ansys14workbench血管流固耦合分析实例
最新ANSYS-Workbench-Fluent流固耦合传热及热结构分析ppt课件
• “它们所带给人类社会的恐惧,早已超越了人类认 知的界限和人类对科学成果的接纳空间”。
一、研究概况
• “嵌合体”是在生物界非常普遍的自然现象。 • 孪生子在同一个子宫中发育时会发生细胞交流,大多
(4)生产移植器官 人兔胚胎嵌合体:将来发育成某种特定器官,如能克 服免疫排斥反应,有望用于器官移植。
四、嵌合体研究存在的问题
1、嵌合体组织器宫的特异抗原性
在种内动物嵌合体制备过程中发现,不管是两种胚胎, 还是多种胚胎制成的嵌合胚胎,细胞间均能协调的 生长发育,不发生免疫排斥现象。但是,无论是进 行供体-供体、供体-受体动物间,还是进行嵌合体供体、嵌合体-受体动物间的组织或器官移植,均会 发生强烈的免疫排斥反应。
三、应用前景
(2)研究性分化机理
利用嵌合体可以研究性别分化以及参与性分化的细胞 及其规律。
(3)孤雌生殖
• 利用嵌合体技术,己获得了孤雌生殖小鼠。 • 铃木达行等(1998)通过聚合从日本红牛获取的卵
母细胞的孤雌生殖二倍体胚胎和用荷斯坦母牛卵母 细胞进行IVF的胚胎,获得2死1活3头嵌合体犊牛。
三、应用前景
三、应用前景
3.在动物生产中的应用
(1)人工制造有特殊经济价值的个体 对水貂、狐狸、绒鼠等毛皮动物,利用胚胎嵌合体技 术可以获得用交配或杂交法不能获得的毛皮花色类 型。
(2)种间移植 用于分析胎儿与母体的相互关系,如将斑马的受精卵, 移植到马体内生产斑马(拯救珍稀濒危动物)。
三、应用前景
(3)可作为外源基因的导入方法 把外源目的基因先导入干细胞,再通过胚胎干细胞介 导法将目的基因转入胚胎,这是转基因动物生产中基 因导入的一种重要手段。
ansys workbench 流固耦合计算实例
Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:•Features•Overview of the Problem to Solve•Setting up the Solid Physics in Simulation (ANSYS Workbench)•Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre•Obtaining a Solution using ANSYS CFX-Solver Manager•Viewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:•Setting the Working Directory•Changing the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (<CFXROOT>/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:•OscillatingPlate.pre•OscillatingPlate.agdb•OscillatingPlate.gtm•OscillatingPlate.inp1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:•Moving mesh•Fluid-solid interaction (including modeling solid deformation using ANSYS)•Running an ANSYS Multi-field (MFX) simulation•Post-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for 0.5 seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation.The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file OscillatingPlate.inp. If you prefer, you can instead use the provided OscillatingPlate.inp file and continue from Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile OscillatingPlate.agdb and click Open.8.Make sure that OscillatingPlate.agdb is highlighted and click New simulation from theleft-hand taskbar.Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material.e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter 2.5e06 for Young's Modulus, 0.35 for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of 0.1 s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to 0.1.4.Under Tabular Data at the bottom right of the window, set End Time to5.0 for theSteps = 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu.ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down <Ctrl> to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first 0.5 seconds of the simulation. It is defined using a step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of 0.499, and a pressure of 0 for a time value of 0.5.This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input FileThe Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file OscillatingPlate.inp.2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre.Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: OscillatingPlate.pre. After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, OscillatingPlate.gtm and click Open.Note:The file that was just created in Simulation, OscillatingPlate.inp, will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1.Click Simulation Type .2.Apply the following settingsTab Setting ValueBasic Settings External Solver Coupling > Option ANSYS MultiField External Solver Coupling > ANSYS Input FileOscillatingPlate.inp[a]Coupling Time Control > Coupling Time Duration > TotalTime5 [s]Coupling Time Control > Coupling Time Steps > Option TimestepsCoupling Time Control > Coupling Time Steps > Timesteps 0.1 [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time Duration Simulation Type > Time Steps > Option Coupling Time Steps Simulation Type > Initial Time > Option Coupling Initial Time[a] This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message.Creating the FluidA custom fluid is created with user-specified properties.1.Click Material .2.Set the name of the new material to Fluid.3.Apply the following settingsTab Setting ValueBasic Settings Option Pure Substance Thermodynamic State (Selected) Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmol^-1]4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1.Click Global Initialization .2.Apply the following settings:Tab Setting ValueGlobal Settings Initial Conditions > Cartesian Velocity Components > U0 [m s^-1] Initial Conditions > Cartesian Velocity Components > V0 [m s^-1] Initial Conditions > Cartesian Velocity Components > W0 [m s^-1] Initial Conditions > Static Pressure > RelativePressure0 [Pa]3.Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1.Click Solver Control .2.Apply the following settings:Tab Setting ValueBasic Settings Transient Scheme > OptionSecond OrderBackward Euler Convergence Control > Minimum Number ofCoefficient Loops(Selected) Convergence Control > Minimum Number ofCoefficient Loops > Min. Coeff. Loops2[a]Convergence Control > Max. Coeff. Loops 3External Coupling Coupling Step Control > Solution SequenceControl > Solve ANSYS FieldsBefore CFX FieldsTab Setting Value[a] This setting is optional. The default value of 1 is also acceptable.3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, VelocityOutput Frequency > Option Every Coupling Step[a][a] This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settingsSetting ValueFile name OscillatingPlate.defQuit CFX–Pre[a](Selected)[a] If using ANSYS CFX-Pre in Standalone Mode.4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such a way that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each timestep, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply.ing the timestep selector, load time value 1.1 [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions.ing the timestep selector, load time value 0.1 [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animationing the Timestep Selector dialog box, ensure the time value of 0.1 [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at thedefault value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from whichANSYS CFX-Post was launched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not becreated yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of theAnimation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since atimestep must be loaded and objects must be created for each frame. To view theMPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。
