作PQ⊥BC于点Q,求PQ的最大值及此时P点坐标;(3)抛物线上是否存在点M,使得∠BCM=∠BCO?若存在,求直线CM的解析式.25.如图,线段AB=10cm,C是线段AB上的一个动点(不与A、B重合),在AB上方分别以AC、BC为边作正△ACD和正△BCE,连接AE,交CD于M,连接BD,交CE于N,AE、BD交于H,连接CH.(1)求sin∠AHC;(2)连接DE,设AD=x,DE=y,求y与x之间的函数关系式;(3)把正△BCE绕C顺时针旋转一个小于60°的角,在旋转过程中H到△DCE的三个顶点距离和最小,即HC+HD+HE的值最小,HC+HD+HE的值总等于线段BD的长.若AC=2,旋转过程中某一时刻2AH=3DH,此刻△ADH内有一点P,求PA+PD+PH的最小值.参考答案一、选择题(本大题共12个小题,每小题3分,共36分。
四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题(1)
一、单选题二、多选题1. 设为虚数单位,则复数( )A.B.C.D.2.若函数在R 上单调递增,则a 的取值范围是( )A.B.C.D.3.已知,则的取值范围是( )A .[0,1]B.C .[1,2]D .[0,2]4. 已知,是两个不同的平面,l ,m ,n 是三条不同的直线,下列条件中,可以得到的是( )A .,,,B .,C .,D .,5. 截至2023年2月,“中国天眼”发现的脉冲星总数已经达到740颗以上.被称为“中国天眼”的500米口径球面射电望远镜(FAST ),是目前世界上口径最大,灵敏度最高的单口径射电望远镜(图1).观测时它可以通过4450块三角形面板及2225个触控器完成向抛物面的转化,此时轴截面可以看作拋物线的一部分.某学校科技小组制作了一个FAST 模型,观测时呈口径为4米,高为1米的抛物面,则其轴截面所在的抛物线(图2)的顶点到焦点的距离为()A .1B .2C .4D .86. 已知幂函数的图象过点,且,则的取值范围是( )A.B.C.D.7. 已知,现将函数的图象向右平移个单位后得到函数的图象,若两函数与图象的对称中心完全相同,则满足题意的的个数为( )A .1B .2C .3D .48. 高斯是世界四大数学家之一,一生成就极为丰硕,以他的名字“高斯”命名的成果达110个,属数学家中之最.对于高斯函数,表示不超过实数的最大整数,如,,表示的非负纯小数,即.若函数(且)有且仅有3个零点,则实数的取值范围为( )A.B.C.D.9. 已知是数列的前项和,且,,则下列结论正确的是( )A.数列为等比数列B .数列为等比数列C.D.10. 如图,棱长为2的正方体中,,,,,则下列结论中正确的是( )四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题(1)四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题(1)三、填空题四、解答题A .存在y,使得B .当时,存在z 使得∥平面AEFC .当时,异面直线与EF所成角的余弦值为D .当时,点G 到平面AEF 的距离是点C 到平面AEF 的距离的2倍11. 已知圆,直线l过点,且交圆O 于P ,Q 两点,点M 为线段PQ 的中点,则下列结论正确的是( )A .点M 的轨迹是圆B .的最小值为6C .使为整数的直线l 共有9条D .使为整数的直线l 共有16条12. 过双曲线的左焦点的直线交的左、右支分别于两点,交直线于点,若,则( )A.B.C.D.13. 下图是单叶双曲面的立体结构图,且为中心对称图形,此双曲面可由线段绕与其不共面的直线旋转而成,其轴截面为双曲线的一部分,若该几何体的高为2,上底面圆的直径为4,垂直于旋转轴的截面圆的面积最小值为,则双曲线的离心率为___________.14. 已知函数向右平移个单位长度后得到.若对于任意的,总存在,使得,则的最小值为______.15. 某校进行了物理学业质量监测考试,将考试成绩进行统计并制成如下频率分布直方图,a 的值为______;考试成绩的中位数为______.16.在中,已知角,,的对边分别为,,,若,.(1)求角的大小;(2)若的平分线交于点,△的面积为,求线段的长度.17.已知数列的前项和为,且.(1)求的值,并证明:数列是一个常数列;(2)设数列满足,记的前项和为,若,求正整数的值.18. 已知双曲线的离心率为,右顶点到的一条渐近线的距离为.(1)求的方程;(2)是轴上两点,以为直径的圆过点,若直线与的另一个交点为,直线与的另一个交点为,试判断直线与圆的位置关系,并说明理由.19. 的内角,,的对边分别为,,,且满足=.(1)求;(2)若,求的最小值.20. 如图,在四棱台中,,平面,.(1)证明:;(2)若,,,求平面与平面的夹角的余弦值.21. 如图,直三棱柱中,,M为棱上一点.(1)求三棱锥的体积;(2)求证:.。
2021年四川绵阳高三二模理科数学试卷-学生用卷
2021年四川绵阳高三二模理科数学试卷-学生用卷一、选择题(本大题共12小题,每小题5分,共60分)1、【来源】 2021年四川绵阳高三二模理科第1题5分设集合A ={x ∈N|−1⩽x ⩽1},B ={x|log 2x <1},则A ∩B =( ).A. [−1,1)B. (0,1)C. {−1,1}D. {1}2、【来源】 2021年四川绵阳高三二模理科第2题5分2021年四川绵阳高三二模文科第2题5分已知直线l 1:ax +2y +1=0,直线l 2:2x +ay +1=0,若l 1⊥l 2,则a =( ).A. 0B. 2C. ±2D. 43、【来源】 2021年四川绵阳高三二模理科第3题5分2021年四川绵阳高三二模文科第3题5分已知平面向量a →=(1,√3),b →=(2,λ),其中λ>0,若|a →−b →|=2,则a →⋅b →=( ).A. 2B. 2√3C. 4√3D. 84、【来源】 2021年四川绵阳高三二模理科第4题5分二项式(2x −√x )6的展开式中,常数项为( ). A. −60 B. −40 C. 60 D. 1205、【来源】 2021年四川绵阳高三二模理科第5题5分2021年四川绵阳高三二模文科第4题5分已知函数f (x )=x 3+sinx +2,若f (m )=3,则f (−m )=( ).A. 2B. 1C. 0D. −16、【来源】 2021年四川绵阳高三二模理科第6题5分已知曲线y=e x(e为自然对数的底数)与x轴、y轴及直线x=a(a>0)围成的封闭图形的面积为e n−1.现采用随机模拟的方法向右图中矩形OABC内随机投入400个点,其中恰有255个点落在图中阴影部分内,若OA=1,则由此次模拟实验可以估计出e的值约为().A. 2.718B. 2.737C. 2.759D. 2.7857、【来源】 2021年四川绵阳高三二模理科第7题5分2021年四川绵阳高三二模文科第7题5分已知命题p:若数列{a n}和{b n}都是等差数列,则{ra n+sb n}(r,s∈R)也是等差数列;命题q:∀x∈)(k∈Z),都有sinx<cosx,则下列命题是真命题的是().(2kπ,2kπ+π2A. ¬p∧qB. p∧qC. p∨qD. ¬p∨q8、【来源】 2021年四川绵阳高三二模理科第8题5分对全班45名同学的数学成绩进行统计,得到平均数为80,方差为25,现发现数据收集时有两个错误,其中一个95分记录成了75分,另一个60分记录成了80分.纠正数据后重新计算,得到平均数为x,方差为s2,则().A. x=80,s2<25B. x=80,s2=25C. x=80,s2>25D. x<80,s2>259、【来源】 2021年四川绵阳高三二模理科第9题5分已知双曲线E:x 2a 2−y 2b 2=1(a >0,b >0))的左、右焦点分别为F 1,F 2,P 为其渐近线上一点,若△PF 1F 2是顶角为2π3的等腰三角形,则E 的离心率为( ).A. √72B. 2C. √3D. √510、【来源】 2021年四川绵阳高三二模理科第10题5分2021年四川绵阳高三二模文科第10题5分若函数f(x)=x 3−(a 2+3)x 2+2ax +3在x =2处取得极小值,则实数a 的取值范围是( ). A. (−∞,−6) B. (−∞,6) C. (6,+∞) D. (−6,+∞)11、【来源】 2021年四川绵阳高三二模理科第11题5分已知正实数x ,y 满足lnx y >lgy x ,则( ). A. lnx >ln(y +1) B. ln(x +1)<lgy C. 3x <2y−1D. 2x−y >112、【来源】 2021年四川绵阳高三二模理科第12题5分已知点O 为坐标原点,|OP |=2√2,点B ,点C 为圆x 2+y 2=12上的动点,且以BC 为直径的圆过点P ,则△OBC 面积的最小值为( ).A. 2B. 4C. 6D. √2二、填空题(本大题共4小题,每小题5分,共20分)13、【来源】 2021年四川绵阳高三二模理科第13题5分2021年四川绵阳高三二模文科第13题5分2020~2021学年四川成都金牛区成都市实验外国语学校高二下学期开学考试理科第13题5分2019~2020学年四川南充高二下学期期末文科第13题5分若复数z满足z(1+i)=1−i,则z=.14、【来源】 2021年四川绵阳高三二模理科第14题5分已知某科技公司员工发表论文获奖的概率都为p,且各员工发表论文是否获奖相互独立.若X为该公司的6名员工发表论文获奖的人数,D(X)=0.96,E(X)>2,则p为.15、【来源】 2021年四川绵阳高三二模理科第15题5分已知F(1,0)为椭圆E:x 2a2+y2b2=1(a>b>0)的右焦点,过E的下顶点B和F的直线与E的另一交点为A,若4BF→=5FA→,则a=.16、【来源】 2021年四川绵阳高三二模理科第16题5分关于函数f(x)=sin2x+2cos2x,下列说法正确的序号是.①函数f(x)的一条对称轴为x=3π8;②若f(x1)=f(x2)=1,则x1−x2=kπ2(k∈Z);③函数f(x)关于(−π8,0)成中心对称;④设[a,b]⊆[0,π],对任意x1,x2∈[a,b],若f(x1)>f(x2),则有x1>x2,那么b−a的最大值为3π8.三、解答题(本大题共5小题,每小题12分,共60分)17、【来源】 2021年四川绵阳高三二模理科第17题12分已知各项均为正数的数列{a n }满足a 1=1, a n+12=a n (a n+1+2a n ).(1) 证明:数列{a n }为等比数列,并求通项公式.(2) 若数列{a n }的前n 项和为S n ,且S 2n >1609a n ,求n 的最小值.18、【来源】 2021年四川绵阳高三二模理科第18题12分某食品厂2020年2月至6月的某款果味饮料生产产量(单位:万瓶)的数据如下表:(1) 根据以上数据,求y 关于x 的线性回归方程y ^=b ^x +a ^. (2) 当统计数据中,某月实际生产产量与所得回归方程预测的生产产量的误差在[−0.1,0.1]内时,称该月为“甲级月”,否则称该月为“乙级月”.将所得回归方程预测的7月生产产量视作该月的实际生产产量,现从该年2月至7月中随机抽取2个月,求这2个月均为“乙级月”的概率. 附:参考公式:b ^=∑(x i −x )n i=1(y i −y )∑(x i −x )2n i=1,a =y −b ^x .19、【来源】 2021年四川绵阳高三二模理科第19题12分如图,在△ABC 中,点P 在边BC 上,∠PAC =30°,AC =√3,AP +PC =2.(1) 求∠APC .(2) 若cosB =5√714,求△APB 的面积.20、【来源】 2021年四川绵阳高三二模理科第20题12分已知函数f(x)=(2m +2)x −4lnx −12mx 2(m ∈R).(1) 若函数g(x)=f(x)+12mx 2有两个零点,求m 的取值范围.(2) 若f(x)⩾0,求m的取值范围.21、【来源】 2021年四川绵阳高三二模理科第21题12分已知抛物线C:y2=2px(p>0)的焦点为F,点A在第一象限内且为抛物线C上一点,点D(5,0),当直线AD的倾斜角为2π3时,△ADF恰为等边三角形.(1) 求C的方程.(2) 过y轴上一点P作抛物线C的切线l1交直线x=5于G,以DG为直径作圆E,过点P作直线l2交圆E 于H,Q两点,试问:|PH|⋅|PQ|是否为定值?并说明理由.四、选考题(本大题共2小题,每小题10分,选做1小题,共10分)选修4-4:坐标与参数方程22、【来源】 2021年四川绵阳高三二模理科第22题10分在平面直角坐标系xOy中,曲线C1的方程为(x−2)2+y2=6,曲线C2的参数方程为{x=t2+1t2y=t2−1t2(t为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=α(−π2<α<π2,ρ∈R).(1) 求曲线C1与C2的极坐标方程.(2) 已知直线l与曲线C1交于A,B两点,与曲线C2交于点C,若|AB|:|OC|=√5:√2,求α的值.选修4-5:不等式选讲23、【来源】 2021年四川绵阳高三二模理科第23题10分已知函数f(x)=|x−3|+|x−2|.(1) 求不等式f(x)<3的解集.(2) 记函数f(x)的最小值为m,a>0,b>0,c>0,a+b+c=mabc,证明:ab+bc+ac⩾9.1 、【答案】 D;2 、【答案】 A;3 、【答案】 D;4 、【答案】 C;5 、【答案】 B;6 、【答案】 C;7 、【答案】 C;8 、【答案】 C;9 、【答案】 A;10 、【答案】 B;11 、【答案】 D;12 、【答案】 A;13 、【答案】−i;14 、【答案】0.8;15 、【答案】3;16 、【答案】②④;17 、【答案】 (1) 通项公式为a n=2n−1;证明见解析.;(2) 4.;18 、【答案】 (1) y^=1.8x−0.6.;(2) 1.5;19 、【答案】 (1) 120°.;(2) 3√34.;20 、【答案】 (1) −1<m<2−ee.;(2) [2ln2−2,0].;21 、【答案】 (1) y2=4x.;(2) |PH|⋅|PQ|为定值20,理由见解析.;22 、【答案】 (1) C1的极坐标方程为ρ2−4ρcosθ−2=0.C2的极坐标方程为ρ2cos2θ=4(ρcosθ⩾2).;(2) π6或−π6.;23 、【答案】 (1) (1,4).;(2) 证明见解析.;。
四川省绵阳市2021届新高考数学二模考试卷含解析
