2018年全国高中数学联赛A卷及解答
2018全国高中数学联合竞赛试题及解答[A卷]
2017年全国高中数学联赛A 卷一试一、填空题1.设)(x f 是定义在R 上的函数,对任意实数x 有1)4()3(-=-⋅+x f x f .又当70<≤x 时,)9(log )(2x x f -=,则)100(-f 的值为__________.2.若实数y x ,满足1cos 22=+y x ,则y x cos -的取值范围是__________.3.在平面直角坐标系xOy 中,椭圆C 的方程为1109:22=+y x ,F 为C 的上焦点,A 为C 的右顶点,P 是C 上位于第一象限内的动点,则四边形OAPF 的面积的最大值为__________. 4.若一个三位数中任意两个相邻数码的差不超过1,则称其为“平稳数”.平稳数的个数是 5.正三棱锥ABC P -中,1=AB ,2=AP ,过AB 的平面α将其体积平分,则棱PC 与平面α所成角的余弦值为__________.6.在平面直角坐标系xOy 中,点集}{1,0,1,),(-==y x y x K .在K 中随机取出三个点,则这三点中存在两点之间距离为5的概率为__________.7.在ABC ∆中,M 是边BC 的中点,N 是线段BM 的中点.若3π=∠A ,ABC ∆的面积为3,则AN AM ⋅的最小值为__________.8.设两个严格递增的正整数数列{}{}n n b a ,满足:20171010<=b a ,对任意正整数n ,有n n n a a a +=++12,n n b b 21=+,则11b a +的所有可能值为__________.二、解答题9.设m k ,为实数,不等式12≤--m kx x 对所有[]b a x ,∈成立.证明:22≤-a b .10.设321,,x x x 是非负实数,满足1321=++x x x ,求)53)(53(321321x x x x x x ++++的最小值和最大值.11.设复数21,z z 满足0)Re(1>z ,0)Re(2>z ,且2)Re()Re(2221==z z (其中)Re(z 表示复数z 的实部).(1)求)Re(21z z 的最小值;(2)求212122z z z z --+++的最小值.2017年全国高中数学联赛A 卷二试一.如图,在ABC ∆中,AC AB =,I 为ABC ∆的内心,以A 为圆心,AB 为半径作圆1Γ,以I 为圆心,IB 为半径作圆2Γ,过点I B ,的圆3Γ与1Γ,2Γ分别交于点Q P ,(不同于点B ).设IP 与BQ 交于点R .证明:CR BR ⊥二.设数列{}n a 定义为11=a , ,2,1,,,,1=⎩⎨⎧>-≤+=+n n a n a n a n a a n n n n n .求满足20173≤<r a r 的正整数r 的个数.三.将3333⨯方格纸中每个小方格染三种颜色之一,使得每种颜色的小方格的个数相等.若相邻连个小方格的颜色不同,则称它们的公共边为“分隔边”.试求分隔边条数的最小值.四.设n m ,均是大于1的整数,n m ≥,n a a a ,,,21 是n 个不超过m 的互不相同的正整数,且n a a a ,,,21 互素.证明:对任意实数x ,均存在一个)1(n i i ≤≤,使得x m m x a i )1(2+≥,这里y 表示实数y 到与它最近的整数的距离.2017年全国高中数学联赛A 卷一试答案1.2.3.4.5.6.7.8.9.10.11.2017年全国高中数学联赛A卷二试答案一.二.三.四.。
【数学竞赛】2018年全国高中数学联赛安徽省初赛试卷(附答案)
|T,n2按照顺时针螺旋方式排成n行n列的表格T,第一行是1,2,,n.例如:=⎢894⎥.题号一2018年全国高中数学联赛安徽省初赛试卷(考试时间:2018年6月30日上午9:00—11:30)二总分9101112得分评卷人复核人注意:1.本试卷共12小题,满分150分; 2.用钢笔、签字笔或圆珠笔作答;3.书写不要超过装订线;4.不得使用计算器.一、填空题(每题8分,共64分,结果须化简)1.设三个复数1,i,z在复平面上对应的三点共线,且z|=5,则z=.2.设n是正整数,且满足n5=438427732293,则n=.3.函数f(x)=|sin(2x)+sin(3x)+sin(4x)|的最小正周期=.4.设点P,Q分别在函数y=2x和y=log x的图象上,则|PQ|的最小值=2.5.从1,2,,10中随机抽取三个各不相同的数字,其样本方差s2≤1的概率=.6.在边长为1的正方体ABCD-A B C D内部有一小球,该小球与正方体的对角线段AC相切,则小球11111半径的最大值=.7.设H是△ABC的垂心,且3HA+4HB+5HC=0,则cos∠AHB=.⎡123⎤8.把1,2,n3⎢⎥⎢⎣765⎥⎦设2018在T100的第i行第j列,则(i,j)=.二、解答题(第9—10题每题21分,第11—12题每题22分,共86分)9.如图所示,设ABCD是矩形,点E,F分别是线段AD,BC的中点,点G在线段EF上,点D,H关于线段AG的垂直平分线l对称.求证:∠HAB=3∠GAB.D HCE lG FA B213 2 π 210.(1) M ( x 0 , y 0 ) 处的切线方程 x 0 x - y 0 y = 1 .(3 分)b 2y 0 , x 0 + y ⎪ , B ( x 2 , y 2 ) = x 0 -y 0 , b a -b ⎭0 010. 设 O 是坐标原点,双曲线C : x 2 y 2 - a 2 b 2= 1(a > 0,b > 0) 上动点 M 处的切线交 C 的两条渐近线于 A , B两点.