主轴驱动系统和主轴电机发展趋势
数控系统发展趋势
![数控系统发展趋势](https://img.taocdn.com/s3/m/718c1c6830126edb6f1aff00bed5b9f3f90f728f.png)
数控系统发展趋势從目前世界上数控技术及其装备发展的趋势来看,数控系统正在向电气化、电子化、高速化、精密化等方面高速发展。
标签:数控系统;发展趋势;高精尖一、性能发展方面1.1高精高速高效化速度效率、质量是先进制造技术关键的性能指标,是先进制造技术的主体。
若采用高速CPU芯片、RISC芯片、多CPU控制系统、高分辨率检测元件、交流数字伺服系统配套电主轴、直线电机等技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。
在今后的几年,随着现代科学技术的发展,对超精密加工技术不断提出了新的要求。
新材料及新零件的出现,更高精度要求的提出等都需要超精密加工工艺,大力发展新型超精密加工机床,完善现代超精密加工技术,以适应现代科技的发展,超精密数控机床正在向精密化、高速化、智能化和纳米化发展,汇合而成的新一代数控机床,1.2多轴化多轴联动加工,零件在一台数控机床上装夹后,可进行自动换刀、旋转主轴头、能转工作台等操作,完成多工序、多表面的复合加工,不仅光洁度高,而且效率也大幅度提高。
采用5轴联动对三维曲面零件加工,可使用刀具最佳几何形状进行切削,不仅加工表面粗糙度值低,而且效率也大幅度提高。
一般,1台5轴联动机床的效率等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢零件时,5轴联动加工比3轴联动加工能发挥更高的效益。
1.3软硬件开放化用户可根据自己的需要,对数控系统软件进行二次开发,用户的使用范围不再受生产商的制约。
1.4实时智能化在数控技术领域,实时智能控制的研究和应用正沿着:自适应控制、模糊控制、神经网络控制、专家控制、学习控制、前馈控制等方面发展。
如编程专家系统故障诊断专家系统,当系统出了故障时,诊断、维修等实现智能化。
二、功能发展方面2.1图形化界面功能和水平进一步提高高档数控系统发展对图形化界面的功能和水平要求进一步提高,用户希望看到更丰富、更形象、更直观的界面,以此减少用户编程难度,提高编程和加工效率。
数控发展趋势
![数控发展趋势](https://img.taocdn.com/s3/m/c9bb89daba4cf7ec4afe04a1b0717fd5360cb2f7.png)
数控发展趋势一数控技术简介数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;数控技术的应用不但给传统制造业带来了性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,他对国计民生的一些重要行业IT、汽车、轻工、医疗等的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势;从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面;数控机床是以数控系统为代表的新技术对传统机械制造产业的渗透形成的机电一体化产品;其技术范围覆盖很多领域:1机械制造技术;2信息处理、加工、传输技术:3自动控制技术;4伺服驱动技术;5传感器技术:6软件技术等;计算机对传统机械制造产业的渗透,完全改变了制造业;制造业不但成为工业化的象征,而且由于信息技术的渗透,使制造业犹如朝阳产业具有广阔的发展天地;二数控技术国内外现状1 开放结构的发展数控技术从发明到现在,已有近50年的历史;按照电子器件的发展可分为五个发展阶段:电子管数控,晶体管数控,中小规模IC数控,小型计算机数控,微处理器数控;从体系结构的发展,可分为以硬件及连线组成的硬数控系统、计算机硬件及软件组成的CNC数控系统,后者也称为软数控系统:从伺服及控制的方式可分为步进电机驱动的开环系统和伺服电机驱动的闭环系统;数控系统装备的机床大大提高了加工精度、速度和效率;人类发明了机器,延长和扩展人的手脚功能:当出现数控系统以后,制造厂家逐渐希望数控系统能部分代替机床设计师和操作者的大脑,具有一定的智能,能把特殊的加工工艺、管理经验和操作技能放进数控系统,同时也希望系统具有图形交互、诊断功能等;首先就要求数控系统具有友好的人机界面和开发平台,通过这个界面和平台开放而自由地执行和表达自己的思路;这就产生了开放结构的数控系统;机床制造商可以在该开放系统的平台上增加一定的硬件和软件构成自己的系统;目前,开放系统有两种基本结构:1CNC+PC主板:把一块PC主板插入传统的CNC机器中,PC板主要运行实时控制,CNC主要运行以坐标轴运动为主的实时控制;2PC+运动控制板:把运动控制板插入PC机的标准插槽中作实时控制用,而PC机主要作非实时控制;开放结构在90年代初形成;对于许多熟悉计算机应用的系统厂家,往往采用第2方案;但目前主流数控系统生产厂家认为数控系统最主要的性能是可靠性,象PC机存在的死机现象是不允许的;而系统功能首先追求的仍然是高精高速的加工;加上这些厂家长期已经生产大量的数控系统:体系结构的变化会对他们原系统的维修服务和可靠性产生不良的影响;因此不把开放结构作为主要的产品,仍然大量生产原结构的数控系统;为了增加开放性,主流数控系统生产厂家往往采用1方案,即在不变化原系统基本结构的基础上增加一块PC板,提供键盘使用户能把PC和CNC联系在一起,大大提高了人机界面的功能比较典型的如FANUC的150/160/180/210系统;有些厂家也把这种装置称为融合系统fusionsystem;由于它工作可靠,界面开放,越来越受到机床制造商的欢迎;2 软件伺服驱动技术伺服技术是数控系统的重要组成部分;广义上说,采用计算机控制,控制算法采用软件的伺服装置称为“软件伺服”;它有以下优点:1无温漂,稳定性好;2基于数值计算,精度高;3通过参数对设定,调整减少;4容易做成ASIC电路;70年代,美国GATTYS公司发明了直流力矩伺服电机,从此开始大量采用直流电机驱动;开环的系统逐渐由闭环的系统取代;但直流电机存在以下缺点:1电动机容量、最高转速、环境条件受到限制;2换向器、电刷维护不方便;交流异步电机虽然价格便宜、结构简单,但早期由於控制性能差,所以很长时间没有在数控系统上得到应用;随着电力电子技术的发展,1971年,德国西门子的发明了交流异步机的矢量控制法;1980年,德国人Leonhard为首的研究小组在应用微理器的矢量控制的研究中取得进展,使矢量控制实用化;从70年代末,数控机床逐渐采用异步电机为主轴的驱动电机;如果把直流电机进行“里翻外”的处理,即把电驱绕组装在定子,转子为永磁部分,由转子轴上的编码器测出磁极位置,这就构成了永磁无刷电机;这种电机具有良好的伺服性能;从80年代开始,逐渐应用在数控系统的进给驱动装置上;为了实现更高的加工精度和速度,90年代,许多公司又研制了直线电机;它由两个非接触元件组成,即磁板和线卷滑座:电磁力直接作用于移动的元件而无需机械连接,没有机械滞后或螺距周期误差,精度完全依赖于直线反馈系统和分级的支承,由全数字伺服驱动,刚性高,频响好,因而可获得高速度;但由于它的推力还不够大,发热,漏磁及造价也影响了它的广泛应用;对现代数控系统,伺服技术取得的最大突破可以归结为:交流驱动取代直流驱动、数字控制取代模拟控制、或者把它称为软件控制取代硬件控制;这两种突破的结果产生了交流数字驱动系统,应用在数控机床的伺服进给和主轴装置;由于电力电子技术及控制理论、微处理器等微电子技术的快速发展,软件运算及处理能力的提高,特别是DSP的应用,使系统的计算速度大大提高,采样时间大大减少;这些技术的突破,使伺服系统性能改善、可靠性提高、调试方便、柔性增强;大大推动了高精高速加工技术的发展;3 