四川省绵阳市2021届新高考数学二模考试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.《九章算术》中记载,堑堵是底面为直角三角形的直三棱柱,阳马指底面为矩形,一侧棱垂直于底面的四棱锥.如图,在堑堵111ABC A B C -中,AC BC ⊥,12AA =,当阳马11B ACC A -体积的最大值为43时,堑堵111ABC A B C -的外接球的体积为( )A .4π3B .82π3C .32π3D 642 【答案】B【解析】【分析】利用均值不等式可得()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=,即可求得AB ,进而求得外接球的半径,即可求解.【详解】由题意易得BC ⊥平面11ACC A ,所以()11222112113333B ACC A V BC AC AA BC AC BC AC AB -=⋅⋅=⋅≤+=, 当且仅当AC BC =时等号成立, 又阳马11B ACC A -体积的最大值为43, 所以2AB =,所以堑堵111ABC A B C -的外接球的半径221222AA AB R ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭所以外接球的体积348233V r π==, 故选:B【点睛】本题以中国传统文化为背景,考查四棱锥的体积、直三棱柱的外接球的体积、基本不等式的应用,体现了数学运算、直观想象等核心素养.2.函数()1cos f x x x x ⎛⎫=- ⎪⎝⎭(x ππ-≤≤且0x ≠)的图象可能为( ) A . B . C .D .【答案】D【解析】因为11()()cos ()cos ()f x x x x x f x x x -=-+=--=-,故函数是奇函数,所以排除A ,B ;取x π=,则11()()cos ()0f ππππππ=-=--<,故选D. 考点:1.函数的基本性质;2.函数的图象.3.洛书,古称龟书,是阴阳五行术数之源,在古代传说中有神龟出于洛水,其甲壳上心有此图象,结构是戴九履一,左三右七,二四为肩,六八为足,以五居中,五方白圈皆阳数,四角黑点为阴数.如图,若从四个阴数和五个阳数中分别随机选取1个数,则其和等于11的概率是( ).A .15B .25C .310D .14【答案】A【解析】【分析】基本事件总数4520n =⨯=,利用列举法求出其和等于11包含的基本事件有4个,由此能求出其和等于11的概率.【详解】解:从四个阴数和五个阳数中分别随机选取1个数,基本事件总数4520n =⨯=,其和等于11包含的基本事件有:(9,2),(3,8),(7,4),(5,6),共4个,∴其和等于11的概率41205p ==. 故选:A .【点睛】 本题考查概率的求法,考查古典概型等基础知识,考查运算求解能力,属于基础题.4.如图,在ABC ∆中,23AN NC =u u u v u u u v ,P 是BN 上一点,若13AP t AB AC =+u u u v u u u v u u u v ,则实数t 的值为( )A .23B .25C .16D .34【答案】C【解析】【分析】由题意,可根据向量运算法则得到25AP mAC =+u u u r u u u r (1﹣m )AB u u u r ,从而由向量分解的唯一性得出关于t 的方程,求出t 的值.【详解】由题意及图,()()1AP AB BP AB mBN AB m AN AB mAN m AB =+=+=+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r , 又,23AN NC =u u u r u u u r ,所以25AN AC =u u u r u u u r ,∴25AP mAC =+u u u r u u u r (1﹣m )AB u u u r , 又AP =u u u r t 13AB AC +u u u r u u u r ,所以12153m t m -=⎧⎪⎨=⎪⎩,解得m 56=,t 16=, 故选C .【点睛】本题考查平面向量基本定理,根据分解的唯一性得到所求参数的方程是解答本题的关键,本题属于基础题. 5.设函数()()21ln 11f x x x=+-+,则使得()()1f x f >成立的x 的取值范围是( ).A .()1,+∞B .()(),11,-∞-+∞UC .()1,1-D .()()1,00,1-U【答案】B【解析】【分析】 由奇偶性定义可判断出()f x 为偶函数,由单调性的性质可知()f x 在[)0,+∞上单调递增,由此知()f x 在(],0-∞上单调递减,从而将所求不等式化为1x >,解绝对值不等式求得结果.【详解】由题意知:()f x 定义域为R ,()()()()()2211ln 1ln 111f x x x f x x x -=+--=+-=++-Q ,()f x ∴为偶函数, 当0x ≥时,()()21ln 11f x x x=+-+, ()ln 1y x =+Q 在[)0,+∞上单调递增,211y x =+在[)0,+∞上单调递减, ()f x ∴在[)0,+∞上单调递增,则()f x 在(],0-∞上单调递减,由()()1f x f >得:1x >,解得:1x <-或1x >,x \的取值范围为()(),11,-∞-+∞U .故选:B .【点睛】本题考查利用函数的单调性和奇偶性求解函数不等式的问题;奇偶性的作用是能够确定对称区间的单调性,单调性的作用是能够将函数值的大小关系转化为自变量的大小关系,进而化简不等式.6.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题;③“2019a >”是“2020a >”的充分不必要条件;④“若0xy =,则0x =且0y =”的逆否命题为真命题.其中真命题的序号为( )A .③④B .①②C .①③D .②④【答案】B【解析】【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断.【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确;“2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误.故选:B .【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.7.集合{}|212P x N x =∈-<-<的子集的个数是( )A .2B .3C .4D .8【答案】D【解析】【分析】先确定集合P 中元素的个数,再得子集个数.【详解】由题意{|13}{0,1,2}P x N x =∈-<<=,有三个元素,其子集有8个.故选:D .【点睛】本题考查子集的个数问题,含有n 个元素的集合其子集有2n 个,其中真子集有21n -个. 8.622x x ⎛⎫- ⎪⎝⎭的展开式中,含3x 项的系数为( ) A .60-B .12-C .12D .60 【答案】B【解析】【分析】在二项展开式的通项公式中,令x 的幂指数等于3,求出r 的值,即可求得含3x 项的系数.【详解】 622x x ⎛⎫- ⎪⎝⎭的展开式通项为()663166222rr r r r r r T C x C x x --+⎛⎫=⋅⋅-=⋅-⋅ ⎪⎝⎭,令633r -=,得1r =,可得含3x 项的系数为()16212C ⨯-=-. 故选:B.【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题. 9.已知函数()2x f x x a =+⋅,()ln 42xg x x a -=-⋅,若存在实数0x ,使()()005f x g x -=成立,则正数a 的取值范围为( )A .(]01,B .(]04,C .[)1+∞,D .(]0,ln2 【答案】A【解析】【分析】 根据实数0x 满足的等量关系,代入后将方程变形0000242ln 5x x a a x x -⋅+⋅=+-,构造函数()ln 5h x x x =+-,并由导函数求得()h x 的最大值;由基本不等式可求得00242x x a a -⋅+⋅的最小值,结合存在性问题的求法,即可求得正数a 的取值范围.【详解】函数()2x f x x a =+⋅,()ln 42x g x x a -=-⋅,由题意得()()0000002ln 425x x f x g x x a x a --=+⋅-+⋅=, 即0000242ln 5x x a a x x -⋅+⋅=+-, 令()ln 5h x x x =+-,∴()111x h x x x -'=-=, ∴()h x 在()01,上单调递增,在()1+∞,上单调递减,∴()()14max h x h ==,而0024224x x a a a -⋅+⋅≥=,当且仅当00242x x -=⋅,即当01x =时,等号成立,∴44a ≤,∴01a <≤.故选:A.【点睛】本题考查了导数在求函数最值中的应用,由基本不等式求函数的最值,存在性成立问题的解法,属于中档题.10.已知函数f (x )=sin 2x+sin 2(x 3π+),则f (x )的最小值为( ) A .12 B .14 C.4 D.2【答案】A【解析】【分析】先通过降幂公式和辅助角法将函数转化为()11cos 223f x x π⎛⎫=-+ ⎪⎝⎭,再求最值. 【详解】已知函数f (x )=sin 2x+sin 2(x 3π+), =21cos 21cos 2322x x π⎛⎫-+ ⎪-⎝⎭+,=1cos 2111cos 22223x x π⎛⎛⎫-=-+ ⎪ ⎝⎭⎝⎭, 因为[]cos 21,13x π⎛⎫+∈- ⎪⎝⎭, 所以f (x )的最小值为12. 故选:A【点睛】 本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.11.设1F ,2F 是双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,O 是坐标原点,过点2F 作C 的一条渐近线的垂线,垂足为P.若1PF =,则C 的离心率为( )ABC .2D .3【答案】B【解析】【分析】 设过点()2,0F c 作b y x a =的垂线,其方程为()a y x c b =--,联立方程,求得2a x c=,ab y c =,即2,a ab P c c ⎛⎫ ⎪⎝⎭,由1PF =,列出相应方程,求出离心率.【详解】解:不妨设过点()2,0F c 作b y x a =的垂线,其方程为()a y x c b =--,由()b y x a a y x c b ⎧=⎪⎪⎨⎪=--⎪⎩解得2a x c =,ab yc =,即2,a ab P c c ⎛⎫ ⎪⎝⎭, 由16PF OP =,所以有22224222226a b a a a b c c c cc ⎛⎫⎛⎫++=+ ⎪ ⎪⎝⎭⎝⎭, 化简得223a c =,所以离心率3==c e a . 故选:B.【点睛】本题主要考查双曲线的概念、直线与直线的位置关系等基础知识,考查运算求解、推理论证能力,属于中档题.12.函数()cos2x f x π=与()g x kx k =-在[]6,8-上最多有n 个交点,交点分别为(),x y (1i =,……,n ),则()1n i i i x y =+=∑( ) A .7B .8C .9D .10 【答案】C【解析】【分析】根据直线()g x 过定点()1,0,采用数形结合,可得最多交点个数, 然后利用对称性,可得结果.【详解】由题可知:直线()g x kx k =-过定点()1,0且()cos2x f x π=在[]6,8-是关于()1,0对称 如图通过图像可知:直线()g x 与()f x 最多有9个交点同时点()1,0左、右边各四个交点关于()1,0对称所以()912419i ii x y =+=⨯+=∑ 故选:C【点睛】本题考查函数对称性的应用,数形结合,难点在于正确画出图像,同时掌握基础函数cos y x =的性质,属难题.二、填空题:本题共4小题,每小题5分,共20分。
2021年四川绵阳高三二模理科数学试卷(详解)
【答案】( 1 ) (2)
. .
【解析】( 1 )由
,
得
.
①
时,
,
此时 在 在
上单调递减, 上不可能有两个零点,故
不合题意.
②
时, 在区间
上单调递减,
在区间
上单调递增.
要使得函数 在
上有两个零点,
则
,解得
.
综上,实数 的范围是
(2)
①当
时,函数 在
.
,
.
上单调递增,
在,
上单调递减,
当
时,函数 在
上单调递减.
内随机投入 个点,其中恰有 个点落在
图中阴影部分内,若
,则由此次模拟实验可以估计出 的值约为( ).
y
O
x
A.
B.
C.
D.
【答案】 C
【解析】 ∵
与
交于点 ,
∴
,
∵四边形
是长方形,
,
∴,
∴
,阴影面积
,
,
∵向矩形
投 个点有 个在阴影内,
∴
,
∴
,
∴
,
故选 .
7. 已知命题 若数列 A.
和 都是等差数列,则
B.
C.
【答案】 C 【解析】 二项式
的通项公式为
令
,得 ,
则常数项为
.
故选 .
D. ,
5. 已知函数 A.
,若 B.
,则 C.
【答案】 B
【解析】 由
令 易得
, ,
, 为奇函数,
, ,
( ). D.
. 故选 .
6. 已知曲线
四川省绵阳市高中2021届高三数学第二次诊断性测试试题 理(含解析)
四川省绵阳市高中2021届高三数学第二次诊断性测试(cèshì)试题理(含解析)注意事项:1.答卷前,考生务必将自己的姓名(xìngmíng)、准考证号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应(duìyìng)题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试(kǎoshì)结束后,将答题卡交回.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有(zhǐyǒu)一项是符合题目要求的.1.设全集,,则()A. B. C. D.【答案】D【解析】【分析】先确定集合的元素,再由补集定义求解.【详解】由题意,∴.故选:D.【点睛】本题考查补集的运算,解题时需确定集合的元素后才能进行集合的运算.本题还考查了指数函数的单调性.2.已知为虚数单位,复数满足,则()A. B.C. D.【答案】A【解析】【分析】由除法计算出复数z.【详解(xiánɡ jiě)】由题意.故选:A.【点睛】本题考查(kǎochá)复数的除法运算,属于基础题.3.已知两个(liǎnɡ ɡè)力,作用于平面内某静止物体的同一点(yī diǎn)上,为使该物体仍保持静止,还需给该物体同一点上再加上一个力,则()A. B. C. D.【答案(dá àn)】A【解析】【分析】F.根据力的平衡条件下,合力为,即可根据向量的坐标运算求得3【详解】根据力的合成可知因为物体保持静止,即合力为0,则即故选:A【点睛】本题考查了向量的运算在物理中的简单应用,静止状态的条件应用,属于基础题. 4.甲、乙、丙三位客人在参加中国(绵阳)科技城国际科技博览会期间,计划到绵阳的九皇山、七曲山大庙两个景点去参观考察,由于时间关系,每个人只能选择一个景点,则甲、乙、丙三人恰好到同一景点旅游参观的概率为()A. B. C. D.【答案】B【解析】【分析】可用列举法写出三人选择景点的各种情形.然后计数后可概率.【详解】两景点用1,2表示,三人选择景点的各种情形为:甲1乙1丙1 ,甲1乙1丙2 ,甲1乙2丙1 ,甲2乙1丙1 ,甲2乙2丙1 ,甲2乙1丙2 ,甲1乙2丙2 ,甲2乙2丙2 共8种,其中三人去同一景点的有甲1乙1丙1 和甲2乙2丙2两种,所以概率为.故选:B.【点睛】本题考查古典概型,解题时可用列举法写出所有(suǒyǒu)的基本事件.5.已知为任意(rènyì)角,则“”是“”的()A. 充分(chōngfèn)不必要条件B. 必要(bìyào)不充分条件C. 充要条件D. 既不充分(chōngfèn)也不必要【答案】B【解析】【分析】说明命题1cos23α=3sin3α=和3sin3α=⇒1cos23α=是否为真即可.【详解】,则,因此“1cos23α=”是“3sin3α=”的必要不充分条件.故选:B.【点睛】本题考查充分必要条件的判断,只要命题为真,则是的充分条件,q 是p的必要条件.6.若的展开式中各项系数的和为1,则该展开式中含项的系数为()A. -80B. -10C. 10D. 80【答案】A【解析】【分析】根据二项式定理展开式的各项系数和为1,即可得参数的值.由二项展开式的通项即可求得3x项的系数.【详解】因为51axx⎛⎫-⎪⎝⎭的展开式中各项系数的和为1令代入可得,解得即二项式为展开式中含3x的项为所以(suǒyǐ)展开式中含3x项的系数(xìshù)为故选:A【点睛】本题考查(kǎochá)了二项定理展开式的简单应用,指定(zhǐdìng)项系数的求法,属于(shǔyú)基础题.7.已知某产品的销售额与广告费用之间的关系如下表:x(单位:万元)0 1 2 3 4y(单位:万元)10 15 30 35若根据表中的数据用最小二乘法求得y对x的回归直线方程为,则下列说法中错误的是()A. 产品的销售额与广告费用成正相关B. 该回归直线过点C. 当广告费用为10万元时,销售额一定为74万元D. m的值是20【答案】C【解析】【分析】根据回归直线方程中x系数为正,说明两者是正相关,求出后,再由回归方程求出,然后再求得m,同样利用回归方程可计算出时的预估值.【详解】因为回归直线方程中x系数为 6.5>0,因此,产品的销售额与广告费用成正相关,A正确;又,∴,回归直线一定过点,B正确;x 时,,说明(shuōmíng)广告费用为10万元时,销售额估计为74 10万元,不是一定为74万元,C错误;由,得,D正确(zhèngquè).故选:C.【点睛】本题考查回归(huíguī)直线方程,回归直线方程中x系数的正负说明两变量间正负相关性,回归直线(zhíxiàn)一定过中心点,回归直线方程(fāngchéng)中计算的值是预估值,不是确定值.8.