(1)求证: △AOB 的面积 S 是定值;(2)求 △AOB 的外心 P 的轨迹方程.11. (1)求证:对于任意实数 x , y , z 都有 x 2 + 2 y 2 + 3z 2 ≥3( xy + yz + zx ) .(2)是否存在实数k >试证明你的结论.3 ,使得对于任意实数 x , y , z 下式恒成立?x 2 + 2 y 2 + 3z 2 ≥ k ( x y + yz +zx )12. 在正 2018 边形的每两个顶点之间均连一条线段,并把每条线段染成红色或蓝色. 求此图形中三边颜色都相同的三角形的最小个数.参考答案和评分标准一、填空题(每题 8 分,共 64 分)1 2 3 45 6 7 84 - 3i 或 - 3 + 4i 1 + ln(ln 2) ln 21 154 - 65 -6 6(34,95)二、解答题(第 9—10 题每题 21 分,第 11—12 题每题 22 分,共 86 分) 9.由 E , F 分别是 AD , BC 的中点,得 EF // AB ⊥ AD .(3 分) 设 P 是 E 关于 l 的对称点,则 EP // AG ⊥ l ,故四边形 AEPG 是等腰梯形. (8 分) 进而 ∠PAG = ∠EGA = ∠GAB , ∠APG = ∠GEA ,从而 AP ⊥ HG . (13 分) 再由 HP = DE = EA = PG ,得 ∠HAP = ∠PAG = ∠GAB . (18 分) 因此, ∠HAB = 3∠GAB .(21 分)a 2⎛ a b ⎫ ⎛ a - b ⎫ ⎪ ⎪与渐近线方程联立,得 A ( x 1, y 1 ) = x ⎝ a + b a b ⎭ ⎝ a x 0上述两式相乘,得P的轨迹方程为a2x2-b2y2=1(a2+b2)2.11故x2+2y2+3z2≥3(xy+yz+zx).22,∑x(2017-x)=2M.当且仅当每个x=1008或1009时,N取得最小值C10092018-⨯1008=2C3.(16分)从而,S=1x y-x y=ab是定值.21221(2)由(1)可设A(λa,λb),B(a,-b),P(x,y),λ为非零常数.λλ由P A=PO=PB,得(x-λa)2+(y-λb)2=x2+y2=(x-a)2+(y+b)2.(9分) (12分) (15分)λλ从而有ax+by=λ(a2+b2),ax-by=1(a2+b2).22λ(18分) (21分)411.(1)由均值不等式,1x2+3y2≥3xy,x2+3z2≥3xz,y2+3z2≥3y z.2222 (2)x2+2y2+3z2-k(xy+yz+zx)=(x-k y-k z)2+(2-k2)y2+(3-k2)z2+(k2-k)y z22442(8分) (14分)上式≥0恒成立当且仅当2-k2≥0且(k2-k)2≤4(2-42k24)(3-k2).4(18分)化简得k≤22且k3-6k2+24≥0.显然,k=2>3满足要求.(22分) 12.设N是此图形中三边颜色都相同的三角形数目,M是此图形中三边颜色不全相同的三角形数目,x是以第i个顶点为端点的红色线段数目,则有iM+N=C320182018i i(10分) ii=1321009N=2C3是可以取到的,例如把线段i→i±j mod2018(1≤i≤2018,1≤j≤504)染成红1009色,其它线段染成蓝色.(22分)。
2018年全国高中数学联赛试题
D和 J分 别为 Δ/BCr的 外接 阈 姒町 和 BC∶ 的中点 ,F为 乙犭 BC的 内 ,则 DF⊥ JC.(笞 饿时泔将 国画在笛 卷纸上 冫
J与 BCJ的 交点 ,Ⅳ 在线段 EF~⒈ ,满 足 ⅣB⊥ 彳 L的 切点 ,σ 为 彳 B。 切I囚 在 /B边 ˇ
证 明 :希 BⅣ 哀 E″
:
;
In。
过点FG,O的 弦,扭 oB的 外接圆 交抛物线于点P(不 同 于点o,/,B)。 若PF 伊B,求 丨 PFl的 所有可能值。 平分乙
(本 趑满分 ⒛ 分)在 平面直角坐标系豸 勿 中,设 /B是 抛物线
/=仙 的
2018年 全国高中数学联合竞赛加试试题 《 A卷 冫
-、 (本 题满分 00分 )设 刀 是正貉数 ,〃 I,曰 2,¨ Ⅱ %。 DlⅡ 2,¨ 、 慨,彳 ,B均 为 1「
⒛18年 全 国高中数学联合竞赛一试试题 (A卷 )
-、 填空题 :本 大题共
1。
8小 题 ,每 小题 8分 ,满 分 “ 分 。
设集合 /=[,2,3,… ,991,B=仫 豸 u∈
/l,c=伽 |2丌 ∈彳 B∩ C的 元 刂 卜贝
素个数为_⊥____・ 2.设点 平 面 α的距离为 雨 ,点 g在 平面 α上 ,使 得 直 线 Pg与 α所成角
(本 履满分 m分 冫 三、 设″ ,七 ,胛 是
’ 数 rnr 间 整 区 正
黻
虍 n,L.″
茔二 上‰ ≤泖 《∶ 饣
设 刀是
-FJ′ ‘ Ι
{l。
2,… 9阴 }f向
″ 瓦子集 。讠明
iΙ
:
,
「 犭。 孑 rf,〃 ∈ 丨 其⒈
f孓讠
2018年全国高中数学联赛天津赛区预赛试题+答案
x3 − 17x − 18 = 0
−4 < x1 < −3 4 < x3 < 5.
1
x2
2 arctan x1 + arctan x2 + arctan x3 .
解析
x1, x2, x3
x3 − 17x − 18 = (x − x1)(x − x2)(x − x3)
x1 + x2 + x3 = 0, x1x2 + x2x3 + x3x1 = −17, x1x2x3 = 18
14. A, B
F1, F2 O
x2 − y2 = 1 4
1 |OA| · |OB| = |OF1|2
2 F1, F2, A, B
.
第6页
解析 1
AB
√
|OA| = |OB| = 5 = |OF1|
AB
.