ansysworkbench流固耦合计算实例
Oscillating Plate with Two-Way Fluid-Structure InteractionIntroductionThis tutorial includes:•Features•Overview of the Problem to Solve•Setting up the Solid Physics in Simulation (ANSYS Workbench)•Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre•Obtaining a Solution using ANSYS CFX-Solver Manager•Viewing Results in ANSYS CFX-PostIf this is the first tutorial you are working with, it is important to review the following topics before beginning:•Setting the Working Directory•Changing the Display ColorsUnless you plan on running a session file, you should copy the sample files used in this tutorial from the installation folder for your software (<CFXROOT>/examples/) to your working directory. This prevents you from overwriting source files provided with your installation. If you plan to use a session file, please refer to Playing a Session File.Sample files referenced by this tutorial include:••••1.FeaturesThis tutorial addresses the following features of ANSYS CFX.In this tutorial you will learn about:•Moving mesh•Fluid-solid interaction (including modeling solid deformation using ANSYS)•Running an ANSYS Multi-field (MFX) simulation•Post-processing two results files simultaneously.2.Overview of the Problem to SolveThis tutorial uses a simple oscillating plate example to demonstrate how to set up and run a simulation involving two-way Fluid-Structure Interaction, where the fluid physics is solved in ANSYS CFX and the solid physics is solved in the FEA package ANSYS. Coupling between the two solvers is required throughout the solution to model the interaction between fluid and solid as time progresses, and the framework for the coupling is provided by the ANSYS Multi-field solver, using the MFX setup.The geometry consists of a 2D closed cavity. A thin plate is anchored to the bottom of the cavity as shown below:An initial pressure of 100 Pa is applied to one side of the thin plate for seconds in order to distort it. Once this pressure is released, the plate oscillates backwards and forwards as it attempts to regain its equilibrium (vertical) position. The surrounding fluid damps the oscillations, which therefore have an amplitude that decreases in time. The CFX Solver calculates how the fluid responds to the motion of the plate, and the ANSYS Solver calculates how the plate deforms as a result of both the initial applied pressure and the pressure resulting from the presence of the fluid. Coupling between the two solvers is required since the solid deformation affects the fluid solution, and the fluid solution affects the solid deformation.The tutorial describes the setup and execution of the calculation including the setup of the solid physics in Simulation (within ANSYS Workbench) and the setup of the fluid physics and ANSYS Multi-field settings in ANSYS CFX-Pre. If you do not have ANSYS Workbench, then you can use the provided ANSYS input file to avoid the need for Simulation.3.Setting up the Solid Physics in Simulation (ANSYS Workbench)This section describes the step-by-step definition of the solid physics in Simulation within ANSYS Workbench that will result in the creation of an ANSYS input file . If you prefer, you can instead use the provided file and continue from Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-Pre.Creating a New Simulation1.If required, launch ANSYS Workbench.2.Click Empty Project. The Project page appears displaying an unsaved project.3.Select File > Save or click Save button.4.If required, set the path location to a different folder. The default location is your workingdirectory. However, if you have a specific folder that you want to use to store files created during this tutorial, change the path.5.Under File name, type OscillatingPlate.6.Click Save.7.Under Link to Geometry File on the left hand task bar click Browse. Select the providedfile and click Open.8.Make sure that is highlighted and click New simulation from the left-hand taskbar. Creating the Solid Material1.When Simulation opens, expand Geometry in the project tree at the left hand side of theSimulation window.2.Select Solid, and in the Details view below, select Material.e the arrow that appears next to the material name Structural Steel to select NewMaterial.4.When the Engineering Data window opens, right-click New Material from the tree viewand rename it to Plate.5.Enter for Young's Modulus, for Poisson's Ratio and 2550 for Density.Note that the other properties are not used for this simulation, and that the units for these values are implied by the global units in Simulation.6.Click the Simulation tab near the top of the Workbench window to return to thesimulation.Basic Analysis SettingsThe ANSYS Multi-field simulation is a transient mechanical analysis, with a timestep of s and a time duration of 5 s.1.Select New Analysis > Flexible Dynamic from the toolbar.2.Select Analysis Settings from the tree view and in the Details view below, set Auto TimeStepping to Off.3.Set Time Step to .4.Under Tabular Data at the bottom right of the window, set End Time to for the Steps= 1 setting.Inserting LoadsLoads are applied to an FEA analysis as the equivalent of boundary conditions in ANSYS CFX. In this section, you will set a fixed support, a fluid-solid interface, and a pressure load. Fixed SupportThe fixed support is required to hold the bottom of the thin plate in place.1.Right-click