八上数学期末压轴题汇编
八年级数学上册期末压轴20题(解析版)
八年级上册数学压轴题专题练习(解析版)一、压轴题1.如图(1),AB=4cm,AC⊥AB,BD⊥AB,AC=BD=3cm.点 P在线段 AB上以1cm/s的速度由点 A向点 B运动,同时,点 Q在线段 BD上由点 B向点 D运动.它们运动的时间为t(s).(1)若点 Q的运动速度与点 P的运动速度相等,当t=1时,△ACP与△BPQ是否全等,请说明理由,并判断此时线段 PC和线段 PQ的位置关系;(2)如图(2),将图(1)中的“AC⊥AB,BD⊥AB”为改“∠CAB=∠DBA=60°”,其他条件不变.设点 Q的运动速度为x cm/s,是否存在实数x,使得△ACP与△BPQ全等?若存在,求出相应的x、t的值;若不存在,请说明理由.2.在Rt ABC中,∠ACB=90︒,∠A=30︒,BD是ABC的角平分线,DE⊥AB于点E.(1)如图1,连接EC,求证:EBC是等边三角形;(2)如图2,点M是线段CD上的一点(不与点C,D重合),以BM为一边,在BM下方作∠BMG=60︒,MG交DE延长线于点G.求证:AD=DG+MD;(3)如图3,点N是线段AD上的点,以BN为一边,在BN的下方作∠BNG=60︒,NG交DE延长线于点G.直接写出ND,DG与AD数量之间的关系.3.在《经典几何图形的研究与变式》一课中,庞老师出示了一个问题:“如图1,等腰直角三角形的三个顶点分别落在三条等距的平行线l1,l2,l3上,∠BAC=90︒,且每两条平行线之间的距离为1,求AB的长度”.在研究这道题的解法和变式的过程中,同学们提出了很多想法:(1)小明说:我只需要过B、C向l1作垂线,就能利用全等三角形的知识求出AB的长.(2)小林说:“我们可以改变ABC的形状.如图2,AB=AC,∠BAC=120︒,且每两条平行线之间的距离为1,求AB的长.”(3)小谢说:“我们除了改变ABC的形状,还能改变平行线之间的距离.如图3,等边三角形ABC三个顶点分别落在三条平行线l1,l2,l3上,且l1与l2之间的距离为1,l2与l3之间的距离为2,求AB的长、”请你根据3位同学的提示,分别求出三种情况下AB的长度.4.在ABC中,AB=AC,D是直线AB上一点,E在直线BC上,且DE=DC.(1)如图1,当D在AB上,E在CB延长线上时,求证:∠EDB=∠ACD;(2)如图2,当ABC为等边三角形时,D是BA的延长线上一点,E在BC上时,作EF//AC,求证:BE=AD;(3)在(2)的条件下,∠ABC的平分线BF交CD于点F,连AF,过A点作AH⊥CD于点H,当∠EDC=30︒,CF=6时,求DH的长度.5.(阅读材科)小明同学发现这样一个规律:两个顶角相等的等腰三角形,如果具有公共的项角的顶点,并把它们的底角顶点连接起来则形成一组全等的三角形,小明把具有这个规律的图形称为“手拉手”图形.如图1,在“手拉手”图形中,小明发现若∠BAC=∠DAE,AB=AC,AD=AE,则△ABD≌△ACE.(材料理解)(1)在图1中证明小明的发现.(深入探究)(2)如图2,△ABC和△AED是等边三角形,连接BD,EC交于点O,连接AO,下列结论:①BD=EC;②∠BOC=60°;③∠AOE=60°;④EO=CO,其中正确的有.(将所有正确的序号填在横线上).(延伸应用)(3)如图3,AB=BC,∠ABC=∠BDC=60°,试探究∠A与∠C的数量关系.6.阅读下面材料,完成(1)-(3)题.数学课上,老师出示了这样一道题:如图1,已知等腰△ABC中,AB=AC,AD为BC边上的中线,以AB为边向AB左侧作等边△ABE,直线CE与直线AD交于点F.请探究线段EF、AF、DF之间的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠DFC的度数可以求出来.”小强:“通过观察和度量,发现线段DF和CF之间存在某种数量关系.”小伟:“通过做辅助线构造全等三角形,就可以将问题解决.”......老师:“若以AB为边向AB右侧作等边△ABE,其它条件均不改变,请在图2中补全图形,探究线段EF、AF、DF三者的数量关系,并证明你的结论.”(1)求∠DFC的度数;(2)在图1中探究线段EF、AF、DF之间的数量关系,并证明;(3)在图2中补全图形,探究线段EF、AF、DF之间的数量关系,并证明.7.(1)填空①把一张长方形的纸片按如图①所示的方式折叠,EM,FM为折痕,折叠后的C点落在B 1M或B1M的延长线上,那么EMF的度数是________;②把一张长方形的纸片按如图②所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线上,那么EMF的度数是_______.(2)解答:①把一张长方形的纸片按如图③所示的方式折叠,EM,FM为折痕,折叠后的C点落在B1M或B1M的延长线上左侧,且EMF80,求C1MB1的度数;②把一张长方形的纸片按如图④所示的方式折叠,B点与M点重合,EM,FM为折痕,折叠后的C点落在A1M或A1M的延长线右侧,且EMF60,求C1MA1的度数.(3)探究:把一张四边形的纸片按如图⑤所示的方式折叠,EB,FB为折痕,设ABC,EBF,A1BC1,求,,之间的数量关系.8.已知ABC和ADE都是等腰三角形,AB AC,AD AE,DAE BAC.(初步感知)(1)特殊情形:如图①,若点D,E分别在边AB,AC上,则DB__________EC.(填>、<或=)(2)发现证明:如图②,将图①中的ADE绕点A旋转,当点D在ABC外部,点E 在ABC内部时,求证:DB EC.(深入研究)(3)如图③,ABC和ADE都是等边三角形,点C,E,D在同一条直线上,则∠CDB的度数为__________;线段CE,BD之间的数量关系为__________.(4)如图④,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,点C、D、E在同一直线上,AM为ADE中DE边上的高,则∠CDB的度数为__________;线段AM,BD,CD之间的数量关系为__________.(拓展提升)(5)如图⑤,ABC和ADE都是等腰直角三角形,∠BAC=∠DAE=90︒,将ADE绕点A逆时针旋转,连结BE、CD.当AB=5,AD=2时,在旋转过程中,△ABE与ADC的面积和的最大值为__________.9.直角三角形ABC中,∠ACB=90︒,直线l过点C.(1)当AC=BC时,如图1,分别过点A和B作AD⊥直线l于点D,BE⊥直线l于点E,ACD与△CBE是否全等,并说明理由;(2)当AC=8cm,BC=6cm时,如图2,点B与点F关于直线l对称,连接BF、CF,点M是AC上一点,点N是CF上一点,分别过点M、N作MD⊥直线l于点D,NE⊥直线l于点E,点M从A点出发,以每秒1cm的速度沿A→C路径运动,终点为C,点N从点F出发,以每秒3cm的速度沿F→C→B→C→F路径运动,终点为F,点M,N同时开始运动,各自达到相应的终点时停止运动,设运动时间为t秒,当△CMN为等腰直角三角形时,求t的值.10.已知:ABC中,过B点作BE⊥AD,∠ACB=90︒,AC=BC.(1)如图1,点D在BC的延长线上,连AD,作BE⊥AD于E,交AC于点F.求证:AD=BF;(2)如图2,点D在线段BC上,连AD,过A作AE⊥AD,且AE=AD,连BE交AC 于F,连DE,问BD与CF有何数量关系,并加以证明;(3)如图3,点D在CB延长线上,AE=AD且AE⊥AD,连接BE、AC的延长线交BE于点M,若AC=3MC,请直接写出DB的值.BC11.(1)在等边三角形ABC中,①如图①,D,E分别是边AC,AB上的点且AE=CD,BD与EC交于点F,则∠BFE的度数是度;②如图②,D,E分别是边AC,BA延长线上的点且AE=CD,BD与EC的延长线交于点F,此时∠BFE的度数是度;(2)如图③,在△ABC中,AC=BC,∠ACB是锐角,点O是AC边的垂直平分线与BC的交点,点D,E分别在AC,OA的延长线上,AE=CD,BD与EC的延长线交于点F,若∠ACB=α,求∠BFE的大小.(用含α的代数式表示).12.已知ABC,P是平面内任意一点(A、B、C、P中任意三点都不在同一直线上).连接 PB、PC,设∠PBA=s°,∠PCA=t°,∠BPC=x°,∠BAC=y°.(1)如图,当点 P在ABC内时,①若 y=70,s=10,t=20,则 x=;②探究 s、t、x、y之间的数量关系,并证明你得到的结论.(2)当点 P在ABC外时,直接写出 s、t、x、y之间所有可能的数量关系,并画出相应的图形.13.Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=60°,则∠1+∠2=;(2)若点P在线段AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由;(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.14.探索发现:11111111 =1-;=-;=-……1⨯222⨯3233⨯434根据你发现的规律,回答下列问题:(1)11=,=;n⨯(n+1)4⨯5111⋅+++1⨯22⨯33⨯4+1n⨯(n+1)(2)利用你发现的规律计算:(3)利用规律解方程:111112x-1 ++++=x(x+1)(x+1)(x+2)(x+2)(x+3)(x+3)(x+4)(x+4)(x+5)x(x+5) 15.数学活动课上,老师出了这样一个题目:“已知:MF⊥NF于F,点A、C分别在NF和MF上,作线段AB和CD(如图1),使∠FAB-∠MCD=90︒.求证:AB//CD”.(1)聪聪同学给出一种证明问题的辅助线:如图2,过A作AG//FM,交CD于G.请你根据聪聪同学提供的辅助线(或自己添加其它辅助线),给出问题的证明.(2)若点E在直线CD下方,且知∠BED=30︒,直接写出∠ABE和∠CDE之间的数量关系.16.现给出一个结论:直角三角形斜边的中线等于斜边的一半;该结论是正确的,用图形语言可以表示为:如图1在∆ABC中,∠C=90︒,若点D为AB的中点,则CD=请结合上述结论解决如下问题:1AB.2已知,点P是射线BA上一动点(不与A,B重合)分别过点A,B向直线CP作垂线,垂足分别为E,F,其中Q为AB的中点(1)如图2,当点P与点Q重合时,AE与BF的位置关系____________;QE与QF的数量关系是__________(2)如图3,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图4,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.17.在△ABC中,AB=AC,D是直线BC上一点,以AD为一条边在AD的右侧作△ADE,使AE=AD,∠DAE=∠BAC,连接CE.(1)如图,当点D在BC延长线上移动时,若∠BAC=40°,则∠ACE=,∠DCE=,BC、DC、CE之间的数量关系为;(2)设∠BAC=α,∠DCE=β.①当点D在BC延长线上移动时,α与β之间有什么数量关系?请说明理由;②当点D在直线BC上(不与B,C两点重合)移动时,α与β之间有什么数量关系?请直接写出你的结论.(3)当CE∥AB时,若△ABD中最小角为15°,试探究∠ACB的度数(直接写出结果,无需写出求解过程).18.阅读材料并完成习题:在数学中,我们会用“截长补短”的方法来构造全等三角形解决问题.请看这个例题:如图1,在四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,若AC=2cm,求四边形ABCD的面积.解:延长线段CB到E,使得BE=CD,连接AE,我们可以证明△BAE≌△DAC,根据全等三角形的性质得AE=AC=2,∠EAB=∠CAD,则∠EAC=∠EAB+∠BAC=∠DAC+∠BAC=∠BAD=90°,得S四边形ABCD =S△ABC+S△ADC=S△ABC+S△ABE=S△AEC,这样,四边形ABCD的面积就转化为等腰直角三角形EAC面积.(1)根据上面的思路,我们可以求得四边形ABCD的面积为 cm2.(2)请你用上面学到的方法完成下面的习题.如图2,已知FG=FN=HM=GH+MN=2cm,∠G=∠N=90°,求五边形FGHMN的面积.19.(1)如图1,ABC和DCE都是等边三角形,且B,C,D三点在一条直线上,连接AD,BE相交于点P,求证:BE=AD.(2)如图2,在BCD中,若∠BCD<120︒,分别以BC,CD和BD为边在BCD外部作等边ABC,等边△CDE,等边BDF,连接AD、BE、CF恰交于点P.①求证:AD=BE=CF;②如图2,在(2)的条件下,试猜想PB,PC,PD与BE存在怎样的数量关系,并说明理由.20.阅读并填空:如图,ABC是等腰三角形,AB=AC,D是边AC延长线上的一点,E在边AB上且联接DE交BC于O,如果OE OD,那么CD=BE,为什么?解:过点E作EF AC交BC于F所以∠ACB=∠EFB(两直线平行,同位角相等)∠D=∠OEF(________)在OCD与△OFE中⎧∠COD=∠FOE(________)⎪⎨OD=OE⎪∠D=∠OEF⎩所以△OCD≌△OFE,(________)所以CD=FE(________)因为AB=AC(已知)所以∠ACB=∠B(________)所以∠EFB=∠B(等量代换)所以BE=FE(________)所以CD=BE【参考答案】***试卷处理标记,请不要删除一、压轴题⎧t=2⎧t=1⎪1.(1)全等,垂直,理由详见解析;(2)存在,⎨或⎨3x=1x=⎩⎪2⎩【解析】【分析】(1)在t =1的条件下,找出条件判定△ACP和△BPQ全等,再根据全等三角形的性质和直角三角形的两个锐角互余的性质,可证∠CPQ= 90°,即可判断线段 PC和线段 PQ的位置关系;(2)本题主要在动点的条件下,分情况讨论,利用三角形全等时对应边相等的性质进行解答即可.【详解】(1)当t=1时,AP= BQ=1, BP= AC=3,又∠A=∠B= 90°,在△ACP和△BPQ中,AP=BQ{∠A=∠BAC=BP∴△ACP≌△BPQ(SAS).∴∠ACP=∠BPQ ,∴∠APC+∠BPQ=∠APC+∠ACP = 90*.∴∠CPQ= 90°,即线段PC与线段PQ垂直;(2)①若△ACP ≌△BPQ ,则AC= BP ,AP= BQ ,⎧3=4-t ⎨t =xt⎩解得⎨⎧t =1;x =1⎩②若△ACP ≌△BQP ,则AC= BQ ,AP= BP ,⎧3=xt ⎨t =4-t⎩⎧t =2⎪解得:⎨3x =⎪⎩2⎧t =2⎧t =1⎪综上所述,存在⎨或⎨3使得△ACP 与△BPQ 全等.x =1x =⎩⎪⎩2【点睛】本题主要考查三角形全等与动点问题,熟练掌握三角形全等的性质与判定定理,是解决本题的关键.2.(1)证明见解析;(2)证明见解析;(3)结论:AD =DG -ND ,证明见解析.【解析】【分析】(1)先根据直角三角形的性质得出∠ABC =60︒,再根据角平分线的性质可得CD =ED ,然后根据三角形的判定定理与性质可得BC =BE ,最后根据等边三角形的判定即可得证;(2)如图(见解析),延长ED 使得DF =MD ,连接MF ,先根据直角三角形的性质、等边三角形的判定得出∆MDF 是等边三角形,再根据等边三角形的性质、角的和差得出∠F =∠MDB ,MF =MD ,∠FMG =∠DMB ,然后根据三角形全等的判定与性质、等量代换即可得证;(3)如图(见解析),参照题(2),先证∆HDN 是等边三角形,再根据等边三角形的性质、角的和差得出∠H =∠NDG ,NH =ND ,∠HNB =∠DNG ,然后根据三角形全等的判定与性质、等量代换即可得证.【详解】(1)∠ACB =90︒,∠A =30︒∴∠ABC =90︒-∠A =60︒BD 是∠ABC 的角平分线,DE ⊥AB∴CD =ED⎧CD=ED在∆BCD和∆BED中,⎨BD=BD⎩∴∆BCD≅∆BED(HL)∴BC=BE∴∆EBC是等边三角形;(2)如图,延长ED使得DF=MD,连接MF∠ACB=90︒,∠A=30︒,BD是∠ABC的角平分线,DE⊥AB∴∠ADE=∠BDE=60︒,AD=BD∴∠MDF=∠ADE=60︒,∠MDB=180︒-∠ADE-∠BDE=60︒∴∆MDF是等边三角形∴MF=DM,∠F=∠DMF=60︒∠BMG=60︒∴∠DMF+∠DMG=∠BMG+∠DMG,即∠FMG=∠DMB⎧∠F=∠MDB=60︒⎪在∆FMG和∆DMB中,⎨MF=MD⎪∠FMG=∠DMB⎩∴∆FMG≅∆DMB(ASA)∴GF=BD,即DF+DG=BD∴AD=DF+DG=MD+DG即AD=DG+MD;(3)结论:AD=DG-ND,证明过程如下:如图,延长BD使得DH=ND,连接NH由(2)可知,∠ADE=60︒,∠HDN=180︒-∠ADE-∠BDE=60︒,AD=BD ∴∆HDN是等边三角形∴NH=ND,∠H=∠HND=60︒∠BNG=60︒∴∠HND+∠BND=∠BNG+∠BND,即∠HNB=∠DNG⎧∠H=∠NDG=60︒⎪在∆HNB和∆DNG中,⎨NH=ND⎪∠HNB=∠DNG⎩∴∆HNB≅∆DNG(ASA)∴HB =DG ,即DH +BD =DG∴ND +AD =DG即AD =DG -ND .【点睛】本题考查了直角三角形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2)和(3),通过作辅助线,构造一个等边三角形是解题关键.3.(1)5;(2)【解析】【分析】(1)分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,证明△ABM ≌△CAN ,得到AM=CN ,AN=BM ,即可得出AB ;(2)分别过点B ,C 向l 1作垂线,交l 1于点P ,Q 两点,在l 1上取M ,N 使∠AMB=∠CNA=120°,证明△AMB ≌△CAN ,得到CN=AM ,再通过△PBM 和△QCN 算出PM 和NQ 的值,得到AP ,最后在△APB 中,利用勾股定理算出AB 的长;(3)在l 3上找M 和N ,使得∠BNC=∠AMC=60°,过B 作l 3的垂线,交l 3于点P ,过A 作l 3的垂线,交l 3于点Q ,证明△BCN ≌△CAM ,得到CN=AM ,在△BPN 和△AQM 中利用勾股定理算出NP 和AM ,从而得到PC ,结合BP 算出BC 的长,即为AB.【详解】解:(1)如图,分别过点B ,C 向l 1作垂线,交l 1于M ,N 两点,由题意可得:∠BAC=90°,∵∠NAC+∠MAB=90°,∠NAC+∠NCA=90°,∴∠MAB=∠NCA ,在△ABM 和△CAN 中,221221;(3)33⎧∠AMB =∠CNA ⎪⎨∠MAB =∠NCA ,⎪AB =AC ⎩∴△ABM ≌△CAN (AAS ),∴AM=CN=2,AN=BM=1,∴AB=22+12=5;(2)分别过点B,C向l1作垂线,交l1于P,Q两点,在l1上取M,N使∠AMB=∠CNA=120°,∵∠BAC=120°,∴∠MAB+∠NAC=60°,∵∠ABM+∠MAB=60°,∴∠ABM=∠NAC,在△AMB和△CNA中,⎧∠AMB=∠CNA⎪⎨∠ABM=∠NAC,⎪AB=AC⎩∴△AMB≌△CNA(AAS),∴CN=AM,∵∠AMB=∠ANC=120°,∴∠PMB=∠QNC=60°,∴PM=11 BM,NQ=NC,22∵PB=1,CQ=2,设PM=a,NQ=b,∴a2+12=4a2,b2+22=4b2,解得:a=323,b=,332⎛23⎫43=∴CN=AM=22+ ,⎪3⎪3⎝⎭∴AB=AP2+BP2=(AM+PM)2+BP2=221;3(3)如图,在l3上找M和N,使得∠BNC=∠AMC=60°,过B作l3的垂线,交于点P,过A作l3的垂线,交于点Q,∵△ABC是等边三角形,∴BC=AC,∠ACB=60°,∴∠BCN+∠ACM=120°,∵∠BCN+∠NBC=120°,∴∠NBC=∠ACM,在△BCN和△CAM中,⎧∠BNC=∠CMA⎪⎨∠NBC=∠MAC,⎪BC=AC⎩∴△BCN≌△CAM(AAS),∴CN=AM,BN=CM,∵∠PBN=90°-60°=30°,BP=2,∴BN=2NP,在△BPN中,BP2+NP2=BN2,即22+NP2=4NP2,解得:NP=23,3∵∠AMC=60°,AQ=3,∴∠MAQ=30°,∴AM=2QM,在△AQM中,AQ2+QM2=AM2,即32+QM2=4QM2,解得:QM=3,∴AM=23=CN,∴PC=CN-NP=AM-NP=在△BPC中,BP2+CP2=BC2,43,3⎛43⎫221即BC=BP2+CP2=22+ ,=⎪3⎪3⎝⎭2∴AB=BC=221.3【点睛】本题考查了全等三角形的判定和性质,平行线之间的距离,等腰三角形的性质,等边三角形的性质以及勾股定理,解题的关键是利用平行线构造全等三角形,再利用全等三角形的性质以及勾股定理求解.4.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E作EF∥AC交AB于F,根据已知条件得到△ABC是等边三角形,推出△BEF是等边三角形,得到BE=EF,∠BFE=60°,根据全等三角形的性质即可得到结论;(3)连接AF,证明△ABF≌△CBF,得AF=CF,再证明DH=AH=【详解】解:(1)∵AB=AC,∴∠ABC=∠ACB,∵DE=DC,∴∠E=∠DCE,∴∠ABC-∠E=∠ACB-∠DCB,即∠EDB=∠ACD;(2)∵△ABC是等边三角形,∴∠B=60°,∴△BEF是等边三角形,∴BE=EF,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD,在△DEF与△CAD中,1CF=3.2⎧∠EDF=∠DCA⎪⎨∠DFE=∠CAD,⎪DE=CD⎩∴△DEF≌△CAD(AAS),∴EF=AD,∴AD=BE;(3)连接AF,如图3所示:∵DE=DC,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF平分∠ABC,∴∠ABF=∠CBF,在△ABF和△CBF中,⎧AB=BC⎪⎨∠ABF=∠CBF,⎪BF=BF⎩△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=11AF=CF=3,22∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.5.(1)证明见解析;(2)①②③;(3)∠A+∠C=180°.【解析】【分析】(1)利用等式的性质得出∠BAD=∠CAE,即可得出结论;(2)同(1)的方法判断出△ABD≌△ACE,得出BD=CE,再利用对顶角和三角形的内角和定理判断出∠BOC=60°,再判断出△BCF≌△ACO,得出∠AOC=120°,进而得出∠AOE=60°,再判断出BF<CF,进而判断出∠OBC>30°,即可得出结论;(3)先判断出△BDP是等边三角形,得出BD=BP,∠DBP=60°,进而判断出△ABD≌△CBP (SAS),即可得出结论.【详解】(1)证明:∵∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE;(2)如图2,∵△ABC和△ADE是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAD=∠CAE,在△ABD和△ACE中,⎧AB=AC⎪⎨∠BAD=∠CAE,⎪AD=AE⎩∴△ABD≌△ACE,∴BD=CE,①正确,∠ADB=∠AEC,记AD与CE的交点为G,∵∠AGE=∠DGO,∴180°-∠ADB-∠DGO=180°-∠AEC-∠AGE,∴∠DOE=∠DAE=60°,∴∠BOC=60°,②正确,在OB上取一点F,使OF=OC,∴△OCF是等边三角形,∴CF=OC,∠OFC=∠OCF=60°=∠ACB,∴∠BCF=∠ACO,∵AB=AC,∴△BCF≌△ACO(SAS),∴∠AOC=∠BFC=180°-∠OFC=120°,∴∠AOE=180°-∠AOC=60°,③正确,连接AF,要使OC=OE,则有OC=∵BD=CE,∴CF=OF=1 CE,21BD,2∴OF=BF+OD,∴BF<CF,∴∠OBC>∠BCF,∵∠OBC+∠BCF=∠OFC=60°,∴∠OBC>30°,而没办法判断∠OBC大于30度,所以,④不一定正确,即:正确的有①②③,故答案为①②③;(3)如图3,延长DC至P,使DP=DB,∵∠BDC=60°,∴△BDP是等边三角形,∴BD=BP,∠DBP=60°,∵∠BAC=60°=∠DBP,∴∠ABD=∠CBP,∵AB=CB,∴△ABD≌△CBP(SAS),∴∠BCP=∠A,∵∠BCD+∠BCP=180°,∴∠A+∠BCD=180°.【点睛】此题考查三角形综合题,等腰三角形的性质,等边三角形的性质,全等三角形的判定和性质,构造等边三角形是解题的关键.6.(1)60°;(2)EF=AF+FC,证明见解析;(3)AF=EF+2DF,证明见解析.【解析】【分析】(1)可设∠BAD=∠CAD=α,∠AEC=∠ACE=β,在△ACE中,根据三角形内角和可得2α+60+2β=180°,从而有α+β=60°,即可得出∠DFC的度数;(2)在EC上截取EG=CF,连接AG,证明△AEG≌△ACF,然后再证明△AFG为等边三角形,从而可得出EF=EG+GF=AF+FC;(3)在AF上截取AG=EF,连接BG,BF,证明方法类似(2),先证明△ABG≌△EBF,再证明△BFG为等边三角形,最后可得出结论.【详解】解:(1)∵AB=AC,AD为BC边上的中线,∴可设∠BAD=∠CAD=α,又△ABE为等边三角形,∴AE=AB=AC,∠EAB=60°,∴可设∠AEC=∠ACE=β,在△ACE中,2α+60°+2β=180°,∴α+β=60°,∴∠DFC=α+β=60°;(2)EF=AF+FC,证明如下:∵AB=AC,AD为BC边上的中线,∴AD⊥BC,∴∠FDC=90°,∵∠CFD=60°,则∠DCF=30°,∴CF=2DF,在EC上截取EG=CF,连接AG,又AE=AC,∴∠AEG=∠ACF,∴△AEG≌△ACF(SAS),∴∠EAG=∠CAF,AG=AF,又∠CAF=∠BAD,∴∠EAG=∠BAD,∴∠GAF=∠BAD+∠BAG=∠EAG+∠BAG=∠60°,∴△AFG为等边三角形,∴EF=EG+GF=AF+FC,即EF=AF+FC;(3)补全图形如图所示,结论:AF=EF+2DF.证明如下:同(1)可设∠BAD=∠CAD=α,∠ACE=∠AEC=β,∴∠CAE=180°-2β,∴∠BAE=2α+180°-2β=60°,∴β-α=60°,∴∠AFC=β-α=60°,又△ABE为等边三角形,∴∠ABE=∠AFC=60°,∴由8字图可得:∠BAD=∠BEF,在AF上截取AG=EF,连接BG,BF,又AB=BE ,∴△ABG ≌△EBF (SAS ),∴BG =BF ,又AF 垂直平分BC ,∴BF=CF ,∴∠BFA=∠AFC=60°,∴△BFG 为等边三角形,∴BG=BF ,又BC ⊥FG ,∴FG=BF=2DF ,∴AF =AG +GF =BF +EF =2DF +EF .【点睛】本题考查了全等三角形的判定和性质、等边三角形的性质、等腰三角形的性质等知识,解决问题的关键是常用辅助线构造全等三角形,属于中考常考题型.7.90︒,45︒;20︒,30︒;a +γ=2β,a -γ=2β.【解析】【分析】(1)①如图①知∠EMC 1=11∠BMC 1,∠C 1MF =∠C 1MC 得22∠EMF =1(∠BMC 1+∠C 1MC )可求出解.2111∠ABC 1,∠C 1BF =∠C 1BC 得∠EBF =(∠ABC 1+∠C 1BC )可222②由图②知∠EBA 1=求出解.(2)①由图③折叠知∠CMF =∠FMC 1,∠BME =∠EMB 1,可推出(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,即可求出解.②由图④中折叠知∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,可推出290︒-60︒+∠A 1MC 1=90︒,即可求出解.(3)如图⑤-1、⑤-2中分别由折叠可知,a -β=β-γ、a -β=β+γ,即可求得()a +γ=2β、a -γ=2β.【详解】解:(1)①如图①中,11∠EMC 1=∠BMC 1,∠C 1MF =∠C 1MC ,22∴∠EMF =∠EMC 1+∠C 1MF =故答案为90︒.②如图②中,11(∠BMC 1+∠C 1MC )=⨯180︒=90︒,2211∠EBA 1=∠ABC 1,∠C 1BF =∠C 1BC ,22∴∠EBF =∠EBC 1+∠C 1BF =故答案为45︒.(2)①如图③中由折叠可知,11(∠ABC 1+∠C 1BC )=⨯90︒=45︒,22∠CMF =∠FMC 1,∠BME =∠EMB 1,∠C 1MF +∠EMB 1-∠EMF =∠C 1MB 1,∴∠CMF +∠BME -∠EMF =∠C 1MB 1,∴(∠BMC -∠EMF )-∠EMF =∠C 1MB 1,∴180︒-80︒=∠C 1MB 1=20︒;②如图④中根据折叠可知,∠CMF =∠C 1MF ,∠ABE =∠A 1BE ,︒2∠CMF +2∠ABE +∠AMC =90,11︒∴2(∠CMF +∠ABE )+∠AMC 11=90,(∴2(90∴290︒-∠EMF +∠A 1MC 1=90︒,︒)-60︒+∠A 1MC 1=90︒,)︒∴∠AMC =30;11(3)如图⑤-1中,由折叠可知,a -β=β-γ,∴a +γ=2β;如图⑤-2中,由折叠可知,a -β=β+γ,∴a -γ=2β.【点睛】本题考查了图形的变换中折叠属全等变换,图形的角度及边长不变及一些角度的计算问题,突出考查学生的观察能力、思维能力以及动手操作能力,本题是代数、几何知识的综合运用典型题目.8.(1)=;(2)证明见解析;(3)60°,BD=CE;(4)90°,AM+BD=CM ;(5)7【解析】【分析】(1)由DE ∥BC ,得到DB EC =,结合AB=AC ,得到DB=EC ;AB AC(2)由旋转得到的结论判断出△DAB≌△EAC,得到DB=CE;(3)根据等边三角形的性质和全等三角形的判定定理证明△DAB≌△EAC,根据全等三角形的性质求出结论;(4)根据全等三角形的判定和性质和等腰直角三角形的性质即可得到结论;(5)根据旋转的过程中△ADE的面积始终保持不变,而在旋转的过程中,△ADC的AC始终保持不变,即可.【详解】[初步感知](1)∵DE∥BC,∴DB EC=,AB AC∵AB=AC,∴DB=EC,故答案为:=,(2)成立.理由:由旋转性质可知∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE;[深入探究](3)如图③,设AB,CD交于O,∵△ABC和△ADE都是等边三角形,∴AD=AE,AB=AC,∠DAE=∠BAC=60°,∴∠DAB=∠EAC,在△DAB和△EAC中⎧AD=AE⎪⎨∠DAB=∠EAC,⎪AB=AC⎩∴△DAB≌△EAC(SAS),∴DB=CE,∠ABD=∠ACE,∵∠BOD=∠AOC,∴∠BDC=∠BAC=60°;(4)∵△DAE 是等腰直角三角形,∴∠AED=45°,∴∠AEC=135°,在△DAB 和△EAC 中⎧AD =AE⎪⎨∠DAB =∠EAC,⎪AB =AC⎩∴△DAB ≌△EAC (SAS ),∴∠ADB=∠AEC=135°,BD=CE ,∵∠ADE=45°,∴∠BDC=∠ADB-∠ADE=90°,∵△ADE 都是等腰直角三角形,AM 为△ADE 中DE 边上的高,∴AM=EM=MD ,∴AM+BD=CM ;故答案为:90°,AM+BD=CM ;【拓展提升】(5)如图,由旋转可知,在旋转的过程中△ADE 的面积始终保持不变,△ADE 与△ADC 面积的和达到最大,∴△ADC 面积最大,∵在旋转的过程中,AC 始终保持不变,∴要△ADC 面积最大,∴点D 到AC 的距离最大,∴DA ⊥AC ,∴△ADE 与△ADC 面积的和达到的最大为2+故答案为7.【点睛】此题是几何变换综合题,主要考查了旋转和全等三角形的性质和判定,旋转过程中面积变化分析,解本题的关键是三角形全等的判定.9.(1)全等,理由见解析;(2)t=3.5秒或5秒1×AC×AD=5+2=7,2【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,⎧∠ADC =∠CEB⎪⎨∠DAC =∠ECB,⎪CA =CB⎩∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.10.(1)见详解,(2)BD =2CF ,证明见详解,(3)【解析】【分析】(1)欲证明BF =AD ,只要证明∆BCF ≅∆ACD 即可;(2)结论:BD =2CF .如图2中,作EH ⊥AC 于H .只要证明∆ACD ≅∆EHA ,推出CD =AH ,EH =AC =BC ,由∆EHF ≅∆BCF ,推出CH 2.3=CF 即可解决问题;(3)利用(2)中结论即可解决问题;【详解】(1)证明:如图1中,BE⊥AD于E,∴∠AEF=∠BCF=90︒,∠AFE=∠CFB,∴∠DAC=∠CBF,BC=AC,∴∆BCF≅∆ACD(AAS),∴BF=AD.(2)结论:BD=2CF.理由:如图2中,作EH⊥AC于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHF=∠BCF=90︒,∠EFH=∠BFC,EH=BC,∴∆EHF≅∆BCF,∴FH=FC,∴BD=CH=2CF.(3)如图3中,作EH⊥AC于交AC延长线于H.∠AHE=∠ACD=∠DAE=90︒,∴∠DAC+∠ADC=90︒,∠DAC+∠EAH=90︒,∴∠ADC=∠EAH,AD=AE,∴∆ACD≅∆EHA,∴CD=AH,EH=AC=BC,CB=CA,∴BD=CH,∠EHM=∠BCM=90︒,∠EMH=∠BMC,EH=BC,∴∆EHM≅∆BCM,∴MH=MC,∴BD=CH=2CM.AC=3CM,设CM=a,则AC=CB=3a,BD=2a,∴DB2a2==.BC3a3【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.11.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE≌△CBD得到∠ACE=∠CBD,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF;②先证明△ACE≌△CBD得∠ACE=∠CBD=∠DCF,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA;(2)证明△AEC≌△CDB得到∠E=∠D,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.12.(1)①100;②x=y+s+t;(2)见详解.【解析】【分析】(1)①利用三角形的内角和定理即可解决问题;②结论:x=y+s+t.利用三角形内角和定理即可证明;(2)分6种情形分别求解即可解决问题.【详解】解:(1)①∵∠BAC=70°,∴∠ABC+∠ACB=110°,∵∠PBA=10°,∠PCA=20°,∴∠PBC+∠PCB=80°,∴∠BPC=100°,∴x=100,故答案为:100.②结论:x=y+s+t.理由:∵∠A+∠ABC+∠ACB=∠A+∠PBA+∠PCA+∠PBC+∠PCB=180°,∠PBC+∠PCB+∠BPC=180°,∴∠A+∠PBA+∠PCA=∠BPC,∴x=y+s+t.(2)s、t、x、y之间所有可能的数量关系:如图1:s+x=t+y;如图2:s+y=t+x;如图3:y=x+s+t;如图4:x+y+s+t=360°;如图5:t=s+x+y;如图6:s=t+x+y;【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是学会用分类讨论的思想思考问题.13.(1)150°;(2)∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由详见解析;(4)∠2=90°+∠1-α,理由详见解析【解析】【分析】(1)先用平角的得出,∠CDP=180°-∠1,∠CEP=180°-∠2,最后用四边形的内角和即可;(2)同(1)方法即可;(3)利用平角的定义和三角形的内角和即可得出结论;(4)利用三角形的内角和和外角的性质即可得出结论.【详解】解:(1)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α=90°+60°=150°,故答案为:150;(2)∵∠1+∠CDP=180°,∴∠CDP=180°-∠1,同理:∠CEP=180°-∠2,根据四边形的内角和定理得,∠CDP+∠DPE+∠CEP+∠C=360°,∵∠C=90°,∴180°-∠1+α+180°-∠2+90°=360°,∴∠1+∠2=90°+α,故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+∠α.理由如下:如图3,设DP与BE的交点为F,∵∠2+∠α=∠DFE,∠DFE+∠C=∠1,∴∠1=∠C+∠2+∠α=90°+∠2+∠α.(4)∠2=90°+∠1-∠α,理由如下:如图4,设PE 与AC 的交点为G ,∵∠PGD =∠EGC ,∴∠α+180°-∠1=∠C +180°-∠2,∴∠2=90°+∠1-∠α.故答案为∠2=90°+∠1-∠α.【点睛】此题是三角形综合题,主要考查了四边形的内角和,三角形的内角和,三角形的外角的性质,平角的定义,解本题的关键是将∠1,∠2,α转化到一个三角形或四边形中,是一道比较简单的中考常考题.14.(1)【解析】【分析】(1)根据简单的分式可得,相邻两个数的积的倒数等于它们的倒数之差,即可得到和1111n -,-;(2);(3)见解析.45n n +1n +114⨯51n ⨯(n +1)(2)根据(1)规律将乘法写成减法的形式,可以观察出前一项的减数等于后一项的被减数,因此可得它们的和.(3)首先利用(2)的和的结果将左边化简,再利用分式方程的解法求解即可.【详解】111111=-=-,解:(1);n (n +1)n n +14⨯545故答案为1111-,-45n n +111111+-+-+22334+111n -=1-= ;n n +1n +1n +1(2)原式=1-1111-+-+(3)已知等式整理得:x x +1x +1x +2112x -1-=所以,原方程即:,x x +5x (x +5)方程的两边同乘x (x +5),得:x +5﹣x =2x ﹣1,解得:x =3,检验:把x =3代入x (x +5)=24≠0,∴原方程的解为:x =3.【点睛】+112x -1-=x +4x +5x (x +5)本题主要考查学生的归纳总结能力,关键在于根据简单的数的运算寻找规律,是考试的热点.15.(1)见解析;(2)∠ABE -∠CDE =30︒【解析】(1)根据聪聪提供的辅助线作法进行证明,先由平行线的性质得:∠AGC=∠MCD,∠F+∠GAF=90︒,再证明∠MCD=∠BAG,可得结论;(2)根据平行线的性质和三角形的外角性质可得结论.【详解】解:(1)证明:如图2,过A作AG//FM,交CD于G,∴∠AGC=∠MCD,∠F+∠GAF=90︒,FN⊥FM,∴∠F=90︒,∴∠GAF=90︒,∠FAB-∠MCD=90︒,∴∠FAB-∠GAF=∠MCD=∠BAG,∴AB//CD;(2)解:∠ABE-∠CDE=30︒,理由如下:如图3,AB//CD,∴∠BPD=∠ABE,∠BPD=∠CDE+∠BED,∠BED=30︒,∴∠BPD-∠CDE=30︒,∴∠ABE-∠CDE=30︒.。
