化工原理第一章--流体流动2详解

合集下载

化工原理课后习题答案详解

化工原理课后习题答案详解

《第一章 流体流动》习题解答1某敞口容器内盛有水与油。

如图。

已知水及油的密度分别为1000和860kg/m 3,解:h 1=600mm ,h 2=800mm ,问H 为多少mm ?m h h h m kg m kg mm h mm h 32.181.91080.081.91060.081.9860?,/860/10,800,6003333321=∴⨯=⨯⨯+⨯⨯===== 油水ρρ2.有一幢102层的高楼,每层高度为4m 。

若在高楼范围内气温维持20℃不变。

设大气静止,气体压强为变量。

地平面处大气压强为760mmHg 。

试计算楼顶的大气压强,以mmHg 为单位。

⎰⎰=∴-=⨯⨯⨯-=⨯⨯-=⎩⎨⎧---⨯=⨯⨯=----=---127.724,04763.040810190.181.9)760/(10190.181.910190.1)2.2938314/(29151408055P P p m mHg P p Ln dz pdp p p gdz d ②代入①,得②①解:ρρ3.某水池,水深4米,水面通大气,水池侧壁是铅垂向的。

问:水池侧壁平面每3米宽度承受水的压力是多少N ?外界大气压为1atm 。

Ndz gz P F 5423501045.12/481.9103410013.13)(3⨯=⨯⨯⨯+⨯⨯⨯=+=⎰水ρ4.4.外界大气压为1atm ,试按理想气体定律计算0.20at (表压)、20℃干空气的密度。

空气分子量按29计。

345/439.12.293831429)1081.020.010013.1(m Kg RT PM =⨯⨯⨯⨯+⨯==ρ解:5.5.有个外径为R 2、内径为R 1为的空心球,由密度为ρ’的材料制成。

若将该球完全淹没在某密度为ρ的液体中,若球能在任意位置停留,试求该球的外径与内径之比。

设球内空气重量可略。

3/1'1232'3132)/1(/)3/4())3/4(--=∴=-ρρρπρπR R g R g R R (解:6.6.为放大以U 形压差计测气体压强的读数,采用倾斜式U 形压差计。

化工原理课后习题答案全

化工原理课后习题答案全

化工原理课后习题答案(夏清、贾绍义主编.化工原理.天津大学出版社,2011.) QQ578571918第一章 流体流动2.在本题附图所示的储油罐中盛有密度为 960 ㎏/㎥ 的油品,油面高于罐底 6.9 m ,油面上方为常压。

在罐侧壁的下部有一直径为 760 mm 的圆孔,其中心距罐底 800 mm ,孔盖用14mm 的钢制螺钉紧固。

若螺钉材料的工作应力取为39.23×106 Pa ,问至少需要几个螺钉?分析:罐底产生的压力不能超过螺钉的工作应力 即 P 油 ≤ ζ螺解:P 螺 = ρgh ×A = 960×9.81×(9.6-0.8) ×3.14×0.762150.307×103 Nζ螺 = 39.03×103×3.14×0.0142×n P 油 ≤ ζ螺 得 n ≥ 6.23取 n min = 7至少需要7个螺钉3.某流化床反应器上装有两个U型管压差计,如本题附4. 本题附图为远距离测量控制装置,用以测定分相槽内煤油和水的两相界面位置。

已知两吹气管出口的距离H = 1m,U管压差计的指示液为水银,煤油的密度为820Kg/㎥。

试求当压差计读数R=68mm时,相界面与油层的吹气管出口距离h。

分析:解此题应选取的合适的截面如图所示:忽略空气产生的压强,本题中1-1´和4-4´为等压面,2-2´和3-3´为等压面,且1-1´和2-2´的压强相等。

根据静力学基本方程列出一个方程组求解解:设插入油层气管的管口距油面高Γh在1-1´与2-2´截面之间P 1 = P2+ ρ水银gR∵P1 = P4,P2= P3且P3 = ρ煤油gΓh , P4= ρ水g(H-h)+ ρ煤油g(Γh + h)联立这几个方程得到ρ水银gR = ρ水g(H-h)+ ρ煤油g(Γh + h)-ρ煤油gΓh 即ρ水银gR =ρ水gH + ρ煤油gh -ρ水gh 带入数据1.0³×10³×1 - 13.6×10³×0.068 = h(1.0×10³-0.82×10³)h= 0.418m5.用本题附图中串联U管压差计测量蒸汽锅炉水面上方的蒸气压,U管压差计的指示液为水银,两U管间的连接管内充满水。

第一章 流体流动2..