AB
y = kx + b
x2
−
1 (kx
+
b)2
=
1
4
A, B AB
(1, 2), (1, −2) x
.................................................................... 5
1 x1 ∈ (−4, −3) x3 ∈ (4, 5)
x2 = −x1 − x3 ∈ (−2, 0).
f (x) = x3 − 17x − 18
f (0) = −18 < 0, f (−1) = −2 < 0, f (−2) = 8 > 0
=
(x1 +x2 ) (1−x1 x2 )
+
2018年全国高中数学联合竞赛试题及解答.(A卷)
{}{}{}{}∈⎢,3⎥,即OQ∈[1,3],6⨯6=36种,从而abc+def为奇数的概率为722018年全国高中数学联合竞赛一试(A卷)一、填空题:本大题共8个小题,每小题8分,共64分。
2018A1、设集合A=1,2,3, ,99,集合B=2x|x∈A,集合C=x|2x∈A,则集合B C 的元素个数为◆答案:24★解析:由条件知,B C=2,4,6, ,48,故B C的元素个数为24。
2018A2、设点P到平面α的距离为3,点Q在平面α上,使得直线PQ与平面α所成角不小于300且不大于600,则这样的点Q所构成的区域的面积为◆答案:8π★解析:设点P在平面α上的射影为O,由条件知tan∠OQP=OP⎡3⎤OQ⎣3⎦所以区域的面积为π⨯32-π⨯12=8π。
2018A3、将1,2,3,4,5,6随机排成一行,记为a,b,c,d,e,f,则abc+def是偶数的概率为◆答案:9 10★解析:先考虑abc+def为奇数时,abc,def一奇一偶,①若abc为奇数,则a,b,c为1,3,5的排列,进而d,e,f为2,4,6的排列,这样共有6⨯6=36种;②若abc为偶数,由对称性得,也有119=,故所求为1-=6!1010102018A4、在平面直角坐标系xOy中,椭圆C:x2y2+a2b2=1(a>b>0)的左右焦点分别是F,F,12椭圆C的弦ST与U V分别平行于x轴和y轴,且相交于点P,已知线段PU,PS,PV,PT的长分别为1,2,3,6,则∆PF F的面积为12★解析:由对称性,不妨设点 P x , y在第一象限,则 x = PT -PS 即 P 2,1 。
进 而 可 得 U2,2 , S 4,1 , 代 入 椭 圆 方 程 解 得 : a 2 = 20 , b 2 = 5 , 从 而 2 2[ ]◆答案: π - 2,8 - 2π ][ ] [ ][ ] 所以 π - 2 < x < 8 - 2π ,即不等式的解集为 π - 2,8 - 2π ] ⎩bx 2 - 2bx = 0◆答案: 15()2 = 2 ,y 0 =PV - PU2= 1( ) ( ) ( )S ∆PF 1F2=1 1F F ⨯ y = ⨯ 2 15 ⨯ 1 = 15 。
2018年全国高中数学联赛辽宁赛区预赛试题+答案
a
9
8
7
6
5
4
3 21
4,3 4, 3 3, 2 3, 2
b
1,2 1, 2 1 1
2,1 2, 1 1
1
共 20 种情况。 同时,每个数码组 (a,b) 中的二个数码填上三个数位,有
C
2 3
种情况。
故 n2
C
2 3
(2
C
2 9
20) 156 . 综上, n n1 n2
165 .
【考点】 排列组合问题 .
,故
和
中必有一个小于
的距离最小值的二倍, 则 A 为平行于
的
直线与
的切点,解得
故答案为: 9.若正实数 x、y 满足
,故 的最小值为
.
,则 y 的最大值为 _____.
【答案】 【解析】【详解】
第3 页 共9 页
第5页
设
,则
.令
,则
故
,因此 y 的最大值为 .
故答案为 :
10.四面体 ABCD中,已知
第2 页 共9 页
第4页
二、填空题 6.设 、b 均为实数, 复数 为纯虚数,则 +b=_____. 【答案】 【解析】【详解】
与
的模长相等, 且
由题设知
,且
为纯虚数,故
.因此
或
解得
或
,故
.
故答案为:
7.在 △ ABC中,角 A、B、C的对边分别为 、b、c.若 【答案】 1009 【解析】【详解】
. ,求
的最大值和最小
.
当
时取等号,故 M 的最大值为 .