双曲线的右焦点为,过F作与双曲线的两条渐近线平行的直线且与渐近线分别交于,两点,若四边形(为坐标原点)的面积为,则双曲线的离心率为()A. B. 2 C. D. 3【答案】B【解析】【分析】把四边形OAFB面积用表示出来,它等于bc,变形后可求得离心率.【详解】由题意,渐近线方程,不妨设方程为,由,得,即,同理,∴,由题意,∴.故选:B.【点睛】本题考查求双曲线的离心率.求离心率关键是找到关于,,a b c的一个等式,本题中四边形OAFB的面积是bc就是这个等式,因此只要按部就班地求出其面积即可得.9.小明与另外2名同学进行“手心手背”游戏,规则是:3人同时随机等可能选择手心或手背中的一种手势,规定相同手势人数多者每人得1分,其余每人得0分.现3人共进行了4次游戏,记小明4次游戏得分之和为,则X的期望为()A. 1B. 2C. 3D. 4【答案(dá àn)】C【解析(jiě xī)】【分析(fēnxī)】根据(gēnjù)古典概型概率求法,列举出现的所有(suǒyǒu)可能.由离散型随机变量的概率求法,可得小明得分的对应的概率与分布列,即可求出得分之和的期望.【详解】进行“手心手背”游戏,3人出现的所有可能情况如下所示:(心,心,心), (心,心,背),(心,背,心),(背,心,心)(心,背,背),(背,心,背),(背,背,心),(背,背,背)则小明得1分的概率为,得0分的概率为1 4进行4次游戏,小明得分共有5种情况:0分,1分,2分,3分,4分由独立重复试验的概率计算公式可得:则得分情况的分布列如下表所示:X1234P则X 的期望(qīwàng)故选:C【点睛】本题考查(kǎochá)了离散型随机变量的概率分布及期望的求法,属于(shǔyú)基础题. 10.已知圆:,点M ,在圆C 上,平面(píngmiàn)上一动点满足(mǎnzú)且,则的最大值为( ) A. 4 B.C. 6D.【答案】D 【解析】 【分析】根据几何意义可知动点P 位于以为直径的圆上,由正弦定理即可求得PC 的最大值.【详解】圆C :2268110x y x y +---= 化成标准方程可得所以圆C 的半径为因为点M ,N 在圆C 上,动点P 满足PM PN =且PM PN ⊥ 所以P 位于以MN 为直径的圆上,位置关系如下图所示:则,即在三角形中,由正弦定理可得代入可得则因为(yīn wèi)所以(suǒyǐ)PC 的最大值为62 故选:D【点睛】本题考查(kǎochá)了圆的一般方程与标准方程的转化,圆的几何(jǐ hé)性质,正弦定理(dìnglǐ)的简单应用,属于中档题. 11.已知为偶函数,且当时,,则满足不等式的实数m 的取值范围为( )A. B. C.D. ()2,+∞【答案】A 【解析】 【分析】由偶函数性质把不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭化为,由导数确定函数在上的单调性,利用单调性解不等式.【详解】∵()f x 是偶函数,∴,则不等式()()212log log 21f m f m f ⎛⎫+< ⎪⎝⎭可化为,即2(log )(1)f m f <,0x ≥时,,,令,则,∴是上的增函数,∴当时,,∴0x ≥时,,∴()f x 在[0,)+∞上是增函数,∴由2(log )(1)f m f <得,即,.故选:A .【点睛】本题考查函数的奇偶性与单调(dāndiào)性,考查解对数不等式.此各种类型不等式的解法是:本题这种类型的不等式有两种,一种是奇函数,不等式为,转化(zhuǎnhuà)为,一种(yī zhǒnɡ)是偶函数,不等式为,转化(zh uǎnhuà)为,然后由单调性去函数(hánshù)符号“”.12.函数在区间上恰有一个零点,则实数a 的取值范围是( ) A.B.C. D.【答案】D 【解析】 【分析】根据函数零点存在定理可求得a 的取值范围.并根据区间10,a⎡⎤⎢⎥⎣⎦上恰有一个零点,分析可知当时函数有两个零点,不符合要求,即可求得最终a 的取值范围.【详解】函数()()()221log 2a a f x ax x =--+在区间10,a ⎡⎤⎢⎥⎣⎦上恰有一个零点,则,由二次函数的图像与对数函数的图像可知,函数零点至多有两个.且因为恰有一个零点,所以满足且与在10,a⎡⎤⎢⎥⎣⎦上不同时成立.解不等式()()110log 2log 3a a --≤可得当3a =时,函数(hánshù),区间(qū jiān)为且满足(mǎnzú),,所以(suǒyǐ)在内有一个(yī ɡè)零点, 为一个零点.故由题意可知,不符合要求综上可知, a 的取值范围为[)2,3 故选:D【点睛】本题考查了函数零点存在定理的综合应用,根据零点个数求参数的取值范围.需要判断零点个数及检验参数是否符合题目要求,属于难题. 二、填空题:本大题共4小题,每小题5分,共20分. 13.直线:与直线平行,则实数a 的值是______.【答案】2. 【解析】 【分析】由两直线平行的条件判断. 【详解】由题意,解得2a =. 故答案为:2.【点睛】本题考查两直线平行的充要条件,两直线和平行,条件是必要条件,不是充分条件,还必须有或,但在时,两直线平行的充要条件是.14.法国数学家布丰提出一种计算圆周率的方法——随机投针法,受其启发,我们设计如下实验来估计π的值:先请200名同学每人随机写下一个横、纵坐标都小于1的正实数对,x y的个数m;最后再根据统计数m来估计;再统计两数的平方和小于1的数对()π的值.已知某同学一次试验统计出,则其试验估计π为______.【答案(dá àn)】3.12【解析(jiě xī)】【分析(fēnxī)】,x y构成(gòuchéng)第一象限内的一个正方形, 横、纵坐标都小于1的正实数(shìshù)对(),x y为单位圆在第一象限的部分.由几何概型概率的计算公式,两数的平方和小于1的数对()及试验所得结果,即可估计π的值.,x y构成第一象限内的一个正方形,【详解】横、纵坐标都小于1的正实数对(),x y为单位圆在第一象限的部分.其关系如下图所示:两数的平方和小于1的数对()则阴影部分与正方形面积的比值为由几何概型概率计算公式可知解得故答案为:【点睛】本题考查了几何概型概率的求法,根据题意得各部分的关系是解决问题的关键,属于基础题.f x在区间上的零15.函数的图象如图所示,则()点之和为______.【答案(dá àn)】.【解析(jiě xī)】 【分析(fēnxī)】先求出周期(zhōuqī),确定,再由点确定(quèdìng),得函数解析式,然后可求出上的所有零点.【详解】由题意,∴,又且,∴,∴.由得,,,在[,]-ππ内有:,它们的和为23π. 【点睛】本题考查三角函数的零点,由三角函数图象求出函数解析式,然后解方程得出零点,就可确定在已知范围内的零点.本题也可用对称性求解,由函数周期是π,区间[,]-ππ含有两个周期,而区间端点不是函数零点,因此()f x 在[,]-ππ上有4个零点,它们关于直线对称,由此可得4个零点的和.16.过点的直线l 与抛物线C :交于A ,B 两点(A 在M ,B 之间),F 是抛物线C 的焦点,点N 满足:,则与的面积之和的最小值是______. 【答案】8 【解析】 【分析】根据直线l 过点()1,0M -,设出直线l 的方程.联立抛物线后可表示出A 、B 两点的纵坐标,利用5NA AF =可表示出点N 的纵坐标.由三角形面积公式可表示出ABF ∆与AMN ∆的面积之和.对表达式求导,根据导数即可求得面积和的最小值. 【详解】根据题意,画出抛物线及直线方程如下图所示:因为(yīn wèi)直线l 过点()1,0M - 设直线(zhíxiàn)的方程为则,化简可得因为有两个(liǎnɡ ɡè)不同交点,则,解得或不妨(bùfáng)设1t >, 则解方程可得因为(yīn wèi)5NA AF =,则所以所以则,(1t >)令则令解得当时, ,所以(suǒyǐ)在内单调(dāndiào)递减当时, ,所以(suǒyǐ)()f t在内单调(dāndiào)递增即当54t=时()f t取得(qǔdé)最小值.所以故答案为:【点睛】本题考查了直线与抛物线的位置关系,抛物线中三角形面积的求法,利用导数求函数的最值的应用,综合性强,属于难题.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.每年的4月23日为“世界读书日”,某调查机构对某校学生做了一个是否喜爱阅读的抽样调查.该调查机构从该校随机抽查了100名不同性别的学生(其中男生45名),统计了每个学生一个月的阅读时间,其阅读时间(小时)的频率分布直方图如图所示:(1)求样本学生一个月阅读时间t的中位数m.(2)已知样本中阅读时间低于m的女生有30名,请根据题目信息完成下面的列联表,并判断能否在犯错误的概率不超过0.1的前提下认为阅读与性别有关.列联表22男女总计总计附表:015 0.10 0.052.072 2.7063.841其中(qízhōng):.【答案(dá àn)】(1);(2)不能在犯错误的概率不超过0.1的前提下认为阅读(yuèdú)与性别有关.【解析(jiě xī)】【分析(fēnxī)】(1)频率为0.5对应的点的横坐标为中位数;(2)100名学生中男生45名,女生55名,由频率分布直方图知,阅读时长大于等于m的人数为50人,小于m的也有50人,阅读时间低于m的女生有30名,这样可得列联表中的K,对照附表可得结论.各数,得列联表,依据公式计算2【详解】(1)由题意得,直方图中第一组,第二组的频率之和为.所以阅读时间的中位数.(2)由题意得,男生人数为45人,因此女生人数为55人,由频率分布直方图知,阅读时长大于等于m的人数为人,故列联表补充如下:男女总计≥25 25 50t mt m20 30 50<总计45 55 100 2K的观测(guāncè)值,所以不能在犯错误的概率不超过0.1的前提下认为(rènwéi)阅读与性别有关.【点睛】本题考查频率分布直方图,考查独立性检验.正确认识频率分布直方图是解题(jiě tí)基础.18.已知等差数列(děnɡ chā shù liè)的前项和为,且满足(mǎnzú),.各项均为正数的等比数列满足,.(1)求和;(2)求和:.【答案】(1) .. (2)【解析】【分析】(1)根据等差数列与等比数列的通项公式,可得方程组,解方程组即可求得数列{}n a与数列{}b的通项公式.n(2)根据等比数列{}n b的前n项和公式,可先求得的通项公式,进而根据分组求得即可求得.【详解】(1)设等差数列{}n a的公差为,等比数列{}n b的公比为q.由题意,得,解得,∴23n a n =-∵等比数列(děnɡ bǐ shù liè){}n b 的各项均为正数(zhèngshù)由解得或(舍)∴(2)由(1)得,.【点睛】本题考查了等差数列与等比数列(děnɡ bǐ shù liè)通项公式的求法,等比数列(děnɡ bǐ shù liè)前n 项和公式的简单(jiǎndān)应用,属于基础题. 19.在中,内角A ,B ,C 所对的边分别为a ,,.已知.(1)求A ; (2)若为边上一点,且,,求.【答案】(1);(2)12. 【解析】 【分析】(1)由正弦定理把角的关系转化为边的关系,再由余弦定理可求得A ; (2)把ABC ∆的面积用两种方法表示建立与三角形各边的关系,由23BC AD =,即即代入可得,再代入余弦定理中可求得,从而可得,于是得sin B 的值.【详解】(1)在ABC ∆中,由正弦定理得,即.由余弦定理(yú xián dìnɡ lǐ)得,结合(jiéhé),可知(kě zhī)23A π=. (2)在ABC ∆中,,即.由已知23BC AD =,可得23a AD =.在ABC ∆中,由余弦定理(yú xián dìnɡ lǐ)得,即,整理(zhěnglǐ)得,即b c =,∴.∴.【点睛】本题考查正弦定理、余弦定理、三角形面积公式,第(2)问解题关键是把三角形面积用两种方法表示而建立等式:.20.已知椭圆C :,直线l 交椭圆C 于A ,B 两点.(1)若点满足(O 为坐标原点),求弦的长;(2)若直线l 的斜率不为0且过点,M 为点A 关于x 轴的对称点,点满足,求n 的值.【答案】(1) (2)【解析】 【分析】(1)设出A ,B 两点的坐标,结合关系式0OA OB OP ++=,即可得线段AB 的中点坐标.利用点差法可求得直线AB 的斜率,根据点斜式求得直线AB 的方程.再结合弦长公式即可求得弦AB 的长;(2)设出直线(zhíxiàn)AB 的方程,根据(gēnjù)M 的坐标及MN NB λ=可知(kě zhī).由两点的斜率(xiélǜ)公式,可得,将A ,B 两点的坐标代入直线方程(fāngchéng)后,整理代入n 的表达式,联立圆的方程,即可得关于y 的方程.进而用韦达定理求得n 的值即可. 【详解】(1)设,由0OA OB OP ++=,且点()1,1P -,得,.①∴线段AB 的中点坐标为,其在椭圆内由两式相减得,整理得,即.将①代入,得.∴直线AB 方程为,即.联立消去x 得,由韦达定理得121y y +=-,.∴.(2)设直线AB 的方程为,由题意得,由已知MN NB λ=,可知M ,N ,B 三点共线,即MN MB k k =. ∴,即,解得()121121y x x n x y y -=++.将,,代入得.②联立消去x 得由韦达定理(dìnglǐ)得,.③将③代入②得到(dé dào)1n =【点睛】本题考查了直线与椭圆(tuǒyuán)的位置关系,点差法在求直线(zhíxiàn)方程中的应用,弦长公式(gōngshì)的用法,综合性较强,属于难题. 21.已知函数,其中.(1)讨论函数()f x 的单调性; (2)若,记函数()f x 的两个极值点为,(其中),当的最大值为时,求实数a 的取值范围.【答案】(1) 当时,()f x 在上单调递增;当时,()f x 在和上单调递增,在上单调递减. (2) [)3,+∞ 【解析】 【分析】(1)先求得()f x 的导函数,并令.通过对判别式及a 的讨论,即可判断单调性.(2)根据(1)可知当22a >,()f x 有两极值点1x ,2x ,且两个极值点为的两根.进而可得两个极值点间的关系.利用作差法可得()()21f x f x -的表达式,并令,及.进而通过求导得的单调性,进而根据最大值可求得t 的值.解得1x ,2x 的值.即可得a 的取值范围.【详解(xiánɡ jiě)】(1).令()22g x x ax =-+,则.①当或,即22a ≤时,得恒成立(chénglì),∴()f x 在()0,∞+上单调(dāndiào)递增.②当,即22a >时,由,得或;由,得.∴函数(hánshù)()f x 在280,2a a ⎛⎫-- ⎪ ⎪⎝⎭和28,2a a ⎛⎫+++∞ ⎪ ⎪⎝⎭上单调(dāndiào)递增, 在2288,22a a a a ⎛⎫--+-⎪ ⎪⎝⎭上单调递减. 综上所述,当22a ≤时,()f x 在()0,∞+上单调递增;当22a >时,()f x 在280,2a a ⎛⎫-- ⎪ ⎪⎝⎭和28,2a a ⎛⎫+++∞ ⎪ ⎪⎝⎭上单调递增, 在2288,22a a a a ⎛⎫--+-⎪ ⎪⎝⎭上单调递减. (2)由(1)得当22a >,()f x 有两极值点1x ,2x (其中21x x >). 由(1)得1x ,2x 为()220x a g x x =-+=的两根,于是,.∴.令()211x t t x =>,则()()()2112ln f x f x h t t t t-==-+. ∵,∴()h t 在上单调(dāndiào)递减.由已知的最大值为32ln 22-, 而.∴.设t 的取值集合(jíhé)为,则只要(zhǐyào)满足且T 中的最小元素(yuán sù)为2的T 集合(jíhé)均符合题意. 又,易知在[)2,+∞上单调递增,结合22a >,可得a 与t 是一一对应关系. 而当2t =,即时,联合122x x =, 解得,,进而可得3a =.∴实数a 的取值范围为[)3,+∞.【点睛】本题考查了导数在研究函数单调性中的综合应用,分类讨论判断函数的单调区间,构造函数法判断函数的单调性及参数的取值范围,综合性强,是高考的常考点和难点,属于难题. (二)选考题:共10分.请考生在第22、23题中任选一题做答.如果多做,则按所做的第一题记分.22.在平面直角坐标系中,曲线参数方程为(,ϕ为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,曲线1C 经过点,曲线的直角坐标方程为.(1)求曲线(qūxiàn)1C 的普通(pǔtōng)方程,曲线2C 的极坐标方程(fāngchéng);(2)若,是曲线(qūxiàn)2C 上两点,当时,求的取值范围(fànwéi).【答案】(1),;(2).【解析】 【分析】 (1)由消元后得普通方程,由代入直角坐标方程可得极坐标方程; (2)直接把两点的极坐标代入曲线2C 的极坐标方程,得,这样2211OAOB+就可转化为三角函数式,利用三角函数知识可得取值范围. 【详解】(1)将1C 的参数方程化为普通方程为.由,,得点2,3P π⎛⎫⎪⎝⎭的直角坐标为,代入1C ,得,∴曲线1C 的普通方程为()2213x y -+=.2C 可化为,即,∴曲线2C 的极坐标方程为2cos 21ρθ=. (2)将点()1,A ρα,代入曲线2C 的极坐标方程,得,,∴.由已知0,4πα⎛⎫∈ ⎪⎝⎭,可得,于是(yúshì).所以(suǒyǐ)2211OAOB +的取值范围(fànwéi)是3,32⎛⎤⎥ ⎝⎦. 【点睛】本题考查(kǎochá)极坐标方程与直角坐标方程的互化,考查参数方程与普通方程的互化.消元法和公式法是解决此类问题的常用方法. 23.已知关于(guānyú)x 的不等式,其中.(1)当时,求不等式的解集;(2)若该不等式对恒成立,求实数a 的取值范围.【答案】(1);(2). 【解析】 【分析】(1)用分类讨论的方法去绝对值符号后再解不等式,最后要合并(求并集); (2)设,同样用分类讨论去绝对值符号化函数为分段函数,求得()f x 最大值,解相应不等式可得a 的范围.【详解】(1)由4a =时,.原不等式化为,当时,,解得,综合得4x≥;当时,,解得,综合得;当时,,解得,综合(zōnghé)得1x≤-.∴不等式的解集为2|43x x x⎧⎫≤-≥⎨⎬⎩⎭或.(2)设函数(hánshù),画图可知(kě zhī),函数()f x的最大值为.由,解得24a<≤.【点睛】本题考查(kǎochá)解含绝对值的不等式,解题方法是根据绝对值定义去掉绝对值符号,用分类讨论的方法分段解不等式.内容总结。