人教版八年级上册数学期末动点问题压轴题专题训练(含答案)
人教版八年级上册数学期末动点问题压轴题专题训练1.如图,△ABC是等边三角形,点D是边BC上一个动点(点D不与点B,C重合),连接AD,点E在边AC的延长线上,且DA=DE.(1)求证:△BAD=△EDC:(2)用等式表示线段CD,CE,AB之间的数量关系,并证明.2.如图,已知△ ABC是边长为10cm的等边三角形,点F为AC的中点,动点D,E同时从A,B两点出发,分别沿AB,BC匀速运动,其中点D运动的速度是1cm/s,点E运动的速度是2cm/s,设运动时为t 秒.(1)当t为何值时,△ AFD与△ CFE全等;(2)当t为何值时,△ BDE为直角三角形.3.已知△ABC为等边三角形,点D为直线BC上的一动点(点D不与B、C重合),以AD为边作等边△ADE(顶点A、D、E按逆时针方向排列),连接CE.(1)如图1,当点D在边BC上时,求证:△BD=CE,△AC=CE+CD;(2)如图2,当点D在边BC的延长线上且其他条件不变时,结论AC=CE+CD是否成立?若不成立,请写出AC、CE、CD之间存在的数量关系,并说明理由.4.在等边△ABC中,(1)如图1,P,Q是BC边上两点,AP=AQ,△BAP=20°,求△AQB的度数;(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.△依题意将图2补全;△求证:P A=PM.5.如图,在三角形ABC中,D是射线BC上一动点.(1)如图1,点D在BC边上(不与点B,C重合),△ 按要求作图:分别过点D作DE BA∥交边AB于点F;∥交边AC于点E,作DF CA△ 在△的条件下,判断△EDF与△A的数量关系,并说明理由;(2)如图2,若点D在BC的延长线上,DF CA∥,△EDF=△A,试判断DE与BA的位置关系,并说明理由.6.如图1,等腰Rt△ABC中,△BAC=90°,AB=AC,D,E分别是AC和BC上的动点,BD△AE,垂足为F.(1)求证△CAE=△ABD;(2)连接DE,满足△AEB=△DEC,求证:BD=DE+AE;(3)点G在BD的延长线上,连接EG,满足△AEB=△GEC,试写出AE,EG,BG之间的数量关系,并证明.7.已知:如图,ABC是边长为6cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P,Q两点停止运动,设点P的运动时间为()s t,解答下列各问题:(1)ABC的面积为多少?△是等边三角形?(2)当t为何值时,PBQ△是直角三角形时,求t的值.(3)当PBQA a,将点A向右平移b个单位得到点B,其中a,b满足8.如图△所示,点A的坐标为(0,)+-=.a b50(2)如图△,坐标轴上有两个动点P ,Q ,点P 从A 点出发沿y 轴负方向以每秒1个单位长度的速度运动,点Q 从O 点出发以每秒2个单位长度的速度沿x 轴正方向运动,点P 、Q 同时出发,点P 到达O 点时整个运动结束.设运动时间为t 秒,问t 为何值时,使得12OBP BOQ S S =△△?并求出此时点P 和点Q 的坐标; (3)如图△所示,点F 为x 轴上一点,作△BOF 的平分线OG ,且OG △FB ,垂足为G ,△AOB 的平分线OE 与射线FB 交于点E ,求△E 的度数.9.如图,在平面直角坐标系中,点A ,B 的坐标分别为(a ,0),(b ,0),且a ,b 满足()23-20a b ++=.现同时将点A ,B 分别向左平移2个单位,再向上平移2个单位,得到点A ,B 的对应点C ,D ,连接AC ,BD ,CD .(1)直接写出A ,B 两点的坐标为:A ___________, B ___________.(2)若点P 是线段AC 上的一个动点,Q 是线段CD 的中点,连接PQ ,PO ,当点P 在线段AC 上移动时(不与点A ,C 重合),请找出PQD ∠,OPQ ∠,POB ∠的数量关系,并证明你的结论.(3)在坐标轴上是否存在点M ,使三角形MAD 的面积与三角形ACD 的面积相等?若存在,请求出点M 的坐标;若不存在,试说明理由.10.已知:直线AD BC ∥,动点P 在直线EF 上运动,探究ADP ,DPC ∠,BCP ∠之间的关系.(1)【问题发现】若25ADP ∠=︒,35BCP ∠=︒,求DPC ∠的度数.(2)【结论猜想】当点P 在线段AB 上时,猜想ADP ,DPC ∠,BCP ∠三个角之间的数量关系,并说明理(3)【拓展延伸】若点P 在射线AE 上或者在射线BF 上时(不包括端点),试着探究ADP ,DPC ∠,BCP ∠之间的关系是否会发生变化,请挑选一种情形画出图形,写出结论,并说明理由.11.ABC 中,70C ∠=︒,点D ,E 分别是ABC 边AC ,BC 上的点,点P 是一动点,令1PDA ∠=∠,2PEB ∠=∠,DPE α∠=∠.初探:(1)如图1,若点P 在线段AB 上,且60α∠=︒,则12∠+∠=_____________; (2)如图2,若点P 在线段AB 上运动,则△1,△2,α∠之间的关系为_____________; (3)如图3,若点P 在线段AB 的延长线上运动,则△1,△2,α∠之间的关系为_____________; 再探:(4)如图4,若点P 运动到ABC 的内部,写出此时△1,△2,α∠之间的关系,并说明理由.12.如图,AB 、CD 被AC 所截,AB CD ∥,△CAB =108°,点P 为直线AB 上一动点(不与点A 重合),连CP ,作△ACP 和△DCP 的平分线分别交直线AB 于点E 、F .(1)当点P 在点A 的右侧时△若△ACP =36°,则此时CP 是否平分△ECF ,请说明理由. △求△ECF 的度数.(2)在点P 运动过程中,直接写出△APC 与△AFC 之间的数量关系.(1)求证:AB CD ∥;(2)如图2,若3ABE EBF ∠=∠,120BFD ∠=︒,试求CDFBDF∠∠的值;(3)如图3,若H 是直线CD 上一动点(不与D 重合),BI 平分HBD ∠,则EBI ∠与BHD ∠的数量关系为______.14.如图1,在△ABC 中,BO AC ⊥于点O ,3,1AO BO OC ===,过点A 作AH BC ⊥于点H ,交BO 于点P .(1)求线段OP 的长度;(2)连接OH ,求证:点O 到△AHC 的两边距离相等;(3)如图2,若点D 为AB 的中点,点M 为线段BO 延长线上一动点,连接MD ,过点D 作DN DM ⊥交线段OA 延长线于N 点,则BDM ADN S S ∆∆-的值是否发生改变,如改变,求出该值的变化范围;若不改变,求该式子的值.15.在ABC 中,BAC ABC ∠>∠,三个内角的平分线交于点O .(1)填空:如图1,若80BCA ∠=︒,则BOA ∠的大小为________度;(3)如图2,CO 的延长线交AB 于点E ,点M 是AB 边上的一动点(不与点E 重合),过点M 作MN CE ⊥于点N ,请探索AMN ∠、ABC ∠、BAC ∠三者之间的数量关系.16.如图1,CE 平分ACD ∠,AE 平分BAC ∠,90EAC ACE ∠+∠=︒(1)请判断AB 与CD 的位置关系并说明理由;(2)如图2,在(1)的结论下,当90E ∠=︒保持不变,移动直角顶点E ,使MCE ECD ∠=∠,当直角顶点E 点移动时,问BAE ∠与MCD ∠是否存在确定的数量关系?(3)如图3,在(1)的结论下,P 为线段AC 上一定点,点Q 为直线CD 上一动点,当点Q 在射线CD 上运动时(点C 除外),CPQ CQP ∠+∠与BAC ∠有何数量关系?17.如图,在△ABC 中,D 为AB 的中点,AB =AC =10cm ,BC =8cm ,动点P 从点B 出发,沿BC 方向以每秒3cm 的速度向点C 运动;同时动点Q 从点C 出发,沿CA 方向以每秒3cm 的速度向点A 运动,运动时间是t 秒.(1)在运动过程中,当点C 位于线段PQ 的垂直平分线上时,求出t 的值;(2)在运动过程中,是否存在某一时刻t ,使△BPD 和△CQP 全等,若存在,求出t 的值.若不存在,请说明理由.18.如图,△ABC是边长是12cm的等边三角形,动点P,Q同时从A,B两点出发,分别沿AB,BC方向匀速移动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q到达点C时,P、Q两点都停止运动,设运动时间为t(s),解答下列问题:(1)当点Q到达点C时,PQ与AB的位置关系如何?请说明理由.(2)在点P与点Q的运动过程中,△BPQ是否能成为等边三角形?若能,请求出t,若不能,请说明理由.(3)则当t为何值时,△BPQ是直角三角形?2,0,以线段OA为边在第四象限内作等边AOB,点C 19.如图,在平面直角坐标系中,点A的坐标为()OC>,连接BC,以线段BC为边在第四象限内作等边CBD,连接DA.为x轴正半轴上一动点()2(1)求证:OBC ABD≌;(2)是否存在点C,使得ACD△为直角三角形.若存在,请求出点C的坐标;若不存在,请说明理由;(3)是否存在点C,使得ACD△为等腰三角形.若存在,请求出AC的长;若不存在,请说明理由.B-(0,4)点4(6,)A -.(1)如图1,动点P 从点B 出发,以每秒2个单位长度的速度沿BA 方向运动,同时动点Q 从点O 出发,以每秒3个单位长度的速度沿y 轴向上运动,当点P 运动到点A 时,P 、Q 同时停止运动,设点P 运动时间为t 秒.用含t 的式子表示P ,Q 两点的坐标.(2)如图2,点D 为线段OA (端点除外)上某一点,当点D 在线段上运动时,过点D 作直线EF 交x 轴正半轴于E ,交直线AB 于F ,,EOD AFD ∠∠的平分线相交于点N ,若ODF α∠=,请用含α的式子表示ONF ∠的大小,并说明理由.答案1. (2)AB =CD +CE 2.(1)103t =(2)t =2或53.(2)AC+CD =CE ,4.(1)80°5.(1);△△EDF =△A , (2)DE BA ∥,6. (3)BG =AE +EG ,7.(1)2cm (2)3 (3)2或48.(1)(0,2)A ,(3,2)B (2)65t =,点0,54P ⎛⎫ ⎪⎝⎭,12,05Q ⎛⎫ ⎪⎝⎭ (3)△E =45°9.(1)(−3,0);(2,0)(2)△DQP +△QPO +△BOP =360°; (3)(0,163)或(0,−43)或(−8,0)或(2,0)10.(1)60°;(2)△DPC =△ADP +△PCB(3)△PCB =△DPC +△ADP ;或△ADP =△DPC +△PCB11.(1)130︒;(2)1270α∠+∠=︒+∠; (3)1270α∠-∠=︒+∠; (4)12430α∠+∠=︒-∠,12.(1)△平分,;△36°(2)当点P 在点E 的右侧时,2APC AFC ∠=∠;当点P 、点E 在点A 的左侧,点F 在点A 的右侧时,2180AFC APC ∠+∠=︒;当点P 、点E 、点F 均在点A 的左侧时, 2180AFC APC ∠-∠=︒.13. (2)4(3)△BHD =2△EBI 或△EBI =90°-12△BHD14.(1)OP =1;(3)不变,9415.(1)130(3)2360AMN ABC BAC ∠=∠-∠+︒或2AMN BAC ABC ∠=∠-∠16.(1)平行,(2)存在,1902BAE MCD ∠+∠=︒(3)BAC PQC QPC ∠=∠+∠17.(1)43t = (2)当1t =时,△BPD △△CQP18.(1)PQ 与AB 垂直,(2)能,当4s t =时,△BPQ 是等边三角形(3) 2.4s t =或6s t =,△BPQ 是直角三角形19. (2)C (4,0)(3)不存在,20.(1)P (2t ,-4),Q (0,3t ); (2)12ONF α∠=,。
初二上数学期末试卷压轴题
一、填空题(每空2分,共10分)1. 已知等腰三角形ABC中,AB=AC,∠BAC=50°,则∠B=________°,∠C=________°。
2. 在直角坐标系中,点P(2,3)关于y轴的对称点为P',则点P'的坐标为________。
3. 若等差数列{an}的首项为2,公差为3,则第10项an=________。
4. 在梯形ABCD中,AD∥BC,AB=CD,若∠A=50°,则∠C=________°。
5. 若方程x^2-5x+6=0的解为x1和x2,则x1+x2=________。
二、选择题(每题3分,共15分)1. 下列各数中,有理数是()A. √3B. πC. 0.1010010001…D. -2/32. 在△ABC中,若∠A=30°,∠B=75°,则△ABC是()A. 直角三角形B. 锐角三角形C. 钝角三角形D. 等腰三角形3. 若x^2-4x+3=0的解为x1和x2,则x1•x2=()A. 3B. -3C. 4D. -44. 下列函数中,为一次函数的是()A. y=2x^2+3B. y=3x-2C. y=√xD. y=2/x5. 若等差数列{an}的首项为5,公差为-2,则第10项an=()A. -13B. -15C. -17D. -19三、解答题(每题10分,共30分)1. 已知等腰三角形ABC中,AB=AC,∠BAC=40°,求∠B和∠C的大小。
2. 在直角坐标系中,点P(-3,4)关于x轴的对称点为P',求点P'的坐标。
3. 若等差数列{an}的首项为-3,公差为2,求第10项an。
四、应用题(20分)1. 甲、乙两地相距120千米,一辆汽车从甲地开往乙地,速度为60千米/小时;另一辆汽车从乙地开往甲地,速度为80千米/小时。
求两车相遇的时间。
2. 某班级有男生30人,女生40人,求该班级男生与女生人数的比例。
八上数学几何压轴题30道
八上数学几何压轴题30道当提到数学几何的压轴题,我们通常指的是那些考察学生对几何知识和解题能力的较难题目。
以下是30道八年级数学几何的压轴题示例:1. 计算一个正方形的对角线长度。
2. 证明三角形内角和为180度。
3. 判断一个四边形是否为平行四边形,并解释你的答案。
4. 计算一个圆的周长和面积。
5. 证明垂直平分线定理。
6. 证明等腰三角形的性质。
7. 计算一个梯形的面积。
8. 证明两条平行线被一条横截线所切割,对应角相等。
9. 计算一个正五边形的内角和外角。
10. 证明直角三角形的斜边长度与直角边长度的关系。
11. 解释相似三角形的性质。
12. 计算一个圆锥的体积。
13. 证明圆的直径与周长的关系。
14. 解释正交投影的原理。
15. 证明圆的切线与半径的垂直关系。
16. 计算一个正多边形的内角和外角。
17. 证明平行线的性质。
18. 解释三视图的绘制方法。
19. 计算一个球的表面积和体积。
20. 证明圆柱的体积公式。
21. 解释平行四边形的性质。
22. 计算一个椎体的体积。
23. 证明同位角与内错角的关系。
24. 解释棱台的性质。
25. 计算一个多面体的表面积和体积。
26. 证明圆锥的侧面积公式。
27. 解释圆的切线定理。
28. 计算一个圆环的面积。
29. 证明立体图形的展开图与表面积的关系。
30. 解释圆锥的性质。
以上是30道八年级数学几何的压轴题示例,这些题目涵盖了几何知识的各个方面,旨在考察学生的几何分析和解决问题的能力。
希望这些题目能够帮助你更好地理解数学几何的知识。
2023学年人教版数学八年级上册压轴题专题精选汇编(分式方程的实际应用)原卷版
2023学年人教版数学八年级上册压轴题专题精选汇编分式方程的实际应用考试时间:120分钟试卷满分:100分姓名:__________ 班级:__________考号:__________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·玉林期末)自带水杯已成为人们良好的健康卫生习惯.某公司为员工购买甲、乙两种型号的水杯,用720元购买甲种水杯的数量和用540元购买乙种水杯的数量相同,已知甲种水杯的单价比乙种水杯的单价多15元.设甲种水杯的单价为x元,则列出方程正确的是()A.72054015x x=-B.72054015x x=+C.72054015x x=-D.72054015x x=+2.(2分)(2021八上·芜湖期末)某灾区恢复生产,计划在一定时间内种60亩蔬菜,实际播种时每天比原计划多种3亩,因此提前一天完成任务,问实际种了几天?现设实际种了x天,则可列出方程()A.606031x x-=+B.606031x x-=-C.606013x x-=+D.606013x x-=-3.(2分)(2021八上·西城期末)某校八年级一班计划安排一次以“迎冬奥”为主题的知识竞赛,班主任王老师打算到某文具店购买一些笔记本作为竞赛用的奖品.目前该文具店正在搞优惠酬宾活动:购买同样的笔记本,当花费超过20元时,每本便宜1元.已知王老师花费24元比花费20元多买了2本笔记本,求他花费24元买了多少本笔记本,设他花费24元买了x本笔记本,根据题意可列方程()A.242012x x-=-B.242012x x-=-C.202412x x-=-D.202412x x-=+4.(2分)(2021八上·承德期末)某化肥厂计划在规定日期内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划生产120吨的时间相等.设原计划每天生产x 吨化肥,那么适合x 的方程是( )A .1203x +=180x B .1201803x x =- C .1201803x x =+ D .120803x x =- 5.(2分)(2021八上·怀柔期末)2021年6月,怀柔区政府和内蒙古自治区四子王旗政府签订了《2021年东西部协作协议》,在乡村振兴、产业合作、消费帮扶、就业帮扶、教育和健康帮扶方面,按计划推动工作落实.在产业合作过程中,怀柔区为四子王旗提供设备和技术支持.运送设备使用大货车,技术人员乘坐面包车.已知怀柔区与四子王旗相距600千米,若面包车的速度是大货车的1.2倍,两车同时从怀柔区出发,大货车到达四子王旗比面包车多用43小时.求大货车和面包车的速度.设大货车速度为x 千米/小时,下面是四位同学所列的方程:①国国:60060041.23x x =+; ②佳佳:4600600+3 1.2x x =;③富富:60060041.23x x =-;④强强:60046003 1.2x x-=.其中,正确的序号是( ) A .①②B .①③C .①④D .②③6.(2分)(2021八上·道里期末)八年级学生去距学校15km 的博物馆参观,一部分学生骑自行车先走,过了30min 后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍,求骑车学生的速度.若设骑车同学的速度为x 千米/时,则所列方程时( )A .1515302x x +=B .1515302x x -= C .1511522x x+= D .1511522x x-= 7.(2分)(2019七下·苍南期末)商家常将单价不同的A ,B 两种糖混合成“什锦糖”出售,记“什锦糖”的单价为:A ,B 两种糖的总价与A ,B 两种糖的总质量的比.现有两种“什锦糖”:一种是由相同千克数的A 种糖和B 种糖混合而成的“什锦糖”甲,另一种是由相同金额数的A 种糖和B 种糖混合而成的“什锦糖”乙.若B 种糖比A 种糖的单价贵40元/千克,“什锦糖”甲比“什锦糖”乙的单价贵5元/千克,则A 种糖的单价为( ) A .50元/千克B .60元/千克C .70元/千克D .80元/千克8.(2分)(2022·北部湾)《千里江山图》是宋代王希孟的作品,如图,它的局部画面装裱前是一个长为2.4米,宽为1.4米的矩形,装裱后,整幅图画宽与长的比是8:13,且四周边衬的宽度相等,则边村的宽度应是多少米?设边衬的宽度为x 米,根据题意可列方程( )A.1.482.413xx-=-B.1.482.413xx+=+C.1.4282.4213xx-=-D.1.4282.4213xx+=+9.(2分)(2022·宜宾)某家具厂要在开学前赶制540套桌凳,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的桌凳比原计划多2套,结果提前3天完成任务.问原计划每天完成多少套桌凳?设原计划每天完成x套桌凳,则所列方程正确的是()A.54054032x x-=-B.54054032x x-=+C.54054032x x-=+D.54054032x x-=-10.(2分)(2022·金东模拟)众志成城,抗击疫情,某医护用品集团计划生产口罩1500万只,实际每天比原计划多生产2000只,结果提前5天完成任务,则原计划每天生产多少万只口罩?设原计划每天生产x 万只口罩,根据题意可列方程为()A.1500150050.2x x-=+B.1500150052000x x=++C.1500150052000x x=++D.1500150050.2x x-=+评卷人得分二.填空题(共10小题,满分2010分,每小题2分)11.(2分)(2022七下·乐清期末)一房屋设计图原房间窗户面积为3m2,地面面积为18m2,该住户要求把房间的窗户和地面都增加相同的整数面积(单位:m2)的方式加强采光效果,并使窗户面积与地面面积的比值尽可能接近13,则增加的面积为m2.12.(2分)(2022七下·温州期末)小明家购进一台扫拖一体机器人.该机器人识别出小明家需要扫地和拖地的面积均为60平方米,小明让机器人对识别的面积先扫地再拖地,发现拖地的时间比扫地的时间多100分钟,且扫地的速度是拖地的3倍.若拖地的速度为每分钟x平方米,则可列方程为.13.(2分)(2022·江西)甲、乙两人在社区进行核酸采样,甲每小时比乙每小时多采样10人,甲采样160人所用时间与乙采样140人所用时间相等,甲、乙两人每小时分别采样多少人?设甲每小时采样x 人,则可列分式方程为 .14.(2分)(2022·郯城模拟)某校举行“停课不停学,名师陪你在家学”活动,计划投资9000元建设几间直播教室,为了保证教学质量,实际每间建设费用增加了20%,并比原计划多建设了两间直播教室,总投资追加了3000元,根据题意,则原计划每间直播教室的建设费用是 .15.(2分)(2022·秀洲模拟)某班同学到距学校12千米的森林公园植树,一部分同学骑自行车先行,半小时后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是自行车速度的3倍,求自行车和汽车的速度。
(新)八年级上册数学各种类型典型压轴题练习试题全汇编
(新)八年级上册数学典型压轴题练习试题汇编一、压轴(1) 选填题 (一)多结论证明1.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上的点,且DE =DF ,连接BF ,CE ,下列说法:①CE =BF ;②△ABD 和△ACD 面积相等;③BF ∥CE ;④△BDF ≌△CDE ,其中正确的有( )A .1个B .2个C .3个D .4个FBAC2.如图,在△ABC 中,AB =AC ,∠BAC =90°,BD 平分∠ABC 交AC 于D ,AE ⊥BD 于E ,CF ∥AE 交BD 的延长线于F ;给出四个结论:①∠ACF =12∠ABC ;②CF =12BD ;③BE =2AE +DF ;④CF =AE +DE ,其屮正确的结论有( )A .1个B .2个C .1个D .2个AC3.如图,在Rt △ABC 中,AB =CB ,BO ⊥AC ,把△ABC 折叠,使AB 落在AC 上,点B 与AC 上的点E 重合,展开后,折痕AD 交BO 于点F ,连接DE ,EF ,下列四个结论:①AB =2BD ;②图中有4对全等三角形;③若将△DEF 沿EF 折叠,则点D 一定不会落在AC 上;④BD =BF ,其中正确的是( )A .①②③④B .②③④C .①③④D .②④DBC4.如图,在△ABC 中,∠BAC =90°,AD 是高,BE 是中线,CF 是角平分线,CF 交AD 于点G ,交BE 于点H ,下列说法:①△ABE 的面积=△BCE 的面积;②∠AFG =∠AGF ;③∠FAG =2∠ACF ;④BH =CH ,其中正确的是( )A .①②③④B .①②③C .②④D .①③5.如图,Rt △ACB 中,∠ACB =90°,△ABC 的角平分线AD 、BE 相交于点P ,过P 作PF ⊥AD 交BC 的延长线于点F ,交AC 于点H ,则下列结论:①∠APB =135°;②BF =BA ;③PH =PD ;④连接CP ,CP 平分∠ACB ,其中正确的是( )A .①②③B .①②④C .①③④D .①②③④DC6.如图,△ABC 中,∠ABC =45°,AD ⊥BC 于D 点,BE ⊥AC 于E 点,AD 与BE 交于点F ,连接CF ,DE ,下列结论:①AC =BF ;②∠BED =45°;③BE =AE +2DC ;④若∠ABF =30°,则BF CFAB=1, 其中正确结论的序号是()A .①②③B .①②③④C .①③④D .①③④DABC(二)几何计算7.如图,在△ABC 中,∠BAC =∠BCA =44°,M 为△ABC 内一点,且∠MCA =30°,∠MAC =16°,则∠BMC 的度数为( )A .120°;B .126°C .144°D .150°BCA8.如图,设△ABC 和△CDE 都是等边三角形,若∠AEB =70°,则∠EBD 的度数是( )A .115°B .20°C .125°D .130°DC9.如图,△ABC 中,点D 是BC 上一点,已知∠DAC =30°,∠DAB =75°,CE 平分∠ACB 交AB 于点E 、连DE ,则∠DEC =( )A .10°B .15°C .20°D .25°BACD10.在△ABC 和△BDE 中,点C 在边BD 上,边AC 交边BE 于点F .若AC =BD ,AB =ED ,BC =BE ,则∠ACB 等于( )A .∠EDBB .∠BEDC .12∠AFB C .2∠ABFBADC11.如图,已知△ABC 的面积为8cm 2,BP 为∠ABC 的角平分线,AP 垂直BP 于点P ,则△PBC 的面积为( )A .3.5B .3.9C .4D .4.2DACB12.已知:四边形ABCD 中,对角线BD 平分∠ABC ,∠ACB =72°,∠ABC =50°,并且∠BAD +∠CAD =180°,那么∠BDC 的度数为________.DAB(三)多解与画图13.在△ABC 中,AC =BC ,∠ACB =90°,CE 是过C 点的一条直线,AD ⊥CE 于D ,BE ⊥CE 于E ,DE =4cm ,AD =2cm ,则BE =( )A . 2cmB . 2cmC .6cm 或2cmD .6cm14.△ABC 中,AD 是高,∠BAD =60°,∠CAD =20°,AE 平分∠BAC ,则∠EAD 的度数为____________. 15.如图,在平面直角坐标系中,点A (12,6),∠ABO =90°,一动点从点 B 出发以2厘米/秒的速度沿射线BO 运动,点D 在y 轴上,D 点随着C 点运动而运动,且始终保持OA =C D .当点C 经过_____秒时,△OAB 与△OCD 全等.16.已知△ABC 中,AB =AC ,BD ⊥AC 于D ,AC =2BD ,则∠BAC =______.17.如图,在△ABC 中,AB =BC ,∠ABC =100°,边BA 绕点B 顺时针旋转m °(0<m <180)得到线段BD ,连接AD ,D C .若△ADC 为等腰三角形,则m 所有可能的取值是________.DAC18.如图,等腰Rt △ABC 中,∠ACB =90°将线段AB 绕点A 逆时针旋转,旋转后B 点的对应点为D ,连接C D .若AB ∥CD ,则∠CAD 的度数是_______.CA B19.D 为等腰Rt △ABC 斜边BC 上一点(不与B 、C 童合),DE ⊥BC 于点D ,交直线BA 于点E ,作∠EDF =45°,DF 交AC 于F ,连接EF ,BD =nDC ,当n =________时,△DEF 为等腰直角三角形.20.在平面直角坐标系中,已知A (0,2),B (2,0),若在坐标轴上取点C ,使△ABC 为等腰三角形,满足条件的点C 的个数是( )A .6B .7C .8D .9(四)最值问题21.如图,在△ABC 中,∠C =90°,AC =BC =6,D 为AB 的中点,点E ,F 分别在AC ,BC 边上运动(点E不与点A 、C 重合)且保持∠EDF =90°,连接EF ,在此运动过程中,S △CEF 的最大值为______.FA CBE22.如图,在四边形ABCD 中,∠A =∠C =90°,∠ABC =α,在AB 、BC 上分别一点E 、F ,使△DEF 的周长最小,此时,∠EDF =( )A .αB .90°-αC .2D .180°-2αDBF23.如图,P 为∠AOB 内一定点,M ,N 分别是射线OA ,OB 上一点,当△PMN 周长最小时,∠MPN =110°,则∠AOB =( )A .35°B .40°C .45°D .50°O24.如图,在等腰△ABC 中,AB =AC =5,∠ACB =75°,AD ⊥BC 于D ,点M ,N 分别是线段AB ,线段AD 上的动点,则MN +BN 的最小值是( )A .3BC .4.5D .6AD25.如图,OE 是等边△AOB 的中线,OB =4,C 是直线OE 上一动点,以AC 为边在直线AC 下方作等边△ACD ,连接ED ,下列说法正确的是( )A .ED 的最小值是2B .ED 的最小值是1C .ED 有最大值D .ED 没有最大值也没有最小值D26.如图,AD 为等边△ABC 的高,E ,F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =( )A .112.5°B .105°C .90°D .82.5°DABC27.