要使 M 取最小值,只需考虑
2018年全国高中数学联赛A卷真题word版
一试一、填空题1. 设集合{}99,,3,2,1 =A ,{}A x x B ∈=2,{}A x x C ∈=2,则CB 的元素个数为 . 2. 设点P 到平面α的距离为3,点Q 在平面α上,使得直线PQ 与α所成角不小于︒30且不大于︒60, 则这样的点Q 所构成的区域的面积为 .3. 将6,5,4,3,2,1随机排成一行,记为f e d c b a ,,,,,,则def abc +是偶数的概率为 .4. 在平面直角坐标系xOy 中,椭圆()01:2222>>=+b a by a x C 的左、右焦点分别是21,F F ,椭圆C 的弦ST与UV 分别平行于x 轴与y 轴,且相交于点P .已知线段PT PV PS PU ,,,的长分别为6,3,2,1, 则21F PF ∆的面积为 .5. 设()x f 是定义在R 上的以2为周期的偶函数,在区间[]1,0上严格递减,且满足()()22,1==ππf f ,则不等式组()⎩⎨⎧≤≤≤≤2121x f x 的解集为 .6. 设复数z 满足1=z ,使得关于x 的方程0222=++x z zx 有实根,则这样的复数z 的和为 .7. 设O 为ABC ∆的外心,若AC AB AO 2+=,则BAC ∠sin 的值为 .8. 设整数数列1021,,,a a a 满足1103a a =,5822a a a =+,且{}9,,2,1,2,11 =++∈+i a a a i i i , 则这样的数列的个数为 .二、解答题9. 已知定义在+R 上的函数()x f 为()⎪⎩⎪⎨⎧--=,4,1log 3x x x f .9.90>≤<x x ,设c b a ,,是三个互不相同的实数,满足()()()c f b f a f ==,求abc 的取值范围.10. 已知实数列 ,,,321a a a 满足:对任意正整数n ,有()12=-n n n a S a ,其中n S 表示数列的前n 项和. 证明:(1)对任意正整数n ,有n a n 2<;(2)对任意正整数n ,有11<+n n a a .11. 在平面直角坐标系xOy 中,设AB 是抛物线x y 42=的过点()0,1F 的弦,AOB ∆的外接圆交抛物线 于点P (不同于点B A O ,,).若PF 平分APB ∠,求PF 的所有可能值.二试一、设n 是正整数,B A b b b a a a n n ,,,,,,,,,2121 均为正实数,满足i i b a ≤,A a i ≤,,,,2,1n i =且ABa a ab b b n n ≤ 2121. 证明:()()()()()()111111112121++≤++++++A B a a a b b b n n .二、ABC ∆为锐角三角形,AC AB <,M 为BC 边的中点,点D 和E 分别为ABC ∆的外接圆上弧BAC和弧BC 的中点.F 为ABC ∆的内切圆在AB 边上的切点,G 为AE 与BC 的交点,N 在线段EF 上, 满足AB NB ⊥.证明:若EM BN =,则FG DF ⊥.三、设m k n ,,是正整数,满足2≥k ,且n kk m n 12-<≤.设A 是{}m ,,2,1 的n 元子集. 证明:区间⎪⎭⎫⎝⎛-1,0k n 中的每个整数均可表示为a a '-,其中A a a ∈',.四、数列{}n a 定义如下:1a 是任意正整数,对整数1≥n ,1+n a 是与∑=ni ia1互素,且不等于n a a ,,1 的最小正整数. 证明:每个正整数均在数列{}n a 中出现.ED。
2018年全国高中数学联赛辽宁省初赛参考答案及评分标准
令 1 x(1 4x) (1 2x) 2x ,两边平方,整理可得:
(1 3x)(8x2 8x 1) 0 .
此方程有根 x 1 , x 1
3
2
2 . 又因为 1
4
2
2 4
2 3
,且
x
1 3
是增根,故 x0
1 2
2 是 f (x) 的最大 4
值点.
因此,
f
(
x0
)
1
16
2
是M
的最小值.
. . .(25 分)
又直线 OQ 与圆相切,设直线 OQ 的方程是 y k2 x ,
同理有:
(x02 r2 )k22 2x0 y0k2 y02 r2 0 ,
则 k1, k2 是方程
(x02 r2 )x2 2x0 y0x y02 r2 0
的两实根,因此,
k1 k2
y02 r 2 x02 r 2
若M0为
f
(
x)
在
[0,2 3
]
上的最大值,则
M
0
为
M
的最小值.
由于
f (0)
f
(2) 0 ,则 3
f (x) 在 (0,2) 内 3
取到最大值,因此在 f (x0 ) 0 的 x0 处取到.
. . .(20 分)
由于
f (x) 2
1 x 2 x(1
x)
1 x(1 4x) (2x 1)
2x ,
又 DE // BC ,所以 AQP DEP
QP EP QA ED
. . .(15 分)
因此 BC QP EP ,故 ST QA ED
DE BC EP ST EP (ES ET ) EP ES EP ET EM 2 EN 2 .
2018年湖南省高中数学联赛A及参考答案
2018年湖南省高中数学联赛(A )卷试题参考答案与评分细则一、填空题(本题满分70分,每小题7分)1.已知},,{321a a a B A = ,当B A ≠时,),(B A 与),(A B 视为不同的对,则这样的),(B A 对的个数有____________个.解:由集合B A ,都是B A 的子集,B A ≠且},,{321a a a B A = .当φ=A 时,B 有1种取法;当A 为一元集时,B 有2种取法;当A 为二元集时,B 有4种取法;当A 为三元集时,B 有7种取法.故不同的),(B A 对有26743231=+⨯+⨯+(个).2.32ax >+的解集是(4,b ),则实数a =,b =.解:方法一:设2,则,且t x t t ==∈,则不等式2302at t -+<的解集为(,所以2,是方程2302at t -+=的两根,即12,32,2a a ⎧=⎪⎪⎨⎪=⎪⎩解得18a =,b =36.方法二:设1232y y ax ==+,由不等式32ax >+的解集是(4,b ),可得两函数1232y y ax ==+在同一坐标系中的图象.设两函数图象的交点为A ,B,则(4,2),(A B b ,所以3242a =+32ab =+.解得18a =,b =36.3.从-3,-2,-1,0,1,2,3,4八个数字中,任取三个不同的数字作为二次函数f (x )=ax 2+bx +c (a ≠0)的系数,若二次函数的图象过原点,且其顶点在第一象限或第三象限,这样的二次函数有_____个?解:可将二次函数分为两大类:一类顶点在第一象限;另一类顶点在第三象限,然后由顶点坐标的符号分别考查.∵图象过坐标原点,∴c =0.∴二次函数可写成f (x )=ax 2+bx 的形式.又∵f (x )=a (x +a b 2)2-a b 42,∴其顶点坐标是(-a b 2,a b 42).若顶点在第一象限,则有-a b 2>0,-ab 42>0.故a <0,b >0.因此,这样的二次函数有A 13·A 14=12个.若顶点在第三象限,则有-a b 2<0,-ab 42<0.故a >0,b >0.这样的二次函数有A 24=12个.由加法原理知,满足条件的二次函数共有A 13·A 14+A 24=24个.4.已知n 为正整数,若16610322-+-+n n n n 是一个既约分数,那么这个分数的值等于.解:)2)(8()2)(5(16610322-+-+=-+-+n n n n n n n n ,而当n -2=±1时,若(n +8,n +5)=(n +5,3)=1,则16610322-+-+n n n n 是一个既约分数,故当n =3时,该分数是既约分数.∴这个分数为118.5.函数[]π2,0|,sin |2sin )(∈+=x x x x f 的图象与直线k y =有且仅有两个不同的交点,则k 的取值范围是__________.