CNC系统的连网数控系统从控制单台机床到控制多台机床的分级式控制需要网络进行通信;网络的主要任务是进行通信,共享信息;这种通信通常分三级:1工厂管理级;一般由以太网组成;2车间单元控制级;一般由DNC功能进行控制;通过DNC功能形成网络可以实现对零件程序的上传或下传:读、写CNC的数据:PLC数据的传送;存贮器操作控制;系统状态采集和远程控制等;更高档次的DNC还可以对CAD/CAM/CAPP以及CNC的程序进行传送和分级管理;CNC与通信网络联系在一起还可以传递维修数据,使用户与NC生产厂直接通信:进而,把制造厂家联系一起,构成虚拟制造网络;3现场设备级;现场级与车间单元控制级及信息集成系统主要完成底层设备单机及I/0控制、连线控制、通信连网、在线设备状态监测及现场设备生产、运行数据的采集、存储、统计等功能,保证现场设备高质量完成生产任务,并将现场设备生产运行数据信息传送到工厂管理层,向工厂级提供数据;同时也可接受工厂管理层下达的生产管理及调度命令并执行之;因此,现场级与车间级是实现工厂自动化及CIMS系统的基础;传统的现场级大多是基于PLC的分布式系统;其主要特点是现场层设备与控制器之间的连接是一对一,即一个I/0点对设备的一个测控点;所谓I/0接线方式为传递4-20ma模拟量信息或24VDC开关信息;这种系统的缺点是:信息集成能力不强、系统不开放、可集成性差、专业性不强、可靠性不易保证、可维护性不高;现场总线是以单个分散的、数字化、智能化的测量和控制设备作为网络节点,用总线相连接,实现相互交换信息,共同完成自动控制功能的网络系统与控制系统;因此,现场总线是面向:工厂底层自动化及信息集成的数字网络技术;现场总线技术的主要特点为:它是数控系统通信向现场级的延伸、数字化通信取代4-20ma模拟信号、应用现场总线技术,要求现场设备智能化可编程或可参数化:它集现场设备的远程控制、参数化及故障诊断为一体:由于现场总线具有开放性、互操作性、互换性、可集成性,因此是实现数控系统设备层信息集成的关键技术;它对提高生产效率、降低生产成本非常重要;目前在工业上采用的现场总线有PROFIBUS-DP,SERCOS,JPCN-1,Deviconet,CAN,hterbus—S,Marco等;有的公司还有自己的总线,比如FANUC的FSSB,I/OLINK相当于JPCN—1,YASKAWA的MOTIONLINK等;目前比较活跃的是Prof主bus-DP,为了允许更快的数据传送速度,它由0SI的七层结构省去3-7层构成;西门子最新推出802D的伺服控制就是由PROFIBOUS-DP控制的;4功能不断发展和扩大WIDTH=200 align=right BBCOLOR=e5ebba BORDERCOLIRIGHT=006600BORDER=1>快速移动速度m/min分辨率μm2401100101NC技术经过50年的发展,已经成为制造技术发展的基础;这里以FANUC最先进的CNC控制系统15i/150i为例说明系统功能的发展;这是一台具有开放性,4通道、最多控制轴数为24轴、最多联动轴数为24轴、最多可控制4个主轴的CNC系统;其快速移动速度与分辨率关系如右表;它的技术特点反映了现代NC发展的特点:开放性:系统可通过光纤与PC机连接,采用Window兼容软件和开发环境;功能以高速、超精为核心,并具有智能控制;特别适合于加工航空机械零件,汽车及家电的高精零件,各种模具和复杂的需5轴加工的零件;15i/150主具有高精纳米插补功能;即使系统的设定编程单位为1μm,通过纳米插补也可提供数字伺服以1nm为单位的指令,平滑了机床的移动量,提高了加工表面光洁度,大大减少加工表面的误差;当分辨率为时,快速可达240m/min速度;系统还具有高速高精加工的智能控制功能:1预计算出多程序段刀具轨迹,并进行预处理;2智能控制,计及机床的机械性能,可按最佳的进率和最大的允许加速度工作,使机床的功能得到最大的发挥;以便降低加工时间,提高效率,同时提高加工精度;3系统可在分辨率为1nm时工作,适用于控制超精机械;高级复杂的功能:15i/150i可进行各种数学的插补,如直线、圆弧、螺旋线、渐开线、螺旋渐开线、样条等插补;也可以进行NURBS非均匀有理B样条插补;采用NURBS插补可以人人减少NC程序的数据输入量,减少加工时间,特别适用模具加工;NURBS插补不需任何硬件;强力的联网通信功能;适应工厂自动化需要,支持标准FA网络及DNC的连接;1工厂干线或控制层通信网络:由PC机通过以太网控制多台15i/150i组成的加工单元,可以传送数据、参数等;2设备层通信网络:15i/150i采用I/0LINK与日本标准JPCN-1相对应的一种现场总线;3通过RS-485接口传送I/0信号:或且也可采用PRELLBUS—DP符合欧洲1标准EN50170以12Mbps进行高速通信;具有高速度内装的PMC有的厂商称为PLC,以减少加工的循环的时间:1梯形图和顺序程序由专用的PMC处理器控制,这种结构可进行快速大规模顺序控制;2基本PMC指令执行时间为:;最大步数:32,000步;3可以用C语言编程;32位的C语言处理器可作为实时多任务运行;它与梯形图计算的PMC处理器并行工作;4可在PC机上进行程序开发;先进的操作:性和维修性;(1)具有触摸面板,容易操作;2可采用存储卡来改变输入输出三数控发展趋势1、高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体;高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力;为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会CIRP将其确定为21世纪的中心研究方向之一;在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工;近来采用大型整体铝合金坯料“掏空”的方法来制造机翼、机身等大型零件来替代多个零件通过众多的铆钉、螺钉和其他联系方式拼装,使构件的强度、刚度和可靠性得到提高;这些都对加工装备提出了高速、高精和高柔性的要求;从EMO2001展会情况来看,高速加工中心进给速度可达80m/min,甚至更高,空运行速度可达100m/min左右;目前世界上许多汽车厂,包括我国的上海通用汽车公司,已经采用以高速加工中心组成的生产线部分替代组合机床;美国CINCINNATI公司的HYPERMACH机床速度最大达60m/min,快速为100m/min,加速度达2g,主轴转速已达60 000r/min;加工薄壁飞机零件,只用30min,而同样的零件在一般高速铣床加工需3h,在普通铣床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12000r/mm和1g;在加工精度方面,近10年来,普通级数控机床的加工精度已由10μm提高到5μm,精密级加工中心则从3~5μm,提高到1~μm,并且超精密加工精度已开始进入纳米级μm;在可靠性方面,国外数控装置的MTBF值已达6 000h以上,伺服系统的MTBF值达到30000h 以上,表现出非常高的可靠性;为了实现高速、高精加工,与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大;2、轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高;一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铣刀进行高速铣削淬硬钢件时,5轴联动加工可比3轴联动加工发挥更高的效益;但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出很多,加之编程技术难度较大,制约了5轴联动机床的发展;当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头构造大为简化,其制造难度和成本大幅度降低,数控系统的价格差距缩小;因此促进了复合主轴头类5轴联动机床和复合加工机床含5面加工机床的发展在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工;德国DMG公司展出DMUVOUTION系列加工中心,可5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制;3、智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等;为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题;目前许多国家对开放式数控系统进行研究,如美国的NGCThe Next Generation Work-Station/Machine Control、欧共体的OSACAOpen System Architecture for Control within Automation Systems、日本的OSECOpen System Environment for Controller,中国的ONCOpen Numerical Control System等;数控系统开放化已经成为数控系统的未来之路;所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象数控功能,形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品;目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具等是当前研究的核心;网络化数控装备是近两年国际着名机床博览会的一个新亮点;数控装备的网络化将极大地满足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元;国内外一些着名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EMO2001展中,日本山骑马扎克MAZAK公司展出的“CYBERPRODUCTION