Flexible Dynamic in the tree and select Insert> Fixed Support from theshortcut menu.2.Rotate the geometry using the Rotate button so that the bottom (low-y) face of thesolid is visible, then select Face and click the low-y face.That face should be highlighted to indicate selection.3.Ensure Fixed Support is selected in the Outline view, then, in the Details view, selectGeometry and click 1 Face to make the Apply button appear (if necessary). Click Apply to set the fixed support.Fluid-Solid InterfaceIt is necessary to define the region in the solid that defines the interface between the fluid in CFX and the solid in ANSYS. Data is exchanged across this interface during the execution of the simulation.1.Right-click Flexible Dynamic in the tree and select Insert > Fluid Solid Interface fromthe shortcut menu.ing the same face-selection procedure described earlier, select the three faces of thegeometry that form the interface between the solid and the fluid (low-x, high-y and high-x faces) by holding down <Ctrl> to select multiple faces. Note that this load is automatically given an interface number of 1.Pressure LoadThe pressure load provides the initial additional pressure of 100 [Pa] for the first seconds of the simulation. It is defined using a step function.1.Right-click Flexible Dynamic in the tree and select Insert > Pressure from the shortcutmenu.2.Select the low-x face for Geometry.3.In the Details view, select Magnitude, and using the arrow that appears, select Tabular(Time).4.Under Tabular Data, set a pressure of 100 in the table row corresponding to a time of 0.Note: The units for time and pressure in this table are the global units of [s]and [Pa], respectively.5.You now need to add two new rows to the table. This can be done by typing the new timeand pressure data into the empty row at the bottom of the table, and Simulation will automatically re-order the table in order of time value. Enter a pressure of 100 for a time value of , and a pressure of 0 for a time value of .This gives a step function for pressure that can be seen in the chart to the left of the table. Writing the ANSYS Input FileThe Simulation settings are now complete. An ANSYS Multi-field run cannot be launched from within Simulation, so the Solve buttons cannot be used to obtain a solution.1.Instead, highlight Solution in the tree, select Tools> Write ANSYS Input File andchoose to write the solution setup to the file .2.The mesh is automatically generated as part of this process. If you want to examine it,select Mesh from the tree.3.Save the Simulation database, use the tab near the top of the Workbench window to returnto the Oscillating Plate [Project] tab, and save the project itself.4.Setting up the Fluid Physics and ANSYS Multi-field Settings in ANSYS CFX-PreThis section describes the step-by-step definition of the flow physics and ANSYS Multi-field settings in ANSYS CFX-Pre.Playing a Session FileIf you want to skip past these instructions and to have ANSYS CFX-Pre set up the simulation automatically, you can select Session > Play Tutorial from the menu in ANSYS CFX-Pre, then run the session file: . After you have played the session file as described in earlier tutorials under Playing the Session File and Starting ANSYS CFX-Solver Manager, proceed to Obtaining a Solution using ANSYS CFX-Solver Manager.Creating a New Simulation1.Start ANSYS CFX-Pre.2.Select File > New Simulation.3.Select General and click OK.4.Select File > Save Simulation As.5.Under File name, type OscillatingPlate.6.Click Save.Importing the Mesh1.Right-click Mesh and select Import Mesh.2.Select the provided mesh file, and click Open.Note:The file that was just created in Simulation, , will be used as an input file for the ANSYS Solver.Setting the Simulation TypeA transient ANSYS Multi-field run executes as a series of timesteps. The Simulation Type tab is used both to enable an ANSYS Multi-field run and to specify the time-related settings for it (in the External Solver Coupling settings). The ANSYS input file is read by ANSYS CFX-Pre so that it knows which Fluid Solid Interfaces are available.Once the timesteps and time duration are specified for the ANSYS Multi-field run (coupling run), ANSYS CFX automatically picks up these settings and it is not possible to set the timestep and time duration independently. Hence the only option available for Time Duration is Coupling Time Duration, and similarly for the related settings Time Step and Initial Time.1.Click Simulation Type .2.Apply the following settingsTab Setting ValueBasic Settings External Solver Coupling > Option ANSYS MultiFieldExternal Solver Coupling > ANSYS Input File[]Coupling Time Control > Coupling Time Duration > TotalTime5 [s]Coupling Time Control > Coupling Time Steps > Option TimestepsCoupling Time Control > Coupling Time Steps > Timesteps [s]Simulation Type > Option TransientSimulation Type > Time Duration > Option Coupling Time Duration Simulation Type > Time Steps > Option Coupling Time Steps Simulation Type > Initial Time > Option Coupling Initial Time[] This file is located in your working directory.3.Click OK.Note:You may see a physics validation message related to the difference in the units used in ANSYS CFX-Pre and the units contained within the ANSYS input file. While it is important to review the units used in any simulation, you should be aware that, in this specific case, the message is not crucial as it is related to temperature units and there is no heat transfer in this case. Therefore, this specific tutorial will not be affected by the physics message.Creating the FluidA custom fluid is created with user-specified properties.1.Click Material .2.Set the name of the new material to Fluid.3.Apply the following settingsTab Setting ValueBasic Settings Option Pure Substance Thermodynamic State (Selected) Thermodynamic State > Thermodynamic State LiquidMaterial Properties Equation of State > Molar Mass 1 [kg