解3sin ,[0,]()sin ,(,2]x x f x x x πππ∈⎧=⎨-∈⎩,作出其图像,可知有两个交点时的k 的范围为31<<k .6.设实数a ,b 满足不等式|||||)(|||b a a b a a +-<+-,则a ,b 的正、负符号分别为___________.解:由已知得⇒+-<+-22|)|()](|[|b a a b a a ).(||||.)(||2)().(||22222b a a b a a b a b a a a b a b a a a +<+⇒+++-<+++-,由于x x ≥||,因此立得).(||||).(0b a a b a a a +<+--⇒<,约去-a 得ba b a +<+-||00>->⇒>+∴a b b a ,a 为负数且b 为正数.7.正方体ABCD -A 1B 1C 1D 1中,E 为AB 中点,F 为CC 1中点,异面直线EF 与AC 1所成角的余弦值是___________.解:设正方体棱长为1,以DA 为x 轴,DC 为y 轴,DD 1为z 轴建立空间直角坐标系,则E (1,12,0),F (0,1,12),A (1,0,1),C 1(0,1,1)EF →=(-1,12,12),AC →1=(-1,1,1),∴cosθ=11||||EF AC EF AC=223.8.四次多项式432182001984x x kx x -++-的四个零点中有两个零点的积为-32,则实数k=.解:设多项式432182001984x x kx x -++-的四个根为1234,,,.x x x x 则由韦达定理,得1234121314232434123124134234123418,,200, 1984.x x x x x x x x x x x x x x x x k x x x x x x x x x x x x x x x x +++=⎧⎪+++++=⎪⎨+++=-⎪⎪=-⎩设123432,62,x x x x =-=则故123462()32()200.x x x x +-+=-又121234344,18,14.x x x x x x x x +=⎧+++=∴⎨+=⎩故12341234()()86.k x x x x x x x x =++++=9.(|x |+||1x -2)3的展开式中的常数项为.解:.)||1||()2||1|(|63x x x x -=-+∴.20)||1()||()1(333634-=-=x x C T 10.在半径为R 的球内作内接圆柱,则内接圆柱全面积的最大值是.解:设内接圆柱底面半径为Rsinα,则高为2Rcosα,则全面积为2222222(sin )2sin 2cos 2(sin sin 2)(1cos22sin 2)(1))(1R R R R R R R παπααπααπααπαϕπ+⨯=+=-+=+-≤+其中1tan 2ϕ=,等号成立的条件是22παϕ=+,故最大值为2(1R π+.二、解答题(本题满分80分,每小题20分)11.已知抛物线C 1的顶点(2-1,1),焦点(2-34,1),另一抛物线C 2的方程y 2-ay +x +2b =0,C 1与C 2在一个交点处它们的切线互相垂直,试证C 2必过定点,并求该点的坐标.解:C 1的p =12,方程(y -1)2=x -(2-1),即y 2-2y -x +2=0.设交点为(x 0,y 0),则C 1的切线方程为y 0y -(y +y 0)-12(x +x 0)+2=0.,即2(y 0-1)y -x -2y 0-x 0+22=0.同理可得,C 2的切线方程为y 0y -12a (y 0+y )+12(x +x 0)+2b =0,即(2y 0-a )y +x -ay 0+x 0+4b =0......................................................5分由题意知二者垂直,从而可得1(-1)+2(y 0-1)(2y 0-a )=0,整理得4y 02-2(a +2)y 0+2a -1=0.①由y 02-2y 0-x 0+2=0和y 02-ay 0+x 0+2b =0,相加得:2y 02-(a +2)y 0+2b +2=0,②①-②×2得:2a -1-4b -22=0,可得4b =2a -1-22.③.................................................10分代入C 2方程整理即可得:2y 2-2ay +2x +2a -1-22=0,即2y 2+2x -22-1-2a (y -1)=0,.................................................15分取方程组⎩⎨⎧=-=--+010122222y x y ,解得(2-12,1).即对任何满足③的a 、b ,点(2-12,1)在曲线C 2上,即C 2过定点,该定点的坐标为(2-12,1)..............................................................20分12.如图,在凸四边形ABCD 中,M 为边AB 的中点,且MC=MD .分别过点C 、D 作边BC 、AD 的垂线,设两条垂线的交点为P .过点P 作PQ ⊥AB 于Q .求证:∠PQC =∠PQD .证明:如图,联结PA 、PB ,分别取PA 、PB 的中点E 、F ,联结EM 、ED 、FM 、FC .则四边形PEMF 为平行四边形..................................................5分从而,∠PEM =∠PFM.由ME=21BP=CF,MF=21AP=DE,MD=MC 所以,△DEM ≌△MFC ..................................................10分即,∠DEM =∠MFC.所以,∠PED =∠DEM-∠PEM=∠MFC-∠PFM=∠PFC.又,∠PED =2∠PAD,∠PFC =2∠PBC,得∠PAD=∠PBC.由于∠PQA=∠PDA=90o ,∠PQB=∠PCB=90o ,则P 、Q 、A 、D 和P 、Q 、B 、C 分别四点共圆..................................................15分故∠PQD=∠PAD ,∠PQC=∠PBC,所以,∠PQC=∠PQD..................................................20分{}2221212122221*221221(121)2(13)13213132********k k k k k k k k k mn m mm m m k k S k S S a k k S m a S S L L N S m L m ------+--+-+---+--+=∈-+-+ =.===假设存在正整数,使得恰好为数列中的一项,又由()知,数列中的每一项都为正数,故可设(),则=,变形得到(3-L )3m -1=(L -1)(m 2-1)①..................................................15分∵m ≥1,L ≥1,3m -1>0,∴L ≤3.又L ∈N *,故L 可能取1,2,3.当L =1时,(3-L )3m -1>0,(L -1)(m 2-1)=0,∴①不成立;当L =2时,(3-2)3m -1=(2-1)(m 2-1),即3m -1=m 2-1.若m =1,3m -1≠m 2-1,21222221121(*2)3172()(1)11223222322033333m m m m m m m m m T m N m m m m m m m T T -+--∈≥-+++---++-+⨯+--=≤<令=,,则=.因此,1=T 2>T 3>…,故只有T 2=1,此时m =2,L =2=a 2.当L =3时,(3-3)3m -1=(3-1)(m 2-1).∴m =1,L =3=a 3.。
2018年全国高中数学联赛广西赛区预赛试题+答案
△CDF ∼ △EBF
CP ∥ AE .