Center”智能生产控制中心,简称CPC;日本大尉Okuma机床公司展出“IT plaza”信息技术广场,简称IT广场;德国西门子Siemens公司展出的Open Manufacturing Environment开放制造环境,简称OME等,反映了数控机床加工向网络化方向发展的趋势;4、重视新技术标准、规范的建立如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范OMAC、OSACA、OSEC的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临;我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定;数控标准是制造业信息化发展的一种趋势;数控技术诞生后的50年间的信息交换都是基于ISO6983标准,即采用G,M代码描述如何how加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要;为此,国际上正在研究和制定一种新的CNC系统标准ISO14649STEP-NC,其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化;STEP-NC的出现可能是数控技术领域的一次,对于数控技术的发展乃至整个制造业,将产生深远的影响;首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上;而在新标准下,NC程序可以分散在互联网上,这正是数控技术开放式、网络化发展的方向;其次,STEP-NC数控系统还可大大减少加工图纸约75%、加工程序编制时间约35%和加工时间约50%;目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划;参加这项计划的有来自欧洲和日本的20个CAD/CAM/CAPP/CNC用户、厂商和学术机构;美国的STEP Tools公司是全球范围内制造业数据交换软件的开发者,他已经开发了用作数控机床加工信息交换的超级模型Super Model,其目标是用统一的规范描述所有加工过程;目前这种新的数据交换格式已经在配备了SIEMENS、FIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证;。
电主轴
![电主轴](https://img.taocdn.com/s3/m/0aec5d086c85ec3a87c2c5e6.png)
• •
• • •
5、我国数控机床用电主轴技术与国 际先进国家之间的差距
• • • • • (1)在电主轴的低速大扭矩方面,国外产品低速段的输出扭矩最大可以达到300Nm以 上,而我国目前紧限于100Nm以内。 (2)在高速方面,国外用于加工中心等数控机床用主轴的转速已经达到了75000r/min, 而我国则多在15000r/min以下。 (3)在电主轴的轴承润滑方面,国外已普遍采用油气润滑方法,而我国现在仍然普遍 采用油脂润滑。 (4)在其它与电主轴相关的配套技术方面,如主轴电机矢量控制和交流伺服控制技术、 精确定向(准停)技术、快速起动与停止技术、HSC刀柄制造与应用技术等,仍然不 够成熟,或不能满足实际需要。 (5)在产品品种、数量及制造规模方面,尽管已经有洛阳轴承研究所等数家专业研究、 制造电主轴的企业,但仍然以磨用电主轴为主,在数控机床用电主轴发面,则处于小 量开发试制阶段,还没有形成系列化、专业化和规模化生产,远远不能满足国内市场 日益增长的需要,还不具备与国外产品相抗衡的能力。 数控机床用高速精密电主轴是高速数控设备的首选功能部件,但目前仍处于研制与推 广应用阶段,成为影响数控机床向高性能、高水平、高速度、高精度方向发展的主要 制约因素,需要有关方面的共同努力及国家相关产业政策的有力支持,只有在各功能 部件高水平发展的基础上,我国数控机床的整体水平才能得以提高,才能在加入WTO 之后,我国的机床行业具备与国外相抗衡的能力。
•
2、电主轴的优点
• 传统机床主轴是由电机通过中间的传动、变速装置(如皮带、齿轮、 联轴节等)带动主轴旋转而进行工作的,这样的主轴称为分离式主轴, 与此相比,电主轴具有如下优点: • 1)主轴由内装式电机直接驱动,省去了皮带、齿轮、联轴节等中间 传动、变速机构或连接零件,具利用交流变频技术,电主轴可以在额定转速范围内实现无级变速, 以适应机床各种工况和负载变化的需要。 • 3)利用电机矢量控制、伺服控制等技术,不仅可以满足机床强力切 削时低速大扭矩的要求,还可以实现准确的C轴定位及传动的功能, 适应对C轴功能有较高要求的车削、镗铣等加工中心及其它数控机床 的需要。 • 4)与其它形式的主轴相比,电主轴更易于实现高速化,其动态精度 和动态稳定性更好。 • 5)由于没有中间传动环节的外力作用,主轴运行更加平衡,没有冲 击,使得主轴轴承的寿命相应得到了延长。
数控技术的发展趋势
![数控技术的发展趋势](https://img.taocdn.com/s3/m/8dfea594b8d528ea81c758f5f61fb7360b4c2b94.png)
数控技术的发展趋势 中国作为⼀个制造⼤国,主要还是依靠劳动⼒、价格、资源等⽅⾯的⽐较优势,⽽在产品的技术创新与⾃主开发⽅⾯与国外同⾏的差距还很⼤。
下⾯,店铺就为⼤家讲讲数控技术的发展趋势,⼀起来了解⼀下吧! 数控技术的发展趋势 数控技术不仅给传统制造业带来了⾰命性的变化,使制造业成为⼯业化的象征,⽽且随着数控技术的不断发展和应⽤领域的扩⼤,它对国计民⽣的⼀些重要⾏业的发展起着越来越重要的作⽤。
尽管⼗多年前就出现了⾼精度、⾼速度的趋势,但是科学技术的发展是没有⽌境的,⾼精度、⾼速度的内涵也在不断变化,正在向着精度和速度的极限发展。
从世界上数控技术发展的趋势来看,主要有如下⼏个⽅⾯: 1.机床的⾼速化、精密化、智能化、微型化发展 随着汽车、航空航天等⼯业轻合⾦材料的⼴泛应⽤,⾼速加⼯已成为制造技术的重要发展趋势。
⾼速加⼯具有缩短加⼯时间、提⾼加⼯精度和表⾯质量等优点,在模具制造等领域的应⽤也⽇益⼴泛。
机床的⾼速化需要新的数控系统、⾼速电主轴和⾼速伺服进给驱动,以及机床结构的优化和轻量化。
⾼速加⼯不仅是设备本⾝,⽽且是机床、⼑具、⼑柄、夹具和数控编程技术,以及⼈员素质的集成。
⾼速化的最终⽬的是⾼效化,机床仅是实现⾼效的关键之⼀,绝⾮全部,⽣产效率和效益在“⼑尖”上。
2.五轴联动加⼯和复合加⼯机床快速发展 采⽤五轴联动对三维曲⾯零件进⾏加⼯,可⽤⼑具最佳⼏何形状进⾏切削,不仅光洁度⾼,⽽且效率也⼤幅度提⾼。
⼀般认为,1台五轴联动机床的效率可以等于2台三轴联动机床,特别是使⽤⽴⽅氮化硼等超硬材料铣⼑进⾏⾼速铣削淬硬钢零件时,五轴联动加⼯可⽐三轴联动加⼯发挥更⾼的效益。
但过去因五轴联动数控系统主机结构复杂等原因,其价格要⽐三轴联动数控机床⾼出数倍,加之编程技术难度较⼤,制约了五轴联动机床的发展。
当前数控技术的发展,使得实现五轴联动加⼯的复合主轴头结构⼤为简化,其制造难度和成本⼤幅度降低,数控系统的价格差距缩⼩。
简述电主轴技术发展前景
![简述电主轴技术发展前景](https://img.taocdn.com/s3/m/fa9a3e5d974bcf84b9d528ea81c758f5f71f294c.png)
简述电主轴技术发展前景引言近年来,随着制造业的不断发展和技术的进步,电主轴技术作为一种新兴的切削加工技术正迅速崛起。
电主轴技术通过将电动机与主轴直接连接,实现高速、高精度的加工,具有较大的发展潜力。
本文将简要阐述电主轴技术的发展前景,包括其应用领域、技术优势以及面临的挑战。
应用领域电主轴技术的广泛应用领域是其发展的重要驱动力之一。
目前,电主轴技术已经广泛应用于机床、数控机床、汽车制造、航空航天等领域。
在机床领域,电主轴技术可以提供更高的切削力和速度,使得加工效率大大提高。
在汽车制造领域,电主轴技术可以实现更高精度的零部件加工,提高汽车的质量和性能。
在航空航天领域,电主轴技术可以实现更高的机械部件加工精度,提高飞机的安全性和可靠性。
技术优势电主轴技术的发展前景可从其技术优势方面来看。
首先,电主轴技术具有较高的切削速度和切削力。
相比传统的机械主轴,电主轴技术可以实现更高的转速和更大的切削力,使得加工效率更高。
其次,电主轴技术具有较高的精度和稳定性。