如图,等腰△ABC 底边BC 的长为4cm ,面积是12cm 2,腰AB 的垂直平分线EF 交AC 于点F ,若D 为BC 边上的中点,M 为线段EF 上一动点,则△BDM 的周长最小值为_______.B28.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°.若点M ,N 分别是线段AB ,AC 上两个动点,BC =4,则MC +MN 的最小值为_____.BCAN二、压轴(2)几何合题29.在△ABC 中,AB =AC ,CD 为AB 边上的高 (1)如图1,求证;∠BAC =2∠BCD ;(2)如图2.∠ACD 的平分线CE 交AB 于E ,过E 作EF ⊥BC 于F ,EF 与CD 交点G .若ED =m ,BD =n ,含有m 、n 的代式表示△EGC 的面积.图2图1FBBCA CA30.射线AE 为△ABC 的外角平分线,点P 为射线AE 上不与A 点重合的一个动点. (1)如图1,若BP 平分∠ABC ,且∠ACB =30°,则∠APB =______;(直接写出结果) (2)如图1,求证:不论P 在何处,总有AB +AC <PB +PC ;(3)如图2,若点P 在AE 上,作PM ⊥BA 交BA 的延长线于M 点,且∠BPC =∠BAC ,求AC ABAM-的值.图1图2BBE31.如图,Rt △ACB 中,∠ACB =90°,AB =BC ,E 点为射线CB 上一动点,连接AE ,作AF ⊥AE 且AF =AE(1)如图1,过F 点作FD ⊥AC 交AC 于D 点,求证:EC +CD =DF ;(2)如图2,连接BF 交AC 于G 点,若AGCG=3求证:E 点为BC 的中点; (3)E 点在射线CB 上,连接BF 与直线AC 交于G 点,若43BC BE =,则AGCG=________.图1图2BFBF32.如图,在等腰△ABC 中,AC =BC ,D ,E 分别为AB ,BC 上一点,∠CDE =∠A. (1)如图1,若BC =BD ,求证:CD =DE ;(2)如图2,过点C 作CH ⊥DE ,垂足为点H ,若CD =BD ,EH =1,求DE -BE 的值.图1图2AABCBC33.已知△ABC 中,AC =B C .(1)如图1,分别过A ,B 作AM ⊥BC ,BN ⊥AC ,垂足分别为M ,N ,AM 与BN 相交于点P ,求证:AP =BP . (2)如图2,分别在AC 的右侧、BC 的左侧作等边△ACE 和等边△BCD ,AE 与BD 相交于点F ,连接CF 并延长交AB 于点G 求证:点G 是AB 的中点;(3)在(2)的条件中,当∠ACE 的大小发生变化时,设直线CD 与直线AE 相交于点H .直接写出: 当∠ACB =_______度时,使得AH =C D .图2图1DEABC C34.如图1,已知等腰△ABC 中,AB =AC ,AD 为BC 边上的中线,以AB 为边向外作等边△ABE ,直线CE 与直线AD 交于点F .(1)若AF =10,DF =3,试求EF 的长;(2)若以AB 为边向内作等边△ABE ,其它条件均不改变,用尺规作图补全图2(保留作图痕迹),并直接写出EF ,AF ,DF 三者的数量关系____________.图1图2EBC ACA35.已知:在△ABC 中,∠B =60°,D ,F 分别为AB ,BC 上的点,且AF ,CD 交于点F . (1)如图1,若AE ,CD 为△ABC 的角平分线; ①求证:∠AFC =120°;②若AD =6,CE =4,求AC 的长;(2)如图2,若∠FAC =∠FCA =30°,求证:AD =CE .图2图1AACBCB36.如图,等腰△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点. (1)如图1,若AD =AC ,且BE ⊥CD 于点E . ①求∠BCD 的度数;②求CDBE的值; (2)如图2,若F 为CD 上一点,且在线段BC 的垂直平分线上,∠BCD =15°,求证:AF =B C.图2图1BCCAA35.已知:在△ABC 中,∠B =60°,D ,E 分别为AB ,BC 上的点,且AE ,CD 交于点F . (1)如图1,若AE ,CD 为ABC 的角平分线; ①求证:∠AFC =120°;②若AD =6,CE =4,求AC 的长; (2)如图2,若∠FAC =∠FCA =30°,求证:AD =CE .FDECABFDB EC A36.如图,等腰△ABC 中,∠ACB =90°,AC =BC ,D 为AB 上一点. (1)如图1,若AD =AC ,且BE ⊥CD 于点E .①求∠BCD 的度数;②求BECD的值;(2)如图2,若F 为CD 上一点,且在线段BC 上垂直平分线上,∠BCD =15°,求证:AF =BC .A C DE BBFD AC37.(1)如图1,△ABC 中,∠BAC =90°,AB =BC ,直线m 经过点A ,BD ⊥m ,CE ⊥m ,垂足分别为D ,E ,求证:DE =BD +CE ;(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D ,A ,E 三点都在直线m 上,并且满足∠BDA =∠AEC =∠BAC ,求证:DE =BD +CE ;(3)如图3,D ,E 是D ,A ,E 三点所在直线m 上的两动点(D ,A ,E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD ,CE .若∠BDA =∠AEC =∠BAC ,求证:△DEF 为等边三角形.D AE mCBD A mE CBB FCmEA D38.等腰Rt △ABC 中,CA =CB ,∠ACB =90°,点O 是AB 的中点. (1)如图1,求证:CO =BO ;(2)如图2,点M 在边AC 上,点N 在BC 的延长线上,MN -AM =CN ,求∠MON 的度数; (3)如图3,AD ∥BC ,OD ∥AC ,AD 与OD 交于点D ,Q 是OB 的中点,连接CQ ,DQ ,试判断线段CQ 与DQ 的关系,并给出证明.B O A CNMCA O B39.在△ABC 中,BD 为∠ABC 的平分线. (1)如图1,∠C =2∠DBC ,∠A =60°,求证:△ABC 为等边三角形; (2)如图2,若∠A =2∠C ,BC =8,AB =4.8,求AD 的长度;(3)如图3,若∠ABC =2∠ACB ,∠ACB 的平分线OC 与BD 相交于点O ,且OC =AB ,求∠A 的度数.DCB ACDB AB CODA40.在△ABC 中,∠ACB =90°.(1)如图1,点B 与点D 关于直线AC 对称,连接AD ,点E ,F 分别是线段CD ,AB 上的点(点E 不与点D ,C 重合),且∠AEF =∠ABC ,∠ABC =2∠CAE ,求证:BF =DE ; (2)如图2,若AC =BC ,BD ⊥AD ,连接DC ,求证:∠ADC =45°;(3)如图3,若AC =BC ,点D 在AB 的延长线上,以DC 为斜边作等腰直角△DCE ,过直角顶点E 作EF ⊥AC 于点F ,求证:点F 是AC 的中点.DECBF AACDBDBECF A41.在等腰△ABC 中,∠BAC =90°,AB =AC ,点P 为AC 上一点,M 为BC 上一点. (1)若AM ⊥BP 于点E .①如图1,BP 为△ABC 的角平分线,求证:PA =PM ; ②如图2,BP 为△ABC 的中线,求证:BP =AM +MP ;(2)如图3,若点N 在AB 上,AN =CP ,AM ⊥PN ,求AMPN的值.MEPCB A EPMABCNPMABC42.如图,Rt △ABC 中,∠ACB =90°,AC =BC .F 为BC 延长线上一点,连接AF ,BD ⊥AF 于点D ,BD 与AC 交于点E 点. (1)求证:CE =CF ;(2)如图2,若M 为AB 的中点,N 为AE 的中点,P 为BF 的中点,连接MN ,PN ,求∠MNP 的度数;(3)如图3,以AB 为边作Rt △AHB ,∠AHB =90°,过点C 作CG ⊥BH 于G ,若AH =2,CG =5,请直接写出BH 的长为 .ED FCBAPENMA BCFDABC三、压轴(3)代几综合题43.如图1,在平面直角坐标系中,A (a ,0),B (b ,0),050101022=++-+b a b a ,点C 在y 轴正半轴上.(1)求证:OA =OB ;(2)已知:BD ⊥AC 于D ,DE 平分∠BDC ,交y 轴于点E ,求点E 的坐标;(3)如图2,当∠OAC =60°,且OC =35,点M 为x 轴负半轴上一动点,以CM 为边,在CM 的右侧作等边△CMN ,连接ON ,当ON 最短时,求ON 的长度.44.如图1,直线AB 分别交x 轴,y 轴于A ,B 两点,OC 平分∠AOB 交AB 于点C ,点D 为线段AB 上一点,过D 作DE ∥OC 交y 轴于点E .已知AO =m ,BO =n ,且m ,n 满足0236122=-++-m n n n .(1)求A ,B 两点的坐标;(2)若点D 为AB 的中点,求OE 的长;(3)如图2,若点P (x ,-2x +6)为直线AB 在x 轴下方的一点,点E 是y 轴正半轴上的一动点,以E 为直角顶点作等腰直角△PEF ,使点F 在第一象限,且F 点的横,纵坐标始终相等,求点P 的坐标.45.如图,直线AB 交x 轴于点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足0)5(2=-++a b a .(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,若点C 的坐标为(-3,-2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 的延长线于点D ,试求出点D 的坐标;(3)如图2,M ,N 分别为OA ,OB 边上的点,OM =ON ,OP ⊥AN 交AB 于点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG ,OP 与PG 之间的数量关系,并证明你的结论.46.如图,在平面直角坐标系中,A (8,0),点B 在第一象限,△OAB 为等边三角形,OC ⊥AB ,垂足为C .(1)直接写出点C 的横坐标;(2)作点C 关于y 轴的对称点D ,连DA 交OB 于点E ,求OE 的长;(3)P 为y 轴上一动点,连接PA ,以PA 为边在PA 所在直线的下方作等边△PAH ,当OH 最短时,求点H 的横坐标.47.平面直角坐标系中,点A (a ,0),点B (0,b ),已知a ,b 满足++-+b a b a 882232=0. (1)求点A ,点B 的坐标;(2)如图1,点E 为线段OB 上一点,连接AE ,过A 作AF ⊥AE ,且AF =AE ,连接BF 交x 轴于于点D ,若点D (-1,0),求点E 的坐标;(3)在(2)条件下,如图2,过E 作EH ⊥OB 交AB 于点H ,点M 是射线EH 上一点(点M 不在线段EH 上),连接MO ,作∠MON =45°,ON 交线段BA 的延长线于点N ,连接MN ,探究线段MN 与OM 的关系.48.在平面直角坐标系中,点A (0,a ),B (b ,0)分别在y 轴与x 轴正半轴上,满足0)16(2=-+-ab b a(1)a = ,b = ,∠OAB 的度数是 ;(2)如图1,已知C (0,1),在第一象限内存在点D ,CD 交AB 于E ,AE 为△ACD 的中线,3=∆ACD S ,求点D 的坐标;(3)如图2,已知P (2,0),连接PA ,在AB 上有一点F ,满足∠APB =∠OPF ,连接OF ,请给出三条线段PA ,PF ,FO 之间的数量关系,并证明你的结论.三、压轴(3)代几综合题43.如图1,在平面直角坐标系中,A (a ,0)、B (b ,0),a 2+b 2-10a +10b +50=0,点C 在y 轴正半轴上.(1)求证:OA =OB ;(2)已知:BD ⊥AC 于D ,DE 平分∠BDC ,交y 轴于点E ,求点E 的坐标;(3)如图2,当∠OAC =60º,且OC =53,点M 为x 轴负半轴上一动点,以CM 为边,在CM 的右侧作等边△CMN ,连接ON ,当ON 最短时,求ON 长度.图1 图244.如图1,直线AB 分别交x 轴,y 轴于A ,B 两点,OC 平分∠AOB 交AB 于点C ,点D 为线段AB 上一点,过D 作DE ∥OC 交y 轴于点E ,已知AO =m ,BO =n ,且m ,n 满足0236122=-++-m n n n ;(1)求A ,B 两点的坐标;(2)若点D 为AB 的中点,求OE 的长?(3)如图2,若点P (x ,-2x +6)为直线AB 在x 轴下方的一点,点E 是y 轴正半轴上的一动点,以E 为直角顶点作等腰直角△PEF ,使点F 在第一象限,且F 点的横,纵坐标始终相等,求点P 的坐标?图1 图245.如图,直线AB 交x 轴点A (a ,0),交y 轴于点B (0,b ),且a ,b 满足()052=-++a b a .(1)点A 的坐标为 ,点B 的坐标为 ;(2)如图1,若点C 的坐标为(-3,-2),且BE ⊥AC 于点E ,OD ⊥OC 交BE 的延长线于点D ,试求点D 的坐标;(3)如图2,M ,N 分别为OA ,OB 边上的点,OM =ON ,OP ⊥AN 交AB 与点P ,过点P 作PG ⊥BM 交AN 的延长线于点G ,请写出线段AG ,OP 与PG 之间的数量关系,并证明你的结论.图1 图246. 如图,在平面直角坐标系中,A (8,0),点B 在第一象限,△OAB 为等边三角形,OC ⊥AB ,垂足为点C .(1)直接写出点C 的横坐标 ;(2)作点C 关于y 轴的对称点D ,连DA 交OB 于点E ,求OE 的长;(3)P 为y 轴上的一动点,连接PA ,以PA 为边在PA 所在直线的下方作等边△PAH .当OH 最短时,求点H 的坐标.47.平面直角坐标系中,点A (a ,0),点B (0,b ),已知a 、b 满足0328822=++-+b a b a ; (1)求点A 、点B 的坐标;(2)如图1,点E 为线段OB 上一点,连接AE ,过A 作AF ⊥AE ,且AF =AE ,连接BF 交x 轴于点D ,若点D (1-,0),求点E 的坐标;(3)在(2)的条件下,如图2,过E 作EH ⊥OB 交AB 于H ,点M 是射线EH 上一点(点M 不在线段EH 上),连接MO ,作∠MON =45°,ON 交线段BA 的延长线于点N ,连接MN ,探究线段MN 与OM 的关系.图1图248.在平面直角坐标系中,点A (0,a ),点B (b ,0)分别在y 轴和x 轴正半轴上,满足()0162=-+-ab b a .(1)a = ,b = ,∠OAB 的度数是 ;(2)如图1,已知C (0,1),在第一象限内存在点D ,CD 交AB 于E ,AE 为△ACD 的中线,S △ACD =3,求点D 的坐标;(3)如图2,已知P (2,0),连接PA ,在AB 上有一点F ,满足∠APB =∠OPF ,连接OF ,情给出三条线段PA ,PF ,FO 之间的数量关系,并证明你的结论.图1图249.如图,已知A (a ,0)、B (0,b ),且a ,b 满足:0328822=++++b a b a .D 为第一象限内一点,连接BD ,连接AD 交y 轴于C 点,且AC =CD (1)求A 、B 点坐标;(2)如图1,若20=ABD S △,求D 点坐标;(3)如图2,过B 作BE ⊥y 轴,且BE =2OC ,连接AE ,问线段AE 和BD 有何数量和位置关系,请证明你的结论.图1图250.如图,已知A (-a ,0)、B (a ,0),点P 为第二象限内一动点,但始终保持PA = a ,∠PAB 的平分线AE 与线段PB 的垂直平分线CD 交于点D ,作DF ⊥AB 于点F . (1)若P 点坐标为(-2,2),求点C 的坐标 (2)求点D 的横坐标(用a 表示)(3)当点P 运动到某一位置时,恰好点C 落在y 轴上,直接写出CDCE=图1图251.已知,点A (0,a )、B (b ,0)、C (c ,0),其中a =|x +2|+|1-x |,且x 满足点(x +1,2x -1)关于x 轴对称的点在第一象限,b 、c 满足|3b +9|+(c +4)2=0.(1)如图1,在△AOC 内有一点D ,连AD 并延长交OC 于点P ,点E 在AC 上,且∠AED =∠AOD ,∠PDE =∠PDO ,若CE =2,求①△AOC 的周长;②OPCP 的值(2)如图2,点M 在线段AB 上(不与A ,B 重合)移动,过点A 作NA ⊥AB 于A ,且∠MON =45°,探究线段AN 、BM 、MN 之间的数量关系并证明你的结论。
2023学年人教版数学八年级上册压轴题专题精选汇编(最短路径问题)解析版
2023学年人教版数学八年级上册压轴题专题精选汇编最短路径问题考试时间:120分钟试卷满分:100分一.选择题(共10小题满分20分每小题2分)1.(2分)(2021八上·花都期末)如图点E在等边△ABC的边BC上BE=4 射线CD⊥BC 垂足为点C 点P是射线CD上一动点点F是线段AB上一动点当EP+FP的值最小时BF=5 则AB的长为()A.7B.8C.9D.10【答案】A【完整解答】解:作E点关于CD的对称点E' 过E'作E'F⊥AB交于点F 交CD于点P 连接PE∴PE=PE'∴EP+FP=PE'+PF≥E'F此时EP+FP的值最小∵△ABC是正三角形∴∠B=60°∵E'F⊥AB∴∠FE'B=30°∴BE'=2BF∵BF=5 BE=4∴E'B=10∵CE=CE'∴10=2CE+BE=2CE+4∴CE=3∴BC=7故答案为:A.【思路引导】作E点关于CD的对称点E' 过E'作E'F⊥AB交于点F 交CD于点P 连接PE 此时EP+FP 的值最小由题意得出∠FE'B=30° 则BE'=2BF 再由BF=5 BE=4 得出10=2CE+BE=2CE+4 解出CE=3 即可得出BC=7。
2.(2分)(2022春•定海区期末)如图直线l1l2表示一条河的两岸且l1∥l2.现要在这条河上建一座桥(桥与河的两岸相互垂直)使得从村庄P经桥过河到村庄Q的路程最短应该选择路线()A.路线:PF→FQ B.路线:PE→EQC.路线:PE→EF→FQ D.路线:PE→EF→FQ【思路引导】根据两点间直线距离最短使FEPP′为平行四边形即可即PP′垂直河岸且等于河宽接连P′Q即可.【完整解答】解:作PP'垂直于河岸l2使PP′等于河宽连接QP′ 与另一条河岸相交于F作FE⊥直线l1于点E则EF∥PP′且EF=PP′于是四边形FEPP′为平行四边形故P′F=PE根据“两点之间线段最短” QP′最短即PE+FQ最短.故C选项符合题意故选:C.3.(2分)(2022春•沙坪坝区校级期末)如图在△ABC中AD是△ABC的角平分线点E、F分别是AD、AB上的动点若∠BAC=50° 当BE+EF的值最小时∠AEB的度数为()A.105°B.115°C.120°D.130°【思路引导】过点B作BB′⊥AD于点G交AC于点B′ 过点B′作B′F′⊥AB于点F′ 与AD交于点E′ 连接BE′ 可证得△ABG≌△AB′G(ASA)所以∠E′B′G=∠E′BG由“直角三角形两锐角互余”可得∠AB′F′=40°=∠ABE所以∠BE′F′=50° 由此可得结论.【完整解答】解:过点B作BB′⊥AD于点G交AC于点B′ 过点B′作B′F′⊥AB于点F′ 与AD交于点E′ 连接BE′ 如图此时BE+EF最小.∵AD是△ABC的角平分线∴∠BAD=∠B′AD=25°∴∠AE′F′=65°∵BB′⊥AD∴∠AGB=∠AGB′=90°∵AG=AG∴△ABG≌△AB′G(ASA)∴BG=B′G∠ABG=∠AB′G∴AD垂直平分BB′∴BE=BE′∴∠E′B′G=∠E′BG∵∠BAC=50°∴∠AB′F′=40°∴∠ABE=40°∴∠BE′F′=50°∴∠AE′B=115°.故选:B.4.(2分)(2021八上·惠民月考)如图在锐角△ABC中∠ACB=50°;边AB上有一定点P M、N分别是AC和BC边上的动点当△PMN的周长最小时∠MPN的度数是()A.50°B.60°C.70°D.80°【答案】D【完整解答】解:过点P作PD⊥AC于点E PG⊥BC于点F 连接DG交AC、BC于点M、N 连接MP、NP∵PD⊥AC PG⊥BC∴∠PEC=∠PFC=90°∴∠C+∠EPF=180°∵∠C=50°∵∠D+∠G+∠EPF=180°∴∠D+∠G=50°由对称可知:∠G=∠GPN ∠D=∠DPM∴∠GPN+∠DPM=50°∴∠MPN=130°﹣50°=80°故答案为:D.【思路引导】过点P作PD⊥AC于点E PG⊥BC于点F 连接DG交AC、BC于点M、N 连接MP、NP 由四边形内角和及三角形内角和求出∠C+∠EPF=180° ∠D+∠G+∠EPF=180° 从而求出∠D+∠G==∠C=50° 有轴对称的性质可得∠G=∠GPN ∠D=∠DPM 从而得出∠GPN+∠DPM=50° 根据∠MPN=∠DPG-(∠GPN+∠DPM)即可求解.5.(2分)(2022春•驻马店期末)如图四边形ABCD中∠BAD=a∠B=∠D=90° 在BC、CD上分别找一点M、N当△AMN周长最小时则∠MAN的度数为()A.a B.2a﹣180°C.180°﹣a D.a﹣90°【思路引导】延长AB到A′使得BA′=AB延长AD到A″使得DA″=AD连接A′A″与BC、CD分别交于点M、N此时△AMN周长最小推出∠AMN+∠ANM=2(∠A′+∠A″)进而得出∠MAN的度数.【完整解答】解:延长AB到A′使得BA′=AB延长AD到A″使得DA″=AD连接A′A″与BC、CD分别交于点M、N.∵∠ABC=∠ADC=90°∴A、A′关于BC对称A、A″关于CD对称此时△AMN的周长最小∵BA=BA′ MB⊥AB∴MA=MA′ 同理:NA=NA″∴∠A′=∠MAB∠A″=∠NAD∵∠AMN=∠A′+∠MAB=2∠A′ ∠ANM=∠A″+∠NAD=2∠A″∴∠AMN+∠ANM=2(∠A′+∠A″)∵∠BAD=a∴∠A′+∠A″=180°﹣a∴∠AMN+∠ANM=2×(180°﹣a)=360°﹣2a.∴∠MAN=180°﹣(360°﹣2a)=2a﹣180°故选:B.6.(2分)(2022•桥西区校级模拟)如图在五边形ABCDE中∠BAE=α(∠BAE为钝角)∠B=∠E =90° 在BC DE上分别找一点M N当△AMN周长最小时∠MAN的度数为()A.B.α﹣90°C.2α﹣180°D.α﹣45°【思路引导】作点A关于BC对称点A' 作点A关于DE对称点A'' 则A''E=AE A'B=AB连接A'A'' 分别交线段BC和线段DE于点M和点N连接AM AN这时候△AMN的周长取最小值.【完整解答】解:作点A关于BC对称点A' 作点A关于DE对称点A'' 则A''E=AE A'B=AB连接A'A'' 分别交线段BC和线段DE于点M和点N连接AM AN这时候△AMN的周长取最小值.∵∠B=∠E=90°∴A'M=AM∴AN=A''N∴∠AA'M=∠A'AM∠AA''N=∠A''AN∴∠AMN=2∠A'AM∠ANM=2∠A''AN∴∠MAN+∠MAB+∠NAE=α ∠MAN+∠AMN+∠ANM=180°∴∠MAN+2∠BAM+2∠EAN=180°∴∠BAM+∠EAN=180°﹣α∴∠MAN=α﹣(180°﹣α)=2α﹣180°故选:C.7.(2分)(2022春•袁州区校级月考)已知在△ABC中D为BC的中点AD=6 BD=2.5 AB=6.5 点P为AD边上的动点.点E为AB边上的动点则PE+PB的最小值是()A.5B.6C.D.【思路引导】根据勾股定理的逆定理得到∠ADB=90° 得到点B点C关于直线AD对称过C作CE ⊥AB交AD于P则此时PE+PB=CE的值最小根据三角形的面积公式即可得到结论.【完整解答】解:∵AD=6 BD=2.5 AB=6.5∴AB2=6.52=42.25 AD2+BD2=62+2.52=42.25∴AB2=AD2+BD2∴∠ADB=90°∵D为BC的中点BD=CD∴AD垂直平分BC∴点B点C关于直线AD对称过C作CE⊥AB交AD于P则此时PE+PB=CE的值最小∵S△ABC=AB•CE=BC•AD∴6.5•CE=5×6∴CE=∴PE+PB的最小值为故选:C.8.(2分)(2022春•新郑市期末)小颖的爸爸要在某条街道l上修建一个奶站P向居民区A B提供牛奶要使点P到A B的距离之和最短则下列作法正确的是()A.B.C.D.【思路引导】作A点关于直线l的对称点连接对称点和点B交l于点P进而根据轴对称性质解答即可.【完整解答】解:作A点关于直线l的对称点连接对称点和点B交l于点P P即为所求;故选:B.9.(2分)(2022春•中原区期末)如图在△ABC中AB=AC AD BE是△ABC的两条中线AD=5 BE =6 P是AD上的一个动点连接PE PC则PC+PE的最小值是()A.5B.6C.7D.8【思路引导】如图连接PB只要证明PB=PC即可推出PC+PE=PB+PE由PE+PB≥BE可得P、B、E共线时PB+PE的值最小最小值为BE的长度.【完整解答】解:如图连接PB∵AB=AC BD=CD∴AD⊥BC∴PB=PC∴PC+PE=PB+PE∵PE+PB≥BE∴P、B、E共线时PB+PE的值最小最小值为BE的长度∴CP+EP的最小值是6.故选:B.10.(2分)(2022•西城区校级开学)如图在Rt△ABC中∠ACB=90° AC=3 BC=4 AB=5 AD平分∠CAB交BC于D点E、F分别是AD AC上的动点则CE+EF的最小值为()A.B.5C.3D.【思路引导】利用角平分线构造全等使两线段可以合二为一则EC+EF的最小值即为点C到AB的垂线段长度.【完整解答】解:在AB上取一点G使AG=AF∵∠CAD=∠BAD AE=AE∴△AEF≌△AEG(SAS)∴FE=EG∴CE+EF=CE+EG则最小值时CG垂直AB时CG的长度CG=.故选:D.二.填空题(共10小题满分20分每小题2分)11.(2分)(2022春•临渭区期末)如图在△ABC中AB=AC BC=4 △ABC的面积是10.AB的垂直平分线ED分别交AC AB边于E、D两点若点F为BC边的中点在线段ED上存在一点P使P、B、F三点构成的△PBF的周长最小则△PBF周长的最小值为7.【思路引导】由垂直平分线的性质可得A与B关于ED对称连接AF交ED于点P则当A、P、F 三点共线时△PBF周长最小为AF+FB的长.【完整解答】解:∵ED是线段AB的垂直平分线∴A与B关于ED对称连接AF交ED于点P∵AP=PB∴△PBF周长=PB+PF+FB=AP+PF+FB≥AF+FB当A、P、F三点共线时△PBF周长最小∵F为BC边的中点AB=AC∴AF⊥BC∴S△ABC=×BC×AF=10∵BC=4∴AF=5∴△PBF周长=AF+FB=5+2=7∴△PBF周长的最小值为7故答案为:7.12.(2分)(2022春•宝安区期末)如图在Rt△ABC中∠C=90° AC=4 AB=12 AD平分∠BAC交BC于点D过点D作DE⊥AD交AB于点E P是DE上的动点Q是BD上的动点则BP+PQ的最小值为8.【思路引导】过点D作DH⊥AB于H并延长DH先判断出△ADH≌△ADC(AAS)再判断出∠BDE =∠HDE在DH上取一点Q' 时DQ'=DQ连接PQ' BQ' 进而判断出△QDP≌△Q'DP(SAS)得出PQ=PQ' 即可判断出垂直于DH时BP+PQ最小即可求出答案.【完整解答】解:如图过点D作DH⊥AB于H并延长DH∴∠AHD=90°=∠C∵AD是∠BAC的平分线∴∠DAH=∠DAC∵AD=AD∴△ADH≌△ADC(AAS)∴∠ADH=∠ADC AH=AC=4∴BH=AB﹣AC=12﹣4=8∵DE⊥AD∴∠ADE=90°∴∠ADC+∠BDE=90°=∠ADH+∠EDH∴∠BDE=∠HDE在DH上取一点Q' 时DQ'=DQ连接PQ' BQ'∵DP=DP∴△QDP≌△Q'DP(SAS)∴PQ=PQ'∴BP+PQ=BP+PQ'≥BQ'(假设点Q是定点点B P Q'共线时取最小BQ')∵点Q是动点∴当BQ'⊥DH时即点Q'与点H重合BP+PQ的最小值为BH=8故答案为:8.13.(2分)(2022春•青岛期末)如图在△ABC中∠A=54° ∠C=76° D为AB中点点P在AC上从C向A运动;同时点Q在BC上从B向C运动当∠PDQ=28°时△PDQ的周长最小.【思路引导】根据两点之间线段最短把三角形的周长转化为一条线段的长利用三角形的内角和及平角的定义求解.【完整解答】解:过点D作DF⊥BC于N并截取NF=DN过点D作DE⊥AC于M并截取ME=DM连接EF则EF的长为△DPQ的最小值根据作图知:AC垂直平分DE BC垂直平分DF∴DQ=FQ PD=PE∴DQ+DP+PQ=FQ+QP+PE根据两点之间线段最短所以EF的长是△DPQ的最小值此时有:∠FDQ=∠DQP∠MDP=∠DPQ在△ABC中有∠A=54° ∠C=76°∴∠B=50°∴∠BDN=40° ∠ADM=36°∴∠QDP=180°﹣∠BDN﹣∠ADM﹣∠FDQ﹣∠MDP=180°﹣40°﹣36°﹣(∠DQP+∠DPQ)=104°﹣(180﹣∠PDQ)=104°﹣90°+∠QDP解得:∠QDP=28°.故当∠PDQ=28°时△PDQ的周长最小.14.(2分)(2022春•通川区期末)如图在四边形ABCD中AD∥BC AB=BC=4 AD=DC连接BD △BCD的面积为点E是边AB边上一动点点P在线段BD上连接P A PE则P A+PE的最小值是.【思路引导】根据已知条件得到BD垂直平分AC得到点A与点C关于直线BD对称过C作CE⊥AB 于E交BD于P则此时P A+PE的值最小且P A+PE的最小值=CE根据三角形的面积公式列方程即可得到结论.【完整解答】解:连接AC∵AB=BC=4 AD=DC∴BD垂直平分AC∴点A与点C关于直线BD对称过C作CE⊥AB于E交BD于P则此时P A+PE的值最小且P A+PE的最小值=CE∵AD∥BC∴S△ABC=S△BCD∴AB•CE=4CE=∴CE=故答案为:.15.(2分)(2022春•碑林区校级期末)如图在等边△ABC中BF是AC上中线点D在BF上连接AD 在AD的右侧作等边△ADE连接EF当△AEF的周长最小时则∠EAF=30°.【思路引导】首先证明点E在射线CE上运动(∠ACE=30°)作点A关于直线CE的对称点M连接FM交CE于E′ 此时AE′+FE′的值最小.【完整解答】解:如图∵△ABC△ADE都是等边三角形∴AB=AC AD=AE∠BAC=∠DAE=∠ABC=60°∴∠BAD=∠CAE∴△BAD≌△CAE∴∠ABD=∠ACE∵AF=CF∴∠ABD=∠CBD=∠ACE=30°∴点E在射线CE上运动(∠ACE=30°)作点A关于直线CE的对称点M连接FM交CE于E′ 此时AE′+FE′的值最小∵CA=CM∠ACM=60°∴△ACM是等边三角形∵AF=CF∴FM⊥AC∴E′是等边三角形三条角平分线的交点∴∠E′AF=30°即∠EAF=30°.故答案为:30°.16.(2分)(2022•南京模拟)如图△ABC为等腰三角形其中∠ABC=∠BAC=30° 以AC为底边作△ACD 其中∠ACD=∠CAD=30° 再以AD为底边作△ADE其中∠ADE=∠DAE=30° △ADE两底角的角平分线交于点O点P为直线AC上的动点已知|BP﹣DP|最大值为8.则DP+OP的值为4.【思路引导】作D点关于AC的对称点D' BD'与AC的交点P为点A此时|BP﹣DP|的值最大为BD' 即BD'=8 连接CD' 证明△ODD'≌△OAD'(SSS)求出D'O=D'A=4 即可求解.【完整解答】解:作D点关于AC的对称点D'∵∠DAC=∠CAB=30°∴D'在AB上∴BD'与AC的交点P为点A∴DP=D'P此时|BP﹣DP|的值最大为BD'∵|BP﹣DP|最大值为8∴BD'=8连接CD'∵∠CBA=30° ∠ACD=30° ∠ACD'=∠DCA∴∠BCD'=120°﹣30°=90°∴AD=AD'=CD=CD'=BD'•sin30°=4∵∠D'AD=60°∴DD'=4∵OA是∠DAE的角平分线DO是∠ADE的角平分线∴∠OAD=∠ODA=15°∴D'AO=75°∵DO=OA DD'=AD'∴△ODD'≌△OAD'(SSS)∴∠AOD'=∠DOD'=75°∴∠D'OA=∠D'AO=75°∴D'O=D'A=4∴DP+OP的值为4故答案为:4.17.(2分)(2022春•卧龙区期末)如图已知△ABC直线a⊥AC于点D且AD=CD点P是直线a上一动点连接PB PC若AB=5 AC=6 BC=3 则△PBC周长的最小值是8.【思路引导】找出C点关于a的对称点A AB交a于P则△PBC的周长最小求出即可.【完整解答】解:设直线a与AB交于P′ 当点P与点P′重合时PB+PC最小即△PBC的周长最小∵直线a⊥AC于点D且AD=CD∴直线a是AC的垂直平分线∴P′C=P′A∴△PBC的周长=PC+PB+BC=P′A+P′B+BC=AB+BC=5+3=8∴△PBC周长的最小值是8故答案为:8.18.(2分)(2021秋•西青区期末)如图在△ABC中∠B=60° BC=12.点M在BC边上且MC=BC 射线CD⊥BC于点C点P是射线CD上一动点点N是线段AB上一动点.(Ⅰ)线段MP+NP是否存在最小值?是(用“是”或“否”填空)(Ⅰ)如果线段MP+NP存在最小值请直接写出BN的长;如果不存在请说明理由.【思路引导】作点M关于直线CD的对称点M' 过M作M'N⊥AB于N交CD于P此时MP+PN的值最小.则CM'=CM=3 所以BM'=BC+CM'=12+3=15 推出BN=BM'==.【完整解答】解:如图作点M关于直线CD的对称点M' 过M作M'N⊥AB于N交CD于P此时MP+PN的值最小∵BC=12 MC=BC=3∴CM'=CM=3∴BM'=BC+CM'=12+3=15∵∠B=60° ∠BNM'=90°∴∠M'=30°∴BN=BM'==.故答案为:是.19.(2分)(2022春•抚州期末)如图等腰△ABC的底边BC=20 面积为160 点F是BC边上的一个动点EG是腰AC的垂直平分线若点D在EG上运动则CD+DF的最小值为16.【思路引导】如图作AH⊥BC于H连接AD.由EG垂直平分线段AC推出DA=DC推出DF+DC =AD+DF可得当A、D、F共线时DF+DC的值最小最小值就是线段AF的长.【完整解答】解:如图作AH⊥BC于H连接AD.∵EG垂直平分线段AC∴DA=DC∴DF+DC=AD+DF∴当A、D、F共线时DF+DC的值最小最小值就是线段AF的长∵•BC•AH=160∴AH=16根据垂线段最短∴当AF=AH时AF最小∴CD+DF的值最小为16.故答案为:16.20.(2分)(2022春•霞浦县期中)已知∠ABC=60° 点P为平面内一点且BP为定长∠ABP=20° Q 为射线BC上一动点连接PQ当BP+PQ的值最小时∠BPQ=50°.