第一章 流体流动2..


盐城师范学院
---化工原理---
1.4.2 流体在圆管内的速度分布 速度分布:流体在圆管内流动时,管截面上 质点的速度随半径的变化关系。 无论是滞流或湍流,在管道任意截面上,流体质点的速度 沿管径而变化,管壁处速度为零,离开管壁以后速度渐增, 到管中心处速度最大。速度在管道截面上的分布规律因流 型而异。
层流边界层 湍流边界层
u∞
u∞
u∞
δ
A x0
层流内层
平板上的流动边界层
盐城师范学院
转折点:
Re x
u x
---化工原理---

5 105 ~ 2 106
边界层厚度δ随x增加而增加
层流: 4.64 x (Rex )0.5
层流边界层
湍流边界层
x
x
0.5
u∞
u∞
u∞
湍流: 0.376 0.2
(a)
过渡流
(b)
湍流 (Turbulent flow)
(c)
两种稳定的流动状态:层流、湍流。
盐城师范学院
---化工原理---
层流:
* 流体质点做直线运动;
* 流体分层流动,层间不相混合、不碰撞; * 流动阻力来源于层间粘性摩擦力。 湍流: 主体做轴向运动,同时有径向脉动;
特征:流体质点的脉动 。
r2 u umax 1 R 2
盐城师范学院
---化工原理---
r2 dVs umax 2r 1 R 2 dr
积分此式可得
2 r r R Vs 2umax r 0 r 1 R 2 dr R 2 4 r r 2umax 2 R 2u / 2 max 2 4R 0

化工原理ppt-第一章流体流动

化工原理ppt-第一章流体流动

其单位为J/kg。
2022/8/11
34
二、流体系统的质量守恒与能量守恒
2. 柏努利方程
(1) 总能量衡算
4)外加能量 流体输送机械(如泵或风机)向流体作功。单位质量流体所获得
的机械能。用We表示,单位J/kg。 5)能量损失
液体流动克服自身粘度而产生摩擦阻力,同时由于管路局部装置 引起的流动干扰、突然变化而产生的阻力。流体流动时必然要消耗 部分机械能来克服这些阻力。单位质量流体克服各种阻力消耗的机 械能称为能量损失。用Σhf ,单位J/kg。
2022/8/11
27
知识运用
【1-3】某自来水厂要求安装一根输水量为30m3/h的管道,试选择一合 适的管子。
解:水的密度:1000kg/m3, 体积流量:Vs=30000/(3600×1000)=0.0083(m3/s)
查表水流速范围,取u=1.8m3/s
根据d 4Vs
u
d 4Vs 4 30 / 3600 0.077 m 77mm
22
一、流体流量和流速
2.流速
单位时间内流体质点在流动方向上所流经的距离。
(1)平均流速:u=Vs/A (m/s)
关系:G =u
(2)质量流速:G=Ws/A (kg/(m2·s))
2022/8/11
23
一、流体流量和流速
3.圆形管道直径的选定
2022/8/11
24
一、流体流量和流速
3.圆形管道直径的选定
2022/8/11
8
二、流体压力
2.表压与真空度
表压和真空度
p 当地大气压,
表压强=绝对压强-大气压强
p 当地大气压,
真空度=大气压强-绝对压强

化工原理课后习题解析(第一章)

化工原理课后习题解析(第一章)