kmol^-1]4.Click OK.Creating the DomainIn order to allow the ANSYS Solver to communicate mesh displacements to the CFX Solver, mesh motion must be activated in CFX.1.Right click Simulation in the Outline tree view and ensure that Automatic DefaultDomain is selected. A domain named Default Domain should now appear under the Simulation branch.2.Double click Default Domain and apply the following settings3.Click OK.Creating the Boundary ConditionsIn addition to the symmetry conditions, another type of boundary condition corresponding with the interaction between the solid and the fluid is required in this tutorial.Fluid Solid External BoundaryThe interface between ANSYS and CFX is defined as an external boundary in CFX that has its mesh displacement being defined by the ANSYS Multi-field coupling process.When an ANSYS Multi-field specification is being made in ANSYS CFX-Pre, it is necessary to provide the name and number of the matching Fluid Solid Interface that was created in Simulation. Since the interface number in Simulation was 1, the name in question is FSIN_1. (If the interface number had been 2, then the name would have been FSIN_2, and so on.)On this boundary, CFX will send ANSYS the forces on the interface, and ANSYS will send back the total mesh displacement it calculates given the forces passed from CFX and the other defined loads.1.Create a new boundary condition named Interface.2.Apply the following settings3.Click OK.Symmetry BoundariesSince a 2D representation of the flow field is being modeled (using a 3D mesh with one element thickness in the Z direction) symmetry boundaries will be created on the low and high Z 2D regions of the mesh.1.Create a new boundary condition named Sym1.2.Apply the following settings3.Click OK.4.Create a new boundary condition named Sym2.5.Apply the following settings6.Click OK.Setting Initial ValuesSince a transient simulation is being modeled, initial values are required for all variables.1.Click Global Initialization .2.Apply the following settings:Tab Setting ValueGlobal Settings Initial Conditions > Cartesian Velocity Components > U0 [m s^-1] Initial Conditions > Cartesian Velocity Components > V0 [m s^-1] Initial Conditions > Cartesian Velocity Components > W0 [m s^-1] Initial Conditions > Static Pressure > RelativePressure0 [Pa]3.Click OK.Setting Solver ControlVarious ANSYS Multi-field settings are contained under Solver Control under the External Coupling tab. Most of these settings do not need to be changed for this simulation.Within each timestep, a series of “coupling” or “stagger” iterations are performed to ensure that CFX, ANSYS and the data exchanged between the two solvers are all consistent. Within each stagger iteration, ANSYS and CFX both run once each, but which one runs first is a user-specifiable setting. In general, it is slightly more efficient to choose the solver that drives the simulation to run first. In this case, the simulation is being driven by the initial pressure applied in ANSYS, so ANSYS is set to solve before CFX within each stagger iteration.1.Click Solver Control .2.Apply the following settings:Tab Setting ValueBasic Settings Transient Scheme > OptionSecond OrderBackward Euler Convergence Control > Minimum Number ofCoefficient Loops(Selected) Convergence Control > Minimum Number ofCoefficient Loops > Min. Coeff. Loops2[]Convergence Control > Max. Coeff. Loops 3External Coupling Coupling Step Control > Solution SequenceControl > Solve ANSYS FieldsBefore CFX FieldsTab Setting Value [] This setting is optional. The default value of 1 is also acceptable.3.Click OK.Setting Output ControlThis step sets up transient results files to be written at set intervals.1.Click Output Control .2.On the Trn Results tab, create a new transient result with the default name.3.Apply the following settings to Transient Results 1:Setting ValueOption Selected VariablesOutput Variable List Pressure, Total Mesh Displacement, VelocityOutput Frequency > Option Every Coupling Step[][] This setting writes a transient results file every multi-field timestep.4.Click the Monitor tab.5.Select Monitor Options.6.Under Monitor Points and Expressions:7.Click Add new item and accept the default name.8.Set Option to Cartesian Coordinates.9.Set Output Variables List to Total Mesh Displacement X.10.Set Cartesian Coordinates to [0, 1, 0].11.Click OK.Writing the Solver (.def) File1.Click Write Solver File .2.If the Physics Validation Summary dialog box appears, click Yes to proceed.3.Apply the following settingsSetting ValueFile nameQuit CFX–Pre[](Selected)[] If using ANSYS CFX-Pre in Standalone Mode.4.Ensure Start Solver Manager is selected and click Save.5.If you are notified the file already exists, click Overwrite.6.This file is provided in the tutorial directory and will exist in your working folder if youhave copied it there.7.Quit ANSYS CFX-Pre, saving the simulation (.cfx) file at your discretion.5.Obtaining a Solution using ANSYS CFX-Solver ManagerThe execution of an ANSYS Multi-field simulation requires both the CFX and ANSYS solvers to be running and communicating with each other. ANSYS CFX-Solver Manager can be used to launch both solvers and to monitor the output from both.1.Ensure the Define Run dialog box is displayed.There is a new MultiField tab which contains settings specific for an ANSYS Multi-field simulation.2.On the MultiField tab, check that the ANSYS input file location is correct (the location isrecorded in the definition file but may need to be changed if you have moved files around).3.On UNIX systems, you may need to manually specify where the ANSYS installation is ifit is not in the default location. In this case, you must provide the path to the v110/ansys directory.4.Click Start Run.The run begins by some initial processing of the ANSYS Multi-field input which results in the creation of a file containing the necessary multi-field commands for ANSYS, and then