【思路引导】当BP+PQ的值最小时PQ最小此时PQ⊥BC据此解答即可.【完整解答】解:∵BP为定长∴当BP+PQ的值最小时PQ最小此时PQ⊥BC∴∠PQB=90°∵∠ABC=60° ∠ABP=20°∴∠PBQ=40°∴∠BPQ=90°﹣40°=50°故答案为:50°.三.解答题(共8小题满分60分)21.(6分)(2020秋•饶平县校级期末)如图已知在△ABC中AB=AC AD是BC边上的高P是AB边上的一点试在高AD上找一点E使得△PEB的周长最短.【思路引导】利用轴对称求最短路线作法得出答案.【完整解答】解:①连接PC交AD于点E.②由等腰三角形对称的性质可知BE=CE故BE+PE=PC③由两点之间线段最短可知△PMN的最短周长即为PC+PB.22.(6分)(2022春•二七区校级期中)在△ABC中AB=AC D是直线BC上一点以AD为一边在AD 的右侧作△ADE使AE=AD∠DAE=∠BAC连接CE.设∠BAC=α ∠BCE=β.(1)如图(1)点D在线段BC上移动时①角α与β之间的数量关系是α+β=180°;②若线段BC=2 点A到直线BC的距离是3 则四边形ADCE周长的最小值是8;(2)如图(2)点D在线段BC的延长线上移动时①请问(1)中α与β之间的数量关系还成立吗?如果成立请说明理由;②线段BC、DC、CE之间的数量是CE=BC+CD.【思路引导】(1)①先证∠CAE=∠BAD再证明△ABD≌△ACE得出对应角相等∠ABD=∠ACE即可得出结论;②根据全等三角形的性质和等腰三角形的性质即可得到结论;(2)①如图2 根据等式的性质就可以得出∠CAE=∠BAD就可以得出△ABD≌△ACE就可以得出∠ABD=∠ACE就可以得出结论;②根据全等三角形的性质即可得到结论.【完整解答】解:(1)①α+β=180°;理由如下:∵∠DAE=∠BAC∴∠DAE﹣∠DAC=∠BAC﹣∠DAC∴∠CAE=∠BAD在△ABD和△ACE中∴△ABD≌△ACE(SAS)∴∠ABD=∠ACE∵∠BAC+∠ABD+∠ACB=180°∴∠BAC+∠ACE+∠ACB=180°∴∠BAC+∠BCE=180° 即α+β=180°故答案为:α+β=180°;②由①知△ABD≌△ACE∴BD=CE AD=AE∴CD+CE=BD+CD=BC=2当AD⊥BC时AD最短即四边形ADCE周长的值最小∵点A到直线BC的距离是3∴AD=AE=3∴四边形ADCE周长的最小值是2+3+3=8 故答案为:8;(2)①成立理由如下:∵∠DAE=∠BAC∴∠DAE+∠CAD=∠BAC+∠CAD∴∠BAD=∠CAE在△BAD和△CAE中∴△ABD≌△ACE(SAS)∴∠ABD=∠ACE∵∠ACD=∠ABD+∠BAC=∠ACE+∠DCE ∴∠BAC=∠DCE∴∠BAC+∠BCE=∠DCE+∠BCE=180° 即α+β=180°;②∴△ABD≌△ACE(SAS)∴∠ABD=∠ACE BD=CE∵BD=BC+CD∴CE=BC+CD故答案为:CE=BC+CD.23.(6分)(2021秋•潼南区校级期末)已知四边形ABCD请在四边形ABCD内部找一点O.(1)使点O到点A、B、C、D的距离之和最小.保留作图痕迹不写作法.(请用黑色签字笔作图)(2)这样作图的理由是两边之和大于第三边.【思路引导】连接AC和BD交于点O可得点O到点A B C D的距离之和最小.【完整解答】解:(1)连接AC、BD交于点O则点O为所求的点.理由如下:如果存在不同于点O的交点P连接P A、PB、PC、PD那么P A+PC>AC即P A+PC>OA+OC同理PB+PD>OB+OD∴P A+PB+PC+PD>OA+OB+OC+OD即点O是线段AC、BD的交点时OA+OB+OC+OD之和最小.(2)这样作图的理由是两边之和大于第三边.故答案为:两边之和大于第三边.24.(8分)(2021春•东港市月考)如图所示P为△BOA内任一点在OB上找一点M在OA上找一点N 使得△PMN的周长最短.【思路引导】作点P关于OA、OB的对称点P''、P' 连接P'P'' 分别交OA、OB于点N、M即M、N 为所求.此时△PMN的周长最短.【完整解答】解:如图.作点P关于OA、OB的对称点P''、P' 连接P'P''分别交OA、OB于点N、M即M、N为所求.此时△PMN的周长为PM+PN+MN=P''N+MN+P'M≥P'P''即最小值为P'P''的长度.25.(9分)(2021春•万州区期末)已知:M、N分别是∠AOB的边OA、OB上的定点(1)如图1 若∠O=∠OMN过M作射线MD∥OB(如图)点C是射线MD上一动点∠MNC的平分线NE交射线OA于E点.试探究∠MEN与∠MCN的数量关系;(2)如图2 若P是线段ON上一动点Q是射线MA上一动点.∠AOB=20° 当MP+PQ+QN取得最小值时求∠OPM+∠OQN的值.【思路引导】(1)设∠O=∠OMN=α 由三角形外角可得∠MNB=2α 再由MD∥OB可得∠AMD=α 根据NE平分∠MNC得到∠MNE=∠ENC设∠MNE=β 可求∠CNB=2α﹣2β ∠MCN=2α﹣2β 再由三角形内角和定理得∠EMC+∠MEN=∠ENC+∠MCN可得∠MEN=α﹣β 进而得到2∠MEN =∠MCN;(2)作M点关于OB的对称点M' N点关于OA的对称点N' 连接M'N'与OB、OA分别交于点P、点Q连接ON'、OM' 此时MP+PQ+QN的值最小由对称性可知∠OQN'=∠OQN∠OPM'=∠OPM 所以∠OPM'=∠AOB+∠OQP=∠AOB+(180°﹣∠OQN')代入已知∠AOB=20° 可得∠OM'P=200°﹣∠OQN' 所以∠OPM+∠OQN=200°.【完整解答】解:(1)设∠O=∠OMN=α∴∠MNB=2α∵MD∥OB∴∠AMD=α∵NE平分∠MNC∴∠MNE=∠ENC设∠MNE=β∴∠CNB=2α﹣2β∵MD∥OB∴∠MCN=2α﹣2β∴∠EMC+∠MEN=∠ENC+∠MCN∴β+2α﹣2β=α+∠MEN∴∠MEN=α﹣β∴2∠MEN=∠MCN;(2)作M点关于OB的对称点M' N点关于OA的对称点N' 连接M'N'与OB、OA分别交于点P、点Q连接ON'、OM'∴MP+PQ+QN=M'N' 此时MP+PQ+QN的值最小由对称性可知∠OQN'=∠OQN∠OPM'=∠OPM∴∠OPM'=∠AOB+∠OQP=∠AOB+(180°﹣∠OQN')∵∠AOB=20°∴∠OM'P=200°﹣∠OQN'∴∠OPM+∠OQN=200°.26.(8分)(2021春•龙口市月考)如图直线a∥b点A D在直线b上射线AB交直线a于点B CD ⊥a于点C交射线AB于点E AB=15cm BE:AE=1:2 P为射线AB上一动点P从A点出发沿射线AB方向运动速度为1cm/s设点P运动时间为t M为直线a上一定点连接PC PD.(1)当t=m时PC+PD有最小值求m的值;(2)当t<m(m为(1)中的取值)时探究∠PCM、∠PDA与∠CPD的关系并说明理由;(3)当t>m(m为(1)中的取值)时直接写出∠PCM、∠PDA与∠CPD的关系.【思路引导】(1)根据P、C、D三点共线时即点P与点E重合时PC+PD的值最小解答即可;(2)当t<m时点P在AE上过点P作PH∥a∥b根据平行线的性质可得结论;(3)当t>m时点P在BE上过点P作PH∥a∥b根据平行线的性质可得结论.【完整解答】解:(1)在△PCD中PC+PD>CD当点P与E重合时此时PC+PD=CD最小∴AP=AE∵BE:AE=1:2 AB=15cm∴AE=AB=10cm∴t=m==10s.故m=10时PC+PD值最小;(2)如图当t<m即t<10时点P在AE上过点P作PN∥a∵a∥b∴PN∥a∥b∴∠PCM=∠CPN∠PDA=∠DPN∴∠PCM+∠PDA=∠CPN+∠DPN∵∠CPD=∠CPN+∠DPN∴∠PCM+∠PDA=∠CPD.(3)当t>m即t>4时点P在BE上过点P作PH∥a如图:又∵a∥b∴PH∥a∥b∴∠PCM+∠CPH=180° ∠PDA+∠DPH=180°∴∠PCM+∠CPH+∠PDA+∠DPH=360°又∵∠CPD=∠CPH+∠DPH∴∠PCM+∠CPD+∠PDA=360°即当12≥t>4时∠PCM+∠CPD+∠PDA=360°.当t>12时同法可得∠PCM=∠CPD+∠PDA.综上所述t>4时∠PCM+∠CPD+∠PDA=360°或∠PCM=∠CPD+∠PDA.27.(8分)(2020秋•天心区校级月考)如图把两个全等的腰长为8的等腰直角三角形沿他们的斜边拼接得到四边形ABCD N是斜边AC上一动点.(1)若E、F为AC的三等分点求证:∠ADE=∠CBF;(2)若M是DC上一点且DM=2 求DN+MN的最小值;(注:计算时可使用如下定理:在直角△ABC中若∠C=90° 则AB2=AC2+BC2)(3)若点P在射线BC上且NB=NP求证:NP⊥ND.【思路引导】(1)用SAS证明△ADE≌△CBF从而得出∠ADE=∠CBF;(2)由于D、B关于AC对称所以当B、N、M在一直线上时DN+MN最小.根据勾股定理可求出BM的长度从而得出DN+MN的最小值;(3)当点P在射线BC上时分三种情况进行讨论:①点P在线段BC上(P与B、C不重合);②点P 与点C重合;③点P在BC延长线上.针对每一种情况都证明∠DNP=90° 然后根据垂直的定义得出NP⊥ND.【完整解答】解:(1)证明:∵E、F为AC的三等分点∴AE=AC CF=AC∴AE=CF.∵AB=BC∠ABC=90°∵∠BAC=∠BCA=45°同理∠DAC=45°∴∠BCA=∠DAC.∵△ADE≌△CBF∴CB=AD∴在△ADE和△CBF中AE=CF∠DAE=∠BCF AD=CB∴△ADE≌△CBF(SAS)∴∠ADE=∠CBF.(2)∵D、B关于AC对称所以当B、N、M在一直线上时DN+MN最小.(4分)∵AB=8 DM=2 ∴CM=6.在Rt△MCB中∠MCB=90° CM=6 BC=8 根据题中定理可求出BM=10.∴DN+MN最小值为10.(3)①当点P在线段BC上(P与B、C不重合)时∵NB=NP∴∠NBP=∠NPB.∵D、B关于AC对称∴∠NBP=∠NDC∴∠NPB+∠NPC=∠NDC+∠NPC=180°∴∠DNP=360°﹣(∠BCD+∠NDC+∠NPC)=90°∴NP⊥ND.②当点P与点C重合时点N恰好在AC的中点处∵∠NDC=∠NCD=45° ∴∠DNC=90°.∴NP⊥ND.③当点P在BC延长线上时∵NB=NP∴∠NBP=∠NPB.∴D、B关于AC对称∠NBP=∠NDC∴∠NPC=∠NDC又∵∠DHN=∠CHP∴∠DNP=∠DCP=90°∴NP⊥ND.28.(9分)(2020八上·椒江期中)如图(1)(1分)性质:角平分线上的点到角两边的距离相等 如图1:OP 平分∠MON PC ⊥OM 于C PB ⊥ON 于B 则PB PC (填“ > ”“ < ”或“=”);(2)(5分)探索:如图2 小明发现 在△ABC 中 AD 是∠BAC 的平分线 则 ABD ADC S AB S AC=请帮小明说明原因.(3)(5分)应用:如图3 在小区三条交叉的道路AB BC CA 上各建一个菜鸟驿站D P E 工作人员每天来回的路径为P→D→E→P①问点P 应选在BC 的何处时 才能使PD+DE+PE 最小?②若∠BAC=30° S △ABC=10 BC=5 则PD+DE+PE 的最小值是多少?【答案】(1)=(2)解:理由:过点D 作DE ⊥AB 于E DF ⊥AC 于F∵AD 是∠BAC 的平分线∴DE=DF ∴ABD ADC 1AB SAB 21S AC AC 2DE DF ⋅==⋅ ; (3)解:①过点A 作AP ⊥BC 于P 分别作点P 关于AB 、AC 的对称点P 1、P 2 连接P 1P 2分别交AB 、AC 于D 、E 连接PD 、PE 、AP 1、AP 2由对称的性质可得AP 1=AP=AP 2 DP 1=DP EP 2=EP∴PD+DE+PE= DP 1+DE+ EP 2= P 1P 2 根据两点之间 线段最短和垂线段最短 即可得出此时PD+DE+PE 最小 即P 1P 2的长即当AP ⊥BC 于P 时 PD+DE+PE 最小;②∵S △ABC =10 BC=5∴12BC·AP=10 解得:AP=4由对称的性质可得AP 1=AP=AP 2=4 DP 1=DPEP 2=EP ∠DAP 1=∠DAP ∠EAP 2=∠EAP∴∠DAP1+∠EAP2=∠DAP+∠EAP=∠DAE=30°∴∠P1AP2=60°∴△P1AP2是等边三角形∴P1P2= AP1=4即PD+DE+PE的最小值是4.【完整解答】解:(1)∵OP平分∠MON PC⊥OM于C PB⊥ON于B∴PB=PC故答案为:=;【思路引导】(1)根据角平分线的性质即可得出结论;(2)过点D作DE⊥AB于E DF⊥AC于F 根据角平分线的性质可得DE=DF 然后根据三角形的面积公式即可证出结论;(3)①过点A作AP⊥BC于P 分别作点P关于AB、AC的对称点P1、P2连接P1P2分别交AB、AC于D、E 连接PD、PE、AP1、AP2即可;②根据三角形的面积公式即可求出AP 然后根据对称的性质可得AP1=AP=AP2=4 DP1=DP EP2=EP ∠DAP1=∠DAP ∠EAP2=∠EAP 从而证出△P1AP2是等边三角形即可得出结论.。
2023学年人教版数学八年级上册压轴题专题精选汇编( 等边三角形的性质)原卷版
2023学年人教版数学八年级上册压轴题专题精选汇编等边三角形的性质考试时间:120分钟 试卷满分:100分姓名:__________ 班级:__________考号:__________题号一 二 三 总分得分评卷人得 分 一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2021八上·嵩县期末)如图, ABC 是等边三角形, BD 是中线,延长 BC 至E ,使CE CD = ,则下列结论错误..的是( )A .30CED ∠=︒B .120BDE ∠=︒C .DE BD = D .DE AB = 2.(2分)(2021八上·凉山期末)三角形中,最大角 α 的取值范围是( )A .090α︒<<︒B .60180α︒<<︒C .6090α︒≤<︒D .60180α︒≤<︒3.(2分)(2021八上·遵义期末)点D 、E 分别是等边三角形 ABC 的边 BC 、 AB 的中点, 6AD = ,F 是AD 上一动点,则 BF EF + 的最小值是( )A .6B .7C .8D .94.(2分)(2021八上·松桃期末)如图,△ABC 是等边三角形,点E 是AC 的中点,过点E 作EF ⊥AB 于点F ,延长BC 交EF 的反向延长线于点D ,若EF=1,则DF 的长为( )A .2B .2.5C .3D .3.55.(2分)(2021八上·灌阳期末)△BDE 和△FGH 是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC 内.若BC =5,则五边形DECHF 的周长为( )A .8B .10C .11D .126.(2分)(2021八上·河东期末)如图,过边长为4的等边ABC 的边AB 上一点P ,作PE ⊥AC 于E ,Q 为BC 延长线上一点,当PA=CQ 时,连PQ 交AC 边于D ,则DE 的长为( )A .95B .2C .115D .1257.(2分)(2021八上·乌兰察布期末)如图所示,C 为线段AE 上一动点(不与点A ,E 重合),在AE 同侧分别作正ABC 和正CDE ,AD 与BE 交于点O ,AD 与BC 交于点P ,BE 与CD 交于点Q ,连接PQ .以下四个结论:①ACD BCE ≅;②AD BE =;③60AOB ∠=︒;④CPQ 是等边三角形.其中正确的是( )A.①②③④B.②③④C.①③④D.①②③8.(2分)(2021八上·江油期末)下列结论正确的是()A.有两个锐角相等的两个直角三角形全等B.两个等边三角形全等C.一条斜边对应相等的两个直角三角形全等D.顶角和底边对应相等的两个等腰三角形全等9.(2分)(2021八上·德阳月考)如图所示,正方形ABCD的面积为16,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则最小值为()A.2B.3C.4D.610.(2分)(2021八上·句容期末)如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM绕点B逆时针旋转60 得到BN,连接HN.则在点M 运动过程中,线段HN长度的最小值是()A.54B.1 C.2 D.52评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2021八上·丰台期末)如图,在等边三角形ABC 中,2AB =,BD 是AC 边的高线,延长BC 至点E ,使CE CD =,则BE 的长为 .12.(2分)(2021八上·本溪期末)如图,ABC 和DEC 都是等边三角形,连接AD ,BD ,BE ,30EBD ∠=︒.下列四个结论中:①ACD ≌BCE ;②180ADC BDE ∠+∠=︒;③222BE BD BC +=;④90BED ∠=︒,正确的是 (填写所有正确结论的序号).13.(2分)(2021八上·延边期末)如图,正三角形ABC 中,D 是AB 的中点,DE AC ⊥于点E ,过点E 作EF AB 与BC 交于点F .若8BC =,则EFC 的周长为 .14.(2分)(2021八上·道里期末)如图,ABC 是等边三角形,点E 在AC 的延长线上,点D 在线段AB 上,连接ED 交线段BC 于点F ,过点F 作FN AC ⊥于点N ,75DB CN =,EF FD =,若17FB =,则AN 的长为 .15.(2分)(2021八上·铁西期末)如图,ABC 是等边三角形,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,当PC 与PE 的和最小时,ACP ∠= 度.16.(2分)(2021八上·延边期末)如图,ABC 是等腰直角三角形,AB 是斜边,以BC 为一边在右侧作等边三角形BCD ,连接AD 与BC 交于点E ,则BED ∠的度数为 度.17.(2分)(2021八上·灌云期中)如图,等边△ABC 中,AD 为BC 边上的高,点M 、N 分别在AD 、AC 上,且AM =CN ,连BM 、BN ,当BM+BN 最小时,∠MBN = 度.18.(2分)(2021八上·铁东期中)如图,在 Rt ABC 中, 90ACB ∠=︒ , AC BC = ,以BC 为边+的在BC的右侧作等边BCD,点E为BD的中点,点P为CE上一动点,连结AP,BP.当AP BP ∠的度数为.值最小时,CBP19.(2分)(2021八上·平阳月考)如图,△ABC中,∠B=30°,∠C=90°,等边三角形DEF的三个顶点分别落在AC,AB,BC上,若CD=4,BE=6,则AB的长为.20.(2分)(2020八上·江岸月考)如图,等边三角形ABC中,BD⊥AC于D,BC=8,E在BD上一动点,以CE为边作等边三角形ECP,连DP,则DP的最小值为.评卷人得分三.解答题(共7小题,满分60分)21.(5分)(2021八上·盐池期末)如图, ABC 是等边三角形, BD 是中线,延长 BC 至E ,使 CE CD = .求证: DB DE = .22.(5分)(2021八上·建邺期末)如图,在 Rt ABC 中, 90ACB ∠=︒ , CAP 和 CBQ 都是等边三角形, BQ 和 CP 交于点 H ,求证: BQ CP ⊥ .23.(9分)(2021八上·覃塘期中)如图,已知 ABC 是等边三角形,点M ,N 分别在CB ,BC 的延长线上,且BM=CN.(1)(4分)求证:AM=AN;(2)(5分)在(1)的条件下,作∠AMN的平分线MF,MF与AB,AC,AN分别交于点D,E,F,若AD=MD.求证:MF=AC+CN.24.(13分)(2021八上·遵义期末)数学是一门充满乐趣、奥妙、又极具探索的学科,对一个人的思维也是一种“挑战”.几何图形更是变幻无穷,但只要我们借助图形的直观、特殊情形出发,逐步“从特殊到一般”进行探索,思路和方法自然就会显现出来.下面是一道探索几何图形中线段AE与DB数量关系的例子:已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.小强的思路是:(1)(3分)(特例探索)如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(选填“>”、“<”或“=”).(2)(5分)(特例引路)如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论并加以理由说明,格式如:答:AE ▲ DB(选填“>”、“<”或“=”);理由如下,过点E 作EF∥BC交AC于点F.(请你将接下来的解答过程补充完整).(3)(5分)(拓展延伸)在等边三角形ABC中,当点E在直线AB上(在线段AB外),点D在线段CB的延长线上时,同样ED=EC,若已知△ABC的边长为1,AE=2,则请你帮助小强求出CD的长.(请你画出相应图形,并简要写出求CD长的过程).25.(8分)(2019八上·同安期中)如图,△ABC是边长为10的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合).(Ⅰ)如图1,若点Q是BC边上一动点,与点P同时以相同的速度由C向B运动(与C、B不重合).求证:BP=AQ;(Ⅰ)如图2,若Q是CB延长线上一动点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D,在运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果发生改变,请说明理由.26.(10分)(2019八上·越秀期中)已知:在等腰三角形ABC中,AB=AC,AD⊥BC于点D,以AC为边作等边三角形ACE,直线BE交直线AD于点F,连接FC.(1)(5分)如图1,120°<∠BAC<180°,△ACE与△ABC在直线AC的异侧,且FC交AE于点M.①求证:∠FEA=∠FCA;②猜想线段FE,AD,FD之间的数量关系,并证明你的结论;(2)(5分)当60°<∠BAC<120°,且△ACE与△ABC在直线AC的异侧时,利用图2画出图形探究线段FE,AD,FD之间的数量关系,并直接写出你的结论.27.(10分)(2021八上·望花期末)已知,点P、点Q分别是等边△ABC的边AB、BC所在直线上的动点(端点除外).点P、点Q以相同的速度,同时从点A、点B出发,连接AQ、CP,直线AQ、CP相交于点M.(1)(5分)如图1,当点P、Q分别在AB、BC边上时,①求证:△ABQ≌△CAP;②当点P、点Q分别在AB、BC边上运动时,∠QMC的大小是否变化?若变化,请说明理由;若不变,求出它的度数;(2)(5分)如图2,当点P、Q分别在AB、BC的延长线上运动时,请直接写出∠QMC的度数.。
八年级数学上册压轴题 期末复习试卷练习(Word版 含答案)
八年级数学上册压轴题 期末复习试卷练习(Word 版 含答案)一、压轴题1.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______;(2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;……①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)2.(1)在等边三角形ABC 中,①如图①,D ,E 分别是边AC ,AB 上的点且AE=CD ,BD 与EC 交于点F ,则∠BFE 的度数是 度;②如图②,D ,E 分别是边AC ,BA 延长线上的点且AE=CD ,BD 与EC 的延长线交于点F ,此时∠BFE 的度数是 度;(2)如图③,在△ABC 中,AC=BC ,∠ACB 是锐角,点O 是AC 边的垂直平分线与BC 的交点,点D ,E 分别在AC ,OA 的延长线上,AE=CD ,BD 与EC 的延长线交于点F ,若∠ACB=α,求∠BFE 的大小.(用含α的代数式表示).3.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB -的最大值及此时点P 的坐标.4.在平面直角坐标系xOy 中,若P ,Q 为某个矩形不相邻的两个顶点,且该矩形的边均与某条坐标轴垂直,则称该矩形为点P ,Q 的“相关矩形”.图1为点P ,Q 的“相关矩形”的示意图.已知点A 的坐标为(1,2).(1)如图2,点B 的坐标为(b ,0).①若b =﹣2,则点A ,B 的“相关矩形”的面积是 ;②若点A ,B 的“相关矩形”的面积是8,则b 的值为 .(2)如图3,点C 在直线y =﹣1上,若点A ,C 的“相关矩形”是正方形,求直线AC 的表达式;(3)如图4,等边△DEF 的边DE 在x 轴上,顶点F 在y 轴的正半轴上,点D 的坐标为(1,0).点M 的坐标为(m ,2),若在△DEF 的边上存在一点N ,使得点M ,N 的“相关矩形”为正方形,请直接写出m 的取值范围.5.如图,已知△ABC 中,AB=AC=10cm ,BC=8cm ,点D 为AB 的中点.如果点P 在线段BC上以3cm/s 的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. (1)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,BP= cm ,CQ= cm . (2)若点Q 的运动速度与点P 的运动速度相等,经过1s 后,△BPD 与△CQP 是否全等,请说明理由;(3)若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点P 与点Q 第一次相遇?6.在平面直角坐标系中,点A 、B 在坐标轴上,其中()0,A a 、(),0B b 满足|21|280a b a b --++-=.(1)求A 、B 两点的坐标;(2)将线段AB 平移到CD ,点A 的对应点为()2,C t -,如图1所示,若三角形ABC 的面积为9,求点D 的坐标;(3)平移线段AB 到CD ,若点C 、D 也在坐标轴上,如图2所示.P 为线段AB 上的一动点(不与A 、B 重合),连接OP 、PE 平分OPB ∠,2BCE ECD ∠=∠.求证:3()BCD CEP OPE ∠=∠-∠.7.已知:ABC 中,过B 点作BE ⊥AD ,=90=,∠︒ACB AC BC .(1)如图1,点D 在BC 的延长线上,连AD ,作BE AD ⊥于E ,交AC 于点F .求证:=AD BF ;(2)如图2,点D 在线段BC 上,连AD ,过A 作AE AD ⊥,且=AE AD ,连BE 交AC 于F ,连DE ,问BD 与CF 有何数量关系,并加以证明;(3)如图3,点D 在CB 延长线上,=AE AD 且AE AD ⊥,连接BE 、AC 的延长线交BE于点M ,若=3AC MC ,请直接写出DB BC的值.8.如图所示,在平面直角坐标系xOy 中,已知点A 的坐标(3,2)-,过A 点作AB x ⊥轴,垂足为点B ,过点(2,0)C 作直线l x ⊥轴,点P 从点B 出发在x 轴上沿着轴的正方向运动.(1)当点P 运动到点O 处,过点P 作AP 的垂线交直线l 于点D ,证明AP DP =,并求此时点D 的坐标;(2)点Q 是直线l 上的动点,问是否存在点P ,使得以P C Q 、、为顶点的三角形和ABP ∆全等,若存在求点P 的坐标以及此时对应的点Q 的坐标,若不存在,请说明理由.9.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab +=-成立的一对有理数,a b 为“白马有理数对”,记为(,)a b ,如:数对5(3,2),4,3⎛⎫ ⎪⎝⎭都是“白马有理数对”. (1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________; (2)若(,3)a 是“白马有理数对”,求a 的值;(3)若(,)m n 是“白马有理数对”,则(,)n m --是“白马有理数对”吗?请说明理由. (4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)10.问题情景:数学课上,老师布置了这样一道题目,如图1,△ABC 是等边三角形,点D 是BC 的中点,且满足∠ADE =60°,DE 交等边三角形外角平分线于点E .试探究AD 与DE 的数量关系.操作发现:(1)小明同学过点D 作DF ∥AC 交AB 于F ,通过构造全等三角形经过推理论证就可以解决问题,请您按照小明同学的方法确定AD 与DE 的数量关系,并进行证明.类比探究:(2)如图2,当点D 是线段BC 上任意一点(除B 、C 外),其他条件不变,试猜想AD 与DE 之间的数量关系,并证明你的结论.拓展应用:(3)当点D 在线段BC 的延长线上,且满足CD =BC ,在图3中补全图形,直接判断△ADE 的形状(不要求证明).11.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.12.一次函数y =kx +b 的图象经过点A (0,9),并与直线y =53x 相交于点B ,与x 轴相交于点C ,其中点B 的横坐标为3.(1)求B 点的坐标和k ,b 的值;(2)点Q 为直线y =kx +b 上一动点,当点Q 运动到何位置时△OBQ 的面积等于272?请求出点Q 的坐标; (3)在y 轴上是否存在点P 使△PAB 是等腰三角形?若存在,请直接写出点P 坐标;若不存在,请说明理由. 【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2,7,4;(2)83x ≥;(3)①t 的内数n =有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+,解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数n =;②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.2.(1)①60°;②60°;(2)∠BFE =α.【解析】【分析】(1)①先证明△ACE ≌△CBD 得到∠ACE=∠CBD ,再由三角形外角和定理可得∠BFE=∠CBD+∠BCF ;②先证明△ACE ≌△CBD 得∠ACE=∠CBD=∠DCF ,再由三角形外角和定理可得∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA ;(2)证明△AEC ≌△CDB 得到∠E=∠D ,则∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【详解】(1)如图①中,∵△ABC 是等边三角形,∴AC=CB ,∠A=∠BCD=60°,∵AE=CD ,∴△ACE≌△CBD,∴∠ACE=∠CBD,∴∠BFE=∠CBD+∠BCF=∠ACE+∠BCF=∠BCA=60°.故答案为60.(2)如图②中,∵△ABC是等边三角形,∴AC=CB,∠A=∠BCD=60°,∴∠CAE=∠BCD=′120°∵AE=CD,∴△ACE≌△CBD,∴∠ACE=∠CBD=∠DCF,∴∠BFE=∠D+∠DCF=∠D+∠CBD=∠BCA=60°.故答案为60.(3)如图③中,∵点O是AC边的垂直平分线与BC的交点,∴OC=OA,∴∠EAC=∠DCB=α,∵AC=BC,AE=CD,∴△AEC≌△CDB,∴∠E=∠D,∴∠BFE=∠D+∠DCF=∠E+∠ECA=∠OAC=α.【点睛】本题综合考查了三角形全等以及三角形外角和定理.3.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】 (1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.4.(1)①6;②5或﹣3;(2)直线AC 的表达式为:y =﹣x+3或y =x+1;(3)m 的取值范围为﹣3≤m ≤﹣323m ≤3.【解析】【分析】(1)①由矩形的性质即可得出结果;②由矩形的性质即可得出结果;(2)过点A (1,2)作直线y =﹣1的垂线,垂足为点G ,则AG =3求出正方形AGCH 的边长为3,分两种情况求出直线AC 的表达式即可;(3)由题意得出点M 在直线y =2上,由等边三角形的性质和题意得出OD =OE =12DE =1,EF =DF =DE =2,得出OF 3OD 3①当点N 在边EF 上时,若点N 与E 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣3,2)或(1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(﹣32);得出m 的取值范围为﹣3≤m ≤﹣3或2﹣3≤m ≤1;②当点N 在边DF 上时,若点N 与D 重合,点M ,N 的“相关矩形”为正方形,则点M 的坐标为(3,2)或(﹣1,2);若点N 与F 重合,点M ,N 的“相关矩形”为正方形,则点M的坐标为(22);得出m的取值范围为2≤m≤3或2﹣≤m≤1;即可得出结论.【详解】解:(1)①∵b=﹣2,∴点B的坐标为(﹣2,0),如图2﹣1所示:∵点A的坐标为(1,2),∴由矩形的性质可得:点A,B的“相关矩形”的面积=(1+2)×2=6,故答案为:6;②如图2﹣2所示:由矩形的性质可得:点A,B的“相关矩形”的面积=|b﹣1|×2=8,∴|b﹣1|=4,∴b=5或b=﹣3,故答案为:5或﹣3;(2)过点A(1,2)作直线y=﹣1的垂线,垂足为点G,则AG=3,∵点C在直线y=﹣1上,点A,C的“相关矩形”AGCH是正方形,∴正方形AGCH的边长为3,当点C在直线x=1右侧时,如图3﹣1所示:CG=3,则C(4,﹣1),设直线AC的表达式为:y=kx+a,则214k ak a=+⎧⎨-=+⎩,解得;13ka=-⎧⎨=⎩,∴直线AC的表达式为:y=﹣x+3;当点C在直线x=1左侧时,如图3﹣2所示:CG=3,则C(﹣2,﹣1),设直线AC的表达式为:y=k′x+b,则212k bk b=+⎧⎨-=-+''⎩,解得:k1 b1=⎧⎨='⎩,∴直线AC的表达式为:y=x+1,综上所述,直线AC的表达式为:y=﹣x+3或y=x+1;(3)∵点M的坐标为(m,2),∴点M在直线y=2上,∵△DEF是等边三角形,顶点F在y轴的正半轴上,点D的坐标为(1,0),∴OD=OE=12DE=1,EF=DF=DE=2,∴OF=3OD=3,分两种情况:如图4所示:①当点N在边EF上时,若点N与E重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣3,2)或(1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(﹣2+3,2)或(2﹣3,2);∴m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤1;②当点N在边DF上时,若点N与D重合,点M,N的“相关矩形”为正方形,则点M的坐标为(3,2)或(﹣1,2);若点N与F重合,点M,N的“相关矩形”为正方形,则点M的坐标为(2﹣3,2)或(﹣2+3,2);∴m的取值范围为2﹣3≤m≤3或﹣1≤m≤﹣2+3;综上所述,m的取值范围为﹣3≤m≤﹣2+3或2﹣3≤m≤3.