第1章 流体流动1-1.容器A 中气体的表压力为60kPa ,容器B 中的气体的真空度为Pa 102.14⨯。

试分别求出A 、B 二容器中气体的绝对压力为若干Pa 。

该处环境大气压等于标准大气压。

(答:A,160kPa ;B,88kPa )解:取标准大气压为kPa 100,所以得到:kPa 16010060=+=A P ;kPa 8812100=-=B P 。

1-2.某设备进、出口的表压分别为 12kPa -和157kPa ,当地大气压为101.3kPa ,试求此设备进、出口的压力差为多少Pa 。

(答:169kPa -) 解:kPa 16915712-=--=-=∆出进P P P 。

1-3.为了排除煤气管中的少量积水,用如图示水封设备,水由煤气管道上的垂直支管排出,已知煤气压力为10kPa (表压)。

问水封管插入液面下的深度h 最小应为若干? (答:m 02.1)解:m 02.18.910101033=⨯⨯=∆=g P H ρ习题1-3 附图1-4.某一套管换热器,其内管为mm,25.3mm 5.33⨯φ外管为mm 5.3mm 60⨯φ。

内管流过密度为3m 1150kg -⋅,流量为1h 5000kg -⋅的冷冻盐水。

管隙间流着压力(绝压)为MPa 5.0,平均温度为C 00,流量为1h 160kg -⋅的气体。

标准状态下气体密度为3m 1.2kg -⋅,试求气体和液体的流速分别为若干1s m -⋅?( 答:1L s m 11.2U -⋅=;1g s 5.69m U -⋅= )习题1-4 附图解:mm 27225.35.33=⨯-=内d ,m m 5325.360=⨯-=外d ;对液体:122s m 11.2027.011503600/500044/-⋅=⨯⨯⨯===ππρ内d m A V u l l l l l ; 对气体:0101P P =ρρ⇒3560101m kg 92.51001325.1105.02.1-⋅=⨯⨯⨯==P P ρρ,()224内外内外D d A A A g -=-=π()2322m 1032.10335.0053.04⨯=-=π,13s m 69.592.51032.13600/160/--⋅=⨯⨯===ggg gg g A m A V u ρ。

(完整版)化工原理基本知识点

(完整版)化工原理基本知识点

第一章 流体流动一、压强1、单位之间的换算关系:221101.3310330/10.33760atm kPa kgf m mH O mmHg ====2、压力的表示(1)绝压:以绝对真空为基准的压力实际数值称为绝对压强(简称绝压),是流体的真实压强。

(2)表压:从压力表上测得的压力,反映表内压力比表外大气压高出的值。

表压=绝压-大气压(3)真空度:从真空表上测得的压力,反映表内压力比表外大气压低多少真空度=大气压-绝压3、流体静力学方程式0p p gh ρ=+二、牛顿粘性定律F du A dyτμ== τ为剪应力;du dy 为速度梯度;μ为流体的粘度; 粘度是流体的运动属性,单位为Pa ·s ;物理单位制单位为g/(cm·s),称为P (泊),其百分之一为厘泊cp111Pa s P cP ==g液体的粘度随温度升高而减小,气体粘度随温度升高而增大。

三、连续性方程若无质量积累,通过截面1的质量流量与通过截面2的质量流量相等。

111222u A u A ρρ=对不可压缩流体1122u A u A = 即体积流量为常数。

四、柏努利方程式单位质量流体的柏努利方程式:22u p g z We hf ρ∆∆∆++=-∑ 22u p gz E ρ++=称为流体的机械能 单位重量流体的能量衡算方程:Hf He gp g u z -=∆+∆+∆ρ22z :位压头(位头);22u g :动压头(速度头) ;p gρ:静压头(压力头) 有效功率:Ne WeWs = 轴功率:Ne N η=五、流动类型 雷诺数:Re du ρμ=Re 是一无因次的纯数,反映了流体流动中惯性力与粘性力的对比关系。

(1)层流:Re 2000≤:层流(滞流),流体质点间不发生互混,流体成层的向前流动。

圆管内层流时的速度分布方程:2max 2(1)r r u u R=- 层流时速度分布侧型为抛物线型 (2)湍流Re 4000≥:湍流(紊流),流体质点间发生互混,特点为存在横向脉动。