the ANSYS Solver is started. The CFX Solver is then started in such a way that it knows how to communicate with the ANSYS Solver.After the run is under way, two new plots appear in ANSYS CFX-Solver Manager:ANSYS Field Solver (Structural) This plot is produced only when the solid physics is set to use large displacements or when other non-linear analyses are performed. It shows convergence of the ANSYS Solver. Full details of the quantities are described in the ANSYS user documentation. In general, the CRIT quantities are the convergence criteria for each relevant variable, and the L2 quantities represent the L2 Norm of the relevant variable. For convergence, the L2 Norm should be below the criteria. The x-axis of the plot is the cumulative iteration number for ANSYS, which does not correspond to either timesteps or stagger iterations. Several ANSYS iterations will beperformed for each timestep, depending on how quickly ANSYS converges. You will usually see a somewhat “spiky” plot, as each quantity will be unconverged at the start of each timestep, and then convergence will improve.ANSYS Interface Loads (Structural)This plot shows the convergence for each quantity that is part of the data exchanged between the CFX and ANSYS Solvers. In this case, four lines appear, corresponding to two force components (FX and FY) and two displacement components (UX and UY). Since the analysis is 2D, FZ and UZ are not exchanged. Each quantity is converged when the plot shows a negative value. The x-axis of the plot corresponds to the cumulative number of stagger iterations (coupling iterations) and there are several of these for every timestep. Again, a spiky plot is expected as the quantities will not be converged at the start of a timestep.The ANSYS out file is displayed in ANSYS CFX-Solver Manager as an extra tab. Similar to the CFX out file, this is a text file recording output from ANSYS as the solution progresses.1.Click the User Points tab and watch how the top of the plate displaces as the solutiondevelops.2.When the solvers have finished and ANSYS CFX-Solver Manager puts up a dialog boxto tell you this, click Yes to post-process the results.3.If using Standalone Mode, quit ANSYS CFX-Solver Manager.6.Viewing Results in ANSYS CFX-PostFor an ANSYS Multi-field run, both the CFX and ANSYS results files will be opened up in ANSYS CFX-Post by default if ANSYS CFX-Post is started from a finished run in ANSYS CFX-Solver Manager.Plotting Results on the SolidWhen ANSYS CFX-Post reads an ANSYS results file, all the ANSYS variables are available to plot on the solid, including stresses and strains. The mesh regions available for plots by default are limited to the full boundary of the solid, plus certain named regions which are automatically created when particular types of load are added in Simulation. For example, any Fluid Solid Interface will have a corresponding mesh region with a name such as FSIN 1. In this case, there is also a named region corresponding to the location of the fixed support, but in general pressure loads do not result in a named region.You can add extra mesh regions for plotting by creating named selections in Simulation - see the Simulation product documentation for more details. Note that the named selection must have a name which contains only English letters, numbers and underscores for the named mesh region to be successfully created.Note that when ANSYS CFX-Post loads an ANSYS results file, the true global range for each variable is not automatically calculated, as this would add a substantial amount of time onto how long it takes to load such a file (you can turn on this calculation using Edit > Options and using the Pre-calculate variable global ranges setting under CFX-Post> Files). When the global range is first used for plotting a variable, it is calculated as the range within the current timestep. As subsequent timesteps are loaded into ANSYS CFX-Post, the Global Range is extended each time variable values are found outside the previous Global Range.1.Turn on the visibility of Boundary ANSYS (under ANSYS > Domain ANSYS).2.Right-click a blank area in the viewer and select Predefined Camera > View Towards-Z. Zoom into the plate to see it clearly.3.Apply the following settings to Boundary ANSYS:4.Click Apply.5.Select Tools> Timestep Selector from the task bar to open the Timestep Selectordialog box. Notice that a separate list of timesteps is available for each results file loaded, although for this case the lists are the same. By default, Sync Cases is set to By Time Value which means that each time you change the timestep for one results file, ANSYS CFX-Post will automatically load the results corresponding to the same time value for all other results files.6.Set Match to Nearest Available.7.Change to a time value of 1 [s] and click Apply.The corresponding transient results are loaded and you can see the mesh move in both the CFX and ANSYS regions.1.Clear the visibility check box of Boundary ANSYS.2.Create a contour plot, set Locations to Boundary ANSYS and Sym2, and set Variable toTotal Mesh Displacement. Click Apply.ing the timestep selector, load time value [s] (which is where the maximum totalmesh displacement occurs).This verifies that the contours of Total Mesh Displacement are continuous through both the ANSYS and CFX regions.Many FSI cases will have only relatively small mesh displacements, which can make visualization of the mesh displacement difficult. ANSYS CFX-Post allows you to visually magnify the mesh deformation for ease of viewing such displacements. Although it is not strictly necessary for this case, which has mesh displacements which are easily visible unmagnified, this is illustrated by the next few instructions.ing the timestep selector, load time value [s] (which has a much smaller meshdisplacement than the currently loaded timestep).2.Place the mouse over somewhere in the viewer where the