【点睛】此题主要考查图形与坐标综合,解题的关键是熟知正方形的性质、一次函数的图像与性质及新定义的应用.5.(1)BP=3cm,CQ=3cm;(2)全等,理由详见解析;(3)154;(4)经过803s点P与点Q第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP、CQ的长;(2)利用SAS可证三角形全等;(3)三角形全等,则可得出BP=PC,CQ=BD,从而求出t的值;(4)第一次相遇,即点Q第一次追上点P,即点Q的运动的路程比点P运动的路程多10+10=20cm的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s,点Q的运动速度与点P的运动速度相等∴BP=CQ=3×1=3cm,∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC﹣BP,BC=8cm,∴PC=8﹣3=5cm,∴PC=BD又∵AB=AC,∴∠B=∠C,在△BPD 和△CQP 中,PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等, ∴BP 与CQ 不是对应边, 即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C , 则BP=PC=4cm ,CQ=BD=5cm , ∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.6.(1)A ,B 两点的坐标分别为()0,2,()3,0;(2)点D 的坐标是141,3⎛⎫- ⎪⎝⎭;(3)证明见解析 【解析】 【分析】(1)根据非负数的性质得出二元一次方程组,求解即可;(2)过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,根据三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积)列出方程,求解得出点C 的坐标,由平移的规律可得点D 的坐标;(3)过点E 作//EF CD ,交y 轴于点F ,过点O 作//OG AB ,交PE 于点G ,根据两直线平行,内错角相等与已知条件得出3BCD CEF ∠=∠,同样可证OGP OPE ∠=∠,由平移的性质与平行公理的推论可得FEP OGP ∠=∠,最后根据CEP CEF FEP ∠=∠+∠,通过等量代换进行证明. 【详解】解:(1)21280a b a b --++-=,又∵|21|0a b --≥,280a b +-≥,|21|0a b ∴--=,280a b +-=,即210280a b a b --=⎧⎨+-=⎩,解方程组2128a b a b -=⎧⎨+=⎩得23a b =⎧⎨=⎩,A ∴,B 两点的坐标分别为()0,2,()3,0;(2)如图,过点B 作y 轴的平行线分别与过点A ,C 作x 轴的平行线交于点N ,点M ,过点C 作y 轴的平行线与过点A 作x 轴的平行线交于点T ,∴三角形ABC 的面积=长方形CMNT 的面积-(三角形ANB 的面积+三角形ATC 的面积+三角形CMB 的面积),根据题意得,11195(2||)232(2||)5||222t t t ⎡⎤=⨯+-⨯⨯+⨯⨯++⨯⨯⎢⎥⎣⎦, 化简,得3||42t =, 解得,83t =±,依题意得,0t <,83t ∴=-,即点C 的坐标为82,3⎛⎫-- ⎪⎝⎭,∴依题意可知,点C 的坐标是由点A 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的,从而可知,点D 的坐标是由点B 的坐标先向左平移2个单位长度,再向下平移143个单位长度得到的, ∴点D 的坐标是141,3⎛⎫-⎪⎝⎭;(3)证明:过点E 作//EF CD ,交y 轴于点F ,如图所示, 则ECD CEF ∠=∠,2BCE ECD ∠=∠,33BCD ECD CEF ∴∠=∠=∠,过点O 作//OG AB ,交PE 于点G ,如图所示, 则OGP BPE ∠=∠,PE 平分OPB ∠, OPE BPE ∴∠=∠, OGP OPE ∴∠=∠,由平移得//CD AB ,//OG FE ∴,FEP OGP ∴∠=∠, FEP OPE ∴∠=∠, CEP CEF FEP ∠=∠+∠, CEP CEF OPE ∴∠=∠+∠, CEF CEP OPE ∴∠=∠-∠,3()BCD CEP OPE ∴∠=∠-∠.【点睛】本题综合性较强,考查非负数的性质,解二元一次方程组,平行线的性质,平移的性质,坐标与图形的性质,第(3)题巧作辅助线构造平行线是解题的关键. 7.(1)见详解,(2)2BD CF =,证明见详解,(3)23. 【解析】 【分析】(1)欲证明BF AD =,只要证明BCF ACD ∆≅∆即可;(2)结论:2BD CF =.如图2中,作EH AC ⊥于H .只要证明ACD EHA ∆≅∆,推出CD AH =,EH AC BC ==,由EHF BCF ∆≅∆,推出CH CF =即可解决问题;(3)利用(2)中结论即可解决问题; 【详解】(1)证明:如图1中,BE AD ⊥于E ,90AEF BCF ∴∠=∠=︒,AFE CFB ∠=∠, DAC CBF ∴∠=∠,BC AC =,BCF ACD ∴∆≅∆(AAS ),BF AD ∴=.(2)结论:2BD CF =.理由:如图2中,作EH AC ⊥于H . 90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠,AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =, BD CH ∴=,90EHF BCF ∠=∠=︒,EFH BFC ∠=∠,EH BC =,EHF BCF ∴∆≅∆,FH FC ∴=,2BD CH CF ∴==.(3)如图3中,作EH AC ⊥于交AC 延长线于H . 90AHE ACD DAE ∠=∠=∠=︒,90DAC ADC ∴∠+∠=︒,90DAC EAH ∠+∠=︒,ADC EAH ∴∠=∠, AD AE =,ACD EHA ∴∆≅∆,CD AH ∴=,EH AC BC ==,CB CA =, BD CH ∴=,90EHM BCM ∠=∠=︒,EMH BMC ∠=∠,EH BC =, EHM BCM ∴∆≅∆, MH MC ∴=, 2BD CH CM ∴==.3AC CM =,设CM a =,则3AC CB a ==,2BD a =,∴2233DB a BC a ==.【点睛】本题考查三角形综合题、全等三角形的判定和性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.另外对于类似连续几步的综合题,一般前一步为后一步提供解题的条件或方法.8.(1)证明见解析;(2,3)D ;(2)存在,(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q -.【解析】 【分析】(1)通过全等三角形的判定定理ASA 证得△ABP ≌△PCD ,由全等三角形的对应边相等证得AP =DP ,DC =PB =3,易得点D 的坐标;(2)设P (a ,0),Q (2,b ).需要分类讨论:①AB =PC ,BP =CQ ;②AB =CQ ,BP =PC .结合两点间的距离公式列出方程组,通过解方程组求得a 、b 的值,得解. 【详解】 (1)AP PD ⊥90APB DPC ∴∠+∠=AB x ⊥轴90A APB ∴∠+∠=A DPC ∴∠=∠在ABP ∆和PCD ∆中 A DPC AB PCABP PCD ∠=∠⎧⎪=⎨⎪∠=∠⎩()ABP PCD ASA ∴∆≅∆AP DP ∴=,3DC PB == (2,3)D ∴(2)设(,0)P a ,(2,)Q b ①AB PC =,BP CQ =223a a b ⎧-=⎪⎨+=⎪⎩,解得03a b =⎧⎨=±⎩或47a b =⎧⎨=±⎩ (0,0)P ∴,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -②AB CQ =,BP PC =,322a a b +=-⎧⎨=⎩,解得122a b ⎧=⎪⎨⎪=±⎩ 1(,0)2P ∴-,(2,2)Q -或1(,0)2P -,(2,2)Q -综上:(0,0)P ,(2,3)Q 或(0,0)P ,(2,3)Q -或(4,0)P ,(2,7)Q 或(4,0)P ,(2,7)Q -或1(,0)2P -,(2,2)Q -或1(,0)2P -,(2,2)Q - 【点睛】考查了三角形综合题.涉及到了全等三角形的判定与性质,两点间的距离公式,一元一次绝对值方程组的解法等知识点.解答(2)题时,由于没有指明全等三角形的对应边(角),所以需要分类讨论,以防漏解.9.(1)35,2⎛⎫ ⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】 【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab +=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题; (3)根据“白马有理数对”的定义即可判断; (4)根据“白马有理数对”的定义即可解决问题. 【详解】(1)∵-2+1=-1,而-2×1-1=-3, ∴-2+1≠-3,∴(-2,1)不是“白马有理数对”, ∵5+32=132,5×32-1=132,∴5+32=5×32-1, ∴35,2⎛⎫ ⎪⎝⎭是“白马有理数对”, 故答案为:35,2⎛⎫ ⎪⎝⎭;(2)若(,3)a 是“白马有理数对”,则 a+3=3a-1, 解得:a=2, 故答案为:2;(3)若(,)m n 是“白马有理数对”,则m+n=mn-1, 那么-n+(-m )=-(m+n )=-(mn-1)=-mn+1, ∵-mn+1≠ mn-1∴(-n ,-m )不是“白马有理数对”, 故答案为:不是; (4)取m=6,则6+x=6x-1, ∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.10.(1)AD =DE ,见解析;(2)AD =DE ,见解析;(3)见解析,△ADE 是等边三角形, 【解析】 【分析】(1)根据题意,通过平行线的性质及等边三角形的性质证明ADF EDC ∆∆≌即可得解; (2)根据题意,通过平行线的性质及等边三角形的性质证明AFD DCE ∆∆≌即可得解; (3)根据垂直平分线的性质及等边三角形的判定定理进行证明即可. 【详解】(1)如下图,数量关系:AD =DE .证明:∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF ∥AC∴BFD BAC ∠∠=,∠BDF =∠BCA∴60B BFD BDF ∠∠∠︒===∴BDF ∆是等边三角形,120AFD ∠︒=∴DF =BD∵点D 是BC 的中点∴BD =CD∴DF =CD∵CE 是等边ABC ∆的外角平分线∴120DCE AFD ∠︒∠==∵ABC ∆是等边三角形,点D 是BC 的中点∴AD ⊥BC∴90ADC ∠︒=∵60BDF ADE ∠∠︒==∴30ADF EDC ∠∠︒==在ADF ∆与EDC ∆中AFD ECD DF CDADF EDC ∠∠⎧⎪⎨⎪∠∠⎩=== ∴()ADF EDC ASA ∆∆≌∴AD =DE ;(2)结论:AD =DE .证明:如下图,过点D 作DF ∥AC ,交AB于F∵ABC ∆是等边三角形∴AB =BC ,60B BAC BCA ∠∠∠︒===∵DF∥AC∴BFD BAC BDF BCA∠∠∠∠=,=∴60B BFD BDF∠∠∠︒===∴BDF∆是等边三角形,120AFD∠︒=∴BF=BD∴AF=DC∵CE是等边ABC∆的外角平分线∴120DCE AFD∠︒∠==∵∠ADC是ABD∆的外角∴60ADC B FAD FAD∠∠∠︒∠=+=+∵60ADC ADE CDE CDE∠∠∠︒∠=+=+∴∠FAD=∠CDE在AFD∆与DCE∆中AFD DCEAF CDFAD EDC∠∠⎧⎪⎨⎪∠∠⎩===∴()AFD DCE ASA∆∆≌∴AD=DE;(3)如下图,ADE∆是等边三角形.证明:∵BC CD=∴AC CD=∵CE平分ACD∠∴CE垂直平分AD∴AE=DE∵60ADE∠=︒∴ADE∆是等边三角形.【点睛】本题主要考查了等边三角形的性质及判定,三角形全等的判定及性质,平行线的性质,垂直平分线的性质等相关内容,熟练掌握三角形综合解决方法是解决本题的关键. 11.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF ,如图3所示:∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF 平分∠ABC ,∴∠ABF=∠CBF ,在△ABF和△CBF中,AB BCABF CBFBF BF=⎧⎪∠=∠⎨⎪=⎩,△ABF≌△CBF(SAS),∴AF=CF,∴∠FAC=∠ACF=15°,∴∠AFH=15°+15°=30°,∵AH⊥CD,∴AH=12AF=12CF=3,∵∠DEC=∠ABC+∠BDE,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.12.(1)点B(3,5),k=﹣43,b=9;(2)点Q(0,9)或(6,1);(3)存在,点P的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478)【解析】【分析】(1)53y x=相交于点B,则点(3,5)B,将点A、B的坐标代入一次函数表达式,即可求解;(2)OBQ∆的面积1127||9|3|222OA xQ xB m=⨯⨯-=⨯⨯-=,即可求解;(3)分AB AP=、AB BP=、AP BP=三种情况,分别求解即可.【详解】解:(1)53y x =相交于点B ,则点(3,5)B , 将点A 、B 的坐标代入一次函数表达式并解得:43k =-,9b =; (2)设点4(,9)3Q m m -+, 则OBQ ∆的面积1127||9|3|222OA xQ xB m =⨯⨯-=⨯⨯-=, 解得:0m =或6,故点Q (0,9)或(6,1);(3)设点(0,)P m ,而点A 、B 的坐标分别为:(0,9)、(3,5),则225AB =,22(9)AP m =-,229(5)BP m =+-,当AB AP =时,225(9)m =-,解得:14m或4; 当AB BP =时,同理可得:9m =(舍去)或1-; 当AP BP =时,同理可得:478m =; 综上点P 的坐标为:(0,4)或(0,14)或(0,﹣1)或(0,478). 【点睛】 本题考查的是一次函数综合运用,涉及到一次函数的性质、勾股定理的运用、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
人教版八年级数学上册期末压轴精选30题
人教版八年级数学上学期期末压轴精选30题考试范围:全册的内容,共30小题.【点睛】本题考查了等腰三角形的性质,三角形外角定义,直角三角形等知识,熟悉掌握有关知识是解题关键.2.(2022·湖南常德·八年级期中)A.0个B.1【答案】C,∵BF 是ABC Ð的角平分线,∴HBO EBO Ð=Ð,在△HBO 和EBO V 中,BH BE HBO EBO BO BO =ìïÐ=Ðíï=î,∵BAC Ð和ABC Ð的平分线相交于点∴点O 在C Ð的平分线上,∴OH OM OD a ===,∵2AB AC BC b ++=,∴1122ABC S AB OM AC OH =×+×V形一边边长大于另两边之差,小于它们之和,即可得中线长m 的取值范围.【详解】由2212161000a a b b -+-+=可得22680a b -+-=()()\ 6a = ,8b =如图,设AC b =,BC a =,CO 是对边AB 的中线,延长CO 至D 点,使得DO CO =,并连接AD ,Q AOD BOC Ð=Ð , AO BO =,DO CO=\ AOD BOCD D ≌\ AD BC a==\b a CD b a-<<+\214CD <<\17CO <<\中线长m 的取值范围为:17m <<.故答案为:17m <<【点睛】本题考查了因式分解,全等三角形的证明以及三角形的三边关系,掌握相应的知识点是解题的关键.12.(2022·山东济宁·八年级期中)已知一张三角形纸片ABC (如图甲),其中AB AC =,将纸片沿过点B 的直线折叠,使点C 落到AB 边上的E 点处,折痕为BD (如图乙),再将纸片沿过点E 的直线折叠,点A 恰好与点D 重合,折痕为EF (如图丙).原三角形纸片ABC 中,BAC Ð的大小为______.【答案】36°##36度【分析】由折叠的性质可得:A ADE Ð=Ð,EDB CDB Ð=Ð,ABD CBD Ð=Ð,由等腰三角形的性质可得,C ABC Ð=Ð,求解即可.【详解】解:由等腰三角形的性质可得,C ABC Ð=Ð,由折叠的性质可得:A ADE Ð=Ð,EDB CDB Ð=Ð,ABD CBD Ð=Ð,【答案】11802n -æö´ç÷èø°【分析】根据内角和定理及外角的定义解题即可.【详解】解:∵在1A BC V 中,20B Ð=°,1A B CB =∴()118020280BA C Ð=°-°¸=°,④BD CE DE +=.其中正确的是 _____.【答案】①②③【分析】先根据垂直定义和等角的余角相等证得BAD CAF Ð=Ð,B ACF Ð=Ð,再利用ASA 可判断①正确;再证明ADE AFE △≌△可判断②正确;利用全等三角形的面积相等可判断③正确;根据全等三角形的性质和三角形的三边关系可判断④错误.【详解】解:Q 在Rt ABC V 中,=90BAC Ðo ,=AB AC ,45B ACB \Ð=Ð=o ,90BAD DAC Ð+Ð=o ,Q AF AD ^,90CAF DAC \Ð+Ð=°,BAD CAF \Ð=Ð,CF BC ^Q ,9045ACF ACB \Ð=°-Ð=o ,则B ACF Ð=Ð,在ABD △和ACF △中,BAD CAF AB ACB ACF Ð=Ðìï=íïÐ=Ðî()ABD ACF ASA \V V ≌,故①正确;AD AF \=,45DAE Ð=o Q ,AF AD ^,9045FAE DAE DAE \Ð=-Ð==Ðo o ,在ADE V 和AFE △中,AD AF DAE FAEAE AE =ìïÐ=Ðíï=î()ADE AFE SAS \V V ≌,∴=DE EF ,故②正确;∵ADE AFE △≌△,ABD ACF ≌△△,ABD ACF S S \=V V ,ADE AFE S S =V V ,BD CF =,DE EF =,ABC ABD ADE AECS S S S \=++V V V VÐ的度数;(1)如图1,求BFC(2)如图2,连接ED交BC于点G,连接AG,若【答案】(1)90°(2)见解析∵AE AD ^,∴90BAC DAE °Ð==Ð,∴BADCAE Ð=Ð,在ABD △和ACE △中,AB AC BAD CAE AD AE ìïÐÐíïî=== ,∴(SAS)ABD ACE @V V ,∴ABD ACF Ð=Ð,∵AHB FHC Ð=Ð,∴90BFC BAC °Ð=Ð=;(2)设AC 交EG 于点H ,在AB 上截取AK AD =,连接KG ,如图2所示:∵,90AD AE DAE °=Ð=∴45,AED ACG °Ð==Ð∵,AHE GHC Ð=Ð∴,EAC CGE Ð=Ð由(1)知:,BAD CAE Ð=Ð∴,BAD CGD Ð=Ð设2,BAD a CGD Ð==Ð∴2,EAC BAD a Ð=Ð=∴1802,BGD a °Ð=-∴180,BAD BGD °Ð+Ð=∴180,ABG ADG °Ð+Ð=∵AG 平分,BAD Ð∴,KAG DAG a Ð=Ð=在AKG △和ADG △中,,AK AD KAG DAG AG AG =ìïÐ=Ðíï=î(2)解:∵221012610a b a b +--+=,∴22221051260a a b b -++-+=,∴()()22560a b -+-=,∵()()225060a b -³-³,,∴()()22560a b -=-=,∴5060a b -=-=,,∴56a b ==,,∵b a c a b -<<+,∴111c <<,∵c 是最大边,∴611c £<;(3)解:∵2261P x y x =-+-,22413Q x y =++,∴222612413P Q x y x x y -=-+----,226414x x y y =-+---2269441x x y y =-+-----()()22321x y =---+-,∵()()223020x y -³+³,,∴()()22320x y ---+£,()()223210x y ---+-<∴0P Q -<,∴P Q <.【点睛】本题主要考查了因式分解的应用,三角形三边的关系,平方的非负性,熟知完全平方公式是解题的关键.22.(2022·福建·莆田锦江中学八年级期中)如图,AB AD ^,且AB AD =,AC AE ^,且AC AE =(1)如图1,连接DC 、BE ,求证:DC BE =;(2)如图2,求证:ABC ADE S S D D =(3)如图3,GF 经过A 点与DE 交于G 点,且GF BC ^于F 点.求证:G 为DE 的中点.【答案】(1)见解析;(2)见解析;(3)见解析.【分析】(1)根据垂直可得90BAE CAE ==°∠∠,得出DAC BAE Ð=Ð,根据全等三角形的判定证明DAC BAE @V V ,可得答案;(2)作EM AD ^交DA 的延长线于M ,作CN AB ^,进而可得CAN MAE =∠∠,根据全等三角形的判定证明ACN AEM @V V ,进而得出CN EM =,根据三角形的面积公式可得;(3)作DM AG ^交AG 的延长线于M ,作EN AG ^,先证明C NAE =∠∠,再证FCA NAE @V V ,得出AF NE =;再证明BAF ADM @V V ,得出AF DM =,进而得出DM NE =,再证明DMG ENG @V V ,即可得出答案.【详解】(1)∵AB AD ^,AC AE ^,∴90BAE CAE ==°∠∠∴BAD BAC BAC CAE +=+∠∠∠∠∴DAC BAE Ð=Ð在DAC △和BAE V 中,AD AB DAC BAE AC AE =ìïÐ=Ðíï=î∴DAC BAE@V V ∴DC BE=(2)作EM AD ^交DA 的延长线于M ,作CN AB^∴90EMD CNA ==°∠∠∵90MAN CAE ==°∠∠∴MAN CAM CAE CAM-=-∠∠∠∠∴CAN MAE=∠∠在ACN △和AEM △中,)DM AG ^交AG 的延长线于M ,作90EMA DMG AFC ===°∠∠90FAC CAF NAE +=+=∠∠∠NAE =∠CAF 和NEA V 中,90CFA ENA C NAE AC AE =Ð=°Ð=Ð=根据三角形三边关系,易得0a b c +->∴0a b -=∴a b=∴ABC V 为等腰三角形【点睛】本题考查了因式分解、等腰三角形的判定;熟练掌握因式分解的方法是解题的关键.24.(2022·浙江·八年级专题练习)(1)阅读理解:如图1,在ABC V 中,若10AB =,6AC =.求BC 边上的中线AD 的取值范围.解决此问题可以用如下方法:延长AD 到点E ,使DE AD =,再连接BE (或将ACD V 绕着点D 逆时针旋转180°得到EBD △),把AB ,AC ,2AD 集中在ABE V 中,利用三角形三边的关系即可判断中线AD 的取值范围是______;(2)问题解决:如图2,在ABC V 中,D 是BC 边上的中点,DE DF ^于点D ,DE 交AB 于点E ,DF 交AC 于点F ,连接EF ,求证:BE CF EF +>;(3)问题拓展:如图3,在四边形ABCD 中,180B D Ð+Ð=°,CB CD =,140BCD Ð=°,以C 为顶点作一个70°角,角的两边分别交AB ,AD 于E ,F 两点,连接EF ,探索线段BE ,DF ,EF 之间的数量关系,并加以证明.【答案】(1)28AD <<;(2)见解析;(3)BE DF EF +=,证明见解析【分析】(1)延长AD 至E ,使DE AD =,连接BE ,证明SAS BDE CDA ≌()V V ,根据三角形三边关系即可求解;(2)延长FD 至点M ,使DM DF =,连接BM ,EM ,同(1)得,(SAS)BMD CFD D V V ≌,证明(SAS)EDM EDF V V ≌在BME D 中,由三角形的三边关系得BE BM EM +>,即可得证;(3)延长AB 至点N ,使BN DF =,连接CN ,证明(SAS)NBC FDC V V ≌,(SAS)NCE FCE V V ≌,根据求的三角形的性质即可得证.【详解】(1)解:延长AD 至E ,使DE AD =,连接BE ,如图①所示:∵AD 是BC 边上的中线,∴BD CD =,在BDE △和CDA V 中,BD CD BDE CDADE AD =ìïÐ=Ðíï=î∴SAS BDE CDA ≌()V V,∴6BE AC ==,在ABE V 中,由三角形的三边关系得:AB BE AE AB BE -<<+,∴106106AE -<<+,即416AE <<,∴28AD <<;故答案为:28AD <<;(2)证明:延长FD 至点M ,使DM DF =,连接BM ,EM ,如图所示同(1)得,(SAS)BMD CFD D V V ≌,BM CF\=DE DF ^Q ,DM DF =,DE DE=(SAS)EDM EDF \V V ≌,EM EF\=在BME D 中,由三角形的三边关系得BE BM EM +>,BE CF EF\+>(3)BE DF EF+=证明如下:延长AB 至点N ,使BN DF =,连接CN ,如图所示180ABC D Ð+Ð=°Q ,180NBC ABC Ð+Ð=°NBC D\Ð=Ð在NBC V 和FDC △中,BN DF NBC D BC DC =ìïÐ=Ðíï=î,(SAS)NBC FDC \V V ≌CN CF \=,NCB FCDÐ=Ð140BCD Ð=°Q ,70ECF Ð=°70BCE FCD \Ð+Ð=°,70ECN ECF\Ð=°=Ð在NCE △和FCE △中,(1) (2)(1)求证:PAB AQE ≌△△;(2)连接CQ 交AB 于M ,求证:BM EM =;(3)如图(2),过Q 作QF AQ ^于AB 的延长线于点F ,过PQ,HA AC^QA AP^QAH HAP HAP \Ð+Ð=Ð\Ð=Ð,QAH PADPAQQ为等腰直角三角形,D\=,AQ AP(1)请用两种不同的方法求图2中阴影部分的面积.方法1:;方法2:.(2)观察图2写出()2m n +,()2m n -,mn 三个代数式之间的等量关系:(3)根据(2)中你发现的等量关系,解决如下问题:若【点睛】本题主要考查完全平方差公式和完全平方和公式的联系,会用代数式表示图形面积是解决问题的关键;两数的完全平方和比它们的完全平方差多了两数积的4倍,该结论经常用到.28.(2022·广东·江门市新会尚雅学校八年级阶段练习)(1)如图1,已知,在ABC V 中,10AB AC ==,BD 平分ABC Ð,CD 平分ACB Ð,过点D 作EF BC ∥,分别交AB 、AC 于E 、F 两点,则图中共有________个等腰三角形:EF 与BE 、CF 之间的数量关系是________,AEF △的周长是________.(2)如图2,若将(1)中“ABC V 中,10AB AC ==”改为“若ABC V 为不等边三角形,8AB =,10AC =”其余条件不变,则图中共有________个等腰三角形;EF 与BE 、CF 之间的数量关系是什么?证明你的结论,并求出AEF △的周长.(3)已知:如图3,D 在ABC V 外,AB AC >,且BD 平分ABC Ð,CD 平分ABC V 的外角ACG Ð,过点D 作DE BC ∥,分别交AB 、AC 于E 、F 两点,则EF 与BE 、CF 之间又有何数量关系呢?写出结论并证明.【答案】(1)5,EF BE CF =+,20(2)2,EF BE CF =+,证明见详解,18(3)EF BE CF =-,证明见详解【分析】(1)根据角平分线的定义可得,EBD CBD FCD BCD Ð=ÐÐ=Ð,再根据平行线的性质,“两直线平行,同位角相等”、“两直线平行,内错角相等”可知DB DC =,AEF ABC AFE ACB Ð=ÐÐ=Ð,,EDB CBD FDC BCD Ð=ÐÐ=Ð,即可求出AEF AFE Ð=Ð,,EBD EDB FDC FCD Ð=ÐÐ=Ð,根据“等角对等边”可知,,BE DE CF DF AE AF ===,即可确定等腰三角形的数量,EF 与BE 、CF 之间的数量关系以及AEF △的周长;(2)若ABC V 为不等边三角形,根据角平分线的定义可知,EBD CBD FCD BCD Ð=ÐÐ=Ð,再结合平线性的性质“两直线平行,内错角相等”可知,EDB CBD FDC BCD Ð=ÐÐ=Ð,即可推导,EBD EDB FDC FCD Ð=ÐÐ=Ð,然后根据“等角对等边”即可证明,BE DE CF DF ==,然后解答即可;(3)根据角平分线的定义可知,EBD CBD FCD GCD Ð=ÐÐ=Ð,再结合平线性的性质“两直线平行,内错角相等”可知,EDB CBD FDC GCD Ð=ÐÐ=Ð,即可推导,EBD EDB FDC FCD Ð=ÐÐ=Ð,然后根据“等角对等边”即可证明,BE DE CF DF ==,即可证明EF 与BE 、CF 之间的数量关系.【详解】解:(1)∵AB AC =,∴A ABC CB =Ð∠,∵BD 平分ABC Ð,CD 平分ACB Ð,∴,EBD CBD FCD BCD Ð=ÐÐ=Ð,∴DBC DCB Ð=Ð,∴DB DC =,∵EF BC ∥,∴,AEF ABC AFE ACB Ð=ÐÐ=Ð,,EDB CBD FDC BCD Ð=ÐÐ=Ð,∴AEF AFE Ð=Ð,,EBD EDB FDC FCD Ð=ÐÐ=Ð,∴,,BE DE CF DF AE AF ===,∴等腰三角形有,,,,ABC AEF DEB DFC DBC V V V V V ,共计5个,∴EF DE DF BE CF =+=+,即EF BE CF =+,∴AEF △的周长AE EF AF=++AE DE DF AF=+++AE BE CF AF=+++AB AC=+1010=+20=,故答案为:5,EF BE CF =+,20;(2)若ABC V 为不等边三角形,∵BD 平分ABC Ð,CD 平分ACB Ð,∴,EBD CBD FCD BCD Ð=ÐÐ=Ð,∵EF BC ∥,∴,EDB CBD FDC BCD Ð=ÐÐ=Ð,∴,EBD EDB FDC FCD Ð=ÐÐ=Ð,∴,BE DE CF DF ==,∴等腰三角形有,DEB DFC V V ,共计2个,故答案为:2;∵,BE DE CF DF ==,∴EF DE DF BE CF =+=+,即EF BE CF =+;∴AEF △的周长AE EF AF=++AE DE DF AF=+++AE BE CF AF=+++AB AC=+810=+18=;(3)大长方形的面积为()()222365122815a b a b a ab b ++=++,小图形的面积分别为22,,a b ab ,进一步即可得到答案.【详解】(1)拼成的大长方形面积之和()()2a b a b =++,各个小图形面积之和2232a ab b =++,∴图2所表示的数学等式是()()22232a b a b a ab b ++=++.故答案为:()()22232a b a b a ab b ++=++.(2)图(3)中大正方形的面积=()2a b c ++,各个小图形面积之和=222222a b c ab ac bc +++++,∴()2222222a b c a b c ab ac bc ++=+++++.∵8a b c ++=,19ab ac bc ++=.∴()222222228a b c a b c ab ac bc ++=+++++=,即()222264a b c ab ac bc +++++=,∴()2226426421926a b c ab ac bc ++=-++=-´=.(3)大长方形的面积为:()()2222236512101815122815a b a b a ab ab b a ab b ++=+++=++,∵小图形的面积分别为22,,a b ab ,∴12,15,28x y z ===.∴12152855x y z ++=++=.【点睛】本题考查多项式乘多项式的计算,整体代入思想,数形结合思想,能够通过几何图形找到代数之间的等量关系是解决此类题型的关键.30.(2022·全国·八年级专题练习)认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(1)探究1:如图1,在ABC V 中,O 是ABC Ð与ACB Ð的平分线BO 和CO 的交点,试分析BOC Ð与A Ð有怎样的关系?请说明理由.(2)探究2:如图2中,O 是ABC Ð与外角ACD Ð的平分线BO 和CO 的交点,试分析BOC Ð与A Ð有怎样的关系?请说明理由.(3)探究3:如图3中,O 是外角DBC Ð与外角ECB Ð的平分线BO 和CO 的交点,则BOC Ð与A Ð有怎样的∵BO 和CO 分别是ABC Ð∴111,222ABC Ð=ÐÐ=Ð又∵ACD Ð是ABC V 的一个外角,(112ACD A Ð=Ð=Ð在PCD V 中,()()1801801808595CPD PCD PDC PCD PDC °°°°°Ð=-Ð+Ð=-Ð+Ð=-=.【点睛】本题主要考查了三角形外角的性质与三角形内角和定理,多边形内角和定理,熟练掌握三角形外角的性质与三角形内角和定理,多边形内角和定理,利用类比思想解答是解题的关键.。