化工原理-第二节 流体流动的基本方程(02)

化工原理-第二节  流体流动的基本方程(02)
g1zu 2 1 2p1w eg2zu 2 2 2p2wf (1)
----机械能衡算方程
wf称为阻力损失,永远为正,单位J/kg
式中各项单位为J/kg。
(2)以单位重量流体为基准
将(1)式各项同除重力加速度g :
z12 1u g 1 2ρ p 1 gw g ez22 1u g 22ρ p2g w g f
3)基准水平面的选取 必须与地面平行,通常取两个截面中的任意一个。 水平管道,取中心线。
4)单位必须一致 有关物理量用国际单位,压力要求基准一致。
(2)机械能衡算方程的应用
1)确定流体的流量 例:20℃的空气在直径为 80 mm的水平管流过,现于管路中接 一文丘里管,如本题附图所示,文丘里管的上游接一水银U管 压差计,在直径为 20 mm的喉径处接一细管,其下部插入水槽 中。空气流入文丘里管的能量损失可忽略不计,当U管压差计 读数 R=25mm,h=0.5m时, 试求此时空气的流量为多少 m3/h?
流量与流速的关系:
m s VsuAGA
(二)稳定流动与非稳定流动
流动系统
稳定流动:流动系统中流速、压强、密度等
有关物理量仅随位置而改变,而 不随时间而改变。
T,p,uf(x,y,z)
非稳定流动:物理量不仅随位置改变而且随时间
变化。 T,p,uf(x,y,z,)
判断依据:物理量是否随时间而改变。 稳定流动:无物料、能量的积累。 非稳定流动:有物料或能量的积累。

he

we g
hf

wf g

z12 1 gu 1 2p g 1 h ez22 1 gu 2 2p g 2 h f
(2)
式中各项单位为 J/kgJ Nm

化工原理1.2流体流动的基本方程课件

化工原理1.2流体流动的基本方程课件
4、 列出上下游截面处各已知物理量、未知物理量的数值,对两 截面之间的各参数进行确定。
5、 列出衡算系统的Bernoulli方程式。
6、 求解未知量。
例1:如图示水的虹吸,忽略阻力损失,求水的流速及各处压力。
解:〈1〉如图示选择1-1面、2-2面(出口内侧)
取2-2面为基准水平面。 ∵he=0, hf=0
(3)流 速: u= qv /A
(4)质量流速: G= qm /A= qv /A=u
(m3/s) (kg/s ) (m/s)
(kg/㎡s)
3. 管路直径的初步确定
u
qv A
qv
4
d2
qv 0.785d 2
d qV 0.785u
流量取决于生产需要,合理的流速应根据经济衡算确定。
一般液体流速为0.5~3m/s 气体流速为10~30m/s
1.2.2 稳定流动与不稳定流动
稳定流动:
同一位置处与流体流动有关的物理量,如速度、压力、 密度 等不随时 间而变化。
不稳定流动:
同一位置处与流体流动有关的物理量随时间而变化。
1.2.3 流体物料衡算—连续性方程
对于稳定过程: 系统输入速率=输出速率
1
2
1
2
若流体不可压缩, =常数,则有
u1A1 u2 A2 qV 常数
压力表读数为30.4kPa,而阀门开启后,压力表读数降至20.3kPa,设总 压头损失为0.5m(水柱),求水的流量为若干m3/h?
解:取池内水面为截面1-1;出水管压力表处为截面 2,且作为基准面,则有z2=0,d2=0.05m (1)阀门全闭时
p1=0, p2=30.4×103 Pa,u1=0, u2=0,hf=he=0