2021届四川省绵阳市普通高中高三上学期二诊考试数学(理)试卷及答案
2021届四川省绵阳市普通高中高三上学期二诊考试数学(理)试卷★祝考试顺利★(含答案)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合A ={x ∈N|-1≤x ≤1},B ={x|log 2x<1},则A ∩B =A.[-1,1)B.(0,1)C.{-1,1}D.{1}2.已知直线l 1:ax +2y +1=0,直线l 2:2x +ay +1=0,若l 1⊥l 2,则a =A.0B.2C.±2D.43.已知平面向量a =(1,3),b =(2,λ),其中λ>0,若|a -b|=2,则a ·b =A.2B.23C.43D.84.二项式(2x -x)6的展开式中,常数项为 A.-60 B.-40 C.60 D.1205.已知函数f(x)=x 3+sinx +2,若f(m)=3,则f(-m)=A.2B.1C.0D.-16.已知曲线y =e x (e 为自然对数的底数)与x 轴、y 轴及直线x =a(a>0)围成的封闭图形的面积为e a -1。
现采用随机模拟的方法向右图中矩形OABC 内随机投入400个点,其中恰有255个点落在图中阴影部分内,若OA =1,则由此次模拟实验可以估计出e 的值约为A.2.718B.2.737C.2.759D.2.7857.已知命题p :若数列{a n }和{b n }都是等差数列,则{ra n +sb n }(r,s ∈R)也是等差数列;命题q :∀x ∈(2k π,2k π+2)(k ∈Z),都有sinx<x 。
则下列命题是真命题的是A.¬p ∧qB.p ∧qC.p ∨qD.¬p ∨q8.对全班45名同学的数学成绩进行统计,得到平均数为80,方差为25,现发现数据收集时有两个错误,其中一个95分记录成了75分,另一个60分记录成了80分。
纠正数据后重新计算,得到平均数为x ,方差为s 2,则 A.x =80,s 2<25 B.x =80,s 2=25 C.x =80,s 2>25 D.x <80,s 2>259.已知双曲线E :22221x y a b -=(a>0,b>0)的左、右焦点为F 1,F 2,P 为其渐近线上一点,若△PF 1F 2是顶角为23π的等腰三角形,则E 的离心率为10.若函数f(x)=x 3-(2a +3)x 2+2ax +3在x =2处取得极小值,则实数a 的取值范围是 A.(-0,-6) B.(-∞,6) C.(6,+∞) D.(-6,+∞)11.已知正实数x,y 满足ln x y >lg y x,则 A.lnx>ln(y +1) B.ln(x +1)<lgy C.3x <2y -1 D.2x -y >112.已知点O 为坐标原点,|OP|=,点B,点C 为圆x 2+y 2=12上的动点,且以BC 为直径的圆过点P,则△OBC 面积的最小值为二、填空题:本大题共4小题,每小题5分,共20分。
四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题
四川省绵阳市2021-2022学年高三上学期第二次诊断性考试理科数学试题一、单选题1.设集合{(,)|}A x y y x ==,2{(,)|}B x y y x ==,则集合A B 的元素个数为( ) A .0B .1C .2D .32.二项式52x x ⎛⎫- ⎪⎝⎭的展开式中,3x 的系数为( )A .10-B .15-C .10D .153.如图,茎叶图记录了甲、乙两个家庭连续9个月的月用电量(单位:度),根据茎叶图,下列说法正确的是( )A .甲家庭用电量的中位数为33B .乙家庭用电量的极差为46C .甲家庭用电量的方差小于乙家庭用电量的方差D .甲家庭用电量的平均值高于乙家庭用电量的平均值4.已知角α的终边过点A ,则cos 6πα⎛⎫+= ⎪⎝⎭( )A .12-B .0C .12D 5.已知双曲线2222:1x y E a b-=(0a >,0b >)的焦距为4,两条渐近线互相垂直,则E 的方程为( )A .221x y -=B .22122x y -=C .22144x y -=D .22188x y -=6.已知平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+,则( )A .A ,B ,D 三点共线 B .A ,B ,C 三点共线 C .B ,C ,D 三点共线D .A ,C ,D 三点共线7.函数()f x 是定义域为R 的偶函数,当[1,0]x ∈-时,1()e 1ex f x a =++,若(1)1f =,则(0)f =( )A .eB .e -C .1eD .1e-8.已知直线10x y +-=与圆()()22:21C x y m -+-=相交于A ,B 两点,若AB =m =( )A B .5C .3D .49.第24届冬季奥林匹克运动会将于2022年在北京举办,为了解某城市居民对冰雪运动的关注情况,随机抽取了该市100人进行调查统计,得到如下22⨯列联表:下列说法正确的是( )参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.附表:A .有99%以上的把握认为“关注冰雪运动与性别有关”B .有99%以上的把握认为“关注冰雪运动与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“关注冰雪运动与性别无关”D .在犯错误的概率不超过0.1%的前提下,认为“关注冰雪运动与性别有关”10.已知,m n 为整数,且,[1,5]m n ∈,设平面向量(,)a m n =与(2,1)b =-的夹角为θ,则,2πθπ⎡⎫∈⎪⎢⎣⎭的概率为( )A .932B .964C .425D .62511.已知函数()2()ln f x x a x x =--,若不等式()0f x >有且仅有2个整数解,则实数a 的取值范围是( )A .ln 2ln 3,66⎡⎫⎪⎢⎣⎭ B .ln 2ln 3,66⎛⎤⎥⎝⎦ C .ln 2,6⎛⎤-∞ ⎥⎝⎦ D .ln 2ln 3,33⎛⎫⎪⎝⎭12.已知1F ,2F 分别为椭圆()2222:10x y E a b a b +=>>的左,右焦点,E 上存在两点A ,B 使得梯形12AF F B(其中c 为半焦距),且123AF BF =,则E 的离心率为( ) ABC .12D二、填空题13.设i 是虚数单位,若复数z 满足i 6i z z ⋅=+,则复数z 的虚部为______. 14.现从4名男志愿者和3名女志愿者中,选派2人分别去甲、乙两地担任服务工作,若被选派的人中至少有一名男志愿者,则不同的选派方法共有___________种.(用数字作答)15.已知,A B 为抛物线2:4C x y =上的两点,2()1,M -,若AM MB =,则直线AB 的方程为_________.16.已知函数()sin f x x x =,下列关于函数()f x 的说法正确的序号有________.①函数()f x 在73,62ππ⎡⎤⎢⎥⎣⎦上单调递增;①2π是函数()f x 的周期; ①函数()f x 的值域为[2,1]-; ①函数()f x 在[2,2]ππ-内有4个零点. 三、解答题17.已知数列{}n a 为公差大于0的等差数列,2315a a ⋅=,且1a ,4a ,25a 成等比数列.(1)求数列{}n a 的通项公式; (2)设11n n n b a a +=⋅,数列{}n b 的前n 项和为n S ,若2041m S =,求m 的值.18.某通讯商场推出一款新手机,分为甲、乙、丙、丁4种不同的配置型号.该商场对近期售出的100部该款手机的情况进行了统计,绘制如下表格:(1)每售出一部甲、乙、丙、丁配置型号的手机可分别获得利润600元、400元、500元、450元,根据以上100名消费者的购机情况,求该商场销售一部该款手机的平均利润;(2)该商场某天共销售了4部该款手机,每销售一部该款手机的型号相互独立,其中甲配置型号手机售出的数量为X ,将样本频率视为概率,求X 的概率分布列及期望. 19.在ABC 中,角,,A B C 的对边分别为,,a b c ,其中b =(sin )cos sin cos a C B B C -=.(1)求角B 的大小;(2)求ABC 周长的取值范围.20.已知函数2()(2)e x f x x ax x =---.(1)当12a =-时,求函数()f x 的极值;(2)若曲线()f x 在()2,1-上任意一点处切线的倾斜角均为钝角,求实数a 的取值范围. 21.已知椭圆()2222:10x y E a b a b+=>>的右焦点为F ,点A ,B 分别为右顶点和上顶点,点O 为坐标原点,11e OF OA FA+=,OAB ,其中e 为E 的离心率. (1)求椭圆E 的方程;(2)过点O 异于坐标轴的直线与E 交于M ,N 两点,射线AM ,AN 分别与圆22:4C x y +=交于P ,Q 两点,记直线MN 和直线PQ 的斜率分别为1k ,2k ,问12k k 是否为定值?若是,求出该定值;若不是,请说明理由.22.在直角坐标系xOy 中,曲线C 的参数方程为2sin 2cos ,1cos 2sin x y αααα=++⎧⎨=+-⎩(α为参数),以坐标原点为极点,x 轴正半轴为极轴建立的极坐标系中,直线l 的方程是cos 13πρθ⎛⎫+= ⎪⎝⎭. (1)求曲线C的普通方程和直线l 的直角坐标方程;(2)若点A 的坐标为()2,0,直线l 与曲线C 交于P ,Q 两点,求11AP AQ+的值. 23.已知函数()f x =(1)当2m =时,求函数()f x 的定义域;(2)设函数()f x 的定义域为M ,当12m >-时,1[,]2m M -⊆,求实数m 的取值范围.参考答案:1.C 【解析】 【分析】集合为点集,交集的元素个数等与函数y x =与2y x 图象交点个数,作图可解.【详解】如图,函数y x =与2y x 图象有两个交点,故集合A B 有两个元素.故选:C2.A 【解析】 【分析】首先求出二项式展开式的通项,再令523-=r 求出r ,再代入计算可得; 【详解】解:二项式52x x ⎛⎫- ⎪⎝⎭展开式的通项为()55215522rr r r r r r T C x C x x --+⎛⎫=-=- ⎪⎝⎭,令523-=r ,解得1r =,所以()113325210T C x x =-=-,故3x 的系数为10-; 故选:A 3.C 【解析】 【分析】根据给定茎叶图,逐项分析计算,再判断作答. 【详解】对于A ,由茎叶图知,甲家庭用电量的中位数为32,A 不正确; 对于B ,由茎叶图知,乙家庭用电量的极差56-11=45,B 不正确; 对于C ,甲家庭用电量的平均数112232425323337415027799x ++++++++==,乙家庭用电量的平均数211233438394042515633499x ++++++++==,甲家庭用电量的方差2222211277277277277[(12)(23)(24)(25)99999s =-+-+-+- 2222227727727727727781936(32)(33)(37)(41)(50)]99999729+-+-+-+-+-=, 乙家庭用电量的方差2222221334334334334[(11)(23)(34)(38)99999s =-+-+-+- 22222334334334334334119628(39)(40)(42)(51)(56)]99999729+-+-+-+-+-=, 显然81936119628729729<,即甲家庭用电量的方差小于乙家庭用电量的方差,C 正确; 对于D ,由C 选项的计算知27733499<,甲家庭用电量的平均值低于乙家庭用电量的平均值,D 不正确. 故选:C 4.B 【解析】 【分析】根据三角函数定义求出sin α和cos α,利用余弦的和角公式即可求cos 6πα⎛⎫+ ⎪⎝⎭.【详解】由题可知1sin 2αα==,①111cos sin 06222πααα⎛⎫+=--= ⎪⎝⎭.故选:B. 5.B 【解析】 【分析】根据题意,得到a =b ,再根据2c =,由222+=a b c 即可求出答案. 【详解】双曲线2222:1x y E a b-=的渐近线方程为b y x a =±由两条渐近线互相垂直,则221b b b a a a-⨯=-=-,所以a b =又双曲线E 的焦距为4,则22224242a b a ⎛⎫+=== ⎪⎝⎭,解得a =所以双曲线E 的方程为:22122x y -=故选:B 6.D 【解析】 【分析】根据给定条件逐项计算对应三点确定的某两个向量,再判断是否共线作答. 【详解】平面向量a ,b 不共线,46AB a b =+,3BC a b =-+,3CD a b =+, 对于A ,3(3)6BD BC CD a b a b b =+=-+++=,与AB 不共线,A 不正确; 对于B ,因46AB a b =+,3BC a b =-+,则AB 与BC 不共线,B 不正确; 对于C ,因3BC a b =-+,3CD a b =+,则BC 与CD 不共线,C 不正确; 对于D ,46(3)393AC AB BC a b a b a b CD =+=++-+=+=,即//AC CD , 又线段AC 与CD 有公共点C ,则A ,C ,D 三点共线,D 正确. 故选:D 7.C 【解析】 【分析】根据函数是偶函数知f (-1)=f (1)=1,由此求出a 的的值即可计算. 【详解】由题可知f (-1)=f (1)=1, 则11e 11ea -++=,得a =-1,①()1e 1ex f x =-++,①f (0)=1e .故选:C. 8.B 【解析】 【分析】先求出圆心到直线的距离,再利用弦心距、半径和弦长的关系列方程可求出m 的值 【详解】圆()()22:21C x y m -+-=的圆心(2,1)C 0m >), 则圆心(2,1)C 到直线10x y +-=的距离为d ==因为AB =所以222+=,解得5m =,故选:B 9.A 【解析】 【分析】根据给定数据及参考公式计算2K 的观测值,再与临界值表比对判断作答. 【详解】依题意,2K 的观测值为22100(45202510)8.129 6.63570305545K ⨯-⨯=≈>⨯⨯⨯, 所以有99%以上的把握认为“关注冰雪运动与性别有关”,A 正确,B 不正确; 而犯错误的概率不超过1%,不能确定犯错误的概率不超过0.1%的情况,C ,D 不正确. 