通过电主轴技术,可以实现更高的定位精度和加工精度,提高零部件的质量和精度。
此外,电主轴技术还具有较低的振动和噪音水平,使得工作环境更加安静和舒适。
面临的挑战电主轴技术发展的前景不仅有技术优势,还面临一些挑战。
首先,电主轴技术的成本较高。
相比传统的机械主轴,电主轴技术需要更多的电气设备和控制系统,成本较高。
其次,电主轴技术在超高速加工和超高精度加工方面仍存在一些技术难题。
目前,电主轴技术的切削速度和切削力还无法满足某些特殊需求。
此外,电主轴技术的维护和维修也需要专业知识和技能,提高了运维成本。
未来发展趋势虽然电主轴技术面临一些挑战,但其发展前景仍然十分广阔。
未来,电主轴技术将继续在制造业中发挥重要作用,并不断推动行业的发展。
随着相关技术的不断改进和创新,电主轴技术的性能将不断提升,成本将逐渐降低。
预计在不久的将来,电主轴技术将实现更高的切削速度和切削力,提供更高的加工效率和精度。
论数控技术发展趋势及我国数控产业发展方向
![论数控技术发展趋势及我国数控产业发展方向](https://img.taocdn.com/s3/m/3dec58dc5022aaea998f0f59.png)
・29・2007.11论数控技术发展趋势及我国数控产业发展方向马林旭(天津中德职业技术学院河北天津300191)摘要:数控技术是当今先进制造技术和装备最核心的技术,使传统的制造业产生根本性的变革。
本文结合EMO2005届汉诺威国际机床展览会概况,从高速度、高精度、高效率、模块化、智能化等几方面分析了当今世界数控技术发展的趋势,指出了我国制造业发展方向。
关键字:数控技术EMO2005发展趋势中图分类号:TH166文献标识码:A文章编号:1007-8320(2007)11-0029-02Ma Lin xu(TianJin Sino-Geman V ocational Technology Institute300191)Abstract:Computer Numerical Control(CNC)Technology is the core of manufacture and equipment industry nowadays.This technology has made the traditional manufacturing industry significant This paper will analyze the development trend of CNC from the aspect of high speed,high accuracy,high efficiency,modularization,and intelligence,with the investigation from overview of EMO2005international machine tool exhibi-tion.Key Words:Computer Numerical Control(CNC),EMO2005,Development Trend数控技术是用数字化信号对设备运行及其加工过程进行控制的一种自动化技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域,包括机械制造技术;信息处理、加工、传输技术;自动控制技术;伺服驱动技术;传感器技术;软件技术等。
国外高速加工机床用主轴电机的发展状况
![国外高速加工机床用主轴电机的发展状况](https://img.taocdn.com/s3/m/6bc0e001bb68a98271fefa4d.png)
难加工金属和合金 、 塑料等。这时 , 切削速度可提 高 1 0倍 以上。例如 , 铝合 金 , 削速 度 可从 对 切 10 m/ n提 高 到 l00 mi. 灰 铸铁 和 钢 可 0 0 mi O0 m/ n 对 从 80 m n 0 m/ i 提高到 80 m/ n 对高合金钢可从 0 0 mi, 10 r n提 高 到 2 0m/ i, 钛 合 金 可 从 0m/ i a 00 mn 对 8m/ n提 高到 lom/ n 对镍 合 金 可从 2m/ 0 mt 00 mi, 0
m a hn —o l a me c ietos b d Ke r s mo o pn l ;b o d p o u t ec n iin; C ywo d : t >s ide a r a r d ci o dt v o HS
1 高速; 机床 的概况  ̄q n-
近年来 , 采用高速加工的部 门愈来愈广泛, 包 括许多切削加工工序 , 先是铣 削 、 首 以及车削 、 磨
件的主轴 、传动部分 ( 电动机 的定子和转子 ) 、主 轴支承 ( 承) 轴 、冷却 系统 、传感器 ( 速传感 转
器、转子位置传感器 、温度传感器) 、电机反馈装 置 、润滑 系统 等 。 因在 电动机和支承内的发热较高, 故主轴电机 应有有效的冷却系统。主轴 电机 的本身结构和冷 却系统 的结构应建立轴对称 温度场 , 同时应保证部 件所需的精度。目前 , 广泛采用强制式空气冷却系 统和液体冷却系统。并且 , 正在进行建立电子冷却 系统的工作。在 电子冷却系统 内, 利用霍尔效应 的 双金属块可借助 电子控制 系统将热流移 到主轴部 件的周边部分( 外部) 。 在主轴电机的结构 内预先规定有能保证解决 工艺任务的各种装置: 刀具夹 紧部件 、 供给冷却液
数控进给伺服系统与驱动电机的发展及趋势
![数控进给伺服系统与驱动电机的发展及趋势](https://img.taocdn.com/s3/m/49351542e45c3b3567ec8b66.png)
盛发展 的时代 ,由于直流电动机具有优 良的调速性 能, 很多高性能驱动装置采用了直流 电动机 , 伺服 系 统 的位置 控制 , 由开环 系统 发 展为 闭环 系统 。 也 直 流伺 服 的工作 原 理 ,是 建立 在 电磁力 定 律 基 础 上 。与 电磁 转矩 相 关 的 , 互 相独 立 的两个 变 量 主 是 磁通与 电枢电流 ,它们 分别控制励磁 电流与电枢 电 流, 可方便地进行转矩与转速控制。另一方面从控制 角度看 , 直流伺服的控制 , 是一个单输入单输出的单 变量控制系统 , 经典控制理论完全适用于这种系统。 因此 , 直流伺服 系统控制简单 , 调速性能优异 , 在数 控机床的进给驱动中, 曾占据着主导地位 。 然而 , 从实际运行考虑 , 直流伺 服电动机引入了 机械换向装置。 其成本高 , 障多 , 故 维护 困难 , 经常因 碳刷产生的火花而影响生产 ,并对其他设备产 生电 磁 干 扰 。同时机 械换 向器 的换 向能 力 , 限制 了 电动机 的容量和速度。电动机的电枢在转子上 , 使得电动机 效 率 低 , 热 差 。为 了改 善 换 向能力 , 小 电枢 的漏 散 减 感 , 子 变得 短 粗 , 响 了系统 的动 态性 能 。 转 影 23 第 三 个发 展 阶段 . 2 世纪 8 年代至今 , 0 0 属第三发展阶段 。 这一阶段是 以机电一体化时代为背景的 ,由于 伺服 电动机结构及其永磁材料和控制技术 的突破性 进展 , 出现 了无刷直流伺服 电动机 ( 方波驱动 )交流 , 伺 服 电动机 ( 弦波 驱 动 ) 正 等种 种新 型 的 电动机 。 针对直流 电动机 的缺陷 , 如果将其做 “ 翻外 ” 里 的处理 , 即把 电 驱 绕组 装 在 定 子 、 子 为永 磁 部 分 , 转 由转子轴上的编码器测 出磁极位置 ,就构成了永磁 无刷 电动机 , 同时随着矢量控制方法 的实用化 , 使交 流伺服系统具有 良好的伺服特性。其宽调速范围、 高 稳速精度 、快速动态响应及四象限运行等 良好的技
电机控制技术发展前景
![电机控制技术发展前景](https://img.taocdn.com/s3/m/8130244da417866fb84a8e50.png)
电机控制技术发展前景(一)伺服电机控制技术的发展推动加工技术的高速高精化。
80年代以来,数控系统逐渐应用伺服电机作为驱动器件。
交流伺服电机内是无刷结构,几乎不需维修,体积相对较小,有利于转速和功率的提高。
目前交流伺服系统已在很大范围内取代了直流伺服系统。
在当代数控系统中,交流伺服取代直流伺服、软件控制取代硬件控制成为了伺服技术的发展趋势。
由此产生了应用在数控机床的伺服进给和主轴装置上的交流数字驱动系统。
随着微处理器和全数字化交流 伺服系统的发展,数控系统的计算速度大大提高,采样时间大大减少。
硬件伺服控制变为软件伺服控制后,大大地提高了伺服系统的性能。
例如OSP-U10/U100网络式数控系统的伺服控制环就是一种高性能的伺服控制网,它对进行自律控制的各个伺服装置和部件实现了分散配置,网络连接,进一步发挥了它对机床的控制能力和通信速度。