化工原理(南京理工大学)01流体流动(2)_流体动力学

化工原理(南京理工大学)01流体流动(2)_流体动力学

(1) 以单位质量流体为基准
U qe hf
Σ hf:1kg流体损失的机械能为(J/kg) 假设 流体不可压缩,则 1 2 (9)
1 2 p1 1 2 p2 z1 g u1 We z2 g u2 hf 2 2
式中各项单位为J/kg。
南京理工大学化工学院化学工程系
(12) (13)
——柏努利方程式
南京理工大学化工学院化学工程系
四、柏努利方程的讨论
(1)若流体处于静止,u=0,Σhf=0,We=0,则柏 努利方程变为
z1 g
p1

z2 g
p2

说明柏努利方程即表示流体的运动规律,也表 示流体静止状态的规律 。
南京理工大学化工学院化学工程系
(2)理想流体在流动过程中任意截面上总机械能、 总压头为常数,即
南京理工大学化工学院化学工程系南京理工大学化工学院化学工程系化工原理上化工原理上第一章流体流动2流体动力学南京理工大学化工学院化学工程系南京理工大学化工学院化学工程系1212流体动力学流体动力学121流体的流量与流速122稳定流动与不稳定流动123稳定流动系统的质量守恒连续性方程124稳定流动系统的能量守恒柏努利方程南京理工大学化工学院化学工程系南京理工大学化工学院化学工程系121121流体的流量与流速流体的流量与流速一流量1
管内径的平方成反比 。
2
(7)
即不可压缩流体在管路中任意截面的流速与
南京理工大学化工学院化学工程系
例1
如附图所示,管路由一段φ 89×4.5mm的
管 1 、 一 段 φ 108×4mm 的 管 2 和 两 段
φ 57×3.5mm的分支管3a及3b连接而成。若水

天津大学版 化工原理 第一章 2 流体流动的基本方程

天津大学版 化工原理 第一章 2 流体流动的基本方程
第一章 流体流动
Fluid Flow
--内容提要--
流体的基本概念 静力学方程及其应用 机械能衡算式及柏努 利方程 流体流动的现象 流动阻力的计算、管路计算
问题
1、流体静力学基本方程式?
p2 p1 g(z1 z2 )
gz1
p1
gz2
p2
p2 p0 gh
2、流体静力学基本方程的适用条件?
静止的连通着的同一种不可压缩连续流体
假设: (a)连续稳定流体; (b)无旁路 (c)QL=0。
在各段管内的速度。
3a
1
2
3b 附图
例题
3a
1
2
解:管1的内径为 d1 89 2 4 81mm
则水在管1中的流速为
u1
VS
4
d12
9 103 0.785 0.0812
1.75m/s
附图
3b
管2的内径为 d2 108 2 4 100 mm
由式(1-20d)则水在管2中的流速为 管3a及3b的内径为d3 57 2 3.5 50mm
u
3.14 1.8
查附录低压流体输送用焊接钢管规格,选φ88.5×4mm的 管子,则内径为
d 88.5 2 4 80.5mm
水在管中的实际流速为
u
VS
d2
30 / 3600 0.785 0.08052
1.63m/s
4
在适宜流速范围内,所以该管子合适。
二、稳态流动与非稳态流动
非稳态 流动
稳态流动
u2
u1
(
d1 d2ຫໍສະໝຸດ )21.75 ( 81 100
)2
1.15m/s
又水在分支管路3a、3b中的流量相等,则有 u2 A2 2u3 A3

化工原理第一章第四节流体流动现象-PPT

化工原理第一章第四节流体流动现象-PPT

p2
gz3
u32 2
p3
gz4
u42 2
p4
gz5
u52 2
p5
gz6
u62 2
p6
4
4' 3 3'
1
1' 5 5'
6 6' 2 2'
【例6】水经变径管从上向下流动,粗细管径分别为d2=184mm,
d1=100mm,水在粗管内的流速为u2=2m/s,两测压口垂直距离
h=1.5m,由1-1 至 2-2 截面间能量损失hf1-2=11.38J/kg,问:U
第四节 流体在管内的流动阻力
流体具有粘性,流动时存在内部摩擦力. ——流动阻力产生的根源
直管阻力 :流体流经一定管径的直管时由
管路中的阻力
hf
于流体的内摩擦而产生的阻力
hf
局部阻力:流体流经管路中的管件、阀门及
hf 管截面的突然扩大及缩小等局部
32
h f h f hf 地方所引起的阻力。
h f : 单位质量流体流动时所损失的机械能,J/kg。
14
即Pa。
F u
S y
du
dy
——牛顿粘性定律
式中:
du :速度梯度 dy
:比例系数,它的值随流体的不同而不同,流
体的粘性愈大,其值愈大,称为粘性系数或动力粘度,简
称粘度。
15
2、流体的粘度
1)物理意义
du dy
促使流体流动产生单位速度梯度的剪应力。 粘度总是与速度梯度相联系,只有在运动时才显现出来
P2= 6.15×104Pa(表压) hf1-2= 160J/kg
u2
Vs
d2
34.5 0.072 3600