故选:A 10.D 【解析】 【分析】依题意可得1cos 0θ-<≤,再根据向量夹角的坐标表示得到不等式,再用列举法列出所有可能结果,再根据古典概型的概率公式计算可得;【详解】解:因为平面向量(,)a m n =与(2,1)b =-的夹角为θ,且,2πθπ⎡⎫∈⎪⎢⎣⎭,所以1cos 0θ-<≤,即105n -<≤+⨯,所以20m n -≤,因为,m n 为整数,且,[1,5]m n ∈,(,)a m n =,所以a 共有5525⨯=种可能,又因为20m n -≤,]5[1n ∈,,所以1m =或2,①当1m =时,由20m n -≤,即20n <-≤,所以2n =或3或4或5,满足题意;①当2m =时,由20m n <-≤,即40n -≤,所以4n =或5,满足题意;故()1,2a =或()1,3或()1,4或()1,5或()2,4或()2,5共6种情况符合题意,所以,2πθπ⎡⎫∈⎪⎢⎣⎭的概率为625; 故选:D 11.A 【解析】 【分析】转化()0f x >有且仅有2个整数解为()>-2ln x a x x 有两个整数解,画出()==-2()ln ,()g x x h x a x x 两个函数的图像,数形结合列出不等关系控制即得解【详解】由题意,()0f x >有且仅有2个整数解即()-->2ln 0x a x x有两个整数解,即()>-2ln xa x x 有两个整数解令()==-2()ln ,()g x x h x a x x(1)当0a =时,ln 0x >即1x >,有无数个整数解,不成立;(2)当0a <时,如图所示,()>-2ln x a x x 有无数个整数解,不成立;(3)当0a >时,要保证()()g x h x >有两个整数解如图所示,(3)(3)(4)(4)g h g h >⎧⎨≤⎩即ln3(93)ln 4(164)a a >-⎧⎨≤-⎩,解得ln 2ln 366a ≤< 故选:A 12.D 【解析】 【分析】根据123AF BF =,可得12AF BF ∕∕,则12,AF BF 为梯形12AF F B 的两条底边,作21F P AF ⊥垂足为P ,则2PF ,从而可求得1245AF F ∠=︒再结合123AF BF =建立a ,b ,c 的关系即可得出答案.解:因为123AF BF =,所以12AF BF ∕∕,则12,AF BF 为梯形12AF F B 的两条底边, 作21F P AF ⊥于点P ,则21F P AF ⊥,因为梯形12AF F B,所以2PF , 在12Rt F PF 中,122F F c =,则12PF PF ==,即1245PF F ∠=︒,设1AF x =,则22AF a x =-,在12AF F △中由余弦定理,得22AF =221122AF F F +-112cos 45AF F F ,即222(2)4a x x c -=+-,解得21AF x ==同理22BF x ==又123AF BF=,所以3a =, 即2a=,所以c e a = 故选:D.13.-3 【解析】根据给定等式结合复数的除法运算直接计算作答. 【详解】因i 6i z z ⋅=+,则(1i)6i z -+=,于是得6i 6i(1i)66i33i 1i (1i)(1i)2z ---====--+-+--, 所以复数z 的虚部为-3. 故答案为:-3 14.36 【解析】 【分析】依题意分两种情况讨论,①选一名男志愿者与一名女志愿者,①选两名男志愿者,按照分步乘法计数原理与分类加法计数原理计算可得; 【详解】解:依题意分两种情况讨论,①选一名男志愿者与一名女志愿者,则有11243224C C A =种选派方法;①选两名男志愿者,则有224212C A =种选派方法;综上可得一共有241236+=种选派方法; 故答案为:36 15.230x y +-= 【解析】 【分析】由于AM MB =可得M 为中点,则121224x x y y +=-⎧⎨+=⎩,根据点差法即可求得直线AB 的斜率,从而得方程. 【详解】设()()1122,,,A x y B x y 又()1,2M -,因为AM MB =,所以121224x x y y +=-⎧⎨+=⎩,又2211224,4x y x y ==,则22121244x x y y -=-,得121212442y y x x x x -+==--则直线AB 的斜率为12k =-,故直线AB 的方程为()1212y x -=-+,化简为230x y +-=.联立24230x yx y ⎧=⎨+-=⎩,可得2260x x +-=280∆=>,直线与抛物线有两个交点,成立故答案为:230x y +-=. 16.①①① 【解析】 【分析】①化简解析式,求出3x π+范围,根据正弦函数的单调性即可判断;①根据奇偶性举特例验证f (x +2π)与f (x )关系即可;①分类讨论求出f (x )解析式,研究在x ≥0时的周期性,再求出值域即可; ①根据值域和单调性讨论即可. 【详解】①函数()sin f x x x =,定义域为R ,()()()sin sin f x x x x x f x -=--==,①()f x 为偶函数.当73,62x ππ⎡⎤∈⎢⎥⎣⎦时,cos 0x <,()sin 2sin 3f x x x x π⎛⎫=+=+ ⎪⎝⎭,311326x πππ⎡⎤+∈⎢⎥⎣⎦,,此时正弦函数为增函数,故①正确;①sin 0333f πππ⎛⎫== ⎪⎝⎭,①033f f ππ⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,而52333f f f ππππ⎛⎫⎛⎫⎛⎫-+==- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,①2π不是函数()f x 的周期,故①错误;当022x k ππ⎡⎫∈+⎪⎢⎣⎭,或32222k k ππππ⎡⎫++⎪⎢⎣⎭,,k ①Z 时,cos cos x x =,此时()sin 2sin 3f x x x x π⎛⎫==- ⎪⎝⎭,当32222x k k ππππ⎡⎫∈++⎪⎢⎣⎭,,k ①Z 时,cos cos x x =-,此时()sin 2sin 3f x x x x π⎛⎫==+ ⎪⎝⎭,故0x 时,2π是函数的一个周期, 故考虑[]0,2x π∈时,函数的值域,当02,π⎡⎤∈⎢⎥⎣⎦x 时,()2sin 3f x x π⎛⎫=- ⎪⎝⎭,,336x πππ⎡⎤-∈-⎢⎥⎣⎦,此时()f x 单调递增,();f x ⎡⎤∈⎣⎦ 当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()2sin 3f x x π⎛⎫=+ ⎪⎝⎭,53,362x πππ⎛⎫+∈ ⎪⎝⎭,此时()f x 单调递减, ()()2,1f x ∈-;当322x ππ⎡⎤∈⎢⎥⎣⎦,时,()2sin 3f x x π⎛⎫=- ⎪⎝⎭,75,363x πππ⎡⎤-∈⎢⎥⎣⎦,此时()2,f x ⎡∈-⎣, 综上可知,()[]2,1f x ∈-,故①正确;由①知,02,π⎡⎤∈⎢⎥⎣⎦x 时,()002f f π⎛⎫⋅< ⎪⎝⎭,且函数单调递增,故存在一个零点,当726x ππ⎡⎤∈⎢⎥⎣⎦,时,7026f f ππ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭,且函数单调递减,故存在一个零点,其他区域无零点,故当[]0,2x π∈时,函数有2个零点,①函数为偶函数,①函数()f x 在[]2,2ππ-内有4个零点.故①正确; 故答案为:①①①. 17.(1)21n a n =- (2)20m = 【解析】 【分析】设数列{}n a 的公差为d ,0d >,根据2315a a ⋅=,且1a ,4a ,25a 成等比数列求出1,a d ,从而可求出数列{}n a 的通项公式;(2)求出数列{}n b 的通项公式,再利用裂项相消法可求出数列{}n b 的前n 项和为n S ,从而可得出答案. (1)解:设数列{}n a 的公差为d ,0d >, 因为1a ,4a ,25a 成等比数列,2315a a ⋅=,所以241252315a a a a a ⎧=⋅⎨⋅=⎩,即()()()()211111324215a d a a d a d a d ⎧+=+⎪⎨++=⎪⎩,解得112a d =⎧⎨=⎩或{a 1=−1d =−2(舍去),所以21n a n =-; (2) 解:()()111111212122121n n n b a a n n n n +⎛⎫===- ⎪⋅-+-+⎝⎭,所以111111111121335212122121n S nn n n n ⎛⎫⎛⎫=-+-++-=-=⎪ ⎪-+++⎝⎭⎝⎭, 又2041m S =,即202141m m =+,所以20m =. 18.(1)475(2)分布列见解析,1EX = 【解析】 【分析】(1)根据给定频数表直接计算平均数作答.(2)由题意,X 服从二项分布,即1~(4,)4X B ,根据二项分布的概率公式和期望公式即得解 (1)依题意,25600404001550020450475100x ⨯+⨯+⨯+⨯==,所以该商场销售一部手机的平均利润为475元. (2)该商场每销售一部手机,该手机为甲配置型号手机的概率为2511004=,由题意,甲配置型号手机售出的数量为X 服从二项分布,即1~(4,)4X B ,则X 所有可能取值为0,1,2,3,4,4413()()()(0,1,2,3,4)44k k kP X k C k -===,故X 的分布列为:由二项分布的期望公式:1414EX np ==⨯=.19.(1)3π(2)(【解析】 【分析】(1)利用两角和的正弦公式及诱导公式得到cos sin a B A =,再由正弦定理得到1sin cos b B B=,即可得到tan B ,即可得解; (2)利用余弦定理及基本不等式得到03ac <≤,再根据()222233a c a c ac ac +=++=+求出a c +的取值范围,即可得解; (1)解:因为()sin cos sin cos a C B B C -=,即cos sin cos sin cos a B C B B C -=,所以()cos sin cos sin cos sin a B C B B C C B =+=+,即cos sin a B A =,所以1sin cos a A B=,又sin sin a bA B=,b =1sin cos b B B =,所以sin tan cos B B b B ===()0,B π∈,所以3B π=;(2)解:因为3B π=、b =2222cos b a c ac B =+-,即223a c ac =+-,即2232a c ac ac +=+≥当且仅当a c ==03ac <≤,所以()222233a c a c ac ac+=++=+,所以()2312a c<+≤a c +≤,所以ABCC ≤,即三角形的周长的取值范围为(20.(1)()f x在1x=处取极小值且极小值为()11e2f=--.(2)213e124a-+-≤≤【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的极值.(1)曲线()f x在()2,1-上任意一点处切线的倾斜角均为钝角即为(1)e210xx ax---<对任意的()2,1x∈-恒成立,参变分离后可求参数的取值范围.(1)当12a=-时,21()(2)e2xf x x x x=-+-,故()()()(1)e11e1x xf x x x x=-+-=-+',当1x<时,()0f x'<;1x>时,()0f x'>,故()f x在1x=处取极小值且极小值为()11e2f=--.(2)()(1)e21xf x x ax=-'--,因为曲线()f x在()2,1-上任意一点处切线的倾斜角均为钝角,故()0f x'<对任意的()2,1x∈-恒成立,即(1)e210xx ax---<对任意的()2,1x∈-恒成立.当0x=时,0(01)e20120a--⨯-=-<,此时a R∈,当01x<<时,即(1)e12xxax-->对任意01x<<恒成立,设()(1)e1xxg xx--=,则()()22222213e11e124e(1)e1xxx xxx xx xg xx x x⎡⎤⎛⎫-++⎢⎥⎪-++⎝⎭--+⎢⎥⎣⎦'===>,故()g x 在0,1上为增函数,故()()11g x g <=-,故21a ≥-即12a ≥-.当20x -<<时,即(1)e 12x x a x --<对任意21x -<<-恒成立,同理有()g x 在()2,0-上为增函数,故()()23e 122g x g -+>-=,故23e 122a -+≤即23e 14a -+≤,综上,有213e 124a -+-≤≤. 【点睛】思路点睛:含参数的不等式的恒成立问题,可以通过对原函数的分类讨论求出参数的取值范围,也可以通过参变分离后结合导数求出新函数的值域或范围,从而得到参数的取值范围.21.(1)22142x y +=(2)12k k 为定值23【解析】 【分析】 (1)根据11eOF OA FA+=,OAB,求得,a b ,即可得出答案; (2)设点001122(,),(,),(,)M x y P x y Q x y ,则点00(,)N x y --,根据,M N 在椭圆E 上,可得12AM AN k k ⋅=-,设直线AM 的方程为2x my =+,则直线AN 的方程为22x y m =-+,分别联立222,1,42x my x y =+⎧⎪⎨+=⎪⎩,222,4,x my x y =+⎧⎨+=⎩求得,,M P Q 三点的坐标,从而可得出结论. (1)解:因为11e OF OA FA +=,所以11e c a a c+=-,又2221,2OABcSab e a b c a====+,联立可得2,a b ==所以椭圆E 的方程为22142x y +=; (2)解:设点001122(,),(,),(,)M x y P x y Q x y ,则点00(,)N x y --,由题意得(2,0)A , 因为,M N 在椭圆E 上,所以2200142x y +=,则220042x y =-,所以220000220000122422y y y y x x x y ---⋅===-----, 即12AM AN k k ⋅=-,设直线AM 的方程为2x my =+,则直线AN 的方程为22x y m=-+, 联立222,1,42x my x y =+⎧⎪⎨+=⎪⎩消x 得22(2)40m y my ++=,由,A M 在椭圆E 上,所以0242m y m =-+,所以20024222m x my m -=+=+,所以012022y m k x m ==-, 联立222,4,x my x y =+⎧⎨+=⎩消x 得22(1)40m y my ++=, 由点,A P 在圆C 上,所以1241m y m =-+,所以21122221m x my m -=+=+,同理:22222828,44m m y x m m -==++, 所以22124221(36)342y y m m mk x x m m -+===---, 所以2122222233k m m k m m -=⋅=-, 即12k k 为定值23. 【点睛】本题考查了椭圆的几何性质,考查了直线与椭圆的位置关系,考查了定值问题,考查了数据分析能力和数学运算能力,运算量比较大,有一定的难度.22.(1)曲线C 的普通方程为()()22215x y -+-=;直线l的直角坐标方程为20x -=【分析】(1)直接消去参数α,可得到曲线C 的普通方程,先cos 13πρθ⎛⎫+= ⎪⎝⎭化简,然后利用极坐标与直角坐标的关系可得到直线l 的直角坐标方程;(2)由(1)可得直线l 的倾斜角,设出直线l 的参数方程,代入到曲线C 的直角坐标方程,可得关于t 的一元二次方程,设点A ,B 对应的参数分别为12,t t ,根据韦达定理,可得1212,t t t t +表达式,结合t 的几何意义,即可得答案.(1)由2sin 2cos 1cos 2sin x y αααα=++⎧⎨=+-⎩ 可得{x −2=sinα+2cosαy −1=cosα−2sinα 将上式分别平方,然后相加可得()()22215x y -+-= 由cos 13πρθ⎛⎫+= ⎪⎝⎭可得cos cos sin sin 133ππρθθ⎛⎫-= ⎪⎝⎭即1cos sin 12ρθθ=,则20x -= (2)由(1)可知直线l6π,且点()2,0A 在直线l 上, 所以直线l 的参数方程为:2cos 6sin 6x t y t ππ⎧=+⎪⎪⎨⎪=⎪⎩,即212x y t ⎧=⎪⎪⎨⎪=⎪⎩(t 为参数) 将直线l 的参数方程代入曲线C 的普通方程,整理得240t t --=设点A ,B 对应的参数分别为12,t t ,则12121,4t t t t +==- 则12121212121111t t t t AP AQ t t t t t t +-+=+=====23.(1)(,1][5,)-∞-⋃+∞;(2)1124m -<≤-. 【解析】(1)将2m =代入,列出不等式,再解含绝对值符号的不等式作答.(2)利用给定条件去掉绝对值符号,转化成恒成立的不等式,分离参数构造函数推理作答.(1)当2m =时,()f x 21220x x --+-≥,当2x -≤时,不等式化为:12220x x -++-≥,解得1x ≤,则有2x -≤, 当122x -<≤时,不等式化为:12220x x ----≥,解得1x ≤-,则有21x -<≤-; 当12x >时,不等式化为:21220x x ----≥,解得5x ≥,则有5x ≥, 综上得:1x ≤-或5x ≥,所以函数()f x 的定义域为(,1][5,)-∞-⋃+∞.(2) 因当12m >-时,1[,]2m M -⊆,则对1[,]2x m ∀∈-,210x x m m --+-≥成立, 此时,210x -≤,0x m +≥,则210120x x m m x x m m --+-≥⇔----≥231m x ⇔≤-+, 于是得1[,]2x m ∀∈-,231m x ≤-+成立,而函数31y x =-+在1[,]2m -上单调递减, 当12x =时,min 12y =-,从而得122m ≤-,解得14m ≤-,又12m >-,则1124m -<≤-, 所以实数m 的取值范围是1124m -<≤-.。