这些技术的发展,使伺服系统性能改善、可靠性提高、调试方便、柔性增强,大大推动了高精高速加工技术的发展。
另外,先进传感器检测技术的发展也极大地提高了交流电动机调速系统的动态响应性能和定位精度。
交流伺服电机调速系统一般选用无刷旋转变压器、混合型的光电编码器和绝对值编码器作为位置、速度传感器,其传感器具有小于1μs的响应时间。
伺服电动机本身也在向高速方向发展,与上述高速编码器配合实现了60m/min甚至100m/min的快速进给和1g的加速度。
为保证高速时电动机旋转更加平滑,改进了电动机的磁路设计,并配合高速数字伺服软件,可保证电动机即使在小于1μm转动时也显得平滑而无爬行。
(二)交流直线伺服电机直接驱动进给技术已趋成熟。
数控机床的进给驱动有“旋转伺服电机+精密高速滚珠丝杠”和“直线电机直接驱动” 两种类型。
传统的滚珠丝杠工艺成熟加工精度较高,实现高速化的成本相对较低,所以目前应用广泛。
使用滚,珠丝杠驱动的高速加工机床最大移动速度90m/min,加速度1.5g。
但滚珠丝杠是机械传动,机械元件间存在弹性变形、摩擦和反向间隙,相应会造成运动滞后和非线性误差,所以再进一步提高滚珠丝杠副移动速度和加速度比较难了。
机床数控系统的组成
![机床数控系统的组成](https://img.taocdn.com/s3/m/719aea81c67da26925c52cc58bd63186bceb92cd.png)
机床数控系统的组成机床数控系统是现代机床的核心技术之一,它由多个组成部分构成,共同实现对机床的自动化控制和加工操作。
本文将从硬件和软件两个方面介绍机床数控系统的组成。
一、硬件组成1.主轴驱动系统:主轴驱动系统是机床数控系统的核心部分,它负责控制主轴的转速和运动方向。
主轴驱动系统通常由伺服电机、减速器、编码器等组成,通过对电机的控制,实现对主轴的精确控制。
2.进给驱动系统:进给驱动系统用于控制工件在加工过程中的运动轴向,包括直线进给轴和旋转进给轴。
直线进给轴通常由伺服电机、滚珠丝杠等组成,用于控制工件的直线运动;旋转进给轴通常由伺服电机、齿轮传动等组成,用于控制工件的旋转运动。
3.运动控制卡:运动控制卡是机床数控系统的核心控制器,它负责接收数控指令,并将其转换为电信号,通过与主轴驱动系统和进给驱动系统的配合,实现对机床的精确控制。
运动控制卡通常具备高速数据处理能力和多个输入输出接口,以满足机床复杂加工过程的控制需求。
4.传感器:传感器是机床数控系统的重要组成部分,用于实时监测机床的运行状态和工件加工过程中的各种参数。
常见的传感器包括位置传感器、力传感器、温度传感器等,它们通过与运动控制卡的连接,将采集到的数据反馈给数控系统,以实现对机床的自动化调节和控制。
5.人机界面:人机界面是机床数控系统与操作人员之间的交互界面,用于输入加工参数、监视加工过程和显示加工结果等。
人机界面通常由触摸屏、键盘、显示器等组成,操作人员可以通过它们与数控系统进行交互,并实时了解机床的工作状态。
二、软件组成1.数控系统软件:数控系统软件是机床数控系统的核心程序,它负责解释和执行数控指令,控制机床的运动和加工过程。
数控系统软件通常由操作系统、驱动程序、插补算法等组成,它们共同实现对机床的高精度控制和加工操作。
2.加工程序:加工程序是机床数控系统的另一重要组成部分,它是由一系列数控指令组成的程序,用于描述工件的加工路径和加工过程。
数控机床的主传动系统
![数控机床的主传动系统](https://img.taocdn.com/s3/m/1132e895a48da0116c175f0e7cd184254b351b3d.png)
高速加工、精密定位
主轴驱动系统的设计与选择
设计原则
高可靠性 良好的动态响应 经济性考虑
选择因素
机床类型 加工要求 成本预算
常见类型
交流伺服驱动系统 直流传动系统 混合驱动系统
● 03
第3章 数控机床的进给传动 系统
进给传动系统的组成与作 用
进给传动系统主要包括进给驱动装置、进给传动 机构和进给系统的控制与调节三个部分。进给驱 动装置负责提供动力,进给传动机构负责传递动 力并实现所需的运动轨迹,进给系统的控制与调 节负责对整个系统的运行进行精确控制。
主传动系统是数控机床的核心部件之一,它主要 由主轴装置、传动装置、主轴驱动系统等组成, 负责传递动力并确保机床加工的精度和速度。
主轴的类型与特性
电主轴
高速、高精度
复合主轴
结合电主轴与机 械主轴特点
机械主轴
结构简单、成本 低
主轴定向控制
01 控制意义
保证加工精度
02 控制方法
光电编码器、霍尔效应
部分控制信号依赖于反馈信号
电气控制系统的故障诊断与维 护
故障诊断方法包括观察法、信号分析法、模拟法 等;故障诊断的步骤包括故障现象的观察、故障 原因的分析、故障诊断的结果等;电气控制系统 的维护措施包括定期检查、及时维修、更换故障 部件等。
● 06
第6章 总结
数控机床主传动系统的重要性和 影响因素
夹具系统的性能评价
夹具的刚度 与稳定性
夹具的刚度与稳 定性直接影响到
加工精度
夹具的重复 定位精度
夹具的重复定位 精度直接影响到
加工效率
夹具的装夹 误差
夹具的装夹误差 会导致工件加工
误差
数控机床主轴驱动系统的选用研究
![数控机床主轴驱动系统的选用研究](https://img.taocdn.com/s3/m/400ca622bd64783e09122bbc.png)
主轴驱动 系统 。
抵 消 了整 个 系 统 的初 始 高 价 格 。 2 )控 制 策 略
感 应 式 主 轴 电 机 的 控 制 无 一 例 外 地 采 用 磁 场 定 向
技 术 。 该 技 术 又 分 为 间 接 磁 场 定 向 和 直 接 磁 场 定 向 两
主轴 电 机 定 子 绕 组 通 常 采用 三 个 热 传 感 器 以 防止
过 载 。笼 导 条 通 常 由银 或 铜 做 成 , 尽 量 加 宽 转 子 糟 并 长 宽 比 以获 得 更 高 的 效 率 , 少 转 子 发 热 和 获 得 更 高 减
的速度 。
感 应 主 轴 电 机 基 速 以 上 的放 展 运 动 范 围 可 以 通 过 弱 磁 控 制 实 现 。 其 恒 功 率 运 动 范 围 可 达 到 1 5 如 采 :。 用 最 新 的 绕 组 切 换 技 术 , 恒 功 率 运 动 范 围 可 达 到 1 其 : 1 甚 至 更 宽 。 目 前 , 应 主 轴 电 机 最 高 转 速 可 达 4, 感
维普资讯
数 控 机 床 主 轴 驱 动 系 统 的 选 用 研 究
周 建 来 陈 书 法 朱 建 忠
连 云 港 化 工 高 等 专 科 学 校 , 苏 连 云 港 2 2 0 江 20 1
摘 要 : 究与 分析 数 控 机 床 主 轴 驱 动 系 统 的 主 流 应 用 情 况 与 发 展 趋 势 , 主 轴驱 动 的 实 际 选 用 与 计 算 作 研 就
感 应 电机 交 流 主 轴 驱 动 系 统 是 当 前 商 用 主 轴动 系 统 的 特 性 与 选 用
数控机床的主运动系统
![数控机床的主运动系统](https://img.taocdn.com/s3/m/f2bbbb450640be1e650e52ea551810a6f424c853.png)
总结词
结构简单、可靠性高、成本低
详细描述
机械主轴是传统数控机床中常用的主轴类型,其结构简单、可靠性高、成本低。它通过齿轮或皮带等传动方式将电动机的动力传递到主轴上,实现主轴的旋转运动。机械主轴的转速和扭矩调节范围较广,适用于多种加工需求,但在高速运转时噪音和振动较大。
VS
适合加工轻质材料、气动控制调节方便
总结词
详细描述
主轴的驱动方式
CATALOGUE
03
直流电机驱动具有较高的启动转矩和良好的调速性能,能够满足数控机床对主轴高精度、高速度的加工需求。
直流电机驱动具有较宽的调速范围,可以根据不同的加工需求调整主轴转速。
直流电机驱动系统通常采用电刷和换向器来转换电流方向,从而实现电机旋转方向的改变。
直流电机驱动系统的缺点是维护成本较高,且容易受到电刷和换向器的磨损影响。
THANKS
感谢观看
CATALOGUE
06
高效化:随着制造业对加工效率的要求不断提高,主运动系统正朝着高效化的方向发展。通过采用更快的伺服系统、优化传动装置和减少运动部件的摩擦阻力等手段,提高数控机床的加工速度和生产效率。
新材料的应用
随着新材料技术的不断发展,未来主运动系统的材料将得到进一步优化。采用新型高强度、轻质材料和复合材料,可以提高主轴的刚性和动态性能,降低重量和能耗。
主轴
主轴电机
主轴箱
主轴轴承
01
02
03
04
主轴是主运动系统的核心部件,它安装刀具并传递切削力,实现工件的切削加工。
主轴电机是主运动系统的动力源,为切削加工提供所需的动力。
主轴箱是主轴的支撑和传动部件,它安装主轴并传递动力,使主轴能够实现旋转运动。