八年级上册数学压轴题期末复习试卷试卷(word版含答案)
八年级上册数学 压轴题 期末复习试卷试卷(Word 版含答案)一、压轴题1.已知AABC 是等腰直角三角形,ZC=90∖点M 是AC 的中点,延长BM 至点D,使DM = BM,连接 AD.(1) 如图①,求证:Δ DAM^ Δ BCM ; (2) 已知点N 是BC 的中点,连接AN. ① 如图②,求证:Δ ACN^∆ BCM ;② 如图③,延长NA 至点E,使AE = NA l 连接,求证:BD 丄DE.(1) 求点P 坐标和b 的值;(2) 若点C 是宜线b 与X 轴的交点,动点Q 从点C 开始以每秒2个单位的速度向X 轴正 方向移动.设点Q 的运动时间为t 秒.① 请写岀当点Q 在运动过程中,AAPQ 的而积S 与t 的函数关系式; ② 求出t 为多少时,AAPQ 的面积小于3:③ 是否存在t 的值,使AAPQ 为等腰三角形?若存在,请求出t 的值;若不存在,请说明 理由./C ~O O /1\ \3・女口图(1) , AB=4CW , AC±AB, BD±AB, AC=BD=3。
".点 P 在线段 AB 上以1。
加/$的速度由点A 向点B 运动,同时,点Q 在线段BD 上由点B 向点D 运动.它们运动 的时间为7 (S).(1) 若点Q 的运动速度与点P 的运动速度相等,当/=1时,AACP 与ABPQ 是否全等, 请说明理由,并判断此时线段PC 和线段PQ 的位置关系;(2) 如图(2),将图(1)中的“AC 丄AB, BD 丄AB 〃为改“Z CAB = ZDBA=60°J 其他条件不变•2.如图,直线k : yι= - x÷2与X 轴,y 轴分别交于A, B 两点,点P (m. 3)为直线I 】上 一点,另一直线∣2: y2=*χ+b 过点P.设点Q的运动速度为XCmI s、是否存在实数X,使得AACP与ABPQ全等?若34・如图,在平而直角坐标系中,直线y 二x+m 分别与X 轴、y 轴交于点B 、A •其中B4 3点坐标为(12, 0),直线y =^x 与直线AB 相交于点C.O(1) 求点A 的坐标. (2) 求ABOC 的而枳.(3) 点D 为直线AB 上的一个动点,过点D 作y 轴的平行线DE, DE 与直线Oe 交于点E (点D 与点E 不重合).设点D 的横坐标为t,线段DE 长度为d. ① 求d 与t 的函数解析式(写出自变量的取值范围).② 当动点D 在线段AC 上运动时,以DE 为边在DE 的左侧作正方形DEPQ,若以点H(才,t )、G (1, t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的取值范弗I ・5. 如图,已知四边形ABCO 是矩形,点A , C 分别在y 轴,X 轴上,AB = 4.BC = 3 •若不存在,请说明理由.B图(2)(2) 作直线AC 关于X 轴的对称直线,交y 轴于点Z),求直线CD 的解析式.并结合 (I) 的结论猜想并直接写出直线y =滋+b 关于X 轴的对称宜线的解析式:(3) 若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,IPA-PBl 是否存在 最大值?若不存在,请说明理由:若存在,请求出IpA-PBI 的最大值及此时点P 的坐 标. 6. 在平而直角坐标系Xoy 中,对于点Pa 和点Q^b f),给出如下定义:(2,2),点(-2,-5)的限变点的坐标是(-2,5),点(1,3)的限变点的坐标是(1,3).(1) ①点(Jl-1)的限变点的坐标是 __________ :②如图1,在点A(-2,l). B(2,l)中有一个点是直线y = 2上某一个点的限变点,这个点 是 _________ :(填"4"或“〃")(2) 如图2,已知点C(-2,-2),点D(2,-2),若点P 在射线OC 和OD 上,其限变点0 的纵坐标b'的取值范围是b ,≥m ^Lb ,≤n ,其中m>n.令s = m-n,直接写出S 的值.(3) 如图3,若点P 在线段EF 上,点E(—2,—5),点F 伙*一3),其限变点。
八年级上册数学 压轴题 期末复习试卷练习(Word版 含答案)
八年级上册数学 压轴题 期末复习试卷练习(Word 版 含答案)一、压轴题1.对于实数x ,若231a x ≤+,则符合条件的a 中最大的正数为X 的內数,例如:8的内数是5;7的内数是4.(1)1的内数是______,20的內数是______,6的內数是______;(2)若3是x 的內数,求x 的取值范围;(3)一动点从原点出发,以3个单位/秒的速度按如图1所示的方向前进,经过t 秒后,动点经过的格点(横,纵坐标均为整数的点)中能围成的最大实心正方形的格点数(包括正方形边界与内部的格点)为n ,例如当1t =时,4n =,如图2①……;当4t =时,9n =,如图2②,③;……①用n 表示t 的內数;②当t 的內数为9时,符合条件的最大实心正方形有多少个,在这些实心正方形的格点中,直接写出离原点最远的格点的坐标.(若有多点并列最远,全部写出)2.如图,在平面直角坐标系中,一次函数y x =的图象为直线1.(1)观察与探究已知点A 与A ',点B 与B '分别关于直线l 对称,其位置和坐标如图所示.请在图中标出()2,3C -关于线l 的对称点C '的位置,并写出C '的坐标______.(2)归纳与发现观察以上三组对称点的坐标,你会发现:平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为______.(3)运用与拓展已知两点()2,3E -、()1,4F --,试在直线l 上作出点Q ,使点Q 到E 、F 点的距离之和最小,并求出相应的最小值.3.如图,A 点的坐标为(0,3),B 点的坐标为(﹣3,0),D 为x 轴上的一个动点且不与B ,O 重合,将线段AD 绕点A 逆时针旋转90°得线段AE ,使得AE ⊥AD ,且AE =AD ,连接BE 交y 轴于点M .(1)如图,当点D 在线段OB 的延长线上时,①若D 点的坐标为(﹣5,0),求点E 的坐标.②求证:M 为BE 的中点.③探究:若在点D 运动的过程中,OM BD的值是否是定值?如果是,请求出这个定值;如果不是,请说明理由.(2)请直接写出三条线段AO ,DO ,AM 之间的数量关系(不需要说明理由).4.如图,已知四边形ABCO 是矩形,点A ,C 分别在y 轴,x 轴上,4AB =,3BC =.(1)求直线AC 的解析式;(2)作直线AC 关于x 轴的对称直线,交y 轴于点D ,求直线CD 的解析式.并结合(1)的结论猜想并直接写出直线y kx b =+关于x 轴的对称直线的解析式;(3)若点P 是直线CD 上的一个动点,试探究点P 在运动过程中,||PA PB -是否存在最大值?若不存在,请说明理由;若存在,请求出||PA PB-的最大值及此时点P的坐标.5.如图,在平面直角坐标系中,直线334y x=-+分别交,x y轴于A B,两点,C为线段AB的中点,(,0)D t是线段OA上一动点(不与A点重合),射线//BF x轴,延长DC 交BF于点E.(1)求证:AD BE=;(2)连接BD,记BDE的面积为S,求S关于t的函数关系式;(3)是否存在t的值,使得BDE是以BD为腰的等腰三角形?若存在,求出所有符合条件的t的值;若不存在,请说明理由.6.观察下列两个等式:5532321,44133+=⨯-+=⨯-,给出定义如下:我们称使等式1a b ab+=-成立的一对有理数,a b为“白马有理数对”,记为(,)a b,如:数对5(3,2),4,3⎛⎫⎪⎝⎭都是“白马有理数对”.(1)数对3(2,1),5,2⎛⎫- ⎪⎝⎭中是“白马有理数对”的是_________;(2)若(,3)a是“白马有理数对”,求a的值;(3)若(,)m n是“白马有理数对”,则(,)n m--是“白马有理数对”吗?请说明理由.(4)请再写出一对符合条件的“白马有理数对”_________(注意:不能与题目中已有的“白马有理数对”重复)7.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.8.在ABC 中,AB AC =,D 是直线AB 上一点,E 在直线BC 上,且DE DC =. (1)如图1,当D 在AB 上,E 在CB 延长线上时,求证:EDB ACD ∠=∠;(2)如图2,当ABC 为等边三角形时,D 是BA 的延长线上一点,E 在BC 上时,作//EF AC ,求证:BE AD =;(3)在(2)的条件下,ABC ∠的平分线BF 交CD 于点F ,连AF ,过A 点作AH CD ⊥于点H ,当30EDC ∠=︒,6CF =时,求DH 的长度.9.如图已知ABC 中,,8B C AB AC ∠=∠==厘米,6BC =厘来,点D 为AB 的中点.如果点P 在线段BC 上以每秒2厘米的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动,设运动时间为t (秒).(1)用含t 的代数式表示线段PC 的长度;(2)若点,P Q 的运动速度相等,经过1秒后,BPD △与CQP 是否全等,请说明理由; (3)若点,P Q 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP 全等?(4)若点Q 以(3)中的运动速度从点C 出发,点v 以原来的运动速度从点B 同时出发,都顺时针沿三边运动,求经过多长时间,点P 与点Q 第一次在ABC 的哪条边上相遇?10.直角三角形ABC 中,90ACB ∠=︒,直线l 过点C .(1)当AC BC =时,如图1,分别过点A 和B 作AD ⊥直线l 于点D ,BE ⊥直线l 于点E ,ACD 与CBE △是否全等,并说明理由;(2)当8AC cm =,6BC cm =时,如图2,点B 与点F 关于直线l 对称,连接BF CF 、,点M 是AC 上一点,点N 是CF 上一点,分别过点M N 、作MD ⊥直线l 于点D ,NE ⊥直线l 于点E ,点M 从A 点出发,以每秒1cm 的速度沿A C →路径运动,终点为C ,点N 从点F 出发,以每秒3cm 的速度沿F C B C F →→→→路径运动,终点为F ,点,M N 同时开始运动,各自达到相应的终点时停止运动,设运动时间为t 秒,当CMN △为等腰直角三角形时,求t 的值.11.如图,在平面直角坐标系中,直线y =2x +6与x 轴交于点A ,与y 轴交于点B ,过点B 的直线交x 轴于点C ,且AB =BC .(1)求直线BC的解析式;(2)点P为线段AB上一点,点Q为线段BC延长线上一点,且AP=CQ,设点Q横坐标为m,求点P的坐标(用含m的式子表示,不要求写出自变量m的取值范围);(3)在(2)的条件下,点M在y轴负半轴上,且MP=MQ,若∠BQM=45°,求直线PQ 的解析式.12.在△ABC中,∠BAC=45°,CD⊥AB,垂足为点D,M为线段DB上一动点(不包括端点),点N在直线AC左上方且∠NCM=135°,CN=CM,如图①.(1)求证:∠ACN=∠AMC;(2)记△ANC得面积为5,记△ABC得面积为5.求证:12S ACS AB=;(3)延长线段AB到点P,使BP=BM,如图②.探究线段AC与线段DB满足什么数量关系时对于满足条件的任意点M,AN=CP始终成立?(写出探究过程)【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)2,7,4;(2)83x≥;(3)①t的内数n=有2个,离原点最远的格点的坐标有两个,为()8,4-±.【解析】【分析】(1)根据内数的定义即可求解;(2)根据内数的定义可列不等式2331x ≤+,求解即可;(3)①分析可得当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =……归纳可得结论;②分析可得当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;且最大实心正方形的边长为:t 的內数-1,即可求解.【详解】解:(1)22311=⨯+,所以1的内数是2;232017⨯+>,所以20的内数是7;23614⨯+>,所以6的内数是4;(2)∵3是x 的內数,∴2331x ≤+, 解得83x ≥; (3)①当1t =时,即t 的内数为2时,4n =;当4t =时,即t 的内数为3时,9n =,当5t =时,即t 的内数为4时,16n =,……∴t 的内数=②当t 的内数为2时,最大实心正方形有1个;当t 的内数为3时,最大实心正方形有2个,当t 的内数为4时,最大实心正方形有1个,……即当t 的内数为奇数时,最大实心正方形有2个;当t 的内数为偶数时,最大实心正方形有1个;∴当t 的內数为9时,符合条件的最大实心正方形有2个,由前几个例子推理可得最大实心正方形的边长为:t 的內数-1,∴此时最大实心正方形的边长为8,离原点最远的格点的坐标有两个,为()8,4-±.【点睛】本题考查图形类规律探究,明确题干中内数的定义是解题的关键.2.(1) (3,-2);(2) (n ,m );(3)图见解析, 点Q 到E 、F 点的距离之和最小值为【解析】【分析】(1)根据题意和图形可以写出C '的坐标;(2)根据图形可以直接写出点P 关于直线l 的对称点的坐标;(3)作点E 关于直线l 的对称点E ',连接E 'F ,根据最短路径问题解答.【详解】(1)如图,C '的坐标为(3,-2),故答案为(3,-2);(2)平面直角坐标系中点()P m n ,关于直线l 的对称点P '的坐标为(n ,m ), 故答案为(n ,m );(3)点E 关于直线l 的对称点为E '(-3,2),连接E 'F 角直线l 于一点即为点Q ,此时点Q 到E 、F 点的距离之和最小,即为线段E 'F ,∵E 'F ()[]221(3)2(4)210=---+--=⎡⎤⎣⎦, ∴点Q 到E 、F 点的距离之和最小值为210.【点睛】此题考查轴对称的知识,画关于直线的对称点,最短路径问题,勾股定理关键是找到点的对称点,由此解决问题.3.(1)①E(3,﹣2)②见解析;③12OMBD,理由见解析;(2)OD+OA=2AM或OA﹣OD=2AM【解析】【分析】(1)①过点E作EH⊥y轴于H.证明△DOA≌△AHE(AAS)可得结论.②证明△BOM≌△EHM(AAS)可得结论.③是定值,证明△BOM≌△EHM可得结论.(2)根据点D在点B左侧和右侧分类讨论,分别画出对应的图形,根据全等三角形的判定及性质即可分别求出结论.【详解】解:(1)①过点E作EH⊥y轴于H.∵A(0,3),B(﹣3,0),D(﹣5,0),∴OA=OB=3,OD=5,∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∴△DOA≌△AHE(AAS),∴AH=OD=5,EH=OA=3,∴OH=AH﹣OA=2,∴E(3,﹣2).②∵EH⊥y轴,∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴BM=EM.③结论:OMBD=12.理由:∵△DOA≌△AHE,∴OD=AH,∵OA=OB,∴BD=OH,∵△BOM≌△EHM,∴OM=MH,∴OM=12OH=12BD.(2)结论:OA+OD=2AM或OA﹣OD=2AM.理由:当点D在点B左侧时,∵△BOM≌△EHM,△DOA≌△AHE∴OM=MH,OD=AH∴OH=2OM,OD-OB=AH-OA∴BD=OH∴BD=2OM,∴OD﹣OA=2(AM﹣AO),∴OD+OA=2AM.当点D在点B右侧时,过点E作EH⊥y轴于点H∵∠AOD=∠AHE=∠DAE=90°,∴∠DAO+∠EAH=90°,∠EAH+∠AEH=90°,∴∠DAO=∠AEH,∵AD=AE∴△DOA≌△AHE(AAS),∴EH=AO=3=OB,OD=AH∴∠EHO=∠BOH=90°,∵∠BMO=∠EMH,OB=EH=3,∴△BOM≌△EHM(AAS),∴OM=MH∴OA+OD= OA+AH=OH=OM+MH=2MH=2(AM+AH)=2(AM+OD)整理可得OA﹣OD=2AM.综上:OA+OD=2AM或OA﹣OD=2AM.【点睛】此题考查的是全等三角形的判定及性质、旋转的性质和平面直角坐标系,掌握全等三角形的判定及性质、旋转的性质和点的坐标与线段长度的关系是解决此题的关键.4.(1)y =34-x +3;(2)y =34x -3,y =-kx -b ;(3)存在,4,(8,3) 【解析】【分析】(1)利用4AB =,3BC =,找出A 、C 两点的坐标,设直线解析式,利用待定系数法求出AC 的解析式;(2)由直线AC 关于x 轴的对称直线为CD 可知点D 的坐标,设直线解析式,利用待定系数法求出CD 的解析式,对比AC 的解析式进而写出直线y kx b =+关于x 轴的对称直线的解析式;(3)先判断||PA PB -存在最大值,在P 、A 、B 三点不共线时,P 点在运动过程中,与A 、B 两点组成三角形,两边之差小于第三边,得出结论在P 、A 、B 三点共线时,此时||PA PB -最大,y p = y A =3,求出P 点的纵坐标,最后根据点P 在直线CD 上,将P 点的纵坐标代入直线方程可得横坐标,从而求出P 点坐标.【详解】解:(1)在矩形ABCD 中,OC =AB =4,OA =BC =3,故A (0,3),C (4,0),设直线AC 的解析式为:y =kx +b (k ≠0,k 、b 为常数),点A 、C 在直线AC 上,把A 、C 两点的坐标代入解析式可得:340b k b =⎧⎨+=⎩解得:343k b ⎧=-⎪⎨⎪=⎩, 所以直线AC 的解析式为:y =34-x +3. (2)由直线AC 关于x 轴的对称直线为CD 可知:点D 的坐标为:(0,-3),设直线CD 的解析式为:y =mx +n (m ≠0,m 、n 为常数),点C 、D 在直线CD 上,把C 、D 两点的坐标带入解析式可得:-340n m n =⎧⎨+=⎩解得:343m n ⎧=⎪⎨⎪=-⎩, 所以直线CD 的解析式为:y =34x -3, 故猜想直线y kx b =+关于x 轴的对称直线的解析式为:y =-kx -b .(3)点P 在运动过程中,||PA PB -存在最大值,由题意可知:如图,延长AB 与直线CD 交点即为点P ,此时||PA PB -最大,其他位置均有||PA PB -<AB (P 点在运动过程中,与A 、B 两点组成任意三角形,两边之差小于第三边),此时,||PA PB -= AB =4,y p = y A =3,点P 在直线CD 上,将P 点的纵坐标代入直线方程可得:34x -3=3, x =8,故P 点坐标为(8,3),||PA PB -的最大值为x p -x B =8-4=4.【点睛】本题主要考查利用待定系数法求解一次函数解析式及类比推理能力,掌握任意三角形两边之差小于第三边是解题的关键.5.(1)详见解析;(2)36(04)2BDE t t S -+≤<=;(3)存在,当78t =或43时,使得BDE 是以BD 为腰的等腰三角形.【解析】【分析】(1)先判断出EBC DAC ∠=∠,CEB CDA ∠=∠,再判断出BC AC =,进而判断出△BCE ≌△ACD ,即可得出结论;(2)先确定出点A ,B 坐标,再表示出AD ,即可得出结论;(3)分两种情况:当BD BE =时,利用勾股定理建立方程2223(4)t t +=-,即可得出结论;当BD DE =时,先判断出Rt △OBD ≌Rt △MED ,得出DM OD t ==,再用OM BE =建立方程求解即可得出结论. 【详解】解:(1)证明:射线//BF x 轴, EBC DAC ∴∠=∠,CEB CDA ∠=∠, 又C 为线段AB 的中点,BC AC ∴=,在△BCE 和△ACD 中,CEB CDAEBC DACBC AC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△ACD(AAS),BE AD∴=;(2)解:在直线334y x=-+中,令0x=,则3y=,令0y=,则4x=,A∴点坐标为(4,0),B点坐标为(0,3),D点坐标为(,0)t,4AD t BE∴=-=,113(4)36(04)222BDE ABD BS S AD y t t t∴==⋅=-⨯=-+<;(3)当BD BE=时,在Rt OBD∆中,90BOD∠=︒,由勾股定理得:222OB OD DB+=,即2223(4)t t+=-解得:78t=;当BD DE=时,过点E作EM x⊥轴于M,90BOD EMD∴∠=∠=︒,//BF OA,OB ME∴=在Rt△OBD和Rt△MED中,==BD DEOB ME⎧⎨⎩,∴Rt△OBD≌Rt△MED(HL),OD DM t∴==,由OM BE=得:24t t=-解得:43t=,综上所述,当78t=或43时,使得△BDE是以BD为腰的等腰三角形.【点睛】本题是一次函数综合题,主要考查了平行线的性质,全等三角形的判定和性质,勾股定理,用方程的思想解决问题是解本题的关键.6.(1)35,2⎛⎫⎪⎝⎭;(2)2;(3)不是;(4)(6,75)【解析】【分析】(1)根据“白马有理数对”的定义,把数对3(2,1),5,2⎛⎫- ⎪⎝⎭分别代入1a b ab+=-计算即可判断;(2)根据“白马有理数对”的定义,构建方程即可解决问题;(3)根据“白马有理数对”的定义即可判断;(4)根据“白马有理数对”的定义即可解决问题.【详解】(1)∵-2+1=-1,而-2×1-1=-3,∴-2+1≠-3,∴(-2,1)不是“白马有理数对”,∵5+32=132,5×32-1=132,∴5+32=5×32-1,∴35,2⎛⎫⎪⎝⎭是“白马有理数对”,故答案为:3 5,2⎛⎫ ⎪⎝⎭;(2)若(,3)a是“白马有理数对”,则a+3=3a-1,解得:a=2,故答案为:2;(3)若(,)m n是“白马有理数对”,则m+n=mn-1,那么-n+(-m)=-(m+n)=-(mn-1)=-mn+1,∵-mn+1 mn-1∴(-n,-m)不是“白马有理数对”,故答案为:不是;(4)取m=6,则6+x=6x-1,∴x=75,∴(6,75)是“白马有理数对”,故答案为:(6,75).【点睛】本题考查了“白马有理数对”的定义,有理数的加减运算,一次方程的列式求解,理解“白马有理数对”的定义是解题的关键.7.(1)①见解析;②见解析;(2)2【解析】【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∵∠MBN=30°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt △BFD 中,∵∠FBD =30°,∴BF =2DF ,∵BF =2AF ,∴BF =AD ,∵∠BAE =∠FBC ,AB =BC ,∴△BFC ≌△ADB ,∴∠BFC =∠ADB =90°,∴BF ⊥CF(2)在BF 上截取BK =AF ,连接AK.∵∠BFE =∠2+∠BAF ,∠CFE =∠4+∠1,∴∠CFB =∠2+∠4+∠BAC ,∵∠BFE =∠BAC =2∠EFC ,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB =AC ,∴△ABK ≌CAF ,∴∠3=∠4,S △ABK =S △AFC ,∵∠1+∠3=∠2+∠3=∠CFE =∠AKB ,∠BAC =2∠CEF ,∴∠KAF =∠1+∠3=∠AKF ,∴AF =FK =BK ,∴S △ABK =S △AFK ,∴ABF AFCS 2S ∆∆=. 【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.(1)见解析;(2)见解析;(3)3【解析】【分析】(1)根据等腰三角形的性质和外角的性质即可得到结论;(2)过E 作EF ∥AC 交AB 于F ,根据已知条件得到△ABC 是等边三角形,推出△BEF 是等边三角形,得到BE=EF ,∠BFE=60°,根据全等三角形的性质即可得到结论; (3)连接AF ,证明△ABF ≌△CBF ,得AF=CF ,再证明DH=AH=12CF=3. 【详解】解:(1)∵AB=AC ,∴∠ABC=∠ACB ,∵DE=DC ,∴∠E=∠DCE ,∴∠ABC-∠E=∠ACB-∠DCB ,即∠EDB=∠ACD ;(2)∵△ABC 是等边三角形,∴∠B=60°,∴△BEF 是等边三角形,∴BE=EF ,∠BFE=60°,∴∠DFE=120°,∴∠DFE=∠CAD ,在△DEF 与△CAD 中, EDF DCA DFE CAD DE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DEF ≌△CAD (AAS ),∴EF=AD ,∴AD=BE ;(3)连接AF ,如图3所示:∵DE=DC ,∠EDC=30°,∴∠DEC=∠DCE=75°,∴∠ACF=75°-60°=15°,∵BF 平分∠ABC ,∴∠ABF=∠CBF ,在△ABF 和△CBF 中,AB BC ABF CBF BF BF =⎧⎪∠=∠⎨⎪=⎩,△ABF ≌△CBF (SAS ),∴AF=CF ,∴∠FAC=∠ACF=15°, ∴∠AFH=15°+15°=30°,∵AH ⊥CD ,∴AH=12AF=12CF=3, ∵∠DEC=∠ABC+∠BDE ,∴∠BDE=75°-60°=15°,∴∠ADH=15°+30°=45°,∴∠DAH=∠ADH=45°,∴DH=AH=3.【点睛】本题考查了全等三角形的判定与性质,等腰三角形和直角三角形的性质,三角形的外角的性质,等边三角形的判定和性质,证明三角形全等是解决问题的关键.9.(1)6-2t ;(2)全等,理由见解析;(3)83;(4)经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇【解析】【分析】(1)根据题意求出BP ,由PC=BC-BP ,即可求得;(2)根据时间和速度的关系分别求出两个三角形中,点运动轨迹的边长,由∠B=∠C ,利用SAS 判定BPD △和CQP 全等即可;(3)根据全等三角形的判定条件探求边之间的关系,得出BP=PC ,再根据路程=速度×时间公式,求点P 的运动时间,然后求点Q 的运动速度即得;(4)求出点P 、Q 的路程,根据三角形ABC 的三边长度,即可得出答案.【详解】(1)由题意知,BP=2t ,则PC=BC-BP=6-2t ,故答案为:6-2t ;(2)全等,理由如下:∵p Q V V =,t=1,∴BP=2=CQ ,∵AB=8cm ,点D 为AB 的中点,∴BD=4(cm ),又∵PC=BC-BP=6-2=4(cm ),在BPD △和CQP 中BD PC B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴BPD △≌CQP (SAS )故答案为:全等.(3)∵p Q V V ≠,∴BP CQ ≠,又∵BPD △≌CPQ ,∠B=∠C ,∴BP=PC=3cm ,CQ=BD=4cm ,∴点,P Q 运动时间322BP t ==(s ), ∴48332Q CQ V t===(cm/s ), 故答案为:83; (4)设经过t 秒时,P 、Q 第一次相遇,∵2/p V cm s =,8/3Q V cm s =, ∴2t+8+8=83t ,解得:t=24此时点Q 走了824643⨯=(cm ),∵ABC 的周长为:8+8+6=22(cm ),∴6422220÷=,∴20-8-8=4(cm ),经过24s 后,点P 与点Q 第一次在ABC 的BC 边上相遇,故答案为:24s ,在 BC 边上相遇.【点睛】考查了全等三角形的判定和性质,路程,速度,时间的关系,全等三角形中的动点问题,动点的追及问题,熟记三角形性质和判定,熟练掌握全等的判定依据和动点的运动规律是解题的关键,注意动点中追及问题的方向.10.(1)全等,理由见解析;(2)t=3.5秒或5秒【解析】【分析】(1)根据垂直的定义得到∠DAC=∠ECB ,利用AAS 定理证明△ACD ≌△CBE ;(2)分点F 沿C→B 路径运动和点F 沿B→C 路径运动两种情况,根据等腰三角形的定义列出算式,计算即可;【详解】解:(1)△ACD 与△CBE 全等.理由如下:∵AD ⊥直线l ,∴∠DAC+∠ACD=90°,∵∠ACB=90°,∴∠BCE+∠ACD=90°,∴∠DAC=∠ECB ,在△ACD 和△CBE 中,ADC CEB DAC ECB CA CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBE (AAS );(2)由题意得,AM=t ,FN=3t ,则CM=8-t ,由折叠的性质可知,CF=CB=6,∴CN=6-3t ,点N 在BC 上时,△CMN 为等腰直角三角形,当点N 沿C→B 路径运动时,由题意得,8-t=3t-6,解得,t=3.5,当点N 沿B→C 路径运动时,由题意得,8-t=18-3t ,解得,t=5,综上所述,当t=3.5秒或5秒时,△CMN 为等腰直角三角形;【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理,灵活运用分情况讨论思想是解题的关键.11.(1)y=﹣2x+6;(2)点P(m﹣6,2m﹣6);(3)y=﹣x+3 2【解析】【分析】(1)先求出点A,点B坐标,由等腰三角形的性质可求点C坐标,由待定系数法可求直线BC的解析式;(2)证明△PGA≌△QHC(AAS),则PG=HQ=2m﹣6,故点P的纵坐标为:2m﹣6,而点P在直线AB上,即可求解;(3)由“SSS”可证△APM≌△CQM,△ABM≌△CBM,可得∠PAM=∠MCQ,∠BQM=∠APM=45°,∠BAM=∠BCM,由“AAS”可证△APE≌△MAO,可得AE=OM,PE=AO=3,可求m的值,进而可得点P,点Q的坐标,即可求直线PQ的解析式.【详解】(1)∵直线y=2x+6与x轴交于点A,与y轴交于点B,∴点B(0,6),点A(﹣3,0),∴AO=3,BO=6,∵AB=BC,BO⊥AC,∴AO=CO=3,∴点C(3,0),设直线BC解析式为:y=kx+b,则036k bb=+⎧⎨=⎩,解得:26kb=-⎧⎨=⎩,∴直线BC解析式为:y=﹣2x+6;(2)如图1,过点P作PG⊥AC于点G,过点Q作HQ⊥AC于点H,∵点Q横坐标为m,∴点Q(m,﹣2m+6),∵AB=CB,∴∠BAC=∠BCA=∠HCQ,又∵∠PGA=∠QHC=90°,AP=CQ,∴△PGA≌△QHC(AAS),∴PG=HQ=2m﹣6,∴点P的纵坐标为:2m﹣6,∵直线AB的表达式为:y=2x+6,∴2m﹣6=2x+6,解得:x=m﹣6,∴点P(m﹣6,2m﹣6);(3)如图2,连接AM,CM,过点P作PE⊥AC于点E,∵AB=BC,BO⊥AC,∴BO是AC的垂直平分线,∴AM=CM,且AP=CQ,PM=MQ,∴△APM≌△CQM(SSS)∴∠PAM=∠MCQ,∠BQM=∠APM=45°,∵AM=CM,AB=BC,BM=BM,∴△ABM≌△CBM(SSS)∴∠BAM=∠BCM,∴∠BCM=∠MCQ,且∠BCM+∠MCQ=180°,∴∠BCM=∠MCQ=∠PAM=90°,且∠APM=45°,∴∠APM=∠AMP=45°,∴AP=AM,∵∠PAO+∠MAO=90°,∠MAO+∠AMO=90°,∴∠PAO=∠AMO,且∠PEA=∠AOM=90°,AM=AP,∴△APE≌△MAO(AAS)∴AE=OM,PE=AO=3,∴2m﹣6=3,∴m=92,∴Q(92,﹣3),P(﹣32,3),设直线PQ的解析式为:y=ax+c,∴932332a ca c⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得:132ac=-⎧⎪⎨=⎪⎩,∴直线PQ的解析式为:y=﹣x+32.【点睛】本题主要考查三角形全等的判定和性质定理,等腰直角三角形的性质定理以及一次函数的图象和性质,添加辅助线,构造全等三角形,是解题的关键.12.(1)证明见解析;(2)证明见解析;(3)当AC=2BD时,对于满足条件的任意点N,AN=CP始终成立,证明见解析.【解析】【分析】(1)由三角形的内角和定理可求∠ACN=∠AMC=135°-∠ACM ;(2)过点N 作NE ⊥AC 于E ,由“AAS ”可证△NEC ≌△CDM ,可得NE=CD ,由三角形面积公式可求解;(3)过点N 作NE ⊥AC 于E ,由“SAS ”可证△NEA ≌△CDP ,可得AN=CP .【详解】(1)∵∠BAC=45°,∴∠AMC=180°﹣45°﹣∠ACM=135°﹣∠ACM .∵∠NCM=135°,∴∠ACN=135°﹣∠ACM ,∴∠ACN=∠AMC ;(2)过点N 作NE ⊥AC 于E ,∵∠CEN=∠CDM=90°,∠ACN=∠AMC ,CM=CN ,∴△NEC ≌△CDM (AAS ),∴NE=CD ,CE=DM ;∵S 112=AC•NE ,S 212=AB•CD , ∴12S AC S AB=; (3)当AC=2BD 时,对于满足条件的任意点N ,AN=CP 始终成立,理由如下:过点N 作NE ⊥AC 于E ,由(2)可得NE=CD ,CE=DM .∵AC=2BD ,BP=BM ,CE=DM ,∴AC ﹣CE=BD+BD ﹣DM ,∴AE=BD+BP=DP .∵NE=CD ,∠NEA=∠CDP=90°,AE=DP ,∴△NEA≌△CDP(SAS),∴AN=PC.【点睛】本题三角形综合题,考查了全等三角形的判定和性质,三角形内角和定理,三角形面积公式等知识,添加恰当辅助线构造全等三角形是本题的关键.。
人教版数学八上压轴题集合