化工原理第一章_2..

化工原理第一章_2..

滞流: 粗糙度对λ无影响
湍流:当δb> ε,粗糙度对λ影响
与滞流相近; 当δb< ε,粗糙度对λ的影响 显著。
δb-滞流内层厚度
28
§1-15 层流时的摩擦损失
u p1 p2 R2 p1 p2 d 2
8l
32l
pf 32lu / d 2
hf 32lu/ d 2 ——泊谡叶方程
dy
dy
单位体积 流体计的 动量梯度
剪应力即动量通量等于运动粘度γ与单位体积动 量的梯度之积 。
2
§1-9 流动类型和雷诺数
一、雷诺实验
层流(滞流) 过渡流
湍流(紊流)
雷诺实验
层流:其质点作有规则的平行运 动,各质点互不碰撞,互不混合 湍流:其质点作不规则的杂乱运 动,并相互碰撞,产生大大小小 的旋涡。

d Re
柯尔布鲁克公式
Moody图ຫໍສະໝຸດ 34Moody图0.10 0.09 0.08 0.07 0.06 0.05
0.04
hf


l d
u2 2g
——范宁公式
64 64 du Re
λ与Re成反比 λ与τw无关
29
§1-16 湍流时的直管阻力损失 及因次分析法
Wf

l d
u2 2
要计算Wf 关键是找出λ值
湍流
( ) du
dy
ε涡流粘度
情况复杂得多,尚未
能得出λ的理论计算式
通过实验建立经验关系式 因次分析法
17
边界层分离 →大量旋涡 →消耗能量 →增大阻力
由于边界层分离造成的能量损失,称为形体阻力损失
边界层分离使系统阻力增大

化工原理课后习题答案(全)

化工原理课后习题答案(全)