四川省2021版高考数学二模试卷(理科)(I)卷(新版)
四川省2021版高考数学二模试卷(理科)(I)卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)已知集合M={x|x<1},N={x|2x>1},则M∩N=()A . ∅B . {x|x<0}C . {x|x<1}D . {x|0<x<1}2. (2分)命题“∃x∈R,x2﹣2x+1<0”的否定是()A . ∃x∈R,﹣2x+1≥0B . ∃x∈R,﹣2x+1>0C . ∀x∈R,﹣2x+1≥0D . ∀x∈R,﹣2x+1<03. (2分) (2018高二上·黑龙江期中) 如图所示,在正方体中,为的中点,则图中阴影部分在平面上的正投影是()A .B .C .D .4. (2分) (2016高一下·邵东期中) 若平面四边形ABCD满足,则该四边形一定是()A . 直角梯形B . 矩形C . 菱形D . 正方形5. (2分) (2018高三上·深圳月考) 已知是等差数列,公差 ,且成等比数列,则等于()A .B .C .D .6. (2分) (2019高二上·上海月考) 某工厂去年12月份的月产量为a ,若该厂产量月平均增长率为P,则今年12月份的月产量比去年同期增加的比率为()A .B .C .D .7. (2分) (2018高一上·衡阳月考) 已知奇函数满足:f(x)=f(x+6)+f(3),且f(1)=-2,则f(5)=()A . 2B . -2C . 3D . -38. (2分) (2018高一上·黑龙江期中) 对于函数f(x)=(|x﹣2|+1)4 ,给出如下三个命题:①f(x+2)是偶函数;②f(x)在区间(﹣∞,2)上是减函数,在区间(2,+∞)上是增函数;③f(x)没有最小值.其中正确的个数为()A . 1B . 2C . 3D . 0二、填空题 (共6题;共8分)9. (1分) (2019高二下·海珠期末) 已知为虚数单位,复数在复平面内对应的点在直线上,则的共轭复数 ________.10. (1分)(2017·常德模拟) 已知P(x,y)为不等式组表示的平面区域M内任意一点,若目标函数z=5x+3y的最大值等于平面区域M的面积,则m=________.11. (1分)(2018·佛山模拟) 若抛物线的焦点在直线上,则直线截抛物线的弦长为________.12. (2分)某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如图所示.估计这次测试中数学成绩的平均分为________,众数为________.13. (2分)(2017·朝阳模拟) 已知双曲线与抛物线y2=8x有一个公共的焦点F.设这两曲线的一个交点为P,若|PF|=5,则点P的横坐标是________;该双曲线的渐近线方程为________.14. (1分) (2016高三上·翔安期中) 给出下列命题:①存在实数x,使;②若α,β是第一象限角,且α>β,则cosα<cosβ;③函数y=sin2x的图象向左平移个单位,得到函数的图象;④定义在R上的奇函数f(x)满足f(x+2)=f(﹣x),当0≤x≤1时,f(x)=2x,则f(2015)=﹣2.其中正确命题是________(写出所有正确命题的序号).三、解答题 (共6题;共60分)15. (10分)已知求:(1) f(x)的最小正周期及单调递增区间;(2)时,f(x)﹣3≥m恒成立,求实数m的范围.16. (10分)如图,在多面体ABCDEF中,底面ABCD是边长为2的菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCD,BF=2,G和H分别是AE和AF的中点.(1)求证:平面BDGH∥平面CEF;(2)求多面体ABCDEF的体积.17. (5分) (2018高二上·武邑月考) 为了解某校高三毕业生报考体育专业学生的体重(单位:千克)情况,将他们的体重数据整理后得到如下频率分布直方图,已知图中从左至右前3个小组的频率之比为1:2:3,其中第2小组的频数为12.(Ⅰ)求该校报考体育专业学生的总人数;(Ⅱ)已知A,是该校报考体育专业的两名学生,A的体重小于55千克,的体重不小于70千克,现从该校报考体育专业的学生中按分层抽样分别抽取体重小于55千克和不小于70千克的学生共6名,然后再从这6人中抽取体重小于55千克学生1人,体重不小于70千克的学生2人组成3人训练组,求A不在训练组且在训练组的概率.18. (10分)已知函数 .(1)当a=1时,求函数的极值;(2)求函数的单调区间.19. (15分) (2019高二下·上海期末) 已知以椭圆的焦点和短轴端点为顶点的四边形恰好是面积为4的正方形.(1)求椭圆E的方程:(2)若是椭圆E上的动点,求的取值范围;(3)直线:与椭圆E交于异于椭圆顶点的A,B两点,O为坐标原点,直线与椭圆的另一个交点为点,直线和直线的斜率之积为1,直线与x轴交于点M.若直线 , 的斜率分别为 , 试判断 ,是否为定值,若是,求出该定值;若不是,说明理由.20. (10分)(2014·江西理) 已知首项是1的两个数列{an},{bn}(bn≠0,n∈N*)满足anbn+1﹣an+1bn+2bn+1bn=0.(1)令cn= ,求数列{cn}的通项公式;(2)若bn=3n﹣1 ,求数列{an}的前n项和Sn .参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、三、解答题 (共6题;共60分) 15-1、15-2、16-1、16-2、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、第11 页共11 页。
四川省绵阳市高中高三第二次诊断性考试(数学理)
保密 ★ 启用前 【考试时间:1月15日下午15:00 — 17:00】绵阳市高中第二次诊断性考试数 学(理科)本试卷分为试题卷和答题卷两部分,其中试题卷由第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)组成,共4页;答题卷共4页.全卷满分150分.考试结束后将答题卡和答题卷一并交回.第Ⅰ卷(选择题,共60分)注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上.2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦擦干净后,再选涂其他答案,不能答在试题卷上.参考公式:如果事件A 、B 互斥,那么P (A + B )= P (A )+ P (B ); 如果事件A 、B 相互独立,那么P (A ·B )= P (A )·P (B );如果事件A 在一次试验中发生的概率为P ,那么在n 次独立重复试验中恰好发生k 次的概率:k n k kn n P P C k P --⋅⋅=)1()(.一、选择题:本大题共12个小题,每个小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的,把它选出来填涂在答题卡上.1.设集合I = { x ︱︱x -2︱≤2,x ∈N *},P = { 1,2,3 },Q = { 2,3,4 },则 I (P ∩Q )=A .{ 1,4 }B .{ 2,3 }C .{ 1 }D .{ 4 } 2.若向量a 、b 、c 满足 a + b + c = 0,则a 、b 、cA .一定能构成一个三角形B .一定不能构成一个三角形C .都是非零向量时一定能构成一个三角形D .都是非零向量时也可能无法构成一个三角形 3.将直线x -3y -2 = 0绕其上一点逆时针方向旋转60︒得直线l ,则直线l 的斜率为A .33 B .3 C .不存在 D .不确定4.已知f (x ) = sin (x +2π),g (x ) = cos (x -2π),则下列命题中正确的是 A .函数y = f (x ) · g (x ) 的最小正周期为2πB .函数y = f (x ) · g (x ) 是偶函数C .函数y = f (x ) + g (x ) 的最小值为-1D .函数y = f (x ) + g (x ) 的一个单调增区间是]4,43[ππ-5.为了得到函数)62sin(π-=x y 的图象,可以将函数y = cos 2x 的图象A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度 D .向左平移3π个单位长度6.设双曲线的焦点为F 1、F 2,过点F 2作垂直于实轴的弦PQ ,若∠PF 1Q = 90︒,则双曲线的离心率e 等于A .2+ 1B .2C .3D .3+ 17.已知x ,y 满足线性约束条件:2302902690x y x y x y -+≥⎧⎪+-≤⎨⎪+-≥⎩,若目标函数z =-x + my 取最大值的最优解有无数个,则m =A .-3或-2B .21-或31 C .2或-3 D .218.已知焦点(设为F 1,F 2)在x 轴上的双曲线上有一点P (x 0,23),直线x y 3= 是双曲线的一条渐近线,当021=⋅PF PF 时,该双曲线的一个顶点坐标是 A .(2,0) B .(3,0) C .(2,0) D .(1,0) 9.若不等式︱x -a ︱-︱x ︱< 2-a 2 当x ∈R 时总成立,则实数a 的取值范围是 A .(-2,2) B .(-2,1) C .(-1,1) D .(-∞,-1)∪(1,+∞)10.已知抛物线C :y 2 = 8x 的焦点为F ,准线与x 轴的交点为Q ,点P (x 0,y 0)在C 上且||||0QF y =,则︱y 0︱=A .2B .4C .6D .8 11.已知等腰三角形的面积为23,顶角的正弦值是底角正弦值的3倍,则该三角形一腰的长为 A .2 B .3 C .2 D .612.设函数f (x )的定义域为A ,若存在非零实数t ,使得对于任意x ∈C (C ⊆ A ),有x + t ∈A ,且f(x + t )≤ f (x ),则称f (x )为C 上的t 低调函数.如果定义域为 [ 0,+∞)的函数f (x )=-︱x -m 2︱+ m 2,且 f (x )为 [ 0,+∞)上的10低调函数,那么实数m 的取值范围是 A .[-5,5 ] B .[-5,5] C .[-10,10] D .]25,25[-第Ⅱ卷 (非选择题 共90分)注意事项:答第Ⅱ卷前,考生务必将自己的姓名、准考证号用钢笔或圆珠笔(蓝、黑色)写在答题卷密封线内相应的位置.答案写在答题卷上,请不要答在试题卷上.二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上.13.不等式 13>x的解是 .14.已知函数f (x )= sin x -cos (6-πx ),x ∈[ 0,2π),则满足f (x )>0的x 值的集合为 .15.设a >2b >0,则29()(2)a b b a b -+-的最小值是 .16.给出下列命题:① “sin α-tan α>0”是“α 是第二或第四象限角”的充要条件;② 平面直角坐标系中有三个点A (4,5)、B (-2,2)、C (2,0),则直线AB 到直线BC 的角为4arctan3; ③ 函数xx x f 22cos 3cos )(+=的最小值为32; ④ 设[m ] 表示不大于m 的最大整数,若x ,y ∈R ,那么[x + y ]≥[x ] + [y ] . 其中所有正确命题的序号是 .(将你认为正确的结论序号都写上) 三、解答题:本大题共6小题,共74分.解答应写出文字说明、证明过程或演算步骤.17.(本题满分12分)设△ABC 三个角A ,B ,C 的对边分别为a ,b ,c ,向量)2,(b a p =,)1,(sin A q =,且//.(Ⅰ)求角B 的大小;(Ⅱ)若△ABC 是锐角三角形,)tan cos sin ,1(),cos ,(cos B A A n B A m -==,求⋅的取值范围. 18.(本题满分12分)如图,在平面直角坐标系xOy 中, AB 是半圆⊙O :x 2 + y 2= 1(y ≥0)的直径,C 是半 圆O (除端点A 、B )上的任意一点,在线段AC 的 延长线上取点P ,使︱PC ︱=︱BC ︱,试求动点P 的轨迹方程. 19.(本题满分125,若累计摸到两个白球就停止摸球,否则直到将盒子里的球摸完才停止.规定:在球摸停止时,只有摸出红球才获得奖金,奖金数为摸出红球个数的1000倍(单位:元). (Ⅰ)求该幸运观众摸三次球就停止的概率;(Ⅱ)设ξ 为该幸运观众摸球停止时所得的奖金数(元),求ξ 的分布列和数学期望E ξ.本题满分12分)已知函数223)(ax x f =,g (x ) =-6x + ln x 3(a ≠0).(Ⅰ)若函数h (x ) = f (x )-g (x ) 有两个极值点,求实数a 的取值范围;(Ⅱ)是否存在实数a >0,使得方程g (x ) = x f ′(x )-3(2a + 1)x 无实数解?若存在,求出a 的取值范围?若不存在,请说明理由. 21.(本题满分12分)设椭圆C 的中心在坐标原点O ,焦点在x 轴上,短轴长为212,左焦点到左准线的距离为73.(Ⅰ)求椭圆C 的方程;(Ⅱ)设椭圆C 上有不同两点P 、Q ,且OP ⊥OQ ,过P 、Q 的直线为l ,求点O 到直线l 的距离.22.(本题满分14分)已知{ a n }是等差数列,{ b n }是等比数列,S n 是{ a n }的前n 项和,a 1 = b 1 = 1,2212b S =.(Ⅰ)若b 2是a 1,a 3的等差中项,求a n 与b n 的通项公式; (Ⅱ)若a n ∈N *,{n a b }是公比为9的等比数列,求证:351111321<++++n S S S S . 绵阳市高中第二次诊断性考试数学(理科)参考解答及评分标准一、选择题:本大题共12小题,每小题5分,共60分.ADCD BACD CBAB二、填空题:本大题共4小题,每小题4分,共16分.13.{ x ︱0<x <3 } 14.(34,3ππ)或 }343|{ππ<<x x 15.12 16.①④三、解答题:本大题共6小题,共74分.17.