∠F DP = ∠F BA
CD DP =
BE AB
DF CD
=
⃝3
FB BE
DF DP =
F B AB
⃝3 10 ⃝4 15
⃝4
△AF B ∼ △P F D, ∠AF B = ∠P F D A F P
20
12.
20
a1, a2, · · · , an
√ a1
+
b + 5a a + b = 8.
ab
|(a + i)(2 + i)| =
b−i 2−i
a+b=
.
(2a
−
1)2
+
(a
+
2)2
=
( 2b
+
1 )2
+
( b
−
2 )2
⇒
(b
+
5a)(b
−
5a)
=
24.
5
5
b + 5a = 12
b + 5a = 6
b − 5a
b − 5a = 2
b − 5a = 4
+
4a3
+·Fra bibliotek··
+
k2ak+1
≥
√ a1
+
4a2
+
·
·
·
+
(k
+
1)2ak+1.
10 分 ⃝1
[√ ( a2
)2
+
(√a3)2
2018年全国高中数学联赛试题及答案详解(A卷)
2,
4,
6,,
48
,
故 B C 的元素个数为 24 . 2. 设点 P 到平面 的距离为 3 ,点 Q 在平面 上,使得直线 PQ 与 所成
角不小于 30 且不大于 60 ,则这样的点 Q 所构成的区域的面积为
.
答案:8 .
解:设点 P 在平面 上的射影为 O .由条件知,OP OQ
tan
OQP
3, 3求的区域面积为 32 12 8 .
3. 将1, 2, 3, 4, 5, 6 随机排成一行,记为 a, b, c, d , e, f ,则 abc + def 是偶数的
概率为
.
答案: 9 . 10
在[9,) 上严格递减,且 f (3) 0, f (9) 1,故结合图像可知
a (0, 3) , b (3, 9) , c (9, ) ,
并且 f (a) f (b) f (c) (0, 1) .
…………………4 分
由 f (a) f (b) 得 1 log3 a log3 b 1,
注意到 f ( 2) f () 1, f (8 2) f (2) f (2) 2 ,
所以 1 f (x) 2 f ( 2) f (x) f (8 2) ,
而1 2 8 2 2 ,故原不等式组成立当且仅当 x [ 2, 8 2] . 6. 设复数 z 满足 z 1,使得关于 x 的方程 zx2 2zx 2 0 有实根,则这样
证明: (1) 约定 S0 0 .由条件知,对任意正整数 n ,有
1
an
(2Sn
2018年全国高中数学联赛
2018年全国高中数学联赛山东预赛试题解析一、填空题(每小题8分,共80分)1.若复数z 满足|z -1|+|z -3-2i|=22,则|z |的最小值为 . 【解析】答案:1.设z =x +y i ,则|z -1|+|z -3-2i|=22的几何意义为点P (x ,y )到点A (1,0),B (3,2)的距离之和为22,因为|AB |=22,从而点P 在线段AB 上,从而:|OP |≥1.即当z =1时有最小值|z |=1. 2.在正三棱锥S —ABCD 中,已知二面角A —SB —D 的正弦值为63,则异面直线SA 与BC 所成的角为 . 【解析】答案:60°.A —SB —D 的二面角等于A —SD —B 的二面角,设底面的中心为O ,取AD 的中点M ,连接SO 、SM 、OM ,过点O 作OE ⊥SM 于E ,易证OE ⊥平面SAD ,过点E 作EP ⊥SD 于点P ,连接OP ,从而:A —SD —B 的二面角为∠EPO .设底面边长为2a ,侧棱长为2b ,于是:OM =a ,SO =4b 2-2a 2,OD =2a , 所以:OE =a 4b 2-2a 24b 2-a 2,OP =2a ·4b 2-2a 22b ,所以:sin ∠OPE =OE OP =2b 4b 2-a 2=63,解得:a =b .于是:△SAD 为正三角形,从而:直线SA 与BC 所成的角为60°.OP MDEC SA3.函数f (x )=[2sin x ·cos x ]+[sin x +cos x ]的值域为 (其中[x ]表示不超过x 的最大整数). 答案:{-1,0,1,2}.【解析】 f (x )=[sin2x ]+⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4,当x ∈⎣⎡⎭⎫0,π4时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x =π4时,[sin2x ]=1,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=2; 当x ∈⎝⎛⎭⎫π4,π2,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x =π2时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=1,此时f (x )=1; 当x ∈⎝⎛⎭⎫π2,3π4,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=0; 当x =3π4时,[sin2x ]=-1,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=-1; 当x ∈⎝⎛⎭⎫3π4,π时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=0,此时f (x )=0; 当x =π时,[sin2x ]=0,⎣⎡⎦⎤2sin ⎝⎛⎭⎫x +π4=-1;此时f (x )=-1; 其他区间按此方法讨论.4.在△ABC 中,∠BAC =60°,∠BAC 的平分线AD 交BC 于D ,且有AD →=14AC →+tAB →,若AB =8,则AD = . 答案:6 3.【解析】易知t =34,从而:AC =24,AD 2=116×242+916×82+316×8×24=108,从而:AD =6 3.5.