八上数学期末压轴题集合(2014-2015 武汉武昌)24.如图 1,在△ABC中,AB=AC,BAC=30°,点 D 是△ABC内一点,DB=DC,∠DCB=30°,点E 是BD 延长线上一点,AE=AB.(1)直接写出∠ADE 的度数;(2)求证:DE=AD+DC;(3)作 BP 平分∠ABE,EF⊥BP,垂足为 F(如图 2),若 EF=3,求 BP 的长.25.如图,在平面直角坐标系中,已知两点 A(m,0),B(0,n)(n>m>0),点 C 在第一象限,AB⊥BC,BC=BA,点P 在线段 OB 上,OP=OA,AP 的延长线与 CB 的延长线交于点 M,AB 与CP 交于点 N.(1)点C 的坐标为:(用含m,n 的式子表示);(2)求证:BM=BN;(3)设点 C 关于直线 AB 的对称点为 D,点 C 关于直线 AP 的对称点为 G,求证:D,G 关于 x 轴对称.(2015-2016 武汉武昌)23.已知△ABC 和△DEF 为等腰三角形,AB=AC,DE=DF,∠BAC=∠EDF,点 E 在AB 上,点 F 在射线 AC 上.(1)如图 1,若∠BAC=60°,点 F 与点 C 重合,求证:AF=AE+AD;(2)如图 2,若 AD=AB,求证:AF=AE+BC.24.如图,在平面直角坐标系中,A(8,0),点B 在第一象限,△OAB 为等边三角形,OC⊥AB,垂足为点 C.(1)直接写出点C 的横坐标;(2)作点 C 关于 y 轴的对称点 D,连 DA 交 OB 于 E,求 OE 的长;(3)P 为y 轴上一动点,连接 PA,以 PA 为边在 PA 所在直线的下方作等边△PAH.当 OH 最短时,求点 H 的横坐标.(西安某中学1)24.(1)问题如图 1,点 A 为线段 BC 外一动点,且 BC=a,AB=b.填空:当点A 位于时,线段AC 的长取得最大值,且最大值为(用含a,b 的式子表示)(2)应用点 A 为线段 BC 外一动点,且 BC=3,AB=1,如图 2 所示,分别以 AB,AC 为边,作等边三角形 ABD 和等边三角形 ACE,连接 CD,BE.①请找出图中与 BE 相等的线段,并说明理由;②直接写出线段 BE 长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A 的坐标为(2,0),点B 的坐标为(5,0),点P 为线段AB 外一动点,且 PA=2,PM=PB,∠BPM=90,请直接写出线段 AM 长的最大值及此时点 P 的坐标.(哈尔滨双城)27.如图,在平面直角坐标系中,点 A 坐标为(6,0),点 B 在 y 轴的正半轴上,且 =240.(1)求点 B 坐标;(2)若点 P 从B 出发沿 y 轴负半轴方向运动,速度每秒 2 个单位,运动时间 t 秒,△AOP 的面积为 S,求 S 与t 的关系式,并直接写出 t 的取值范围;(3)在(2)的条件下,若S△AOP:S△ABP=1:3,且S△AOP+S△ABP=S△AOB,在线段 AB 的垂直平分线上是否存在点Q,使得△AOQ 的面积与△BPQ 的面积相等?若存在,求出 Q 点坐标;若不存在,请说明理由。
人教版八年级上册数学期末动点问题压轴题专题训练(含解析)
人教版八年级上册数学期末动点问题压轴题专题训练(1)当时,点C 的坐标为 .(2)动点A 在运动的过程中,试判断发生变化,请说明理由.(3)当时,在坐标平面内是否存在一点若存在,请直接写出点P 的坐标;若不存在,请说明理由.(1)如图1,当点在边上时.①求证:;②求证:;(2)如图2,当点在边的延长线上时,其他条件不变,请写出2a =3a =D BC ABD ACE ≌△△BC DC CE =+D BC(1)请直接写出点A 和点B 的坐标;(2)请判断的形状并说明理由;(3)下列结论:①四边形为定值.请选择一个正确的结论并说明理由.(1)求证:;(2)求的面积;(3)点M ,N 分别是线段,上的动点,连接,求的最小值.DEF OEDF OEF DFE ∠+∠CD CE =CDE BC BD MN 12MN DN +(1)求出点的坐标.(2)求证:.(3)数学活动小组进行深入探究后发现变,你同意这个说法吗?请说明理由B OD BC =(1)如图①,请找出图中与相等的角,并说明理由;(2)如图②,交轴于点,过点作轴于点,求证:平分;(3)如图③,若,点在轴正半轴移动,且,取,连交轴OAB ∠BC x M C CD x ⊥,2D AM CD =AD BAC ∠()3,0A B y OB OA >()0,3P CP x边三角形,使其与点在直线的两侧,与直线相交于点(点与点A 不重合),连接.(1)如图,当时,①求证:;②在点A 运动的过程中,的度数是否会发生改变?如果会请说明理由,如果不会请求出的度数;(2)在点A 运动的过程中,试探究线段,,之间的数量关系.11.在平面直角坐标系中,点在轴的正半轴上,点在第一象限,,.(1)如图1,求证:是等边三角形;(2)如图1,若点M 为y 轴正半轴上一动点,以为边作等边三角形,连接并延长交轴于点,求证:;(3)如图2,若,,点为的中点,连接、交于,请问、与之间有何数量关系,并证明你的结论.12.在平面直角坐标系中,点A 为y 轴正半轴上一点,点B 为x 轴上一动点,连接ABD C AB DC l E E EB 120BAC ∠<︒ABE ACE =∠∠DCB ∠DCB ∠EA EB ED A y B OB AB =150BOP ∠=︒OAB BM BMN NA x P 2AP AO =BC BO ⊥BC BO =D CO AC DB E AE BE CE,以为腰作等腰,.(1)如图1,点B 在x 轴负半轴上,点C 的坐标是,直接写出点A 和点B 的坐标;(2)如图2,点B 在x 轴负半轴上,交x 轴于点D ,若平分.且点C 的纵坐标是,求线段的长;(3)如图3,点B 在x 轴正半轴上,以为边在左侧作等边,连接,,若,且,求的面积.13.等腰直角中,,,,点、分别是轴,轴上两个动点,直角边交轴于点,斜边交轴于点.(1)如图1,已知点的横坐标为,直接写出点的坐标;(2)如图2,若点为轴上的固定点,且,当点在轴正半轴运动时,分别以、为直角边在第一、二象限作等腰直角和等腰直角,连接交轴于点,问当点在轴的正半轴上运动时,的长度是否变化?若变化请说明理由;若不变化,请求出的长度.14.在平面直角坐标系中,点为坐标原点,点、分别位于轴和轴AB AB Rt ABC △90BAC ∠=︒(2,2)-AC BD ABC ∠3-BD BC BC BCE EO CO 60COE ∠=︒8CO =AOC ABC 90BAC ∠=︒AB AC =ABC C ∠=∠B A x y AC x D BC y E C 2-A A x ()6,0A -B y OB AB BOD ABC CD y P B y BP BP O ()6,0B -()0,6A x y上,连接,交轴于点.(1)求点的坐标;(2)动点从出发以个单位/秒的速度沿轴向终点运动,连接,将线段绕着点逆时针旋转后得到线段,与为对应点.连接、,为的面积,用含的式子表示;(3)在()的条件下,连接,过点作于,交轴于,交于,若,求点的坐标.15.如图①,在中,,现有一动点,从点出发,沿着三角形的边运动,回到点停止,速度为,设运动时间为秒.(1)如图①,当的面积等于面积的一半时,求的值:(2)如图②,点在边上,点在边上,在的边上,若另外有一个动点与点同时从点出发,沿着边运动,回到点停止.在两点运动过程中的某一时刻,以为顶点的三角形恰好与全等,求点的运动速度.16.如图,在平面直角坐标系中,,点在轴正半轴上,.AB CA AB ⊥x C C P B 2x C AP AP A 90︒AQ P Q PQ CQ S PCQ △t S 2BQ A AH BQ ⊥G x H PQ AC M :2:1APM AQM S S = H Rt ABC △90,12cm,16cm,20cm B AB BC AC ∠=︒===P A AB BC CA →→A 2cm /s t ABP ABC t D BC 4cm CD =E AC 5cm,,3cm CE ED BC ED =⊥=ABC Q P A AC CB BA →→A ,,A P Q EDC △Q ()0,9A B x 45OAB ∠=︒(1)求出点坐标;(2)动点从点出发,以每秒个单位长度的速度沿轴正半轴运动,同时点从点出发,以相同速度沿轴向左运动,连接,过点作交直线于点,连接,设点的运动时间为,请用含的式子表示的面积;(3)在(2)的条件下,直线与直线交于点,当时,求点坐标.17.已知中,,过点的直线交轴于,其中是方程组的解,(1)求的值(2)动点从点出发,沿线段以每秒1个单位的速度运动,运动时间为秒;请用含的式子表示线段的长度;并直接写出此时的取值范围;(3)在(2)的条件下,当为何值时,直线与直线互相垂直.18.在平面直角坐标系中,O 为坐标原点,直线交x 轴的正半轴于点A ,交y 轴的B P O 1y Q B x PQ O OG PQ ⊥AB G PG P t t OPG PQ AB H 72OPG S =△H AOB OA OB a ==A AM x (),0M b ,a b 3830a b a b +=⎧⎨+=⎩,a b P A AO t t OP t t BP AM AB(1)如图1求的长;(2)如图2动点E 在第二象限,点E 的坐标为,连接,,请写出面积s 与t 的关系;(3)在(2)的条件下,如图3点F 在第一象限,连接、、,,连接,当,求的值.OD (,)t m DE OE ODE FE FD FA 30ADF ∠=FE FA =EB 12,4EBO ODA ODA EFA EOB ∠=∠∠+∠=∠t m +参考答案:1.(1)(2)动点A 在运动的过程中,的值不变,(3)或或【分析】本题考查全等三角形判定及性质.(1)根据题意过点C 作轴于点,证明出,利用全等性质即可得到本题答案;(2)由(1)得,利用全等性质及点坐标表示线段长即可得到本题答案;(3)根据题意分3种情况讨论P 点位置,利用全等三角形性质及判定即可得到本题答案.【详解】(1)解:如下图,过点C 作轴于点E ,则,,∵是等腰直角三角形,∴,∴,∴.在和中,∴(AAS ),∵,∴,∴,∴;(2)解:动点A 在运动的过程中,的值不变.理由如下:(2,3)-+c d (4,)1-(3,2)--(2,1)-CE y ⊥E ACE BAO ≌ACE BAO ≌CE y ⊥CEA AOB ∠=∠ABC ,90AC BA BAC =∠︒=90ACE CAE BAO CAE ∠+∠=︒=∠+∠ACE BAO ∠=∠ACE △BAO CEA AOB ACE BAOAC BA ∠=∠⎧⎪∠=∠⎨⎪=⎩ACE BAO ≌(0,1),(0,2)B A -12BO AE AO CE ====,123OE =+=2,3C -()+c d由(1)知,,∵,,∴,∴,∴,又∵点C 的坐标为,∴,即的值不变;(3)解:存在一点P ,使与全等,符合条件的点P 的坐标是或或,分为三种情况讨论:①如下图,过点P 作轴于点E ,则,∴,∴,在和中,,∴(AAS ),∴,∴,即点P 的坐标是,②如下图,过点C 作轴于点M ,过点P 作轴于点E ,ACE BAO ≌(0,1)B (0,)A a -1,BO AE AO CE a ====1OE a =+(,1)C a a --(,)c d 11c d a a +=--=-+c d PAB ABC (4,)1-(3,2)--(2,1)-PE x ⊥90PBA AOB PEB ∠=∠=∠=︒90,90EPB PBE PBE ABO ∠+∠=︒∠+∠=︒EPB ABO ∠=∠PEB △BOA △EPB OBA PEB BOA PB BA ∠=∠⎧⎪∠=∠⎨⎪=⎩PEB BOA △≌△1,3PE BO EB AO ====314OE =+=(4,)1-CM x ⊥PE x ⊥则.∵,∴,∴,∴,∴,在和中,,∴(AAS ),∴.∵,∴,即点P 的坐标是;③如下图,过点P 作轴于点E ,则.∵,∴,∴,90CMB PEB ∠=∠=︒CAB PAB △≌△45,PBA CBA BC BP ∠=∠=︒=90CBP ∠=︒90,90MCB CBM CBM PBE ∠+∠=︒∠+∠=︒MCB PBE ∠=∠CMB BEP △MCB EBP CMB BEP BC PB ∠=∠⎧⎪∠=∠⎨⎪=⎩CMB BEP △≌△,PE BM CM BE ==3,4),10C B -((,)2,413PE OE BE BO ==-=-=(3,2)--PE x ⊥90BEP BOA ∠=∠=︒CAB PBA △≌△,90AB BP CAB ABP =∠=∠=︒90,90ABO PBE PBE BPE ∠+∠=︒∠+∠=︒∴.在和中,,∴(AAS ),∴,∴,即点P 的坐标是,综上所述,符合条件的点P 的坐标是或或.2.(1)①见解析;②见解析;(2),见解析【分析】本题主要考查了等边三角形,全等三角形.(1)①根据等边三角形的性质得出,,,根据得出,从而说明三角形全等;②根据全等的性质得出,然后根据即得;(2)根据等边三角形的性质得出,,,根据得出,从而说明,根据全等的性质得出,然后根据即得.【详解】(1)证明:①∵和是等边三角形,∴,,.∴,∴.在和中,,∴;②∵,ABO BPE ∠=∠BOA △PEB △ABO BPE BOA PEB BA PB ∠=∠⎧⎪∠=∠⎨⎪=⎩BOA PEB △≌△1,3PE BO BE OA ====312OE BE BO =-=-=(2,1)-(4,)1-(3,2)--(2,1)-BC CD CE +=AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠-∠=∠-∠BAD EAC ∠=∠BD CE =BC BD CD =+AB AC =AD AE =60BAC DAE ∠=∠=︒BAC DAC DAE DAC ∠+∠=∠+∠BAD EAC ∠=∠ABD ACE ≌△△BD CE =+=BC CD BD ABC ADE V 60BAC DAE ∠=∠=︒AB BC AC ==AD DE AE ==BAC DAC DAE DAC ∠-∠=∠-∠BAD CAE ∠=∠ABD △ACE △AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩()SAS ABD ACE △≌△ABD ACE ≌△△∵,,∴,∴是等腰直角三角形,即∵点D 是线段中点,∴,,(0,6)A (6,0)B 6O A O B ==AOB ∠AB OD AB ⊥12OD AD AB ==∠∵,,∴在中,∵在(1)中已求出根据翻折可知:、∴N 点关于的对称点H 在根据对称性有:∴,∴是等边三角形,∵N 点关于的对称点是点H ,3BD =30CBD ∠=︒DG Rt BDG △12DG BD =CE CD =11BDC BKC △BE BK DBC KBC ∠=∠60BDK DBC KBC ∠=∠+∠=︒BDK BE NH如图,,即:,在中,PNC DNC∠=∠24PNC αβ∠==2αβ=MCN DCM DCN x β∠=∠+∠=+MCN △180MCN DCN NMC ∠+∠+∠=2180x βαα+++=︒3180x βα++=︒解得:,.II.当点在线段上时,如图,,,即:,在中,,,即:联立得:,解得:,此时:,不合题意舍去;III .当点在线段上时,如图,,52550x βα=︒⎧⎪=︒⎨⎪=︒⎩∴5DCM ∠=︒N PD 180PNC DNC ∠+∠=︒∴24180αβ+=︒290αβ+=︒∴MCN DCM DCN x β∠=∠+∠=+ CMN PCN MCN CMN x βα∠=∠+∠=++∴4180PCN NDC x βαβ∠+∠=+++=︒5180x βα++=︒2602905180x x ααββα+=︒⎧⎪+=︒⎨⎪++=︒⎩11.2526.2537.5x βα=︒⎧⎪=︒⎨⎪=︒⎩11.2526.5PCN DCN ∠=︒<∠=︒N DM PNC DNC ∠=∠【详解】(1)解:过点B 作轴于点D ,∵,∴,∵轴,∴,∵,∴,∴,在和中,,∴,∴,∵,∴;(2)解:∵,∴,∴,∵轴,∴,∴,∴,在和中,BD y ⊥()()6,0,0,3A C -6,3OA OC ==BD y ⊥90BCD CBD ∠+∠=︒90ACB ∠=︒90BCD ACO ∠+∠=︒ACO CBD ∠=∠ACO △CBD △90AOC CDB ACO CBDAC BC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩≌ACO CBD 6,3OA CD OC BD ====()0,3C ()3,3B -90ACB ∠=︒90BCF ∠=︒90CBF F ∠+∠=︒BE y ∥90AEF ∠=︒90CAD F ∠+∠=︒CAD CBF ∠=∠CAD CBF V∴,∴,∵,∴∴.【点睛】本题主要考查了三角形综合,折叠的性质,全等三角形的判定和性质,角平分线的性质,解题的关键是掌握全等三角形的判定方法,全等三角形对应边相等,对应角相等;折叠前后对应角相等;角平分线上的点到两边距离相等.7.(1)(2)见解析(3)的度数总是保持不变,理由见解析【分析】本题考查了全等三角形的性质与判定,等腰三角形的性质,坐标与图形;(1)根据等腰三角形的性质解答即可;(2)根据等式的性质得出,进而利用证明与全等,进而解答即可;(3)根据全等三角形的性质得出,进而利用平角的定义解答即可.【详解】(1)解:如图所示,过作轴于,()Rt Rt HL EFO EFN ≌FN FO =(),0F t FO t=-2FG HG t +=-()2,0-COD ∠BAC OAD ∠=∠SAS BAC OAD AOD ABO ∠=∠A AE x ⊥E),点C 是的中点,,D 作轴于点F ,,,4=AB 114222AB ==⨯=DF x ⊥90DFO =︒90FDO DOF +∠=︒),的坐标为,关于x 轴的对称点,则的坐标为,交x 轴于点,则为定值,此时的周长最小.作轴于点Q ,114222AB '==⨯=M '()0,2M '''M ''M AM ''P PAM C AM AP ''=+ AM 'PAM '△()4,4A -AQ y ⊥对于(3),作轴,先证明,可得,再得出,进而得出,根据等腰直角三角形的性质和判定即可得出答案.【详解】(1).理由:,;(2)证明:如图②中,延长交的延长线于点..∵,,,.,即.垂直平分,平分.(3)的长度不变,.理由:如图③中,过点作轴于点...CH y ⊥≌CHB BOA △△,3===CH BO BH OA 3==OA OP ==OB PH CH OAB OBC ∠=∠90,90OAB OBA OBC OBA ∠+∠=∠+∠=︒︒ OAB OBC ∴∠=∠AB CD T ,90,90,AD CD ADT T BAM BCT BAM ⊥∴∠=∴∠+∠=∴∠=∠︒︒ BC BA ===90CB T A B M ∠∠︒()CBT ABM ASA ∴≌△△CT AM ∴=2,2AM CD CT CD =∴= CD DT =,AD CT AD ⊥∴ CT ,AC AT AD ∴=∴BAC ∠OQ 3OQ =C CH y ⊥H 90,90CHB BOA HBC HCB ∴∠=∠=∴∠+∠=︒︒90,90,ABC OBA HBC HCB OBA ∠=∴∠+∠=︒︒∴∠=∠..,..,.【点睛】本题主要考查了全等三角形的性质和判定,同角的余角相等,线段垂直平分线的性质,等腰直角三角形的性质和判定等,构造辅助线是解题的关键.10.(1)①见解析;②不变,(2)或【分析】(1)①根据垂直平分线的性质得出,再由等边对等角及各角之间的数量关系求解即可;②设与交于点M ,根据等边三角形的性质及各角之间的关系得出,即可求解;(2)分两种情况进行分析:当时,当时,分别利用全等三角形的判定和性质及等边三角形的判定和性质分析求解即可.【详解】(1)证明:①点A 、E 在线段的垂直平分线l 上,∴,∴,∴,即;②在点A 运动的过程中,的度数不变,理由如下:如图,设与交于点M ,(),CB AB CHB BOA AAS =∴ ≌△△,3∴===CH BO BH OA ()()3,0,0,3,3A P OA OP ∴== ,BH OP OB PH CH ∴=∴==90,45CHP CPH OPQ ∠=∴∠=∠=︒︒ 90,45∠=∴∠=︒=︒∠ POQ OQP OPQ 3OQ OP ∴==30DCB ∠=︒ED EB EA =+EB ED EA=+AC AB EC EB ==,AB CD 260ECB ∠=︒120BAC ∠<︒120BAC ∠>︒BC ,AC AB EC EB ==,ABC ACB EBC ECB ∠∠∠∠==ABC EBC ACB EBC ∠∠∠∠-=-ABE ACE ∠∠=DCB ∠AB CD∵是等边三角形,∴ ,∴,∴,∴,∴,∴,∵,∴,即;(2)当时,在上截取,连接,∵,∴,由(1)得直线,,∴,∴是等边三角形,∴ ,∴,即,ABD ,60AB AD BAD ∠==︒AD AC =ADC ACE ∠∠=,ABE ADC EBC ECB ∠∠∠∠==,180,180AMD EMB BED ABE EMB BAD ADC AMD ∠∠∠∠∠∠∠∠==︒--=︒--60BED BAD ∠∠==︒,EBC ECB BED EBC ECB ∠∠∠∠∠+==260ECB ∠=︒30DCB ∠=︒120BAC ∠<︒ED EF EA =AF ED DF EF =+ED DF EA =+l BC ⊥30DCB ∠=︒903060AED ∠=︒-︒=︒AEF 60,EAF BAD AE AF ∠∠==︒=–EAF BAF BAD BAF ∠∠∠∠=-BAE DAF ∠∠=∴,∴,∵,∴;当时,如图所示在上截取,连接,∵,∴,由(1)得直线,,,∴,∴F 是等边三角形,∴,∴,∴,∴,∴,∵,∴;综上可得:或.【点睛】题目主要考查线段垂直平分线的性质,全等三角形的判定和性质,等边三角形的判定和性质等,理解题意,作出相应辅助线是解题关键,同时注意进行分类讨论.11.(1)见解析(2)见解析(3),证明见解析【分析】(1)根据有一个角是的等腰三角形是等边三角形可得结论;(SAS)BAE DAF ≌ EB DF =ED DF EA =+ED EB EA =+120BAC ∠>︒EB EF EA =AF EB BF EF =+EB BF EA =+l BC ⊥30DCB ∠=︒BE BC =903060AEB AEC ∠∠==︒-︒=︒AE 60,EAF BAD AE AF ∠∠==︒=–EAF DAF BAD DAF ∠∠∠∠-=EAD BAF ∠∠=(SAS)BAF DAE ≌ BF ED =EB BF EA =+EB ED EA =+ED EB EA =+EB ED EA =+AE BE CE =+60︒(2)根据证明,得,由8字形可得,最后由含角的直角三角形的性质可得结论;(3)如图2,在上截取,先证,方法是根据题意得到三角形为等边三角形,三角形为等腰直角三角形,确定出度数,根据,且,得到度数,进而确定出为,再由,得到,再由,且夹角,利用得到三角形与三角形全等,利用全等三角形的对应边相等得到,得到三角形为等边三角形,得到,由,等量代换即可得证.【详解】(1)解:证明:,,,,是等边三角形;(2)证明:由(1)知:是等边三角形,,是等边三角形,,,,,,,,,,,,SAS MBO NBA ≌OMB ANB ∠∠=60FAM FBN ∠∠==︒30︒AC AG CE =60AEB ∠=︒ABO BOC ABD ∠AB BC =150ABC ∠=︒BAE ∠AEB ∠60︒AG CE =AE CG =AB CB =BAC BCA ∠=∠SAS BCG BAE BG BE =BEG BE EG =AE EG AG =+150BOP ∠=︒ 90AOP ︒=∠60AOB ∴∠=︒OB AB = OAB ∴ OAB 60ABO ∴∠=︒BMN BM BN ∴=60MBN ∠=︒MBO NBA ∴∠=∠AB OB = (SAS)MBO NBA ∴△≌△OMB ANB ∴∠=∠AFM BFN ∠=∠ 60FAM FBN ∴∠=∠=︒60OAP FAM ∠=∠=︒ 90AOP ︒=∠30APO ∴∠=︒;(3),理由如下:如图2,在上截取,连接,,即,,,,为的中点,平分,即,,,,,,,在和中,,,,为等边三角形,,.【点睛】本题是三角形综合题,考查了等腰直角三角形的性质和判定,等边三角形的性质和判定,全等三角形的判定和性质,以及含角的直角三角形的性质,添加辅助线.12.(1),2AP AO ∴=AE BE CE =+AC AG EC =BG AG EG CE EG +=+AE CG =BC BO ⊥ BC BO =90OBC ∴∠=︒D CO BD ∴OBC ∠45CBD OBD ∠=∠=︒60ABO ∠=︒ 105ABD ∴∠=︒150ABC ∠=︒AB OB BC == 15BAC BCA ∴∠=∠=︒154560AEB ∴∠=︒+︒=︒ABE CBG AB CB BAE BCG AE CG =⎧⎪∠=∠⎨⎪=⎩(SAS)ABE CBG ∴△≌△BG BE ∴=BEG ∴△BE EG ∴=AE AG EG CE BE ∴=+=+30︒()02A ,()40B -,∴,∵∴,∵,∴,,90ADC BOA ∠=︒=∠90CAD BAO ABO ∠+∠=︒=∠CAD ABO ∠=∠(2,2)C -2CD =2OD =∴,,∴,;(2)解:如图2,作轴,交轴于,交的延长线于,∴,∵平分,∴,,,∴,∴,∵,∴,∵,∴,∴,∵,,∴,∴,∴的长为6;(3)解:∵为等边三角形,∴,,如图3,在上截取,使,连接,2AO CD ==4BO AD AO OD ==+=()02A ,()40B -,CM x ⊥x N BA M 90BNM BNC ∠=︒=∠BD ABC ∠MBN CBN ∠=∠BN BN =90BNM BNC ∠=︒=∠()ASA MBN CBN ≌3MN CN ==∥CM AO ACM CAO ∠=∠90CAO BAO ABD BAO ∠+∠=︒=∠+∠CAO ABD ∠=∠ACM ABD ∠=∠AC AB =90MAC DAB ∠=︒=∠()ASA ACM ABD ≌6BD CM CN MN ==+=BD BCE BE CE =60BEC EBC ECB ∠=∠=∠=︒OC OF OF OE =EF∴是等边三角形,∴,∴∵,∴,∴,OEF OE EF =60OEF ∠=︒=∠OEF BEF BEC ∠-∠=∠-∠OE EF =BEO CEF ∠=∠()SAS BEO CEF ≌OBE FCE ∠=∠13.(1)(2)【分析】(1)如图①,过作 轴于, 证明可得从而可得答案;(2)如图①,过点作 轴于点.证明 ,可得 ,再证明,从而可得: .【详解】(1)解: 如图①,过作 轴于,∴,∵,∴,∴,∵,∴.∴,,∴,∴,故答案为 : .(2)的长度不变,理由如下:如图②, 过点作 轴于点.()0,23BP =C CF y ⊥F ,ACF BAO ≌CF AO =C CE y ⊥E CBE BAO ≌,6CE BO BE AO ===CPE DPB ≌3BP EP ==C CF y ⊥F 90,90CFA AOB ACF CAF ∠=∠=︒∠+∠=︒90BAC ∠=︒90CAF OAB ∠+∠=︒ACF OAB ∠=∠AC AB =()AAS ACF BAO ≌CF AO =2c x =- 2CF AO ==()0,2A ()0,2BP C CE y ⊥E∵ ,∴∵∴ .∵90ABC ∠=︒90CBE ABO ∠+∠=︒90BAO ABO ∠+∠=︒CBE BAO ∠=∠90CEB AOB ∠=∠=∵,∴,在和中,90BAC PAQ ∠=∠=︒BAP CAQ ∠=∠BAP △CAQ AB AQ =⎧∴四边形为正方形,∴,过作于点,∵AOCN 6OA CN OC ===T TL CN ⊥L AH BQ⊥AOH TLQ ≌∴,解得;②当点在上,点∴,解得;3AP DE cm AQ EC ===,352x =103x =cm/s P AB 5AP EC cm AQ ==,532x =65x =cm/s∴点P 的路程为∴点P 的路程为3AP ED AQ EC ===,AB +1216205AQ =++-=4543x =5AP EC cm AQ ==,AB +1216203AQ =++-=4345x =从出发,以每小时从出发,以相同速度沿,①当在线段上时,P O Q B OQ ∴=AP =t P AO,等腰,,设,,为的一个外角,RO PO ∴=∴POR 45R BAO ∴∠=∠=︒QPO α∠=45RPQ α∴∠=︒-QON BOG α∠==∠ABO ∠ OBG,,,,90HTA ∴∠=︒45HAT OAB ∠=∠=︒45HAT AHT ∴∠=∠=︒HT AT ∴=由(1)知,,则,∵直线与直线互相垂直,∴,()1.0M -1OM =BP AM 90MNB ∠=︒。
八上数学 【多项式与多项式相乘】压轴题
八上数学期末必考压轴题【多项式与多项式相乘】【例题】计算:(1)(m-2n)(-m-n);原式=-m2-mn+2mn+2n2=-m2+mn+2n2.(2)(x3-2)(x3+3)-(x2)3+x2·x;原式=x6+x3-6-x6+x3=2x3-6.(3)(-7x2-8y2)·(-x2+3y2);原式=7x4-21x2y2+8x2y2-24y4=7x4-13x2y2-24y4.(4)(3x-2y)(y-3x)-(2x-y)(3x+y).原式=3xy-9x2-2y2+6xy-6x2-2xy+3xy+y2=-15x2+10xy-y2.【例题】计算:(1)(x+1)(x+4);原式=x2+5x+4.(2)(m-2)(m+3);原式=m2+m-6.(3)(y+4)(y+5);原式=y2+9y+20.(4)(t-3)(t+4).原式=t2+t-12.【例题】计算:(1)(m+1)(2m-1);原式=2m2-m+2m-1=2m2+m-1.(2)(2a-3b)(3a+2b);原式=6a2+4ab-9ab-6b2=6a2-5ab-6b2.(3)(y+1)2;原式=(y+1)(y+1)=y2+y+y+1=y2+2y+1.(4)a(a-3)+(2-a)(2+a).原式=a2-3a+4+2a-2a-a2=-3a+4.【例题】先化简,再求值:(x-5)(x+2)-(x+1)(x-2),其中x =-4.原式=x2+2x-5x-10-x2+2x-x+2=-2x-8.当x=-4时,原式=-2×(-4)-8=0.【例题】若多项式(x2+mx+n)(x2-3x+4)展开后不含x3和x 2项,求m 和n 的值.原式=x 4-3x 3+4x 2+mx 3-3mx 2+4mx +nx 2-3nx +4n =x 4+(m -3)x 3+(4-3m +n )x 2+(4m -3n )x +4n.∵多项式展开后不含x 3和x 2项,∴m -3=0,4-3m +n =0.∴m =3,n =5. 【例题】已知|2a +3b -7|+(a -9b +7)2=0,试求(1/4a 2-1/2ab +b 2)(1/2a +b )的值.由题意,得⎩⎨⎧2a +3b =7,a -9b =-7.解得⎩⎨⎧a =2,b =1.原式=1/8a 3+b 3=1/8×23+13=2.【例题】一个正方形的一边增加3 cm ,相邻的一边减少3 cm ,得到的长方形的面积与这个正方形每一边减少1 cm 所得的正方形的面积相等,求长方形的面积.设正方形的边长为x cm.依题意得(x +3)(x -3)=(x -1)(x -1).解得x =5.∴长方形的面积为(5+3)×(5-3)=16(cm 2).。
2023学年人教版数学八年级上册压轴题专题精选汇编(含30°角的直角三角形)解析版
2023学年人教版数学八年级上册压轴题专题精选汇编含30°角的直角三角形考试时间:120分钟试卷满分:100分一、选择题(共10题;共20分)1.(2分)(2021八上·松桃期末)如图△ABC是等边三角形点E是AC的中点过点E作EF⊥AB于点F 延长BC交EF的反向延长线于点D 若EF=1 则DF的长为()A.2B.2.5C.3D.3.5【答案】C【完整解答】解:连接BE∵△ABC是等边三角形点E是AC的中点∴∠ABC=60° ∠ABE=∠CBE=30°∵EF⊥AB∴∠D=90°-∠ABC=30° 即∠D=∠CBE=30°∴BE=DE在Rt△BEF中EF=1∴BE=2EF=2∴BE=DE=2∴DF=EF+DE=3故答案为:C.【思路引导】连接BE 根据等边三角形的性质得∠ABC=60° ∠ABE=∠CBE=30° 易求∠D=30° 即得∠D=∠CBE 由等角对等边可得BE=DE 根据含30°角的直角三角形的性质可得BE=2EF=2 即得DE=2 从而得出DF=EF+DE=32.(2分)(2021八上·平阴期末)如图 △ABC 中 ∠C =90° AB =8 ∠B =30° 点P 是BC 边上的动点 则AP 长不可能是( )A .3.5B .4.2C .5.8D .7.3【答案】A 【完整解答】解:∵∠C=90° AB=8 ∠B=30°∴AC=12AB=12×8=4 ∵点P 是BC 边上的动点∴4<AP <8∴AP 的值不可能是3.5.故答案为:A .【思路引导】根据含30°角的直角三角形的性质可得AC=12AB=4 根据垂线段最短得出AP 的最小值 然后得出AP 的范围 即可判断.3.(2分)(2021八上·海丰期末)如图 OE 为AOB ∠的角平分线 30AOB ∠=︒ 6OB = 点P C 分别为射线OE OB 上的动点 则PC PB +的最小值是( )A .3B .4C .5D .6【答案】A 【完整解答】解:过点B 作BD ⊥OA 于D 交OE 于P 过P 作PC ⊥OB 于C 此时PC PB +的值最小∵OE 为AOB ∠的角平分线 PD ⊥OA PC ⊥OB∴PD=PC∴PC PB +=BD∵30AOB ∠=︒ 6OB = ∴132BD OB == 故答案为:A .【思路引导】根据角平分线的性质求出PD=PC 再求出PC PB +=BD 最后求出BD 的值即可。
(完整word版)八上数学期末压轴题汇编
八上数学期末压轴题汇编1•如图,已知A(a, 0)、B(0, b), 且a、b满足寸a - 5 + a - 2ab + b =0,点C在直^线AB 上,△ COD为等腰三角形,且/ COD=900.("△ BOD与厶AOC全等吗?为什么?(2) 若点C的纵坐标为2,求四边形AODB的面积•2•如图,已知A(a,0),B(0,b),且分式无意义•a +b(1) 求证:OA=OB.(2) 若C的坐标为(-1 , 0),且AH丄BC于H , AH交OB于点P,求点P的坐标.(3) 连HO,求证:/ OHP=45 .2 23•如图,已知A (a, 0), B(0, b),且a 为方程(a+1) (a-5)-(a+7) (a-5) =66 的根,且a - 2ab +b =0.(1)求A、B两点的坐标(2)如图,直角/ EPF的顶点P是AB的中点,两边PE、PF分别交OA、OB于E、F两点,已知Rt A EOF2 2 2 1 1EO2 + FO2 = EF2,当S MEF=-42 24•如图,已知A(a,0),B(0,b)且a、b 满足a +2ab + b =0,分别在OA、OB上运动,过点O作OE丄AD交AB于点E,过点E作EF丄BC交BC于点F.(1)求证:△ AODBOC.(2)求AD - EF的值.OE的三边满足关系式:C、D同时从原点O出发,以相同的速度5•如图1,已知A (0, 2)、B (-1, 0)两点,以B为直角顶点在第二象限作等腰Rt A ABC.(1)求点C的坐标.6.如图,在平面直角坐标系中,直线AB交x轴于A(a,0),交y轴于点B( 0,b),且a、b 满足(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE..a - 4 + (b - 2) = 0,已知M (m, m)(1) 求S^AOB(2) 过点M作MC丄AB交y轴于点C,求点C的坐标.图27•如图(1),等边三角形△ ABC中,D为AB边上的动点,以CD为一边,向上作等边△ EDC,连接AE. (DBC和厶EAC会全等吗?说明理由;(2)如图(1)求证:AE // BC.(3)如图(2), ( 1)中动点D运动到边BA的延长线上,仍作等边△你的猜想•图1图28•如图,D是线段0C的垂直平分线上的点,(1)求证:/ ODC = Z OAC;(2)求证: AO - ACAE=2AD平分△ AOC的外角,(3)求证: AO + ACOE=2(4)变式:如图,若点 P 在DMAC 的平分线的反向延长线上,若/OPC = / OAC ,作PN 丄AO 于N ,现9•如图,AD 是厶ABC 的角平分线,H 、G 分别在 AC 、AB 上,且HD=BD.(1) 求证:/ B 与/ AHD 互补;(2) 若/ B+2/ DGA=180°,请探究线段 AG 与线段AH 、HD 之间满足的等量关系,并证明10.如图,已知A(a , b), AB 丄y 轴于B ,且满足.a - 2+(b- 2)2 = 0.(1) 求A 点的坐标;(2) 分别以AB 、AO 为边作等边三角形△ ABC 和厶AOD ,试判断线段 AC 和DC 的数量关系和位置关系给出两个结论:①求其值• AO - AC AN AC +AO AN的值不变;11.如图1,在一平面直角坐标系中放入一等腰(1)若点P到厶BCO三边的距离相等,判断图1(2)若已知A(-2,2),求OB+OC的值;(3)如图2,若点B在x轴的正半轴,且点P在厶ABC的外部且到△ ABC三边的距离相等,此时的AP 与AC有何数量关系?图2。