background color is showing.Right-click and select Deformation > Auto. Notice that the mesh displacements are now exaggerated. The Auto setting is calculated to make the largest mesh displacement a fixed percentage of the domain size.3.To return the deformations to their true scale, right-click and select Deformation > TrueScale.Creating an Animationing the Timestep Selector dialog box, ensure the time value of [s] is loaded.2.Clear the visibility check box of Contour 1.3.Turn on the visibility of Sym2.4.Apply the following settings to Sym2.5.Click Apply.6.Create a vector plot, set Locations to Sym1 and leave Variable set to Velocity. SetColor to be Constant and choose black. Click Apply.7.Select the visibility check box of Boundary ANSYS, and set Color to a constant blue.8.Click Animation .The Animation dialog box appears.9.Select Keyframe Animation.10.In the Animation dialog box:a.Click New to create KeyframeNo1.b.Highlight KeyframeNo1, then change # of Frames to 48.c.Load the last timestep (50) using the timestep selector.d.Click New to create KeyframeNo2.The # of Frames parameter has no effect for the last keyframe, so leave it at thedefault value.e.Select Save MPEG.f.Click Browse next to the MPEG file data box to set a path and file name forthe MPEG file.If the file path is not given, the file will be saved in the directory from whichANSYS CFX-Post was launched.g.Click Save.The MPEG file name (including path) will be set, but the MPEG will not becreated yet.h.Frame 1 is not loaded (The loaded frame is shown in the middle of theAnimation dialog box, beside F:). Click To Beginning to load it then waita few seconds for the frame to load.i.Click Play the animation .The MPEG will be created as the animation proceeds. This will be slow, since atimestep must be loaded and objects must be created for each frame. To view theMPEG file, you need to use a viewer that supports the MPEG format.11.When you have finished, exit ANSYS CFX-Post.。
【2019年整理】ansys14workbench血管流固耦合分析实例
Ansys14 workbench血管流固耦合实例根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。
谢谢!1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。
图1 模型图2、新建工程。
在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure.图2 计算工程3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。
先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.图3 修改工程材料4、模型导入,进入gemetry模块,import外部模型文件。
图4 模型导入图5、进入FLUENT网格划分。
在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。
我们这里需要去掉血管部分,只保留血液几何。
图5 进入网格划分图6 禁用血管模型6、设置网格方法。
默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。
另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry图7 设置网格划分方式图8 最终出网格图9 边界几何7、进入fluent图10 进入fluent关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。
这里设置瞬态计算,流体为血液(密度1060,动力粘度0.004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。
ansys流固耦合案例
ansys流固耦合案例流固耦合是指流体和固体之间相互作用的一种现象,也是工程实际中经常遇到的一种情况。
在ANSYS软件中,可以通过流固耦合分析来模拟和研究这种相互作用。
下面列举了10个符合要求的ANSYS 流固耦合案例。
1. 水流对桥梁的冲击分析:通过ANSYS流固耦合分析,研究水流对桥梁结构的冲击力和应力分布情况,以评估桥梁的稳定性。
2. 水下管道的流固耦合分析:通过ANSYS软件中的流固耦合模块,模拟水下管道在水流作用下的应力和变形情况,以确定管道的安全性能。
3. 水泵的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟水泵在工作状态下的流体流动和叶轮的应力分布,以优化水泵的设计。
4. 风力发电机叶片的流固耦合分析:通过ANSYS流固耦合分析,研究风力发电机叶片在风力作用下的变形和应力分布情况,以提高叶片的性能和可靠性。
5. 汽车底盘的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟汽车底盘在行驶过程中的气动力和振动响应,以改善车辆的稳定性和乘坐舒适性。
6. 船舶结构的流固耦合分析:通过ANSYS流固耦合分析,研究船舶结构在船体运动和海洋波浪作用下的应力和变形情况,以提高船舶的稳定性和安全性。
7. 石油钻井过程中的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟石油钻井过程中的井筒流体流动和井壁的应力分布,以优化钻井工艺和提高钻井效率。
8. 液压缸的流固耦合分析:通过ANSYS流固耦合分析,研究液压缸在工作过程中的液体流动和缸体的应力分布情况,以提高液压缸的性能和可靠性。
9. 燃烧室的流固耦合分析:利用ANSYS软件中的流固耦合模块,模拟燃烧室内燃烧过程中的流体流动和壁面的热应力分布,以改善燃烧室的燃烧效率和寿命。
10. 水轮机的流固耦合分析:通过ANSYS流固耦合分析,研究水轮机叶片在水流作用下的变形和应力分布情况,以提高水轮机的转换效率和可靠性。
以上是符合要求的10个ANSYS流固耦合分析案例,这些案例涵盖了不同领域和不同类型的流固耦合问题,可以帮助工程师和设计师更好地理解和解决实际工程中的流固耦合问题。
ANSYS流固耦合分析实例
为0 [s]设置压力为100 [pa] 5. 表中需要继续输入两排参数,100 [pa]对应于0.499 [s], 0 [pa]
对应于0.5 [s]
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField 并不运行,因此用求解器按钮并不能得到结果 1. 然 而 , 在 目 录 树 中 的 高 亮 Solution 中 , 选 择 Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面板, 存储Project
固定支撑:为确保薄板的底部固定于平板,需要设置固定支撑 条件。
1. 右击目录树中Transient Stress,在快捷菜单中选择Insert > Fixed Support
2. 用旋转键 旋转几何模型,以便可以看见模型底面(low-y), 然后选择 并点击底面(low-y)
3. 在Details窗口,选择Geometry,然后点击No Selection使Apply 按钮出现(如果需要)。点击Apply以设置固支。
设置仿真类型: 1. 选择 Insert > Simulation Type. 2. 应用以下设置: 3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
建立流体物质 1. 选择 Insert > Material. 2. 把新物质名定义为 Fluid. 3. 应用以下设置
ansys workbench 弹性血管分析实例
© 2005 ANSYS, Inc.
ANSYS, Inc. Proprietary
CFX 设置: 入口
• 选择Create> Flow Objects> Boundary Condition 并且生成一个 边界条件叫做 inlet • 设置Boundary Type 为 Opening • 设置 Location 为 INLET N • 在 Boundary Details 菜单下, 设置 Mass and Momentum, Option = Static Pres. (Entrain) • 设置Relative Pressure 为表达式 pulse • 在 Mesh Motion 菜单下, 保持 Option 设置为 Stationary (它将在 后面改变),点击OK
© 2005 ANSYS, Inc.
ANSYS, Inc. Proprietary
CFX 设置: 初始条件 • 选择Create> Flow Objects> Global Initialisation 来生成初始条件 • 设置 U, V, W 均为 0 [m s^-1] • 设置Relative Pressure 为 0 [Pa] • 点击OK
ansys的output文件将会显示求解结束cfx求解器将会弹出一个窗口通知求解结束查看查看cfx结果结果?启动cfxpost110并导入结果fileloadresults选择fluid001res?显示不同时刻对称平面上的压力云图选择symm在其子菜单中设置mode为variable并设置variable为pressure其他保持默认点击apply?显示不同时刻对称平面上的速度矢量图选择insertvector保持默认名vector1在vector1子菜单中设置locations为symm保持variable为velocity其他保持默认点击apply动画显示动画显示cfx结果结果?显示对称平面上的压力云图?读第一个时间步toolstimestepselector并显示对称面上的速度矢量图?选择toolsanimation点击new按钮?选择keyframeno1并设置offrames为99?读最后一个时间步toolstimestepselector并点击new按钮?勾选savempeg并点击playtheanimation按钮来生成动画压力作为时间的函数压力作为时间的函数查看查看ansys结果结果?在ansyspost1和post2中查看ansys结果?启动ansyspost1读入结果generalpostprocdatafileopts读入读入ansysrst?读不同载荷步结果generalpostprocreadresultsbypick?显示结构变形generalpostprocplotresultsdeformedshape?启动启动ansyspost2读入结果读入结果ansysrst?点击点击adddata按钮并选择按钮并选择nodalsolutiondofsolutionycomponentofdisplacement点击?在跳出的窗口选择任意一个节点点击在跳出的窗口选择任意一个节点点击ok?选择上一步定义的变量点击选择上一步定义的变量点击graphdata来显示变量曲线量曲线点击ok来显示变动画显示动画显示ansys结果结果?在post1中显示结果?在公用菜单中选择plotctrlsanimateovertime?设置numberofanimationframes为100?选择timerange并且设置rangeminimum和maximum分别为0和01?在contourdataforanim