数控机床主传动系统
![数控机床主传动系统](https://img.taocdn.com/s3/m/3303c665abea998fcc22bcd126fff705cd175c77.png)
伺服驱动系统的性能决定了数控机床的动态特性和加工精度。
主轴与卡盘
主轴是数控机床主传动系统的输 出部件,它能够带动刀具或工件
旋转。
主轴通常采用高精度轴承和刀具 夹紧装置,以确保加工过程中的
稳定性和精度。
类型与分类
类型
数控机床主传动系统根据其结构和工作原理的不同,可以分为多种类型,如机械主传动系统、液压主 传动系统、电气主传动系统等。
分类
数控机床主传动系统还可以根据其传动方式的不同进行分类,如带传动、链传动、齿轮传动等。不同 类型的数控机床主传动系统具有不同的特点和应用范围,需要根据具体的加工需求和加工条件进行选 择。
主轴定位精度与重复定位精度
主轴定位精度
主轴在特定位置的准确度,决定了加 工零件的尺寸精度。定位精度越高, 加工精度越好。
重复定位精度
主轴在相同位置的重复精度,反映了 主轴运动的稳定性。重复定位精度越 高,主轴运动越稳定。
热稳定性与动态特性
热稳定性
主轴在切削过程中抵抗温度变化的能力,热稳定性越高,加工过程中主轴的性能越稳定。
动态特性
主轴在动态切削过程中的表现,包括振动、噪声等。动态特性越好,切削过程越平稳,加工表面质量越高。
04
主传动系统的控制技术
数控编程与加工技术
数控编程
根据加工需求,使用数控编程语言(如G代码)对机床进行编程,以控制主轴的运动轨 迹和加工过程。
加工工艺
根据工件材料、加工要求和刀具特性,选择合适的加工工艺,如粗加工、半精加工和精 加工等,以确保加工质量和效率。
特点
数控机床主传动系统具有高精度、高 效率、高稳定性等特点,能够满足复 杂、高效、高ห้องสมุดไป่ตู้度的加工需求。
数控机床主轴电气控制
![数控机床主轴电气控制](https://img.taocdn.com/s3/m/c4525df7c67da26925c52cc58bd63186bceb928c.png)
目录
• 数控机床主轴电气控制概述 • 主轴电机及驱动技术 • 主轴电气控制系统的设计 • 主轴电气控制系统的调试与维护 • 数控机床主轴电气控制的未来发展
01
数控机床主轴电气控制 概述
主轴电气控制系统的组成
主轴驱动器
用于接收数控系统的指令,驱动 主轴电机旋转,实现主轴的启停、 正反转和调速等功能。
伺服电机
伺服电机具有快速响应、高精度、 高动态性能等优点,常用于高速、 高精度的数控机床主轴。
电机驱动技术
变频器驱动
变频器驱动技术可以实现电机速度的精确控制,具有 调速范围宽、精度高、节能等优点。
伺服驱动器驱动
伺服驱动器驱动技术可以实现电机的快速响应和高精 度控制,适用于高速、高精度的数控机床主轴。
ABCD
精度原则
主轴电气控制系统应具有高精度控制能力,以满 足加工零件的精度要求。
易用性原则
主轴电气控制系统应具有友好的人机界面,方便 操作和维护。
主轴电气控制系统的设计流程
系统设计
根据需求分析结果,设计主轴 电气控制系统的整体结构和功 能模块。
软件设计
根据系统设计要求,编写控制 程序,实现主轴电气控制系统 的各项功能。
正反转控制
根据加工需求,控制主轴电机的正反转,实 现主轴的顺时针和逆时针旋转。
自动换挡控制
根据加工需求,自动切换主轴电机的挡位, 实现主轴的多挡控制。
主轴电气控制技术的发展历程
模拟控制阶段
早期的主轴电气控制系统采用模拟电路实现控制,精度和稳定性较 低。
数字控制阶段
随着微处理器技术的发展,主轴电气控制系统逐渐采用数字电路实 现控制,提高了精度和稳定性。
智能控制阶段
数控机床的发展趋势
![数控机床的发展趋势](https://img.taocdn.com/s3/m/d02c9e47e45c3b3567ec8b55.png)
数控机床的发展趋势一. 引言数控技术和数控装备是各个国家工业现代化的重要基础。
我国数控技术与世界先进国家相比还有一定的差距,因此了解数控技术国内外的发展状况对我国数控领域的发展有非常重要的意义。
数控技术(简称NC即Numerical Contro1)应用于生产中已有二十多年的历史了,它使传统的制造业发生了质的变化,尤其是近年来.微电子技术和计算机技术的发展给NC技术带来了新的活力。
数控机床是现代制造业的主流设备,是体现现代机床技术水平、现代机械制造业工艺水平的重要标志,是关系国计民生、国防尖端建设的战略物资。
因此世界上各工业发达国家均采取重大措施来发展自己的数控技术及其产业。
二.数控机床的发展趋势1.高速化随着汽车、国防、航空、航天等工业的高速发展以及铝合金等新材料的应用,对数控机床加工的高速化要求越来越高。
a.主轴转速:机床采用电主轴(内装式主轴电机),主轴最高转速达200000r/min;b. 进给率:在分辨率为0.01µm时,最大进给率达到240m/min且可获得复杂型的精确加工;c. 运算速度:微处理器的迅速发展为数控系统向高速、高精度方向发展提供了保障,开发出CPU已发展到32位以及64位的数控系统,频率提高到几百兆赫、上千兆赫。
由于运算速度的极大提高,使得当分辨率为0.1µm、0.01µm时仍能获得高达24~240m/min的进给速度;d. 换刀速度:目前国外先进加工中心的刀具交换时间普遍已在1s左右,高的已达0.5s。
德国Chiron公司将刀库设计成篮子样式,以主轴为轴心,刀具在圆周布置,其刀到刀的换刀时间仅0.9s。
2. 高精度化数控机床精度的要求现在已经不局限于静态的几何精度,机床的运动精度、热变形以及对振动的监测和补偿越来越获得重视。
a. 提高CNC系统控制精度:采用高速插补技术,以微小程序段实现连续进给,使CNC控制单位精细化,并采用高分辨率位置检测装置,提高位置检测精度(日本已开发装有106脉冲/转的内藏位置检测器的交流伺服电机,其位置检测精度可达到0.01µm/脉冲),位置伺服系统采用前馈控制与非线性控制等方法;b. 采用误差补偿技术:采用反向间隙补偿、丝杆螺距误差补偿和刀具误差补偿等技术,对设备的热变形误差和空间误差进行综合补偿。
数控机床主轴制动控制方式的发展趋势
![数控机床主轴制动控制方式的发展趋势](https://img.taocdn.com/s3/m/5e760603581b6bd97f19eaa2.png)
摘 要: 数控技术是用数字信息对机械运动和工作过程进行控制的技术 , 装备是 以数控 技术为代表的新技术对传统制造 产业 和新 数控 兴制造业的渗透形成的机 电一体化产品 , 即所谓的数字化 装备 ,数控技术的应用不但给传统制造业带来 了革命性的变化 ,使制造 业成 为 、化的象征 , 且随着数控技术的不断发展和应用领域的扩人 ,数撺技术已经应 用到机床控制 ,数控机床主轴制动控制是数控技 I 术应用的核心 , 目前, 到 数控机床主轴制动控制方式 已有 了很大的改变。 本文从 发展的角度论证 了数挣 机床丰轴 制动控制 发展的趋势 。 关键词 : 数控技术 机械制造 主轴制动 发腱趋势 中图分类号 :TG6 9 5 文献标识码 :A 从数控技 术和机床数控主轴制动控制发展 的现状 来看 , 数控 强等优点 ,将越 来越得到广 泛的应 用。变频 调速能节 约 可观的 机床主轴制动控制的趋势将主要向机床本身的控制或改造创新方 电能 ,以 I B ( G T绝缘栅双极型 晶体管 ) IM 等新 器件 为基础的 和 P 面发展 ; 新一 代高载波 、低噪声变频 器的开 发 ,以 及新的控制软 件的 引 人 ,把 变频调速 引人一个全新 的领域 ,使原 来仅用于开环 控制 的变频器演变成 了既能用于开 环控制 ,也 能用。 闭环控 制的称 F 1轴联动加工机床将快速发展 . 高速和高精加 工技术可极大 地提高效 率 ,提高 产品的 质量 之 为 “ 统一型驱动器” 统一 型驱动器配 置有大量 的参数和 2 。 0 干 档次 ,缩短 生 产周 期和提 高 市场 竞争 能 力 。今后 ,采 用五 个菜单功能 ,便 于用户在 改变硬件 配置的 条件下 ,可 由用 户 u 轴联 动对三维 曲面零件的加 L 町用7 具最佳 几何形状 进行切 方便地设置成 V /F控制 、无速 度传感器开环 矢量控制 ,闭环 , ] 削 ,不仅光 洁度 高 ,而且 效率 也大 幅度 提高 ,这一 技 术将得 磁通矢量控制 、永磁 无刷交 流伺服 电动机控制 及再生单元 等五 到普及。一般 I 1 人为,一 台五轴联动机床 的教 率可以等 十两台三 种T作 方式 ,适用于 各种场 合 。在 闭环磁 通矢 量控制 方式 中 , 轴胀 动机J 术,特 别足使 用屯方氮化硼等超硬 材料铣 刀进 行高速 需 要一台增量式 编码器作 为位置反馈 , 当然也可 用绝 对武编码 X和 US Y的给定值 ,产生 I GBT的控制 铣ri硬钢零件时 , 矗 i ̄ , l 轴联 动加工 比二轴 联动加 T发挥 更高 器。