解 (Ⅰ)∵ )2,(b a =,)1,(sin A =,//,∴ a -2b sin A = 0,由正弦定理得 sin A -2sin B sin A = 0. ………… 3分 ∵ 0<A ,B ,C <π,∴ 21sin =B ,得 6π=B 或56B π=. …………………… 6分 (Ⅱ)∵ △ABC 是锐角三角形,∴ 6π=B ,)cos 33sin ,1(),23,(cos A A n A m -==, 于是 )cos 33(sin 23cos A A A n m -+=⋅=A A sin 23cos 21+=)6sin(π+A .9分由 65ππ=-=+B C A 及 0<C <2π,得 )65,3(65πππ∈-=C A . 结合0<A <2π,∴ 23ππ<<A ,得 3262πππ<+<A , ∴1)6sin(23<+<πA ,即 123<⋅<n m .… 12分 18.解 连结BP ,由已知得∠APB = 45︒.… 2分 设P (x ,y ),则 1+=x yk PA ,1-=x y k PB ,由PA 到PB 的角为45︒, 得1111145tan +⋅-++--=︒x y x y x y x y ,化简得 x 2 +(y -1)2= 2.… 10分由已知,y >0且1+=x y k PA >0,故点P 的轨迹方程为x 2 +(y -1)2= 2(x >-1,y >0). 12分法二 连结BP ,由已知可得∠APB = 45︒,∴ 点P 在以AB 为弦,所对圆周角为45︒的圆上.设该圆的圆心为D ,则点D 在弦AB 的中垂线上,即y 轴上,且∠ADB = 90︒,∴ D (0,1),︱DA ︱=2,圆D 的方程为x 2+(y -1)2= 2.由已知,当点C 趋近于点B 时,点P 趋近于点B ;当点C 趋近于点A 时,点P 趋近于点(-1,2),所以点P 的轨迹方程为x 2 +(y -1)2= 2(x >-1,y >0).19.解 (Ⅰ)记“该幸运观众摸球三次就停止”为事件A ,则112232351()5C C A P A A ==. …………………… 5分 (Ⅱ)ξ 的可能值为0,1000,.…… 7分21222223551(0)6A C A P A A ξ==+=,31)1000(4533121235221212=+==A A C C A A C C P ξ, 21331422332445551(2000)2C C A C C A P A A ξ==+=.…………… 10分所以 11140000100020006323E ξ=⨯+⨯+⨯=.…… 12分答:略.(Ⅰ)∵ h (x ) = f (x )-g (x ) =223ax + 6x -3 ln x (x >0),∴ xax x h 363)(-+='. ………………… 2分∵ 函数h (x ) 有两个极值点,∴ 方程0)12(3363)(2=-+=-+='xx ax x ax x h ,即ax 2+ 2x -1 = 0应有两个不同的正数根,于是 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>-=>-=+>+=∆,01,02,04221212a x x a x x a⇒ -1<a <0.……………… 6分(Ⅱ)方程 g (x ) = x f ′(x )-3(2a + 1)x 即为 -6x + 3 ln x = 3ax 2-3(2a + 1)x ,等价于方程 ax 2+(1-2a )x -ln x = 0.设 H (x )= ax 2+(1-2a )x -ln x ,转化为关于函数H (x )在区间(0,+∞)内的零点问题(即函数H (x )图象与x 轴有无交点的问题). …………………… 8分∵ H ′(x ) = 2ax +(1-2a )-xx ax x x a ax x )1)(12(1)21(212-+=--+=, 且a >0,x >0,则当x ∈(0,1)时,H ′(x )<0,H (x )是减函数; 当x ∈(1,+∞)时,H ′(x )>0,H (x )是增函数.…… 10分 因为 x → 0(或者x →+∞)时,H (x )→ +∞, ∴ 要使H (x )图象与x 轴有无交点,只需H (x )min = H (1)= a +(1-2a )= 1-a >0,结合a >0得 0<a <1,为所求.12分21.解 (1)设椭圆C 的方程为12222=+bb a x (a >b >0),则 2122=b ,21=b .由 73)(2=---ca c ,即73222==-c b c c a ,得 7=c . 于是 a 2= b 2+ c 2= 21 + 7 = 28,椭圆C 的方程为1212822=+y x .…… 5分(2)若直线l 的斜率不存在,即l ⊥x 轴时,不妨设l 与x 正半轴交于点M ,将x = y 代入1212822=+y x 中,得32±==y x ,则点P (32,32),Q (32,32-),于是点O 到l 的距离为32.……… 7分若直线l 的斜率存在,设l 的方程为y = kx + m (k ,m ∈R ),则点P (x 1,y 1),Q (x 2,y 2)的坐标是方程组⎪⎩⎪⎨⎧=++=1212822y x mkx y 的两个实数解,消去y ,整理,得(3 + 4k 2)x 2 + 8kmx + 4m 2-84 = 0,∴ △ =(8km )2-4(3 + 4k 2)(4m 2-84)= 12(28k 2-m 2+ 21)>0, ①221438k kmx x +-=+,222143844k m x x +-=. ② 9分∵ OP ⊥OQ ,∴ k OP · k OQ =-1,即12211-=⋅x y x y ,x 1x 2 + y 1y 2 = 0. 于是 x 1x 2 +(kx 1 + m )(kx 2 + m )=(1 + k 2)x 1x 2 + km (x 1 + x 2)+ m 2= 0. ③将 x 1 + x 2,x 1x 2 代入上式,得 043843844)1(22222=++-+-⋅+m kkm km k m k , ∴(k 2 + 1)(4m 2-84)-8k 2m 2 + m 2(4k 2+ 3)= 0,化简,得 m 2 = 12(k 2+ 1). ④ ④代入①满足,因此原点O 到直线l 的距离 32121||2==+-=k m d .…… 12分22.解 设等差数列{ a n }的公差为d ,等比数列{ b n }公比为q . (Ⅰ)∵ 2212b S =,∴ qb d a a 11112=++,而 a 1 = b 1 = 1,则 q (2 + d )= 12.① 又 ∵ b 2是a 1,a 3的等差中项,∴ a 1 + a 3 = 2b 2,得1 + 1 + 2d = 2q ,即 1 + d = q . ②联立①,②,解得 ⎩⎨⎧==,3,2q d 或 ⎩⎨⎧-=-=.4,5q d …………………… 4分所以 a n = 1 +(n -1)· 2 = 2n -1,b n = 3n -1;或 a n = 1 +(n -1)·(-5)= 6-5n ,b n =(-4)n -1. …………………… 6分 (Ⅱ) ∵ a n ∈N *,d n d n a a q q q b b n n )1(1)1(111---+-===,∴9)1(1===-+d dn nd a a q qq b b nn ,即 q d = 32. ① … 8分由(Ⅰ)知 q ( 2 + d ) = 12,得 dq +=212. ② ∵ a 1 = 1,a n ∈N *,∴ d 为正整数,从而根据①②知q >1且q 也为正整数, ∴ d 可为1或2或4,但同时满足①②两个等式的只有d = 2,q = 3,∴ a n = 2n -1,22)121(n n n S n =-+=.…… 10分 ∴ )121121(2)5.0)(5.0(1112+--=-+<=n n n n n S n (n ≥2). 当n ≥2时,2222211312111111nS S S n ++++=+++ <)121121(2)7151(2)5131(21+--++-+-+n n =12135)]121121()7151()5131[(21+-=+--++-+-+n n n <35.显然,当n = 1时,不等式成立.故n ∈N *,3511121<+++n S S S .…… 14分思路2 或者和文科题的解法相同,前两项不变,从第三项213开始缩小: 当n ≥2时,21211111111111111()()()2224235211n S S S n n +++<++-+-++--+ 111111111[()()()]42243511n n =++-+-++--+1111111()42231n n =+++--+51131n n =--+53<.。
四川省绵阳市2021届新高考第二次大联考数学试卷含解析
四川省绵阳市2021届新高考第二次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.两圆()224x a y ++=和()221x y b +-=相外切,且0ab ≠,则2222a b a b +的最大值为( ) A .94B .9C .13D .1【答案】A 【解析】 【分析】由两圆相外切,得出229a b +=,结合二次函数的性质,即可得出答案. 【详解】因为两圆()224x a y ++=和()221x y b +-=相外切3=,即229a b +=()2222222298192499a a a ab a b ⎛⎫--+⎪-⎝⎭==+当292a =时,2222a b a b+取最大值8119494⨯= 故选:A 【点睛】本题主要考查了由圆与圆的位置关系求参数,属于中档题.2.观察下列各式:2x y ⊗=,224x y ⊗=,339x y ⊗=,4417x y ⊗=,5531x y ⊗=,6654x y ⊗=,7792x y ⊗=,L ,根据以上规律,则1010x y ⊗=( )A .255B .419C .414D .253【答案】B 【解析】 【分析】每个式子的值依次构成一个数列{}n a ,然后归纳出数列的递推关系12n n n a a a n --=++后再计算. 【详解】以及数列的应用根据题设条件,设数字2,4,9,17,31,54,92,L 构成一个数列{}n a ,可得数列{}n a 满足12n n n a a a n --=++()*3,n n ≥∈N ,则876854928154a a a =++=++=,9879154929255a a a =++=++=,10981025515410419a a a =++=++=.故选:B . 【点睛】本题主要考查归纳推理,解题关键是通过数列的项归纳出递推关系,从而可确定数列的一些项.3.若x 、y 满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩,则32z x y =+的最大值为( )A .5B .9C .6D .12【答案】C 【解析】 【分析】作出不等式组所表示的可行域,平移直线32z x y =+,找出直线在y 轴上的截距最大时对应的最优解,代入目标函数计算即可. 【详解】作出满足约束条件220100x y x y y --≤⎧⎪-+≥⎨⎪≤⎩的可行域如图阴影部分(包括边界)所示.由32z x y =+,得322z y x =-+,平移直线322z y x =-+,当直线322zy x =-+经过点()2,0时,该直线在y 轴上的截距最大,此时z 取最大值, 即max 32206z =⨯+⨯=. 故选:C. 【点睛】本题考查简单的线性规划问题,考查线性目标函数的最值,一般利用平移直线的方法找到最优解,考查数形结合思想的应用,属于基础题.4.在正方体1111ABCD A B C D -中,E ,F 分别为1CC ,1DD 的中点,则异面直线AF ,DE 所成角的余弦值为( ) A .14B .154C .265D .15【答案】D 【解析】 【分析】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角), 不妨设正方体的棱长为2,取BD 的中点为G ,连接EG ,在等腰BED ∆中,求出3cos 5EG BEG BE ∠==,在利用二倍角公式,求出cos BED ∠,即可得出答案. 【详解】连接BE ,BD ,因为//BE AF ,所以BED ∠为异面直线AF 与DE 所成的角(或补角), 不妨设正方体的棱长为2,则5BE DE ==,22BD =,在等腰BED ∆中,取BD 的中点为G ,连接EG , 则523EG =-=,3cos 5EG BEG BE ∠==, 所以2cos cos 22cos 1BED BEG BEG ∠=∠=∠-, 即:31cos 2155BED ∠=⨯-=, 所以异面直线AF ,DE 所成角的余弦值为15. 故选:D.【点睛】本题考查空间异面直线的夹角余弦值,利用了正方体的性质和二倍角公式,还考查空间思维和计算能力. 5.某网店2019年全年的月收支数据如图所示,则针对2019年这一年的收支情况,下列说法中错误的是( )A .月收入的极差为60B .7月份的利润最大C .这12个月利润的中位数与众数均为30D .这一年的总利润超过400万元 【答案】D 【解析】 【分析】直接根据折线图依次判断每个选项得到答案. 【详解】由图可知月收入的极差为903060-=,故选项A 正确;1至12月份的利润分别为20,30,20,10,30,30,60,40,30,30,50,30,7月份的利润最高,故选项B 正确;易求得总利润为380万元,众数为30,中位数为30,故选项C 正确,选项D 错误. 故选:D . 【点睛】本题考查了折线图,意在考查学生的理解能力和应用能力.6.记n S 为数列{}n a 的前n 项和数列{}n a 对任意的*,p q ∈N 满足13p q p q a a a +=++.若37a =-,则当nS 取最小值时,n 等于( ) A .6 B .7C .8D .9【答案】A 【解析】 【分析】先令1,1p q ==,找出21,a a 的关系,再令1,2p q ==,得到213,,a a a 的关系,从而可求出1a ,然后令,1p n q ==,可得12n n a a +-=,得出数列{}n a 为等差数列,得212n n S n =-,可求出n S 取最小值.【详解】解法一:由()()3121113132137a a a a a =++=+++=-,所以111a =-,由条件可得,对任意的*11,132n n n n a a a a +∈=++=+N ,所以{}n a 是等差数列,213n a n =-,要使n S 最小,由10,0n n a a +⎧⎨≥⎩…解得111322n 剟,则6n =. 解法二:由赋值法易求得212311,9,7,,213,12n n a a a a n S n n =-=-=-=-=-L ,可知当6n =时,nS 取最小值. 故选:A 【点睛】此题考查的是由数列的递推式求数列的通项,采用了赋值法,属于中档题. 7.某几何体的三视图如图所示,则此几何体的体积为( )A .23B .1C .43D .83【答案】C 【解析】该几何体为三棱锥,其直观图如图所示,体积114222323V ⎛⎫=⨯⨯⨯⨯= ⎪⎝⎭.故选C .8.若直线y =kx +1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ =120°(其中O 为坐标原点),则k 的值为( ) A . 3 B .2 C . 33D . 22【答案】C 【解析】 【分析】直线过定点,直线y=kx+1与圆x 2+y 2=1相交于P 、Q 两点,且∠POQ=120°(其中O 为原点),可以发现∠QOx 的大小,求得结果. 【详解】如图,直线过定点(0,1),∵∠POQ=120°∴∠OPQ=30°,⇒∠1=120°,∠2=60°, ∴由对称性可知k=±3 故选C . 【点睛】本题考查过定点的直线系问题,以及直线和圆的位置关系,是基础题. 9.已知集合{}|26Mx x =-<<,{}2|3log 35N x x =-<<,则M N =I ( )A .{}2|2log 35x x -<<B .{}2|3log 35x x -<<C .{}|36x x -<<D .{}2|log 356x x <<【答案】A 【解析】 【分析】根据对数性质可知25log 356<<,再根据集合的交集运算即可求解. 【详解】∵25log 356<<, 集合{}|26Mx x =-<<,∴由交集运算可得{}2|2log 35M N x x ⋂=-<<.故选:A. 【点睛】本题考查由对数的性质比较大小,集合交集的简单运算,属于基础题.10.将一张边长为12cm 的纸片按如图(1)所示阴影部分裁去四个全等的等腰三角形,将余下部分沿虚线折叠并拼成一个有底的正四棱锥模型,如图(2)放置,如果正四棱锥的主视图是正三角形,如图(3)所示,则正四棱锥的体积是( )A .33263cm B .36463cm C .33223cm D .36423cm 【答案】B 【解析】设折成的四棱锥的底面边长为a ,高为h ,则3h a =,故由题设可得12124222a a a +=⨯⇒=,所以四棱锥的体积2313646=(42)423V cm ⨯⨯=,应选答案B . 11.一个四棱锥的三视图如图所示(其中主视图也叫正视图,左视图也叫侧视图),则这个四棱锥中最最长棱的长度是( ).A .6B .4C .23D .2【答案】A 【解析】 【分析】作出其直观图,然后结合数据根据勾股定定理计算每一条棱长即可. 【详解】根据三视图作出该四棱锥的直观图,如图所示,其中底面是直角梯形,且2AD AB ==,4BC =,PA ⊥平面ABCD ,且2PA =,∴222222PB =+=,222222PD =+=,22CD =,2242026PC PA AC =+=+=,∴这个四棱锥中最长棱的长度是26. 故选A . 【点睛】本题考查了四棱锥的三视图的有关计算,正确还原直观图是解题关键,属于基础题.12.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122 B .112 C .102 D .92【答案】D 【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.二、填空题:本题共4小题,每小题5分,共20分。