八年级数学上册 压轴题 期末复习试卷(Word版 含解析)
八年级数学上册 压轴题 期末复习试卷(Word 版 含解析)一、压轴题1.如图,直线2y x m =-+交x 轴于点A ,直线122y x =+交x 轴于点B ,并且这两条直线相交于y 轴上一点C ,CD 平分ACB ∠交x 轴于点D .(1)求ABC 的面积.(2)判断ABC 的形状,并说明理由.(3)点E 是直线BC 上一点,CDE △是直角三角形,求点E 的坐标.2.(1)探索发现:如图1,已知Rt △ABC 中,∠ACB =90°,AC =BC ,直线l 过点C ,过点A 作AD ⊥l ,过点B 作BE ⊥l ,垂足分别为D 、E .求证:AD =CE ,CD =BE . (2)迁移应用:如图2,将一块等腰直角的三角板MON 放在平面直角坐标系内,三角板的一个锐角的顶点与坐标原点O 重合,另两个顶点均落在第一象限内,已知点M 的坐标为(1,3),求点N 的坐标.(3)拓展应用:如图3,在平面直角坐标系内,已知直线y =﹣3x+3与y 轴交于点P ,与x 轴交于点Q ,将直线PQ 绕P 点沿逆时针方向旋转45°后,所得的直线交x 轴于点R .求点R 的坐标.3.如图,在平面直角坐标系中,直线y =﹣34x+m 分别与x 轴、y 轴交于点B 、A .其中B 点坐标为(12,0),直线y =38x 与直线AB 相交于点C . (1)求点A 的坐标. (2)求△BOC 的面积.(3)点D 为直线AB 上的一个动点,过点D 作y 轴的平行线DE ,DE 与直线OC 交于点E (点D 与点E 不重合).设点D 的横坐标为t ,线段DE 长度为d . ①求d 与t 的函数解析式(写出自变量的取值范围).②当动点D 在线段AC 上运动时,以DE 为边在DE 的左侧作正方形DEPQ ,若以点H(12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点时,请直接写出t 的取值范围.4.在平面直角坐标系xOy 中,对于点(,)P a b 和点(,)Q a b ',给出如下定义: 若1,(2),(2)b a b b a -≥⎧=<⎩'⎨当时当时,则称点Q 为点P 的限变点.例如:点(2,3)的限变点的坐标是(2,2),点(2,5)--的限变点的坐标是(2,5)-,点(1,3)的限变点的坐标是(1,3).(1)①点3,1)-的限变点的坐标是________;②如图1,在点(2,1)A -、(2,1)B 中有一个点是直线2y =上某一个点的限变点,这个点是________;(填“A ”或“B ”)(2)如图2,已知点(2,2)C --,点(2,2)D -,若点P 在射线OC 和OD 上,其限变点Q 的纵坐标b '的取值范围是b m '≥或b n '≤,其中m n >.令s m n =-,直接写出s 的值. (3)如图3,若点P 在线段EF 上,点(2,5)E --,点(,3)F k k -,其限变点Q 的纵坐标b '的取值范围是25b '-≤≤,直接写出k 的取值范围.5.已知三角形ABC 中,∠ACB =90°,点D (0,-4),M (4,-4).(1)如图1,若点C与点O重合,A(-2,2)、B(4,4),求△ABC的面积;(2)如图2,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,若∠AOG=55°,求∠CEF的度数;(3)如图3,AC经过坐标原点O,点C在第三象限且点C在直线DM与x轴之间,N为AC上一点,AB分别与x轴,直线DM交于点G,F,BC交DM于点E,∠NEC+∠CEF=180°,求证∠NEF=2∠AOG.6.如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,求∠HPQ的度数.7.如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.如果点P在线段BC 上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1s后,BP= cm,CQ= cm.(2)若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;(3)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(4)若点Q以(3)中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次相遇?8.学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对“两个三角形满足两边的其中一边的对角对应相等”的情形进行研究.(初步思考)我们不妨将问题用符号语言表示为:在△DEF中,AC=DF,BC=EF,∠B=∠E,然后,对∠B进行分类,可分为“∠B是直角、钝角、锐角”三种情况进行探究.(深入探究)第一种情况:当∠B是直角时,△ABC≌△DEF.(1)如图①,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E=90°,根据______,可以知道Rt△ABC≌Rt△DEF.第二种情况:当∠B是钝角时,△ABC≌△DEF.(2)如图②,在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是钝角.求证:△ABC≌△DEF.第三种情况:当∠B是锐角时,△ABC和△DEF不一定全等.(3)在△ABC和△DEF中,AC=DF,BC=EF,∠B=∠E,且∠B、∠E都是锐角.请你用直尺在图③中作出△DEF,使△DEF和△ABC不全等,并作简要说明.9.阅读下列材料,并按要求解答.(模型建立)如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.(模型应用)应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.10.在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点D、E、C三点在同一条直线上,连接BD.(1)如图1,求证:△ADB≌△AEC(2)如图2,当∠BAC=∠DAE=90°时,试猜想线段AD,BD,CD之间的数量关系,并写出证明过程;(3)如图3,当∠BAC=∠DAE=120°时,请直接写出线段AD,BD,CD之间的数量关系式为:(不写证明过程)11.如图,已知直线l1:y1=2x+1与坐标轴交于A、C两点,直线l2:y2=﹣x﹣2与坐标轴交于B、D两点,两直线的交点为P点.(1)求P点的坐标;(2)求△APB的面积;(3)x轴上存在点T,使得S△ATP=S△APB,求出此时点T的坐标.△和ACF,连接12.如图,以ABC的边AB和AC,向外作等腰直角三角形ABEEF,AD是ABC的高,延长DA交EF于点G,过点F作DG的垂线交DG于点H.(1)求证:FHA ADC ≌△△; (2)求证:点G 是EF 的中点.【参考答案】***试卷处理标记,请不要删除一、压轴题1.(1)5;(2)直角三角形,理由见解析;(3)44,33E ⎛⎫- ⎪⎝⎭或82,33E ⎛⎫- ⎪⎝⎭【解析】 【分析】(1)先求出直线122y x =+与x 轴的交点B 的坐标和与y 轴的交点C 的坐标,把点C 代入直线2y x m =-+,求出m 的值,再求它与x 轴的交点A 的坐标,ABC 的面积用AB 乘OC 除以2得到;(2)用勾股定理求出BC 的平方,AC 的平方,再根据AB 的平方,用勾股定理的逆定理证明ABC 是直角三角形;(3)先根据角平分线求出D 的坐标,再去分两种情况构造全等三角形,利用全等三角形的性质求出对应的边长,从而得到点E 的坐标. 【详解】解:(1)令0x =,则10222y =⨯+=, ∴()0,2C , 令0y =,则1202x +=,解得4x =-, ∴()4,0B -,将()0,2C 代入2y x m =-+,得2m =, ∴22y x =-+,令0y =,则220x -+=,解得1x =, ∴1,0A ,∴5AB =,2OC =, ∴152ABC S AB OC =⋅=△; (2)根据勾股定理,222224220BC BO OC =+=+=,22222125AC AO OC =+=+=,且22525AB ==,∴222AB BC AC =+,则ABC 是直角三角形; (3)∵CD 平分ACB ∠, ∴12AD AC BD BC ==, ∴1533AD AB ==, ∴23OD AD OA =-=, ∴2,03D ⎛⎫- ⎪⎝⎭①如图,CED ∠是直角,过点E 作EN x ⊥轴于点N ,过点C 作CM EN ⊥于点M , 由(2)知,90ACB ∠=︒, ∵CD 平分ACB ∠, ∴45ECD ∠=︒,∴CDE △是等腰直角三角形, ∴CE DE =,∵90NED MEC ∠+∠=︒,90NED NDE ∠+∠=︒, ∴MEC NDE ∠=∠, 在DNE △和EMC △中,NDE MEC DNE EMC DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴()DNE EMC AAS ≅, 设DN EM x ==,EN CM y ==,根据图象列式:DO DN CM EN EM CO +=⎧⎨+=⎩,即232x y x y ⎧+=⎪⎨⎪+=⎩,解得2343x y ⎧=⎪⎪⎨⎪=⎪⎩,∴43EN CM ==, ∴44,33E ⎛⎫-⎪⎝⎭;②如图,CDE ∠是直角,过点E 作EG x ⊥轴于点G , 同理CDE △是等腰直角三角形, 且可以证得()CDO DEG AAS ≅, ∴2DG CO ==,23EG DO ==, ∴28233GO GD DO =+=+=, ∴82,33E ⎛⎫- ⎪⎝⎭,综上:44,33E ⎛⎫- ⎪⎝⎭,82,33E ⎛⎫- ⎪⎝⎭. 【点睛】本题考查一次函数综合,解题的关键是掌握一次函数解析式的求解,与坐标轴交点的求解,图象围成的三角形面积的求解,还涉及勾股定理、角平分线的性质、全等三角形等几何知识,需要运用数形结合的思想去求解. 2.(1)见解析(2)(4,2)(3)(6,0) 【解析】 【分析】(1)先判断出∠ACB=∠ADC,再判断出∠CAD=∠BCE,进而判断出△ACD≌△CBE,即可得出结论;(2)先判断出MF=NG,OF=MG,进而得出MF=1,OF=3,即可求出FG=MF+MG=1+3=4,即可得出结论;(3)先求出OP=3,由y=0得x=1,进而得出Q(1,0),OQ=1,再判断出PQ=SQ,即可判断出OH=4,SH=0Q=1,进而求出直线PR的解析式,即可得出结论.【详解】证明:∵∠ACB=90°,AD⊥l∴∠ACB=∠ADC∵∠ACE=∠ADC+∠CAD,∠ACE=∠ACB+∠BCE∴∠CAD=∠BCE,∵∠ADC=∠CEB=90°,AC=BC∴△ACD≌△CBE,∴AD=CE,CD=BE,(2)解:如图2,过点M作MF⊥y轴,垂足为F,过点N作NG⊥MF,交FM的延长线于G,由已知得OM=ON,且∠OMN=90°∴由(1)得MF=NG,OF=MG,∵M(1,3)∴MF=1,OF=3∴MG=3,NG=1∴FG=MF+MG=1+3=4,∴OF﹣NG=3﹣1=2,∴点N的坐标为(4,2),(3)如图3,过点Q作QS⊥PQ,交PR于S,过点S作SH⊥x轴于H,对于直线y=﹣3x+3,由x=0得y=3∴P(0,3),∴OP=3由y=0得x=1,∴Q(1,0),OQ=1,∵∠QPR=45°∴∠PSQ=45°=∠QPS∴PQ=SQ∴由(1)得SH=OQ,QH=OP∴OH=OQ+QH=OQ+OP=3+1=4,SH=OQ=1∴S(4,1),设直线PR为y=kx+b,则341bk b=⎧⎨+=⎩,解得1k2b3⎧=-⎪⎨⎪=⎩∴直线PR为y=﹣12x+3由y=0得,x=6∴R(6,0).【点睛】本题是一次函数综合题,主要考查了待定系数法,全等三角形的判定和性质,构造出全等三角形是解本题的关键.3.(1)点A坐标为(0,9);(2)△BOC的面积=18;(3)①当t<8时,d=﹣9 8t+9,当t>8时,d=98t﹣9;②12≤t≤1或7617≤t≤8017.【解析】【分析】(1)将点B坐标代入解析式可求直线AB解析式,即可求点A坐标;(2)联立方程组可求点C坐标,即可求解;(3)由题意列出不等式组,可求解.【详解】解:(1)∵直线y=﹣34x+m与y轴交于点B(12,0),∴0=﹣34×12+m,∴m=9,∴直线AB的解析式为:y=﹣34x+9,当x=0时,y=9,∴点A坐标为(0,9);(2)由题意可得:38394y x y x ⎧=⎪⎪⎨⎪=+⎪⎩, 解得:83x y =⎧⎨=⎩, ∴点C (8,3),∴△BOC 的面积=12×12×3=18; (3)①如图,∵点D 的横坐标为t ,∴点D (t ,﹣34t+9),点E (t ,38t ), 当t <8时,d =﹣34t+9﹣38t =﹣98t+9, 当t >8时,d =38t+34t ﹣9=98t ﹣9; ②∵以点H (12,t )、G (1,t )为端点的线段与正方形DEPQ 的边只有一个交点, ∴12≤t≤1或919829918t t t t ⎧-+≤-⎪⎪⎨⎪-+≥-⎪⎩, ∴12≤t≤1或7617≤t≤8017. 【点睛】本题是一次函数综合题,考查了待定系数法求解析式,三角形的面积公式,不等式组的应用,灵活运用这些性质解决问题是本题的关键.4.(1)①()3,1;②B ;(2)3s =;(3)59k ≤≤.【解析】【分析】(1)利用限变点的定义直接解答即可;(2)先利用逆推原理求出限变点(2,1)A -、(2,1)B 对应的原来点坐标,然后把原来点坐标代入到2y =,满足解析式的就是答案;(3)先OC OD ,的关系式,再求出点P 的限变点Q 满足的关系式,然后根据图象求出m n ,的值,从而求出s 即可;(4)先求出线段EF 的关系式,再求出点P 的限变点Q 所满足的关系式,根据图像求解即可.【详解】解:(1)①∵2a =, ∴11b b ==-=',∴坐标为:),故答案为:); ②∵对于限变点来说,横坐标保持不变,∴限变点(2,1)A -对应的原来点的坐标为:()2,1-或()21--,, 限变点(2,1)B 对应的原来点的坐标为:()2,2,∵()2,2满足2y =,∴这个点是B ,故答案为:B ;(2)∵点C 的坐标为(2,2)--,∴OC 的关系式为:()0y x x =≤,∵点D 的坐标为(2,2)-,∴OD 的关系式为:()0y x x =-≥,∴点P 满足的关系式为:()()00x x y x x ≤⎧⎪=⎨->⎪⎩, ∴点P 的限变点Q 的纵坐标满足的关系式为:当2x ≥时:1b x '=--,当02x <<时:b x x '=-=,当0x ≤时,b x x '==-,图像如下:通过图象可以得出:当2x ≥时,3b '≤-,∴3n =-,当2x <时,0b '≥,∴0m =,∴()033s m n =-=--=;(3)设线段EF 的关系式为:()022y ax c a x k k =+≠-≤≤>-,,, 把(2,5)E --,(,3)F k k -代入得:253a c ka c k -+=-⎧⎨+=-⎩,解得:13a c =⎧⎨=-⎩, ∴线段EF 的关系式为()322y x x k k =--≤≤>-,, ∴线段EF 上的点P 的限变点Q 的纵坐标满足的关系式4(2)|3|3(22)x xb x x x -⎧'=⎨-=--<⎩, 图象如下:当x =2时,b ′取最小值,b '=2﹣4=﹣2,当b '=5时,x ﹣4=5或﹣x +3=5,解得:x =9或x =﹣2,当b ′=1时,x ﹣4=1,解得:x =5,∵ 25b '-≤≤,∴由图象可知,k 的取值范围时:59k ≤≤.【点睛】本题主要考查了一次函数的综合题,解答本题的关键是熟练掌握新定义“限变点”,解答此题还需要掌握一次函数的图象与性质以及最值的求解,此题有一定的难度.5.(1)8;(2)145°;(3)详见解析.【解析】【分析】(1)作AD ⊥ x 轴于D,BE ⊥x 轴于E,由点A,B 的坐标可得出AD=OD=2,BE=EO=4,DE=6,由面积公式可求出答案;(2)作CH ∥x 轴,如图2,由平行线的性质可得出∠AOG=∠ACH,∠DEC=∠HCE,求出∠DEC+∠AOG=∠ACB=90°,可求出∠DEC=35°,则可得出答案;(3)证得∠NEC=∠HEC,则∠NEF=180°-∠NEH=180°-2∠HEC,可得出结论.【详解】解:(1)作AD ⊥x 轴于D,BE ⊥x 轴于E,如图1,∵A (﹣2,2)、B (4,4),∴AD =OD =2,BE =OE =4,DE =6,∴S △ABC =S 梯形ABED ﹣S △AOD ﹣S △AOE =12×(2+4)×6﹣12×2×2﹣12×4×4=8; (2)作CH // x 轴,如图2,∵D (0,﹣4),M (4,﹣4),∴DM // x 轴,∴CH // OG // DM,∴∠AOG =∠ACH,∠DEC =∠HCE,∴∠DEC+∠AOG =∠ACB =90°,∴∠DEC =90°﹣55°=35°,∴∠CEF =180°﹣∠DEC =145°;(3)证明:由(2)得∠AOG+∠HEC =∠ACB =90°,而∠HEC+∠CEF =180°,∠NEC+∠CEF =180°,∴∠NEC =∠HEC,∴∠NEF =180°﹣∠NEH =180°﹣2∠HEC,∵∠HEC =90°﹣∠AOG,∴∠NEF =180°﹣2(90°﹣∠AOG )=2∠AOG .【点睛】本题是三角形综合题,考查了坐标与图形的性质,三角形的面积,平行线的性质,三角形内角和定理,熟练掌握平行的性质及三角形内角和定理是解题的关键.6.(1)AB ∥CD ,理由见解析;(2)证明见解析;(3)45°.【解析】【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF 、∠CFE 互补,所以易证AB ∥CD ;(2)利用(1)中平行线的性质推知∠BEF+∠EFD=180°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG ⊥PF ,故结合已知条件GH ⊥EG ,易证PF ∥GH ; (3)利用三角形外角定理、三角形内角和定理求得90902KPG PKG HPK ︒︒∠=-∠=-∠;然后由邻补角的定义、角平分线的定义推知1452QPK EPK HPK ︒∠=∠=+∠;最后根据图形中的角与角间的和差关系求得∠HPQ =45°.【详解】(1)AB ∥CD ,理由如下:∵∠1与∠2互补,∴∠1+∠2=180°,又∵∠1=∠AEF ,∠2=∠CFE ,∴∠AEF +∠CFE =180°,∴AB ∥CD ;(2)由(1)知,AB ∥CD ,∴∠BEF +∠EFD =180°.又∵∠BEF 与∠EFD 的角平分线交于点P , ∴1()902FEP EFP BEF EFD ︒∠+∠=∠+∠= ∴∠EPF =90°,即EG ⊥PF .∵GH ⊥EG ,∴PF ∥GH ;(3)∵∠PHK =∠HPK ,∴∠PKG =2∠HPK .又∵GH ⊥EG ,∴∠KPG =90°﹣∠PKG =90°﹣2∠HPK ,∴∠EPK =180°﹣∠KPG =90°+2∠HPK .∵PQ 平分∠EPK , ∴1452QPK EPK HPK ︒∠=∠=+∠, ∴∠HPQ =∠QPK ﹣∠HPK =45°.答:∠HPQ 的度数为45°.【点睛】 本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.7.(1)BP=3cm ,CQ=3cm ;(2)全等,理由详见解析;(3)154;(4)经过803s 点P 与点Q 第一次相遇.【解析】【分析】(1)速度和时间相乘可得BP 、CQ 的长;(2)利用SAS 可证三角形全等;(3)三角形全等,则可得出BP=PC ,CQ=BD ,从而求出t 的值;(4)第一次相遇,即点Q 第一次追上点P ,即点Q 的运动的路程比点P 运动的路程多10+10=20cm 的长度.【详解】解:(1)BP=3×1=3㎝,CQ=3×1=3㎝(2)∵t=1s ,点Q 的运动速度与点P 的运动速度相等∴BP=CQ=3×1=3cm ,∵AB=10cm ,点D 为AB 的中点,∴BD=5cm .又∵PC=BC ﹣BP ,BC=8cm ,∴PC=8﹣3=5cm ,∴PC=BD又∵AB=AC ,∴∠B=∠C ,在△BPD 和△CQP 中, PC BD B C BP CQ =⎧⎪∠=∠⎨⎪=⎩∴△BPD ≌△CQP(SAS)(3)∵点Q 的运动速度与点P 的运动速度不相等,∴BP 与CQ 不是对应边,即BP≠CQ∴若△BPD ≌△CPQ ,且∠B=∠C ,则BP=PC=4cm ,CQ=BD=5cm ,∴点P ,点Q 运动的时间t=433BP =s , ∴154Q CQ V t ==cm/s ; (4)设经过x 秒后点P 与点Q 第一次相遇. 由题意,得154x=3x+2×10, 解得80x=3 ∴经过803s 点P 与点Q 第一次相遇. 【点睛】本题考查动点问题,解题关键还是全等的证明和利用,将动点问题视为定点问题来分析可简化思考过程.8.(1)HL ;(2)见解析;(3)如图②,见解析;△DEF 就是所求作的三角形,△DEF 和△ABC 不全等.【解析】【分析】(1)根据直角三角形全等的方法“HL ”证明;(2)过点C 作CG ⊥AB 交AB 的延长线于G ,过点F 作FH ⊥DE 交DE 的延长线于H ,根据等角的补角相等求出∠CBG=∠FEH ,再利用“角角边”证明△CBG 和△FEH 全等,根据全等三角形对应边相等可得CG=FH ,再利用“HL ”证明Rt △ACG 和Rt △DFH 全等,根据全等三角形对应角相等可得∠A=∠D ,然后利用“角角边”证明△ABC 和△DEF 全等;(3)以点C 为圆心,以AC 长为半径画弧,与AB 相交于点D ,E 与B 重合,F 与C 重合,得到△DEF 与△ABC 不全等;(4)根据三种情况结论,∠B 不小于∠A 即可.【详解】(1)在直角三角形中一条斜边和一条直角边对应相等的两个直角三角形全等运用的是HL .(2)证明:如图①,分别过点C 、F 作对边AB 、DE 上的高CG 、FH ,其中G 、H 为垂足. ∵∠ABC 、∠DEF 都是钝角∴G 、H 分别在AB 、DE 的延长线上.∵CG ⊥AG ,FH ⊥DH ,∴∠CGA =∠FHD =90°.∵∠CBG =180°-∠ABC ,∠FEH =∠180°-∠DEF ,∠ABC =∠DEF ,∴∠CBG=∠FEH.在△BCG和△EFH中,∵∠CGB=∠FHE,∠CBG=∠FEH,BC=EF,∴△BCG≌△EFH.∴CG=FH.又∵AC=DF.∴Rt△ACG≌△DFH.∴∠A=∠D.在△ABC和△DEF中,∵∠ABC=∠DEF,∠A=∠D,AC=DF,∴△ABC≌△DEF.(3)如图②,△DEF就是所求作的三角形,△DEF和△ABC不全等.【点睛】本题是三角形综合题,主要考查了全等三角形的判定与性质,应用与设计作图,熟练掌握三角形全等的判定方法是解题的关键,阅读量较大,审题要认真仔细.9.模型建立:见解析;应用1:652:(1)Q(1,3),交点坐标为(52,0);(2)y=﹣x+4【解析】【分析】根据AAS证明△BEC≌△CDA,即可;应用1:连接AC,过点B作BH⊥DC,交DC的延长线于点H,易证△ADC≌△CHB,结合勾股定理,即可求解;应用2:(1)过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP 相交于点H,易得:△OKQ≌△QHP,设H(4,y),列出方程,求出y的值,进而求出Q(1,3),再根据中点坐标公式,得P(4,2),即可得到直线l的函数解析式,进而求出直线l与x轴的交点坐标;(2)设Q(x,y),由△OKQ≌△QHP,KQ=x,OK=HQ=y,可得:y=﹣x+4,进而即可得到结论.【详解】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,交DC的延长线于点H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∴DH=6+8=14,∵BH⊥DC,∴BD=应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易:△OKQ≌△QHP(AAS),设H(4,y),那么KQ=PH=y﹣m=y﹣2,OK=QH=4﹣KQ=6﹣y,又∵OK=y,∴6﹣y=y,y=3,∴Q(1,3),∵折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,∴点M是OP的中点,∵P(4,2),∴M(2,1),设直线Q M的函数表达式为:y=kx+b,把Q(1,3),M(2,1),代入上式得:213k bk b+=⎧⎨+=⎩,解得:25kb=-⎧⎨=⎩∴直线l的函数表达式为:y=﹣2x+5,∴该直线l与x轴的交点坐标为(52,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为:y=﹣x+4,故答案为:y=﹣x+4.【点睛】本题主要考查三角形全等的判定和性质定理,勾股定理,一次函数的图象和性质,掌握“一线三垂直”模型,待定系数法是解题的关键.10.(1)见解析;(2)CD2AD+BD,理由见解析;(3)CD3+BD【解析】【分析】(1)由“SAS”可证△ADB≌△AEC;(2)由“SAS”可证△ADB≌△AEC,可得BD=CE,由直角三角形的性质可得DE2AD,可得结论;(3)由△DAB≌△EAC,可知BD=CE,由勾股定理可求DH 3,由AD=AE,AH⊥DE,推出DH=HE,由CD=DE+EC=2DH+BD3AD+BD,即可解决问题;【详解】证明:(1)∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);(2)CD2AD+BD,理由如下:∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠BAC=90°,AD=AE,∴DE=2AD,∵CD=DE+CE,∴CD=2AD+BD;(3)作AH⊥CD于H.∵∠BAC=∠DAE,∴∠BAD=∠CAE,又∵AB=AC,AD=AE,∴△ADB≌△AEC(SAS);∴BD=CE,∵∠DAE=120°,AD=AE,∴∠ADH=30°,∴AH=12 AD,∴DH22AD AH3,∵AD=AE,AH⊥DE,∴DH=HE,∴CD=DE+EC=2DH+BD3+BD,故答案为:CD3+BD.【点睛】本题是结合了全等三角形的性质与判定,勾股定理等知识的综合问题,熟练掌握知识点,有简入难,层层推进是解答关键.11.(1)P(﹣1,﹣1);(2)32;(3)T(1,0)或(﹣2,0).【解析】【分析】(1)解析式联立构成方程组,该方程组的解就是交点坐标;(2)利用三角形的面积公式解答;(3)求得C的坐标,因为S△ATP=S△APB,S△ATP=S△ATC+S△PTC=|x+12|,所以|x+12|=32,解得即可.【详解】解:(1)由212y x y x =+⎧⎨=--⎩,解得11x y =-⎧⎨=-⎩, 所以P (﹣1,﹣1);(2)令x =0,得y 1=1,y 2=﹣2∴A (0,1),B (0,﹣2),则 S △APB =12×(1+2)×1=32; (3)在直线l 1:y 1=2x +1中,令y =0,解得x =﹣12, ∴C (﹣12,0), 设T (x ,0), ∴CT =|x +12|, ∵S △ATP =S △APB ,S △ATP =S △ATC +S △PTC =12•|x +12|•(1+1)=|x +12|, ∴|x +12|=32, 解得x =1或﹣2,∴T (1,0)或(﹣2,0).【点睛】本题考查一次函数与二元一次方程组,解题的关键是准确将条件转化为二元一次方程组,并求出各点的坐标.12.(1)证明见解析;(2)证明见解析.【解析】【分析】(1)先利用同角的余角相等得到一对角相等,再由一对直角相等,且AF AC =,利用AAS 得到AFH CAD ∆≅∆;(2)由(1)利用全等三角形对应边相等得到FH AD =,再EK AD ⊥,交DG 延长线于点K ,同理可得到AD EK =,等量代换得到FK EH =,再由一对直角相等且对顶角相等,利用AAS 得到FHG EKG ≅△△,利用全等三角形对应边相等即可得证.【详解】证明:(1) ∵FH AG ⊥,90AEH EAH ∴∠+∠=︒,90FAC ∠=︒,90FAH CAD ∴∠+∠=︒,AFH CAD ∴∠=∠,在AFH ∆和CAD ∆中,90AHF ADCAFH CADAF AC∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()AFH CAD AAS∴∆≅∆,(2)由(1)得AFH CAD∆≅∆,FH AD∴=,作FK AG⊥,交AG延长线于点K,如图;同理得到AEK ABD∆≅∆,EK AD∴=,FH EK∴=,在EKG∆和FHG∆中,90EKG FHGEGK FGHEK FH∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()EKG FHG AAS∴∆≅∆,EG FG∴=.即点G是EF的中点.【点睛】此题考查了全等三角形的判定与性质,熟练掌握K字形全等进行证明是解本题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八上数学期末压轴题汇编
1.如图,已知A(a,0)、B(0,b),且a、b
+22
2
a a
b b=0,点C在直线AB上,△COD为
等腰三角形,且∠COD=900.
(1)△BOD与△AOC全等吗?为什么?
(2)若点C的纵坐标为2,求四边形AODB的面积.
2.如图,已知A(a,0),B(0,b),且分式
1
a b
无意义.
(1)求证:OA=OB.
(2)若C的坐标为(-1,0),且AH⊥BC于H,AH交OB于点P,求点P的坐标. (3)连HO,求证:∠OHP=45.
3.如图,已知A(a ,0),B (0,b ),且a 为方程(a+1)(a -5)-(a +7)(a -5)=66的根,且2
22a
ab b =0.
(1)求A 、B 两点的坐标.
(2)如图,直角∠EPF 的顶点P 是AB 的中点,两边PE 、PF 分别交OA 、OB 于E 、F 两点,已知Rt △EOF 的三边满足关系式:2
22EO FO EF ,当S △OEF =
11
4
时,求E F的长.
4.如图,已知A (a ,0),B(0,
b )且a、b 满足2
22a
ab b =0,C 、D 同时从原点O 出发,以相同的速度分
别在OA 、OB 上运动,过点O 作OE ⊥A D交AB 于点E,过点E作EF ⊥BC 交BC 于点F . (1)求证:△AO D≌△BOC .
(2)求AD EF
OE
的值.
5.如图1,已知A (0,2)、B(-1,0)两点,以B 为直角顶点在第二象限作等腰Rt △ABC . (1)求点C 的坐标.
(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD =A C,求证:BE =DE .
6.如图,在平面直角坐标系中,直线AB 交x 轴于A (a ,0),交y 轴于点B (0,b),且a 、b
满足
2
(2)0b ,已知M(m,m ).
(1)求S △A OB
(2)过点M 作MC ⊥AB 交y 轴于点C ,求点C 的坐标.
7.如图(1),等边三角形△ABC中,D为AB边上的动点,以CD为一边,向上作等边△EDC,连接AE. (1)△DBC和△EAC会全等吗?说明理由;
(2)如图(1)求证:AE∥BC.
(3)如图(2),(1)中动点D运动到边BA的延长线上,仍作等边△EDC,请问是否仍有AE∥BC?证明你的猜想.
8.如图,D是线段OC的垂直平分线上的点,AD平分△AOC的外角,DF⊥AC于F.
(1)求证:∠ODC=∠OAC;
(2)求证:AO AC
AE
=2
(3)求证:AO AC
OE
=2
C
D
E
B
A
D
E
B
A
(4)变式:如图,若点P 在MAC 的平分线的反向延长线上,若∠O PC =∠OA C,作PN ⊥A O于N ,现给出两个结论:①
AO AC AN 的值不变;②AC AO
AN
的值不变.其中有且只有一个结论正确,请找出来并求
其值.
9.如图,AD 是△ABC 的角平分线,H 、G 分别在AC 、AB 上,且HD =BD . (1)求证:∠B 与∠A HD 互补;
(2)若∠B +2∠DG A=1800
,请探究线段AG 与线段AH 、HD 之间满足的等量关系,并证明.
10.如图,已知A (a,b ),A B⊥y 轴于B
2
(2)0b .
(1)求A 点的坐标;
(2)分别以A B、AO 为边作等边三角形△AB C和△AOD ,试判断线段AC 和D C的数量关系和位置关系.
H D
G A
C
11.如图1,在一平面直角坐标系中放入一等腰Rt △A BC ,使一顶点C在y 轴上,另一顶点B 在x轴上. (1)若点P 到△BCO 三边的距离相等,判断AP 与AC 的数量关系,
(2)若已知A(-2,2),求OB +OC 的值;
(3)如图2,若点B 在x 轴的正半轴,且点P 在△A BC 的外部且到△ABC 三边的距离相等,此时的AP 与AC 有何数量关系?。