基于Ansys12.0的Workbench血管流固耦合例子
承蒙“水若无痕”版主信任,我把我做过的血管流固耦合以小火车的形式发出来,与大家共同讨论学习。
首先概述一下:1:血管建的比较短,这样单元会少些,调试比较方便,但效果可能没官方视频的好看,但原理步骤没错就行2:原来流体为自己建的Blood,为可压缩流体,我自己试了下,用Water也可以,所以就简化了建新材料这一步3:我用的是Ansys12.0版本,我建的模型保存成多种格式,欢迎大家下载做着玩玩2009-12-14 13:07:11 上传下载附件(36.54 KB)geometry.rar(31.03 KB, 下载次数: 1275)A:首先打开Ansys Workbench 拖出各个模块,连接关系如下图:2009-12-14 14:16:45 上传B:可双击Engineering Data编辑材料,因为进入Ansys结构部分设置时候要用到血管材料,默认是结构钢,太硬了,所以要自己重新设材料,这点很重要!C:单击我画的第一个大圈(左列),右击我画的第二个大圈(左列)——Duplicate,复制一个同种材料。
在复制的材料后面框里有链接,这个链接是链接到材料库的,右键把链接打断,我是这么做的。
如果双击Engineering Data看不到我图中的界面的话,可以在主菜单中——View——Properties以及接下来的两个选项给选上就可以看见了。
改好材料后可以把对新材料重命名,用右键。
然后再主菜单上点击update project,材料就可以在材料设置里用了。
D:更改密度,杨氏模量,和泊松比。
重命名。
上一步给出了怎么保存修改结果E:这个是Ansys model部分,这里是不需要用到流体部分的,不需要删掉,只要右键对它Suppress就可以了。
单击Pipe,可以在下面设置材料:对血管加约束,可以把两端完全约束,对称面部分在垂直面内不可运动,也可以所有平面部分都完全约束,这个没关系,都可以计算。
G:右键插入流固耦合面,当然就是流体固体接触面了本帖最后由panxu09 于2009-12-14 14:02 编辑H:注意还要给出要Ansys求解什么量,我这里给出了要求Von mises和全部变形,然后要保存*.inp文件,这个就是进行流固耦合的Ansys部分求解文件,保存时如果Tools菜单下保存按钮不可用可以点一下下面的——solution,当然做这个之前保证各部分设好了:1)只有血管壁模型有效;2)划分网格,这个网格与流体部分是独立的,没有形状要求;3)施加约束;4)定义流固耦合面;5)设置Ansys求解项;最后保存就好了I:打开CFX,由于是在Workbench下运行的,所以模型都是直接自动导入的(不包括Ansys 结构文件),下图是我设置好的概图::Analysis Type的设置,看我在图中画的圈,仔细设置,一般不会有错。
ansys14workbench血管流固耦合分析实例
Ansys14 workbench血管流固耦合实例根据收集的一些资料,进行学习后,试着做了这个ansys14workbench的血管流固耦合模拟,感觉能够耦合上,仅是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。
谢谢!1、先在proe5中建立血管与血液流体区的模型(两者装配起来),或者直接在workbench中建模。
图1 模型图2、新建工程。
在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure.图2 计算工程3、修改engineering data,因为系统缺省材料是钢,需要构建血管材料,如图3所示。
先复制steel,而后修改密度1150kg/m3,杨氏模量4.5e8Pa,泊松比0.3,重新命名,最后在主菜单中点击“update project”保存.图3 修改工程材料4、模型导入,进入gemetry模块,import外部模型文件。
图4 模型导入图5、进入FLUENT网格划分。
在workbench工程视图中的Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。
我们这里需要去掉血管部分,只保留血液几何。
图5 进入网格划分图6 禁用血管模型6、设置网格方法。
默认是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面的边均分为10份,网格结果如图8所示。
另外在这个界面中要设置边界的几何面,如inlet、outlet、symmetry图7 设置网格划分方式图8 最终出网格图9 边界几何7、进入fluent图10 进入fluent关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。
这里设置瞬态计算,流体为血液(密度1060,动力粘度0.004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。
ANSYS Workbench-Fluent流固耦合传热及热结构分析
ANSYS Workbench+Fluent 流固 耦合温度插值方法
5 双击C的model,打开分析窗口,创建网格,关键:在Static structural下面有 imported Load(solution), 右击insert → Body Temperature, 会出现进度条, 稍等则在左下角出现下列图片,Geometry选中固体,CFD Domain选Solid,此 时Imported Body Temperature前出现闪电符号,右击选Import Load, Fluent计算的温度载荷就插值到新划分的有限元网格上。
donghaiming81@
以前本人发了一个贴子,关于Fluent计算的温度如何传递到结构网格上,该 方法已经过时,由于ANSYS Workbench功能的日益强大,建议使用更好、 更简便的方法。案例如下: 1 打开Workbench,tool box/component systems里选mesh,空白区出现如 下图,然后双击Geometry,导入几何模型,这是一个外部固体包裹内部管流的 简单模型,仅用于演示步骤。任选一个Part, 在Details of Body里有个选项 Fluid/Solid,需要分别定义好流体和固体
2 关掉Geometry,双击Mesh打开新窗口,按如下设置。
自动创建流固耦合面,将在Fluent里自动设置为 interface
划分固体网格和流体 网格,因为是有限体 积法,所以单元边不 带中间节点
ansys流固耦合案例
ansys流固耦合案例
ANSYS流固耦合是一种模拟分析技术,用于研究流体和固体之间的相互作用。
它可以在一个模拟中同时考虑流体和固体的运动和变形,从而更准确地预测系统的行为。
以下是一些ANSYS流固耦合的应用案例:
1. 水下爆炸冲击分析:在这种情况下,流固耦合分析可以用于研究水中的爆炸冲击对周围结构的影响。
通过考虑水的流动和固体结构的变形,可以更准确地预测爆炸冲击的传播路径和结构的破坏程度。
2. 风力发电机叶片设计:在风力发电机中,叶片的设计对其性能至关重要。
流固耦合分析可以用于优化叶片的形状和材料,以最大限度地提高能量转换效率。
通过考虑风的流动和叶片的变形,可以预测叶片的受力情况和振动特性。
3. 水力润滑轴承分析:在水力润滑轴承中,流体的流动对轴承的性能和寿命有重要影响。
流固耦合分析可以用于优化轴承的设计,以减少摩擦和磨损,并提高轴承的承载能力。
通过考虑流体的流动和轴承的变形,可以预测轴承的润滑性能和寿命。
4. 波浪对海洋结构物的影响分析:在海洋工程中,波浪对海洋结构物的影响是一个重要的研究领域。
流固耦合分析可以用于研究波浪对海洋平台、堤岸和海底管道等结构物的冲击和振动情况。
通过考虑波浪的流动和结构物的变形,可以预测结构物的破坏程度和安全
性能。
这些案例只是流固耦合分析的一小部分应用领域,实际上在工程和科学研究中有很多其他的应用。
ANSYS作为一种强大的模拟软件,可以帮助工程师和科学家更好地理解和优化流体和固体系统的相互作用。
ansys流固耦合分析与工程实例
第 1 章 流固耦合分析基础近年来,流固耦合分析研究和应用取得了飞速的发展,尤其是 ANSYS Workbench 推广以 来,流固耦合分析变得容易起来,也因此很快在相关工程领域得到广泛应用。
本章是学习 ANSYS 流固耦合分析的入门篇,旨在介绍 ANSYS 流固耦合分析的基本知识,引导初学者由 浅入深地了解流固耦合分析的基本操作和应用。
本章内容包括:ü 流固耦合基础ü ANSYS 流固耦合分析ü ANSYS 流固耦合分析的基本步骤1.1 流固耦合基础下面简单介绍什么是流固耦合作用、流固耦合分析,流固耦合的重要性,以及流固耦合分 析用到的控制方程。
1.1.1 认识流固耦合分析的重要性随着计算科学以及数值分析方法的不断发展, 流固耦合或交互作用 (fluid structure coupling 或 fluid structure interaction )研究从 20 世纪 80年代以来,受到了世界学术界和工业界的广泛 关注。
流固耦合问题是流体力学(Computational Fluid Dynamics ,CFD )与固体力学 (Computational Solid Mechanics ,CSM )交叉而生成的一门力学分支,同时也是多学科或多 物理场研究的一个重要分支, 它是研究可变形固体在流场作用下的各种行为以及固体变形对流 场影响这二者相互作用的一门科学。
流固耦合问题可以理解为既涉及固体求解又涉及流体求解, 而两者又都不能被忽略的模拟 问题。
因为同时考虑流体和结构特性,流固耦合可以有效节约分析时间和成本,同时保证结果 更接近于物理现象本身的规律。
所以, 近年来流固耦合分析在工程设计特别是虚拟设计和仿真 中的应用越来越广泛和深入。
1流固耦合分析基础ANSYS 流固耦合分析与工程实例2 图 11 显示了流固耦合分析在产品虚拟设计中的层次以及与各学科之间的相互联系。
【达尔整理】ANSYS流固耦合分析实例命令流
达尔文档DareDoc分享知识传播快乐ANSYS流固耦合分析实例命令流本资料来源于网络,仅供学习交流2015年10月达尔文档|DareDoc整理目录ANSYS流固耦合例子命令流............................................................................. 错误!未定义书签。
ANSYS流固耦合的方式 (3)一个流固耦合模态分析的例子1 (3)一个流固耦合模态分析的例子2 (4)一个流固耦合建模的例子 (7)一加筋板在水中的模态分析 (8)一圆环在水中的模态分析 (10)接触分析实例---包含初始间隙 (14)耦合小程序 (19)流固耦合练习 (21)一个流固耦合的例子 (22)使用物理环境法进行流固耦合的实例及讲解 (23)针对液面晃动问题,ANSYS/LS-DYNA提供三种方法 (30)1、流固耦合 (30)2、SPH算法 (34)3、ALE(接触算法) (38)脱硫塔于浆液耦合的分析 (42)ANSYS坝-库水流固耦合自振特性的例子 (47)空库时的INP文件 (47)满库时的INP文件 (49)计算结果 (52)ANSYS流固耦合的方式一般说来,ANSYS的流固耦合主要有4种方式:1,sequential这需要用户进行APDL编程进行流固耦合sequentia指的是顺序耦合以采用MpCCI为例,你可以利用ANSYS和一个第三方CFD产品执行流固耦合分析。
在这个方法中,基于网格的平行代码耦合界面(MpCCI) 将ANSYS和CFD程序耦合起来。
即使网格上存在差别,MpCCI也能够实现流固界面的数据转换。
ANSYS CD中包含有MpCCI库和一个相关实例。
关于该方法的详细信息,参见ANSYS Coupled-Field Analysis Guide中的Sequential Couplin2,FSI solver流固耦合的设置过程非常简单,推荐你使用这种方式3,multi-field solver这是FSI solver的扩展,你可以使用它实现流体,结构,热,电磁等的耦合4,直接采用特殊的单元进行直接耦合,耦合计算直接发生在单元刚度矩阵一个流固耦合模态分析的例子1这是一个流固耦合模态分析的典型事例,采用ANSYS/MECHANICAL可以完成。
4-ANSYS流固耦合应用案例
2. 3.
4. 5.
模拟中固体问题的描述—记录ANSYS输入文件
现在,模拟设置已经完成。在Simulation中ANSYS MultiField并不运行,因此用求解器按钮并不能得到结果 1. 然而,在目录树中的高亮Solution中,选择Tools > Write ANSYS Input File,把结果写进文件OscillatingPlate.inp 2. 网格是自动生成的,如果想检查,可以在目录树中选择 Mesh 3. 保存Simulation数据,返回Oscillating Plate [Project]面 板,存储Project
确选择是 Start Solver Manager ,点击 Save 如果发现文件已经存在,点击Overwrite 退出ANSYS CFX-Pre,自己决定是否存储模拟文件 (.cfx)
通过 ANSYS CFX-Solver Manager 获 得结果
ANSYS Multifield simulation的运行需要CFX和ANSYS联 合求解 确认Define Run 对话框出现 在 MultiField 键, 确认 ANSYS 输入文件地址是正确的 确认ANSYS Install Root 设置是正确的 点击Start Run
3.
