第二章 章末检测(A)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 平面向量(A)
(时间:120分钟 满分:150分)
一、选择题(本大题共12小题,每小题5分,共60分) 1.与向量a =(1,3)的夹角为30°的单位向量是( )
A .(12,32)或(1,3)
B .(32,12
)
C .(0,1)
D .(0,1)或(32,1
2
)
2.设向量a =(1,0),b =(12,1
2
),则下列结论中正确的是( )
A .|a |=|b |
B .a ·b =2
2
C .a -b 与b 垂直
D .a ∥b
3.已知三个力f 1=(-2,-1),f 2=(-3,2),f 3=(4,-3)同时作用于某物体上一点,为使物体保持平衡,现加上一个力f 4,则f 4等于( ) A .(-1,-2) B .(1,-2) C .(-1,2) D .(1,2)
4.已知正方形ABCD 的边长为1,AB →=a ,BC →=b ,AC →
=c ,则a +b +c 的模等于( ) A .0 B .2+ 2 C. 2 D .22 5.若a 与b 满足|a |=|b |=1,〈a ,b 〉=60°,则a ·a +a ·b 等于( ) A.12 B.32 C .1+3
2
D .2 6.若向量a =(1,1),b =(1,-1),c =(-1,2),则c 等于( )
A .-12a +32b B.12a -32b
C.32a -12b D .-32a +12
b 7.若向量a =(1,1),b =(2,5),
c =(3,x ),满足条件(8a -b )·c =30,则x =( ) A .6 B .5 C .4 D .3
8.向量BA →=(4,-3),向量BC →
=(2,-4),则△ABC 的形状为( ) A .等腰非直角三角形 B .等边三角形 C .直角非等腰三角形 D .等腰直角三角形
9.设点A (1,2)、B (3,5),将向量AB →按向量a =(-1,-1)平移后得到A ′B ′→
为( ) A .(1,2) B .(2,3) C .(3,4) D .(4,7)
10.若a =(λ,2),b =(-3,5),且a 与b 的夹角是钝角,则λ的取值范围是( ) A.⎝⎛⎭⎫103,+∞ B.⎣⎡⎭
⎫10
3,+∞ C.⎝⎛⎭⎫-∞,103 D.⎝
⎛⎦⎤-∞,103 11.在菱形ABCD 中,若AC =2,则CA →·AB →
等于( ) A .2 B .-2
C .|AB →
|cos A D .与菱形的边长有关
12.如图所示,已知正六边形P 1P 2P 3P 4P 5P 6,下列向量的数量积中最大的是( )
A.P 1P 2→·P 1P 3→
B.P 1P 2→·P 1P 4→
C.P 1P 2→·P 1P 5→
D.P 1P 2→·P 1P 6→ 题号 1 2 3 4 5 6 7 8 9 10 11 12
答案
13.已知向量a =(2,-1),b =(-1,m ),c =(-1,2),若(a +b )∥c ,则m =________. 14.已知向量a 和向量b 的夹角为30°,|a |=2,|b |=3,则向量a 和向量b 的数量积a ·b =________.
15.已知非零向量a ,b ,若|a |=|b |=1,且a ⊥b ,又知(2a +3b )⊥(k a -4b ),则实数k 的值为________.
16. 如图所示,半圆的直径AB =2,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P
为半径OC 上的动点,则(P A →+PB →)·PC →
的最小值是________.
三、解答题(本大题共6小题,共70分)
17.(10分)已知a ,b ,c 在同一平面内,且a =(1,2). (1)若|c |=25,且c ∥a ,求c ;
(2)若|b |=5
2
,且(a +2b )⊥(2a -b ),求a 与b 的夹角.
18.(12分)已知|a |=2,|b |=3,a 与b 的夹角为60°,c =5a +3b ,d =3a +k b ,当实数k 为何值时,
(1)c ∥d ;(2)c ⊥d.
19.(12分)已知|a |=1,a ·b =12,(a -b )·(a +b )=1
2
,求:
(1)a 与b 的夹角;
(2)a -b 与a +b 的夹角的余弦值.
20.(12分)在平面直角坐标系xOy 中,已知点A (-1,-2),B (2,3),C (-2,-1). (1)求以线段AB 、AC 为邻边的平行四边形的两条对角线的长;
(2)设实数t 满足(AB →-tOC →)·OC →
=0,求t 的值.
21.(12分)已知正方形ABCD ,E 、F 分别是CD 、AD 的中点,BE 、CF 交于点P .求证: (1)BE ⊥CF ; (2)AP =AB .
22.(12分)已知向量OP 1→、OP 2→、OP 3→满足条件OP 1→+OP 2→+OP 3→=0,|OP 1→|=|OP 2→|=|OP 3→
|=1. 求证:△P 1P 2P 3是正三角形.
第二章 平面向量(A )
答案
1.D 2.C
3.D [根据力的平衡原理有f 1+f 2+f 3+f 4=0,∴f 4=-(f 1+f 2+f 3)=(1,2).]
4.D [|a +b +c |=|AB →+BC →+AC →|=|2AC →|=2|AC →
|=2 2.]
5.B [由题意得a ·a +a ·b =|a |2+|a ||b |cos 60°=1+12=3
2,故选B.]
6.B [令c =λa +μb ,则⎩⎪⎨⎪⎧
λ+μ=-1λ-μ=2, ∴⎩
⎨⎧
λ=12μ=-32
,
∴c =12a -3
2b .]
7.C [∵a =(1,1),b =(2,5),∴8a -b =(8,8)-(2,5)=(6,3).又∵(8a -b )·c =30,∴(6,3)·(3,x )=18+3x =30.∴x =4.]
8.C [∵BA →=(4,-3),BC →
=(2,-4), ∴AC →=BC →-BA →
=(-2,-1), ∴CA →·CB →=(2,1)·(-2,4)=0,
∴∠C =90°,且|CA →|=5,|CB →|=25,|CA →|≠|CB →
|.
∴△ABC 是直角非等腰三角形.]
9.B [∵AB →=(3,5)-(1,2)=(2,3),平移向量AB →后得A ′B ′→,A ′B ′→=AB →
=(2,3).] 10.A [a·b =-3λ+10<0,∴λ>103.当a 与b 共线时,λ-3=2
5,∴λ=-65.此时,a 与b 同向,
∴λ>10
3.]
11.B [
如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →. CA →·AB →=CA →·(AO →+OB →
)=-2+0=-2,故选B.]
12.A [根据正六边形的几何性质.
〈P 1P 2→,P 1P 3→〉=π6,〈P 1P 2→,P 1P 4→
〉=π3,
〈P 1P 2→,P 1P 5→〉=π2,〈P 1P 2→,P 1P 6→
〉=2π3
.
∴P 1P 2→·P 1P 6→<0,P 1P 2→·P 1P 5→=0,
P 1P 2→·P 1P 3→=|P 1P 2→|·3|P 1P 2→
|cos π6=32|P 1P 2→|2,
P 1P 2→·P 1P 4→=|P 1P 2→|·2|P 1P 2→|·cos π3
=|P 1P 2→
|2.比较可知A 正确.]
13.-1
解析 ∵a =(2,-1),b =(-1,m ),∴a +b =(1,m -1).