控制系统根据 US J 三 的效 益。但过去 因五轴联 动数控 系统 、士饥结 构复 杂等原 因 , 信号 ,并且像开环驱动一样计 算出 X 轴干 ¨Y轴的 电流 反馈 。但 其价格婴比三轴联动数控机 床高 出数倍 ,加之编程技 术难度较 是 ,所 用的参考坐标 中的 x 轴是 以 电动 机转子 磁通来 定 向的 , 大 ,制约了五轴联动机床的 发展。 当前由 于电主轴的 出现 ,使 因而 Ix、I Y 分别为 定 子电流 的励磁 电流分量和转 矩 电流 分 s S 得实现五轴联动加T的复 合主轴 头结构大 为简化 ,其制造难 度 量。速度给定 与速度反馈的 偏差作 为速 度控制 器输 入 ,其输 出 S 。磁 和成本大幅度降低 ,数 控系统的价格差 距缩 小。 可以促进 复合 为转矩 给定 ,经转矩 /电流变换后得到转矩 电流 给定 I Y* 主轴 类 型五轴 联动机床和】 复合加 工机床的 发展。 通控制器输 出励磁 电流给定 ,基速以 下磁通控制器输出 IX* S 就 等于 电动 机额定励 磁 电流 ,慕速 以 上,I x 随转 速的增 加而 s 减小。I X, I X的偏 差以及 IY 与 I Y 的偏差 ,分别经过 S 与 S S S 2 传感器检测技术和主轴 电动机 向高速化方向发展 . 励磁电流控制器和转矩 电流控 制器的运算后 ,输 出 x Y坐标 传感器检测技术可以极大地提高交流 电动机渊速 系统的动态 响所 能和定位精度 , 满足主轴控制需要。将普遍采用的电压犁 系 中的 电压分量 US X和 US Y。闭环磁通 矢量方式在任一 速度 币1 I 电流型霍尔传感嚣具 有小于 luS 的响应时 间。交流电动机调 上给 出良好 的转矩控制特性 和快速 的瞬忐响应 ,也不需要 对直 速系统一 般选用无刷旋转变 压器、混 合型的光 电编码 器和绝对 流 母线 电压进 行补偿 ,闭环 电流控 制将 自动完成这些 补偿。 这 值 编码 器 作为位 置 、速 度传 感器 。随 着 它们 的转速 、分 辨 率 种前馈补偿 有助于直流母线 电压大幅 度波动时维 持调制增 益恒 的小断提高 ,系统 的动 态响应 调速 范 围以及低速性 能也相应 定 。永 磁无刷 交流 伺服 电动机控 制 方式 用 于要 求频繁 起制动 、 提高。传统的具有 A、B相信号 的编码 器 ,南于它不能兼顾 分 零 速有保 持转 矩 、大 起 动转 矩 、按预 定 速 度或 转 矩运 行 ,统 驱 动器的出现 ,将 大大降 低机 床用进给 系统和主轴 系统控 辨 #和高速 度 ,且 信号线 太 多 ,从而影 响 了高 精度 、高速 度 的f 服 系统 的实 现 。而新 型 的编 码 器则 克服 了上述 缺 点 。另 制 的 硬件 成本 。 外 ,佰 服 电动机本 身也 在向高速方 向发展 ,与 上述高速编码 器 J 配 /实现 r6 m/ i 、 0 r n甚至 l O mi a O m/ n的快速进给和 l g的加速 4 主轴伺服 系统将更加完善 度。而在 电动机磁路设计 上又做 了改进 ,使 电动机旋转更 加平 主轴伺眼 提供加工 各类工件所 需的 切削功率 ,因此 ,只需 滑 ,再配 合高速数 字伺服软件 ,可 使电动机 即使 小于 lu m 完 成主轴 凋速 及正反转 功能 。但 当要 求机床 有螺纹 加 工 、准 转动时也显得平滑而 尼爬行。交流 主轴 电动机 为满足机床加工 停和恒线速加工等功能时 ,对 主轴也提 出了相应 的 位 置控 制要 工 艺以及主轴需 要 ,现 征都任 向高速 化方 向发展 , l 0 / 求 ,因此 ,要求 其输 出功 率人 ,具有 恒转矩 段 殷恒 功率 段 , 0 r 2 0 mi 的转速 已是正 常的指标。主轴 系统 所用的位 置编码 器分辨 有准停 控制 ,主轴与进 给联动 。 与进 给伺服 一样 ,主轴伺服 i l 经 历了从普通三相异步 电动机传动 到直流主轴 传动。 随着微 处 率今后将超过达到 6 0 0脉冲 /r 00 。 理 器技 术和大功率 晶体 管技术的进 展 ,现在 义进 入了交流 主轴 伺 服 系统 的 时 代 。主轴 伺服 提 供加 工 各类 工件 所需 的 切 削功 3 统一型驱动器将减少主轴 系统的硬 件成本 . 变频 稠速 由于具有高 集成度币 多功 能特点 ,以肢 它的可靠 率 ,因此 ,只需 完 成主 轴调 速 及正 反转 功 能 。但 当要求 机床 I I 性 、免维 护 、高 效 扰 能 力 有螺 纹加 :、准停和恒 线速加 工等 功能时 ,对 主轴也提 出 了 [
船舶轴带发电机
![船舶轴带发电机](https://img.taocdn.com/s3/m/e1707e692e60ddccda38376baf1ffc4ffe47e23a.png)
02
船舶轴带发电机的优势与挑战
优势
高效能源利用
降低运营成本
船舶轴带发电机通过直接利用船舶主轴的 旋转动力,实现了能源的高效利用,减少 了能源转换过程中的损失。
由于减少了能源转换环节,船舶轴带发电 机可以显著降低船舶运营成本,尤其是在 长航线和持续航行中。
提高船舶自持力
环保节能
船舶轴带发电机可以提供稳定的电力输出 ,支持船舶长时间在海上航行,提高了船 舶的自持力。
04
船舶轴带发电机的安装与调试
安装步骤
基础制作与安装
根据发电机的大小和重量,制作合适的基 础结构,确保其能承受发电机的重量和振
动。
A 确定安装位置
根据船舶的布局和发电机的规格, 确定轴带发电机的安装位置,确保
其稳定性和安全性。
B
C
D
安装控制系统
根据发电机的控制系统需求,安装相应的 控制系统,确保其能正常运行并控制发电 机的运行。
定制化服务
未来船舶轴带发电机将更加注重客户需求,提供 定制化的产品和服务,满足不同材料进行质量检查, 确保符合设计要求和标准。
03
成品检验
成品检验是确保发电机性能和质 量的重要环节,应对发电机的各
项性能指标进行全面检测。
02
过程质量控制
对制造过程中的关键工序进行质 量检查和控制,防止出现批量质
量问题。
04
质量记录与追溯
建立完善的质量记录和追溯体系 ,以便对出现的质量问题进行调 查和分析,持续改进产品质量。
清洁和润滑传动部件
对传动部件进行清洁和润滑,以减少磨损和摩擦阻力。
常见故障排除
发动机过热
如果发动机过热,应检查冷却 液是否充足,水泵是否工作正 常,以及散热器是否清洁。
数控技术发展现状与趋势
![数控技术发展现状与趋势](https://img.taocdn.com/s3/m/e8128e54ec3a87c24028c4f4.png)
Spindle Motor
高速加工:控制、伺服驱动、主轴、刀具、轴承、导轨、 丝杠、卡盘、夹具、冷却
2、趋势——加工高精化
提高机械的制造和装配精度;提高数控系统的控制精度; 采用误差补偿技术。IC制造装备、纳米控制。 提高CБайду номын сангаасC系统控制精度:
开放式体系结构(IEEE):具有在不同的工作平台上均能实 现系统功能、且可以与其他的系统应用进行互操作的系统。
4. 开放式数控装置的概念结构
数控功能 应用程序
NC构件库
5. 开放式体系结构数控的优点
数控系统厂
品种减少、批量增加,易于满足用户要求; 开放式的标准框架,促进各行业的软件厂商参与; 软件开发效率提高,产品更新加快。
OMAC (Open Modular Architecture Controller) 欧州 的OSACA (open system architecture for
controls within automation systems)
日本OSEC:(Open System Environment for
由于技术封锁等原因,各系统中光纤通讯采用的协 议没有兼容性和互换性,要求伺服驱动器以及I/O 模块必须具有相应协议的光纤通讯接口,这样的系 统软硬件开放性较差,而且系统的成本也较高。
另外的网络通讯协议:ARCNET、CAN Bus、 Profibus、USB、IEEE1394 。
IEEE1394的前身即FireWire,是1986年由苹果 电脑公司针对高速数据传输所开发的一种串行 数据传输协议,并于1995年获得美国电机电子 工程师协会认可成为正式新标准。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
主轴驱动系统和主轴电机发展趋势
050810133 李阳阳数控机床主轴驱动系统作为机床的最核心的关键部件之一,其输出性能对数控机床的整体水平是至关重要的。
主轴驱动远不同于一般工业驱动,它不但要求较高的速度精度,动态刚度,而且要求连续输出的高转矩能力和非常宽的恒功率运行范围。