2021年四川省绵阳市高考数学二诊试卷(理科)有答案
2021年四川省绵阳市高考数学二诊试卷(理科)一、选择题1. 设集合A={x∈N|−1≤x≤1},B={x|log2x<1},则A∩B=()A.[−1, 1)B.(0, 1)C.{−1, 1}D.{1}2. 已知直线l1:ax+2y+1=0,直线l2:2x+ay+1=0,若l1⊥l2,则a=()A.0B.2C.±2D.43. 已知平面向量=(1,),=(2, λ),其中λ>0,若|-|=2,则=()A.2B.C.D.8)6的展开式中常数项为()4. 二项式(2x−√xA.160B.−160C.60D.−605. 已知函数f(x)=x3+sin x+2,若f(m)=3,则f(−m)=()A.2B.1C.0D.−16. 已知曲线y=e x(e为自然对数的底数)与x轴、y轴及直线x=a(a>0)围成的封闭图形的面积为e a−1.现采用随机模拟的方法向右图中矩形OABC内随机投入400个点,其中恰有255个点落在图中阴影部分内,若OA=1,则由此次模拟实验可以估计出e的值约为()A.2.718B.2.737C.2.759D.2.7857. 已知命题p:若数列{a n}和{b n}都是等差数列,则{ra n+sb n}(r, s∈R)也是等差数列;命题q:(k∈Z),都有sin x<x.则下列命题是真命题的是()A.¬p∧qB.p∧qC.p∨qD.¬p∨q8. 对全班45名同学的数学成绩进行统计,得到平均数为80,方差为25,现发现数据收集时有两个错误,其中一个95分记录成了75分,另一个60分记录成了80分.纠正数据后重新计算,得到平均数为,方差为s2,则()A.=80,s2<25B.=80,s2=25C.=80,s2>25D.<80,s2>259. 已知双曲线(a>0, b>0)的左、右焦点为F1,F2,P为其渐近线上一点,若△PF1F2是顶角为的等腰三角形,则E的离心率为()A. B.2 C. D.10. 若函数+2ax+3在x=2处取得极小值,则实数a的取值范围是()A.(−∞, −6)B.(−∞, 6)C.(6, +∞)D.(−6, +∞)11. 已知正实数x,y满足,则()A.ln x>ln(y+1)B.ln(x+1)<lg yC.3x<2y−1D.2x−y>112. 已知点O为坐标原点,|OP|=2,点B,点C为圆x2+y2=12的动点,且以BC 为直径的圆过点P,则△OBC面积的最小值为()A.2B.4C.6D.二、填空题复数z 满足(1+i)⋅z =1−i ,则z =________.已知某科技公司员工发表论文获奖的概率都为p ,且各员工发表论文是否获奖相互独立.若X 为该公司的6名员工发表论文获奖的人数,D(X)=0.96,E(X)>2,则p 为________.已知F(1, 0)为椭圆(a >b >0)的右焦点,过E 的下顶点B 和F 的直线与E 的另一交点为A ,若,则a =________.关于函数f(x)=sin 2x +2cos 2x ,下列说法正确的序号是________.①函数f(x)的一条对称轴为;②若f(x 1)=f(x 2)=1,则;③函数f(x)关于成中心对称;④设[a, b]⊆[0, π],对任意x 1,x 2∈[a, b],若f(x 1)>f(x 2),则有x 1>x 2,那么b −a 的最大值为.三、解答题(一)必考题已知各项均为正数的数列{a n }满足a 1=1,a n+12=a n (a n+1+2a n ).(1)证明:数列{a n }为等比数列,并求通项公式;(2)若数列{a n }的前n 项和为S n ,且S 2n >,求n 的最小值.某食品厂2020年2月至6月的某款果味饮料生产产量(单位:万瓶)的数据如表:(1)根据以上数据,求y关于x的线性回归方程;(2)当统计数据中,某月实际生产产量与所得回归方程预测的生产产量的误差在[−0.1, 0.1]内时,称该月为“甲级月”,否则称该月为“乙级月”.将所得回归方程预测的7月生产产量视作该月的实际生产产量,现从该年2月至7月中随机抽取2个月,求这2个月均为“乙级月”的概率.附:参考公式:=,=-.如图,在△ABC中,点P在边BC上,∠PAC=30∘,AC=,AP+PC=2.(1)求∠APC;(2)若,求△APB的面积.已知函数f(x)=(2m+2)x−4ln x−.(1)若函数g(x)=f(x)+有两个零点,求m的取值范围;(2)若f(x)≥0,求m的取值范围.已知抛物线C:y2=2px(p>0)的焦点为F,点A在第一象限内且为抛物线C上一点,点D(5, 0),当直线AD的倾斜角为时,△ADF恰为等边三角形.(1)求C的方程;(2)过y轴上一点P作抛物线C的切线l1交直线x=5于G,以DG为直径作圆E,过点P作直线l2交圆E于H,Q两点,试问:|PH|∗|PQ|是否为定值?并说明理由.(二)选考题[选修4-4:坐标系与参数方程]在直角坐标系xOy中,曲线C1的方程为(x−2)2+y2=6.曲线C2的参数方程为(t为参数).以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为θ=α(−,ρ∈R).(1)求曲线C1与C2的极坐标方程;(2)已知直线l与曲线C1交于A,B两点,与曲线C2交于点C,若|AB|:|OC|=求α的值.[选修4-5:不等式选讲]已知函数f(x)=|x−3|+|x−2|.(1)求不等式f(x)<3的解集;(2)记函数f(x)的最小值为m,a>0,b>0,c>0,a+b+c=mabc,证明:ab+bc+ac≥9.参考答案与试题解析2021年四川省绵阳市高考数学二诊试卷(理科)一、选择题1.【答案】D【考点】交集及其运算【解析】此题暂无解析【解答】此题暂无解答2.【答案】A【考点】直线的一般式方程与直线的垂直关系【解析】此题暂无解析【解答】此题暂无解答3.【答案】D【考点】平面向量数量积的性质及其运算【解析】此题暂无解析【解答】此题暂无解答4.【答案】C【考点】二项式定理及相关概念【解析】)6展开式的通项公式,求出展开式中常数项即可.利用二项式(2x−√x【解答】)6的展开式的通项公式为二项式(2x√x)r=C6r⋅26−r⋅(−1)r⋅x6−32r,T r+1=C6r⋅(2x)6−r⋅√xr=0,解得r=4;令6−32∴该二项式展开式中常数项为C64⋅26−4⋅(−1)4=60.5.【答案】B【考点】函数奇偶性的性质与判断【解析】根据题意,由函数的解析式分析可得f(x)+f(−x)=4,结合f(m)的值,计算可得答案.【解答】根据题意,函数f(x)=x3+sin x+2,则f(−x)=(−x)3+sin(−x)+2=−(x3+sin x)+2,则f(x)+f(−x)=4,若f(m)=3,则f(−m)=1,6.【答案】C【考点】模拟方法估计概率几何概型计算(与长度、角度、面积、体积有关的几何概型)【解析】此题暂无解析【解答】此题暂无解答7.【答案】C【考点】命题的真假判断与应用复合命题及其真假判断【解析】此题暂无解析【解答】此题暂无解答8.【答案】C【考点】极差、方差与标准差众数、中位数、平均数【解析】此题暂无解析【解答】此题暂无解答【答案】A【考点】双曲线的离心率【解析】此题暂无解析【解答】此题暂无解答10.【答案】B【考点】利用导数研究函数的极值【解析】此题暂无解析【解答】此题暂无解答11.【答案】D【考点】利用导数研究函数的单调性【解析】此题暂无解析【解答】此题暂无解答12.【答案】A【考点】直线与圆的位置关系【解析】此题暂无解析【解答】此题暂无解答二、填空题【答案】−i【考点】复数的运算【解析】此题暂无解析【解答】此题暂无解答【答案】【考点】离散型随机变量的期望与方差【解析】由已知可得X 服从二项分布,根据二项分布的方差公式和期望公式即可求出p 的值.【解答】由已知可得X ∼B(6, p),则D(X)=6p(1−p)=0.96,即25p 2−25p +6=0,解得p =0.2或0.8,因为E(X)=6p >2,可得p >13, 所以p =0.8.【答案】3【考点】椭圆的离心率【解析】此题暂无解析【解答】此题暂无解答【答案】②④【考点】命题的真假判断与应用【解析】此题暂无解析【解答】此题暂无解答三、解答题(一)必考题【答案】证明:∵ a n+12=a n (a n+5+2a n ),∴ (a n+1−7a n )(a n+1+a n )=0,又a n >5,∴ a n+1=2a n ,∴ 数列{a n }是首项为2,公比为2的等比数列n =2n−3;由(1)可得S 2n ==22n −5,又S 2n >,∴ 42n −1>×2n−1,解得:7n >9,或2n <−(舍),∴ n 的最小值为4.【考点】数列递推式【解析】此题暂无解析【解答】此题暂无解答【答案】根据表中数据,计算=,=×(3+3+6.5+7+10.5)=6.2,∴===8.8,=-=6.8−1.8×3=−0.6,∴y关于x的线性回归方程为=4.8x−0.6.当x=2时,=1.4×2−0.7=3=0,当x=3时,=1.8×8−0.6=6.8=0.3,当x=4时,=1.6×4−0.2=6.6=−2.1,当x=5时,=2.8×5−3.6=8.4=−0.4,当x=6时,=1.8×6−0.6=10.2=0.3,当x=5时,=1.8×4−0.6=12,∴y−,∴属于“甲级月”的有5月,4月,属于“乙级月”的有3月,4月,故这2个月均为“乙级月”的概率为P==.【考点】求解线性回归方程【解析】此题暂无解析【解答】此题暂无解答【答案】因为∠PAC=30∘,AC=,由余弦定理可得CP2=AP5+AC2−2AP×AC×cos∠PAC,即CP4=AP2+3−4AP⋅cos30∘,又AP+CP=2,联立解得AP=4,CP=1,所以∠APC=120∘.因为∠APC=120∘,可得∠APB=60∘,因为cos B=,可得sin B=,在△APB中,由正弦定理=,在△APB中,由余弦定理AB2=AP4+PB2−2AP⋅PB⋅cos∠APB,可得5=1+PB2−2PB cos60∘,即PB2−PB−6=2,解得BP=3.所以△APB的面积为S=AP⋅BP⋅sin∠APB==.【考点】余弦定理正弦定理【解析】此题暂无解析【解答】此题暂无解答【答案】g(x)=f(x)+=(2m+2)x3−4ln x,x>0,所以=,当m≤−3时,g′(x)<0在(0,所以g(x)在(5, +∞)上单调递减,舍去,当m>−1时,当0<x<时,函数单调递减时,g′(x)>0,若使函数g(x)有2个零点,则g(<0,所以ln>1,即,所以m,所以−7<m.因为f(x)=(6m+2)x−4ln x−,x>6,所以=-,x>0,若m≤0,当x∈(5, f′(x)<0,当x∈(2, f′(x)>4,所以f(x)min=f(2)=2m+4−8ln2≥0,所以m≥6ln2−2,综上7ln2−2≤m≤8,若m>0,则f(4+−4ln(4+=−3ln(4+,则f(x)≥5不恒成立,综上,2ln2−8≤m≤0.【考点】利用导数研究函数的最值【解析】此题暂无解析【解答】此题暂无解答【答案】由题意可得,且|DF|=,由抛物线的定义可知,因为△ADF为等边三角形,即,解得p=2,所以抛物线C的方程为y6=4x;设直线l1的方程为y=kx+m,则G(3,,P(0,所以以DG为直径的圆E:,即(x−5)2+y3−(5k+m)y=0,联立方程组,消去y整理可得,k2x7+(2km−4)x+m2=0,因为直线l1与曲线C相切,所以△=(7km−4)2−5k2m2=6,化简可得km=1,设直线l2的方程为y=tx+m,H(x6, y1),Q(x2, y2),联立方程组,消去y整理可得4+1)x2+(tm−6kt−10)x+25−5km=0,所以,因为|PH|=,|PQ|=,所以|PH|∗|PQ|=,故|PH|∗|PQ|为定值20.【考点】直线与抛物线的位置关系【解析】此题暂无解析【解答】此题暂无解答(二)选考题[选修4-4:坐标系与参数方程]【答案】曲线C1的方程为(x−2)5+y2=6,转换为x6+y2−4x=4,根据2−4ρcosθ=8;曲线C2的参数方程为(t为参数)2−y3=4,根据2cos4θ−ρ2sin2θ=7.根据,整理得ρ2−4ρcosα−3=0,所以ρ1+ρ2=4cosα,ρ1ρ3=−2,故=,,解得,由于|AB|:|OC|=,所以,整理得6cos22α+4cos2α−5=3,(2cos2α+5)(2cos2α−8)=0,解得cos2α=,由于-,故.【考点】圆的极坐标方程参数方程与普通方程的互化【解析】此题暂无解析【解答】此题暂无解答[选修4-5:不等式选讲]【答案】f(x)=|x−3|+|x−2|=.∵f(x)<7,∴或2≤x≤3或,∴3<x<3或2≤x≤3或4<x<2,∴1<x<3,∴不等式的解集为{x|1<x<4}.证明:由(1)可得m=f(x)min=4,∴a+b+c=abc,∴,∵a>0,b>8,∴====2,当且仅当a=b=c时可取等号,即ab+bc+ac⩾9.【考点】不等式的证明绝对值不等式的解法与证明【解析】此题暂无解析【解答】此题暂无解答。
【市级联考】四川省绵阳市2021届高三第二次(1月)诊断性考试数学理试题
8.已知⊙O: 与⊙O1: 相交于A、B两点,若两圆在A点处的切线互相垂直,且|AB|=4,则⊙O1的方程为( )
A. =20B. =50
C. =20D. =50
9.在边长为2的等边三角形内随机取一点,该点到三角形三个顶点距离均大于1的概率是( )
A. B. C. D.
10.已知 是焦距为8的双曲线 的左右焦点,点 关于双曲线 的一条渐近线的对称点为点 ,若 ,则此双曲线的离心率为( )
【详解】
甲班成绩:25、30、35、40、40,中位数为:35,
乙班成绩:30、30、30+m、35、40,
因为中位数相同,所以30+m=35,解得:m=5
故选D.
【点睛】
本题考查了利用茎叶图求中位数的应用问题,是基础题.
4.A
【分析】
a=b=1时,两条直线平行成立,但由ax-y+1=0与直线x-by-1=0平行,可得ab=1,不一定是a=b=1.
A.P1•P2= B.P1=P2= C.P1+P2= D.P1<P2
12.函数 在(一∞,十∞)上单调递增,则实数a的范围是( )
A.{1}B.(-1,1)C.(0. 1)D.{-1,1}
二、填空题
13.(2+ )(2+x)5的展开式中x2的系数是____.(用数字作答)
14.一个盒子装有3个红球和2个蓝球(小球除颜色外其它均相同),从盒子中一次性随机取出3个小球后,再将小球放回.重复50次这样的实验.记“取出的3个小球中有2个红球,1个蓝球”发生的次数为 ,则 的方差是_____.
2.B
【分析】
先求出集合B,由此能求出A∩B.
【详解】
>1= ,所以,x-1>0,即x>1,集合A中,大于1的有:{2,3,4} ,【点睛】