点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
设置求解器控制 1. 点击Solver Control 2. 应用以下设置
3. 点击OK
设置流体问题、在ANSYS CFX-Pre中设置ANSYS MultiField
设置输出控制 1. 点击Output Control 2. 点击 Trn Results 键 3. 创建一个瞬态结果,用默认的文件名 4. 对 Transient Results 1应用以下设置
ansys workbench的管道热流固耦合案例例子
图 27 温度导致管道的变形
图 1 管道结构示意图 二、设计思路
几何模型建立 流体域网格划分 Fluent 计算 温度加载 稳态热分析 温度加载 热应力分析 三、模型建立 在 workbench 的工具箱中拖拽 Fluid Flow(Fluent)、Steady-State Thermal 和 Static Structural 模块进入工作界面中,数据传送关系如图 2 所示。
图 2 数据传送关系
在 SolidWorks 中 建 立 相 应 模 型 , 并 转 化 成 ansys 适 用 的 x_t 格 式 。 双 击 A2 打 开 DesignModeler,导入相应模型。
图 3 模型分别在 SolidWorks 中和在 DesignModeler 中显示
选择 Tools 工具栏下的 Fill 命令,选定管道内壁的三个面,单击 Details View 面板中的 Apply 按钮,之后单击 Generate 按钮,生成相应的流体域,并将流体域命名为 Fluid。在流体域 Fluid 中分别定义冷流入口端面,热流入口端面 1,热流入口端面为 2 为 coldinlet,hotinletone 和 hotinlettwo,定义出口端面为 outlet。
图 8 单位设置
图 9 general 面板设置
图 10 模型面板设置
图 11 材料面板设置
图 12 冷流入口流速和强度设置
图 13 冷流入口温度设置
图 12 和图 13 仅显示了冷流入口的设置,其余的入口和出口以及避免的设置与图 12 和 图 13 的设置方法相同,不在作图展示。
图 14 自动生成的接触面
最新ANSYS-Workbench-Fluent流固耦合传热及热结构分析ppt课件
素致使试验中出现频率较高的死胎、发育停滞或流 产现象。
裸胚聚合:
移入胚胎联结液小滴(植物凝集素A,PHA,起粘合 作用)中,培养10-20min,将融合胚轻轻移入 20% PBS中洗涤两次,继续培养5h-10h后,移植 入同期发情的受体输卵管或子宫角中。
卵裂球聚合:
取相同数量的两个不同种属的卵裂球装入空的透明带 内,加入PHA使其聚合,用琼脂包埋后体外直接培养 或移入兔输卵管中使其发育至囊胚,最后再移入受体 子宫角内。
设置材料、流相固相、激活
能量方程、湍流模型、边界 条件等。进口流速1m/s, 600K, 出口0pa,wallout定义对 流换热系数5,环境温度 300K。
温度 云图
4 关闭Fluent窗口,返回project schematic界面,右击B Fluent project/Solution →Transfer data to new → static structural, 出现新 的C project, 然后鼠标左击A的Geometry并按住不放,拖放到C的 Geometry上松鼠标,这样出现连接线,A的Geometry可以传递到C中。
3 关闭Meshing 窗口返回到project schematic界面,右击Mesh→Transfer Data To New → Fluent, 将建立Fluent的分析项目。
此时Mesh后面变为闪电符号,需右击它再点菜单中update
右击点update,闪 电符号变为勾号
双击Setup,打开Fluent窗口,
二、嵌合体的制作
卵裂球与胚胎聚合:
将解离好的卵裂球慢慢释放于另一个裸胚的正上方, 使二者直接接触,借助于PHA的作用使之聚合。
弹性血管流固耦合教程与心得
基于Ansys12.0的Workbench血管流固耦合之最详尽小火车之旅Workbench, 血管, 小火车, 耦合Workbench, 血管, 小火车, 耦合承蒙―水若无痕‖版主信任,我把我做过的血管流固耦合以小火车的形式发出来,与大家共同讨论学习。
首先概述一下:1:血管建的比较短,这样单元会少些,调试比较方便,但效果可能没官方视频的好看,但原理步骤没错就行2:原来流体为自己建的Blood,为可压缩流体,我自己试了下,用Water也可以,所以就简化了建新材料这一步3:我用的是Ansys12.0版本,我建的模型保存成多种格式,欢迎大家下载做着玩玩图1 geometry.rar (31.03 KB)A:首先打开Ansys Workbench 拖出各个模块,连接关系如下图:实际上可以在Transient Structural的setup上面点右键,transfer data to new simulation FLOW(CFX)同样可以建立新的CFX分析模块,而且不用自己连线,本图图 2B:可双击Engineering Data编辑材料,因为进入Ansys结构部分设置时候要用到血管材料,默认是结构钢,太硬了,所以要自己重新设材料,这点很重要!图3的这个对号加小箭头的状态只调试出来一次,其他的都没弄出来过,索性全部给updata了图 3C:单击我画的第一个大圈(左列),右击我画的第二个大圈(左列)——Duplicate,复制一个同种材料。
在复制的材料后面框里有链接,这个链接是链接到材料库的,右键把链接打断,我是这么做的。
如果双击Engineering Data看不到我图中的界面的话,可以在主菜单中——View——Properties以及接下来的两个选项给选上就可以看见了。
改好材料后可以把对新材料重命名,用右键。
然后再主菜单上点击update project,材料就可以在材料设置里用了。
图4D:更改密度,杨氏模量,和泊松比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Ansys14 workbench血管流固耦合实例
根据收集得一些资料,进行学习后,试着做了这个ansys14workbench得血管流固耦合模拟,感觉能够耦合上,仅就是熟悉流固耦合分析过程,不一定正确,仅供参考,希望大家多讨论。
谢谢!
1、先在proe5中建立血管与血液流体区得模型(两者装配起来),或者直接在workbench中建模。
图1 模型图
2、新建工程。
在workbench中toolbox中选custom system,双击FSI: FluidFlow(fluent)->static structure、
图2 计算工程
3、修改engineering data,因为系统缺省材料就是钢,需要构建血管材料,如图3所示。
先复制steel,而后修改密度1150kg/m3,杨氏模量
4、5e8Pa,泊松比0、3,重新命名,最后在主菜单中点击“update project”保存、
图3 修改工程材料
4、模型导入,进入gemetry模块,import外部模型文件。
图4 模型导入图
5、进入FLUENT网格划分。
在workbench工程视图中得Mesh上点击右键,选择Edit…,如图5所示,进入网格划分meshing界面,如图6所示。
我们这里需要去掉血管部分,只保留血液几何。
图5 进入网格划分
图6 禁用血管模型
6、设置网格方法。
默认就是采用ICEM CFD进行网格划分,设置方式如图7所示,截面圆弧边分为12份,纵截面得边均分为10份,网格结果如图8所示。
另外在这个界面中要设置边界得几何面,如inlet、outlet、symmetry
图7 设置网格划分方式
图8 最终出网格
图9 边界几何
7、进入fluent
图10 进入fluent
关闭mesh,回到fluent工程窗口,右键点击setup,选择edit…,进入fluent。
这里设置瞬态计算,流体为血液(密度1060,动力粘度0、004pas),入口压力波动(用profile输入),出口压力0Pa,采用k-e湍流模型。
瞬态
血液材质入口压力波动profile。
((inletpress transient 7 0)
(time 0 0、004 0、005 0、006 0、01 0、015 0、03)
(pressure 0 1500 1700 1500 0 0 0)
)
入口边界
图11 Fluent中设置
计算时记录入口边界压力得变化,如图12所示,与profile设置近似。
图12 入口压力变化
计算完后查瞧fluid_interface面上压力分布(可以分步瞧),如图13所示。
中间平面得压力与速度如图14所示。
流线如图15所示。
图13 fluid_interface面上压力分布
图14 中间平面(对称面)得压力与速度
图15 流线
8、关闭fluent,进入Static Structure得model,如图16所示。
注意geometry 树形节点上,禁用血液计算区域。
图16 禁用流体区域
8、导入流体载荷
如图17所示,插入流体载荷,血管几何选择内圆面,CFD surface选择预先设置得inface面,就就是将inface得压力数据传递给血管得内圆面。
导入流体载荷后得模型如图17所示。
图17 插入流体载荷
9、设置固体约束
约束血管一端为fixed,如图18所示。
进行计算。
计算结果如图18所示。
图18 血管一端约束
应力
变形
图19计算结果
10、总结
在ansys14workbench中进行流固耦合(FSI)计算相当简单,但这仅就是单向耦合,如果实现双向耦合得话还就是比较复杂得。
计算过程仅供参考,经不起专家得推敲啊,有建议发邮件给我啊,谢谢!。