目前,各主要机床生产厂家和研究单位纷纷把目光投向交流主轴驱动系统。
随着功率电子,计算机技术,控制理论,新材料和电机设计的进一步发展和完善,矢量控制交流电机主轴驱动系统的性能已经达到甚至超过了直流主轴驱动系统。
交流主轴驱动系统正在逐步取代直流系统。
1交流主轴驱动系统发展趋势
交流主轴驱动系统的逆变器一般基于矢量控制原理,采用正弦波宽调制方式,功率器件采用ICBT。
根据电机类型可分为感应电机主轴驱动系统,永磁同步电机主轴驱动系统,开头磁阻电机主轴驱动系统。
1.1 感应电机交流主轴驱动系统
感应电机交流主轴驱动系统是当前商用主轴驱动系统的主流,其功率范围为从零点几个千瓦到几百千瓦,广泛应用于各种数控机床上。
感应主轴电机基速以上的放展运动范围可以通过弱磁控制实现。
其恒功率运动范围可达1:5.如果采用最新的绕组切换技术,其恒功率运动范围可达1:14.甚至更宽。
目前,感应主轴电机最高转速可达100000r/min以上。
尽管感应主轴电机结构相对简单,但其变频控制器价格却较高。
而采用了磁场定向控制技术的变频器能提供连续的转矩/速度调节能力,较高的精度,运行可行性和较低的运行费用,因而在一定程度上抵消了整个系统的初始高价格。
感应式主轴电机的控制无一例外地采用磁场定向技术。
该技术又分为间接磁场定向和直接磁场定向两种实现方式,其中间接转子磁场定向控制技术由于较容易实现而被广为应用。
它能提供较高的控制品质,但这种技术过分依赖于电机的参数,当参数变化时,控制性能将严重下降,遗憾的是,在电机运行过程中,转子时间常数可以在400%的范围以内变化,因此现代主轴控制器均采用辨识,估算和自整定技术对参数变化在线补偿。
这项技术另一个难题是随着电机速度要求越来越高,在恒功率弱磁运行时,当转子磁场发生变化,而滑查增益无法动态补偿时,将引起磁通和转矩的振荡。
近年来,随着自适应观测器和微处理器性能的提高,直接磁场定向控制技术在主轴驱动中有取代间接磁场定向之势。
1.2 永磁交流主轴驱动系统
永磁交流主轴电机分为正弦波驱动主轴电机和方波驱动直流主轴电机。
此类主轴电机以转子无功耗,高效率和高功率/转矩密度著称。
其低速运行时可获得更大的功率和转矩,因此在同步攻丝时的伺服锁定运行和快速定向方面有较大的优势。
一般永磁主轴电机功率在10千瓦以下,速度低于8000r/min。
但目前转速在20000-30000r/min之间,功率超过10千瓦的主轴电机已经在制造。
永磁主轴电机在转子上不存在发热元件,显著提高了电机效率,同时高效铁硼材料的应用,使得永磁主轴电机在所有形式的交流主轴电机中具有最高的效率和最小的体积。
PMSM和BDCM电机均可运行于高速范围。
但调磁范围受到一定的限制,使得速度不能很高。
在控制策略方面,PMSM电机的定子绕组经特殊绕制后将产生正弦反电势,当绕组通入正弦电流后,便可以获得恒定的转矩。
但是磁场定
向必须借助于绝对转子位置编码器来实现。
近年来提出的无传感器控制为PMSM主轴电机高速运行提供了另一种选择。
BDCM电机定子绕组则使电机产生梯形波反电势,但同样也需要转子位置传感器来实现定子电流换向。
无传感器运行对BDCM也可实现。
永磁交流主轴电机的控制难点主要在于如何拓展弱磁运行范围。
PMSM主轴电机通常采用内装式结构,而在控制上通常以满足最大转矩弱磁为准则。
BDCM电机通常采用最优电流和最优PWM控制方式以抑制脉动转矩,提高电机效率。
1.3开关磁阻型主轴驱动系统
开关磁阻主轴电机以其简单,坚固的机械构造,高速运行能力和体积小,重量轻,效率高等特性,近年来在工业界引起了广泛的兴趣,尤其是其优秀的高速度运行能力和价格优势,使其在10千瓦以下,调速范围至100000r/min的数控机床主轴驱动应用中,大有与感应主轴电机一争高低之势。
开关磁阻电机定子极上绕有集中绕组,转子则既无绕组也无永磁体。
SRM电机定转子的极数不同,广泛采用三相6/4结构。
为获得最优平均转矩,气隙需要精确控制并使极弧与气隙之比在25-30之间。
SRM电机的结构通常与控制策略和功率变换器同时考虑,其三组的牵制作用要比感应电机和永磁电机强。
通过适当的角度位置控制,SRM可获得1:3的恒功率运行范围。
在控制策略方面,当电机低于基速以下运行时,常采用电流斩波控制方式,以避免过大的电流和磁链值,取得恒功率转矩机械特性。
同时为获得最佳效率和减少转矩谐波,SRM 主轴驱动系统通常采用自适应控制,最优控制和预测控制基速来控制开头模式。
而在基速以上的弱磁运行范围,SRM常采用角度位置控制方式,通过导通角口的调节,调节电机的转矩实现调速的目的。
SRM的主要不足是低速时的高谐波转矩和高噪声。
而SRM主轴电机主要运行于高速恒功率区域,因此影响并不明显。
2现代机床主轴发展趋势
传统机床主轴是通过传动装置带动主轴旋转而工作的,电主轴的主要特点是将电机置于主轴内部,通过驱动电源直接驱动主轴进行工作,实现了电机,主轴的一体化功能。
与传统机床主轴相比,电主轴具有十分明显的优势。
由于主轴由内装式电机直接驱动,省去了皮带,齿轮等中间变速和传动装置,具有结构简单紧凑,效率高,噪声低,振动小的特点。
而利用交流变频技术,电主轴可以在额定的转速范围内实现无级调速,以适应机床工作时各种工况和负载变化的需要。
电主轴是将机床主轴和主轴电机作为一体的高新技术产品。
电主轴实际上是只电主轴系统,由电主轴,驱动控制器,编码器,润滑装置,冷却装置等组成。
电主轴系统是数控机床三大高新技术之一。
随着数控技术及切削刀具的飞跃发展,越来越多的机械制造装备都在不断的向高速高精,高效高智能化发展,电主轴已成为最能适应上述高性能工况的数控机床核心功能部件之一,尤其是多轴联动,多面体加工,并联机床,复合加工机床等诸多先进产品中,电主轴的优异特点是机械主轴单元所不能替代的。
电主轴是最近几年在数控机床领域出现的将机床主轴与主轴电机构成一体的新技术,它与直线电机技术,高速刀具技术一起,将会把高速加工推向一个新时代。
电主轴是一套组件,它包括电主轴本身及其附件。
电主轴所融合的技术:
1高速轴承技术:电主轴通常采用复合陶瓷轴承,耐磨耐热,寿命是传统轴承的几倍;有时也采用电磁悬浮轴承或静压轴承,内外圈不接触,理论上寿命为无限长。
2高速电机技术:电主轴是电机与主轴融合在一起的产物,电机的转子即为主轴的旋转部分,理论上可以把电主轴看做一台高速电机,其关键技术是高速度下动平衡。
3润滑:电主轴的润滑一般采用定时定量油气润滑;也可以采用脂润滑,但相应的速度要打折扣。
所谓定时,就是每隔一定的时间间隔注一次油,所谓定量就是通过一个叫做定量阀的部件,精确的控制每次润滑油的注油量。
而油气润滑,指的是润滑油在压缩空气的携带下,被吹入陶瓷轴承。
油量控制很重要,太少,起不到润滑的作用;太多,在轴承高速旋转时会因油的阻力而发热。
4冷却装置:为了尽快给高速运行的电主轴散热,通常对电主轴的外壁通以循环冷却剂,冷却装置的作用是保持冷却剂的温度。
5内置脉冲编码器:为了实现自动换刀以及刚性攻丝,电主轴内置一脉冲编码器,以实现准确的相位控制以及与进给的配合。
6自动换刀装置:为了适用于加工中心,电主轴配备了能进行自动换刀的装置。
7高频变频装置:要实现电主轴每分钟几万甚至十几万转的转速,必须用高频变频装置来驱动电主轴的内置高速电机,变频器的输出频率甚至需要达到几千赫兹。
主轴电机另一个发展趋势是向高效大功率主轴电动机发展。
为提高机床主轴电动机的切削速度,快速响应能力和控制精度。
大多数CNC机床都选择集成主轴AC感应主轴电动机代替以往的由皮带或齿轮减速的分离式主轴电动机,而最近随着技术的进步,新开发出一种含稀有材料的永久磁铁集成式主轴电动机,由于它能更高效,大功率的传递扭矩,所以大有取代感应集成电动机的趋势。
据介绍,这种永久磁铁集成式主轴电动机与通用的感应式集成主轴电动机相比,具有以下三个优点:
1,传递扭矩大用两种功率为7.46千瓦,转速为6000r/min的电动机所作的比较性试验证明,通用的感应式集成主轴电动机传递的转矩为95Nm。
而含稀有材料的永久性磁铁型集成主轴电动机却能传递160Nm的转矩。
2,易于对使用中产生的温升进行在线控制,且使用简单的气冷方式即可对主轴电动机进行冷却,无须安装昂贵的冷却器。
3,由于电动机选用特殊的永久磁铁材料制成,所以磁性强,电动机体积小,结构紧凑,这样可使主轴孔直径增大,大大提高机床的加工能力。
现在的机械加工工艺要求的主轴转速越来越高,高转速也越来越成为衡量一个产品水平的标志,成为商家竞争的焦点,谁先采用了更高转速的主轴,谁便在激烈的竞争中拥有了一张硬牌。
趋势就是:以专业厂家生产的高质量的电主轴取代各机床厂家自己生产的传统主轴,电主轴将会像直线导轨一样成为机床标准部件。
参考文献
1,周建来,陈书法,朱建忠,数控机床主轴驱动系统的选用研究,
2,薛诺,CNC机床技术的最新发展,制造技术与机床。