甲、乙两人轮流掷一枚硬币至正面朝上或者朝下,规定谁先掷出正面朝上为赢:前一场输者,则下一场先掷,若第一场甲先掷,则甲赢得第n 场的概率为 . 【解析】答案:P n =12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n . 设甲赢得第n 场的概率为P n ,则P n +1=23(1-P n )+13P n ,P 1=23,解得:P n =12⎣⎡⎦⎤1-⎝⎛⎭⎫-13n . 6.若直线6x -5y -28=0交椭圆x 2a 2+y 2b 2=1(a >b >0,且a ,b 为整数)于A 、C ,设B (0,b )为椭圆的上顶点,而△ABC 的重心为椭圆的右焦点F 2,则椭圆的方程为 . 【解析】设A (x 1,y 1),C (x 2,y 2),依题意知:⎩⎨⎧x 1+x 2=3c ,y 1+y 2+b =0,联立椭圆方程和直线方程:⎩⎪⎨⎪⎧x 2a 2+y 2b 2=1,6x -5y -28=0,得:⎩⎨⎧x 1+x 2=336a 236a 2+25b 2=3c ①,y 1+y 2=-280b 236a 2+25b 2=-b ②,①÷②可得:2a 25b 2=c b, 即:2a 2=5bc ,两边平方,并有c 2=a 2-b 2可得:4a 4-25a 2b 2+25b 4=0,解得:a 2=5b 2或者a 2=54b 2,7.设a 、b ∈R ,则max{|a +b |,|a -b |,|1-b |}的最小值为 . 【解析】答案:12.max{|a +b |,|a -b |,|1-b |}=max{|a |+|b |,|1-b |}≥|a |+|b |+|1-b |2≥|a |+12≥12. 当且仅当a =0,b =12时等号成立.8.已知a 、b ∈Z ,且a +b 是方程x 2+ax +b =0的一个根,则b 的最大可能值为 . 【解析】答案:9.将a +b 代入方程可得:(a +b )2+a (a +b )+b =0,整理可得:b 2+(3a +1)b +2a 2=0,显然a 、b 中至少有一个为负数,欲求b 的最大值,则a <0,b >0. 视b 为主元,解得:b =-(3a +1)-(3a +1)2-8a 22=-(3a +1)-a 2+6a +12,其中:a ≥22-3或者a ≤-(22+3),因为b ∈Z ,从而:a 2+6a +1=m 2,m ∈Z , 即:a 2+6a +1-m 2=0有整数解.=36-4(1-m 2)=4(m 2+8)为完全平方数,令m 2+8=n 2,其中:n ∈Z ,所以:(n +m )(n -m )=8=2×4=(-2)×(-4),解得:⎩⎨⎧n =±3,m =±1,a =0或-6,b =-1或9,于是b max = 9,此时a =-6.9.设集合A 、B 满足A ∪B ={1,2,…,10},若A ∩B = ,若集合A 的元素个数不是集合A 的元素,集合B 元素个数不是集合B 的元素,则满足条件的所有集合A 的个数为 . 【解析】令|A |=k ,则|B |=10-k ,k ≠5,否则5∈A ∩B ,从而由题意可知:k ∈B ,10-k ∈A ,此时A 中剩余的k -1个元素有C k -18种选择,且剩余的9-k 个元素必定属于集合B .于是,满足题意的集合A 的个数为m =∑k =19C k -18-C 5-18=28-70=256-70=186个.10.设f (n )为最接近4n 的整数,则∑k =120181f (k )= . 【解析】答案:28867.用[n ]表示与4n 最接近的整数,则:当n ∈[1,8]时,[n ]=1,f (n )=1,其中n =1,2,…,8;故∑k =181f (k )=8, 当n ∈[9,48]时,[n ]=2,f (n )=2,其中n =9,10,…,48,故∑k =9481f (k )=20;当n ∈[49,168]时,[n ]=3,f (n )=3,其中:n =49,50,…,168,故∑k =491681f (k )=40; 当n ∈[169,440]时,[n ]=4,f (n )=4,其中n =169,170,…,440,故∑k =1694401f (k )=68; 当n ∈[441,960]时,[n ]=5,f (n )=5,其中:n =441,…,960,故∑k =4419601f (k )=104; 当n ∈[961,1848]时,[n ]=6,f (n )=6,其中n =961,…,1848,故∑k =96118481f (k )=148. 当n ∈[1849,2018]时,[n ]=7,其中n =1849,…,2018,故∑k =184920181f (k )=1707, 综上:∑k =120181f (k )=8+20+40+68+104+148+1707=28867. 事实上,当k ≤4n ≤k +1时,若n 4∈[k 4,k 4+2k 3+3k 2+2k ]时,[n ]=k ,当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,[n ]=k +1. 因为当n 4∈[k 4,k 4+2k 3+3k 2+2k ],则n 4-k 4∈[0,2k 3+3k 2+2k ]<(k +1)4-n 4∈[2k 3+3k 2+2k +1,4k 3+6k 2+4k +1]; 而当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,(k +1)4-n 4∈[0,2k 3+3k 2+2k ]<n 4-k 4∈[2k 3+3k 2+2k +1,4k 3+6k 2+4k +1]; 于是:当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4]时,[n ]=k +1; 当n 4∈[(k +1)4,(k +1)4+2(k +1)3+3(k +1)2+2(k +1)]时,[n ]=k +1,即当n 4∈[k 4+2k 3+3k 2+2k +1,(k +1)4+2(k +1)3+3(k +1)2+2(k +1)]时,[n ]=k +1,此时共有(k +1)4+2(k +1)3+3(k +1)2+2(k +1)-(k 4+2k 3+3k 2+2k )=4k 3+12k 2+16k +8=4(k +1)(k 2+2k +2)个数,于是:∑k 4-2k 3+3k 2-2k +1k 4+2k 3+3k +2+2k1f (k )=4(k 2+1), 所以:∑k =120181f (k )=∑k =164(k 2+1)+∑i =184920181f (i )=388+1707=28867. 二、解答题(本大题共4小题,共70分)11.已知圆O :x 2+y 2=4与曲线C :y =3|x -t |,A (m ,n ),B (s ,p )(m ,n ,s ,p ∈N*)为曲线C 上的两点,使得圆O 上的任意一点到点A 的距离与到点B 的距离之比为定值k (k >1),求t 的值.【解析】答案:t =43.取圆上的点C (2,0),D (-2,0),E (0,2),F (0,-2),依题意有:⎩⎨⎧(2-m )2+n 2(2-s )2+p 2=(2+m )2+n 2(2+s )2+p 2=ms,m 2+(2-n )2s 2+(p -2)2=m 2+(2+n )2s 2+(2+p )2=np,于是:OA →=tOB →,所以,点A 、B 、O 三点共线.由阿波罗尼斯圆的性质:OA ·OB =R 2=4,且OA =Rλ,OB =Rλ,其中λ>1,则OA <OB ,所以:OA <2;因为:m 2+n 2=OA 2=4λ2,又m 、n ∈N*,从而:OA 2=4λ2∈N*,(1)若OA 2=4λ2=1,则λ=2,此时:m 2+n 2=1,必有mn =0,因为m 、n ∈N*,不符合题意;(2)若OA 2=4λ2=2,则λ=2,此时:m 2+n 2=2,得:m =n =1,s =p =2,直线AB 的方程为y=x ,则点A (1,1),B (2,2)在曲线C 上,代入解得:t =43.(3)若OA 2=4λ2=3,此时:m 2+n 2=3,无正整数解,不合题意.综上:t =43.12.已知数列{a n }满足:a 1=π3,0<a n <π3,sin a n +1≤13sin3a n (n ≥2), 求证:sin a n <1n. 证明:由于0<a n <π3,于是:sin a n ∈⎝⎛⎭⎫0,12, 当n =1时,有sin a 1=12<1;当n =2时,sin a 2∈⎝⎛⎭⎫0,12<12成立; 设当n =k 时,有sin a k <1k, 则当n =k +1时,sin a k +1≤13sin3a k =13(3sin a k -4sin 3a k ),令f (x )=3x -4x 3,x ∈⎝⎛⎭⎫0,12, 则f ′(x )=3-12x 2>0,即f (x )在⎝⎛⎭⎫0,12单调递增, 于是:sin a k +1≤13sin3a k =13(3sin a k -4sin 3a k )≤1k -43k k,所以只需证明:1k -43k k <1k +1(k ≥2) 即可. 即证明:3k -43k<k k +1, 平分后整理可得:15k 2+8k -16>0,即证明对任意k ≥2有:(3k +4)(5k -4)>0,显然成立.于是:对任意n ∈N*,有sin a n <1n. 13.实数a 、b 、c 满足a 2+b 2+c 2=λ(λ>0),试求f =min{(a -b )2,(b -c )2,(c -a )2}的最大值.【解析】由i 对称性,不妨设a ≥b ≥c , 从而:a -b >a -c >0,于是有:f =min{(a -b )2,(b -c )2,(c -a )2}=min{(a -b )2,(b -c )2}≤(a -b )(b -c )≤⎣⎡⎦⎤(a -b )+(b -c )22=(a -c )24≤λ2.当且仅当b =0,a =-c =2λ2时等号成立. 14.证明对所有的正整数n ≥4,存在一个集合S ,满足如下条件: (1)S 由都小于2n-1的n 个正整数组成;(2)对S 的任意两个不同非空子集A 、B ,集合A 中所有元素之和不等于集合B 中所有元素之和.【解析】当S ={20,21,22,…,2n -1}时满足题意.法一、证明:用|T |表示集合T 中的元素个数,M (A )表示集合A 中的元素之和. 当n =4时,若|A |=1,则M (A )={1,2,4,8}; 若|A |=2,则M (A )={3,5,9,6,10,12}, 若|A |=3,则M (A )={7,11,13,14}, 若|A |=4,则M (A )={15},即集合S 的15个子集,其和值也有15个,每个子集的和值各不相同, 所以:当A ≠B 时,总有M (A )≠M (B ). 故:当n =4时,S ={1,2,4,8}满足题意;假设当n =k 时,集合S ={20,21,22,…,2k -1}满足题意, 此时集合S 的2k -1个非空子集有2k -1个不同的值,其集合为{1,2,…,2k -1},则当n =k +1时,集合S 的2k 个子集的和值组成的集合为{1,2,3,…,2k -1,2k ,2k +1,…,2k +2k -1},即:{1,2,3,…,2k -1,2k ,…,2k +1-1},所以当n =k +1时,集合S 的2k +1-1个子集有2k +1-1个不同的值. 综上:集合S ={20,21,22,…,2n -1}总是满足题意.法二、不妨假设a 1<a 2<…<a m ,b 1<b 2<…<b t ,且对任意的i ,j ,a i ≠b j ,b t <a m , 根据题意只需证明:∑i =1m 2a i≠∑j =1t2b j即可.若不然,设∑i =1m2a i=∑j =1t2bj ,则:2a m<∑i =1m2a i=∑j =1t 2bj ,所以:1<2b 1-a m+2b 2-a m+…+2b t -a m≤12+122+…+12t -m =1-12t -m +1<1,矛盾. 从而:集合S ={20,21,…,2n -1}的任意的两个子集之和不同. 所以:存在满足题意的集合S ={20,21,…,2n -1}.。