绪论1解:换算因数: 1.010********/==⋅=⋅=⋅⋅⋅⋅⋅⋅⋅⋅sm kg s m s cm g sN m scm g spa scm g∴1g ⋅cm -1⋅s -1=0.1pa ⋅s 2.解:51001325.1Paatm ⨯= 1m N Pa 2=⋅- 1m N J =⋅ 3310m L -= ∴2321001325.1m J m N m N atm L ⨯=⋅⋅⋅⋅⋅⋅-∴21001325.1J atm L ⨯=⋅以J ·mol -1·K -1表示R 的值R =0.08206×1.01325×102 J ﹒mol -1﹒K -1=8.315 J ﹒mol -1﹒K -1第一章 流体流动1. 表压=-真空度=-4.8×104Pa 绝压=5.3×104 Pa2.解:设右侧水面到B ′点高为h 3,根据流体静力学基本方程可知P B =P B ′ 则ρ油gh 2=ρ水gh 3mm mkg mmm kg h 4921000600820h 3323=⋅⨯⋅==--水油ρρ h=h 1+h 3=892mm5解:以图中截面a-a ′为等压面,则P 啊=Pa ′ρ油g(h 1+h 0)=ρ油g(h 2-R+h 0) + ρ水银gR (h 0为水银压差计高液面与容器底部的高度差) ∴ h 2=h 1 + R - ρ水银R/ρ油 = 4 +0.2-13600*0.2/860 = 1.04m6解:h=P(表压)/ ρ水g =81.9*10001000*10 =1.02 m7.解:由公式AVsu =可得 Vs=uA=u πd 2/4=0.8×π×(57-3.5×2)2×10-6/4=1.57×10-3m 3/sWs=Vs ρ=1.57×10-3×1840=2.89kg/ss m kg u AWsG ⋅=⨯===2/147218408.0ρ 9解:以地面以下的水管所在的平面为基准水平面,则:fh Pu gz u P gz ∑+++=++ρρ2222211122Z 1=9m, u 1=0, P 1=P 2=P 0 ,Z 2=4m,u 2=u∴9.81*9=9.81*4+222u +40*222u∴u=1.55m/s,Vs=uA=1.55*3.1415926*0.0252=10.95m3/h 若Vs'=Vs*(1+25%)=1.25Vs,则u'=1.25u=1.9375m/s ∴Z 1-Z 2=7.86m,即将水箱再升高7.86-5=2.86m 10解:Vs=8m3/h 时,该系统管路中水的流速为u 1=4Vs/3600πd 2=4*8/3600*3.1415926*0.0532=1.008m/s以压力表处为截面1-1',水箱液面为截面2-2',并以截面1-1'为基准水平面,则:f h Pu gz u P gz ∑+++=++ρρ2222211122Z2-Z1=24m P2=0 u2=0∴P1=(234.93+∑h f )*1000而3424.5001.01000*008.1*053.0Re===μρduε/d=0.2/53=0.00377查表得λ=0.0282 ∴∑h f = (h f + ξ)﹒u 12/2 =(0.0282*100/0.053 + 1)* 1.0082/2 =27.54J/Kg ∴P 1=(234.93+27.54)*1000=0.262MPa即压力表的读数为0.262MPa 时才能满足进水量为8m3/h 的需要。

化工原理-第1章-流体流动

化工原理-第1章-流体流动

第二节 流体静力学
(1)作用在液柱上端面上的总压力
P1 p1( A方向向下)
(2)作用在液柱下端面上的总压力
P2 p2 A
(方向向上)
(静止状态,在垂直方向上的三个作用力的力 为零,即
p1 A gAZ1 Z 2 p2 A 0
第二节 流体静力学
2) kPa ;

(1——气体的绝对压力,
——气体的千摩尔质量,kg/kmol ; ——气体的热力学温度,K ; ——通用气体常数,8.314 kJ/(kmol· K); 下标0表示标准状态,即273 K、101.3 kPa。 任何气体的R值均相同。的数值,随所用P、V 、T等的 单位不同而异。选用R值时,应注意其单位。

第二节 流体静力学
在图1-3中,水平面A-B以下的管内都是指示液,设ApA pB B液面上作用的压力分别为 和 ,因为在相同流体的 p A pB 同一水平面上,所以与应相等。即: 根据流体静力学基本方程式分别对U管左侧和U管右侧 进行计算、整理得 (1-10) 由式1-10可知,压差( p p )只与指示液的位差读 数R及指示液同被测流体的密度差有关。 若被测流体是气体, 气体的密度比液体的密度小得 指 指 ,于是上式可简化为 多,即
第二节 流体静力学
混合液体的密度的准确值要用实验方法求得。如液体 混合时,体积变化不大,则混合液体密度的近似值可由下 式求得: (1-3) ——液体混合液的密度; ——混合液中各纯组分的密度; ——混合液中各纯组分的质量分数。
d4 (2)相对密度
20
d4
20
相对密度为流体密度与4℃时水的密度之比,用符号 表示,习惯称为比重。即 (1-4) 20

化工原理第一章管内流体流动的基本方程式-PPT精品

化工原理第一章管内流体流动的基本方程式-PPT精品
2019/9/3
【化工管道的油漆颜色】
介质
一次用 水
二次用 水
清下水 酸性下
水 蒸汽
20冷19/9凝/3 水
颜色 深绿色
浅绿色
淡蓝色 黑色
白点红 圈色 白色
介质 冷冻盐
水 压缩空
气 真空 物料
排气
油管
颜色 银灰色 深蓝色 黄色 深灰色 黄色 橙黄色
2019/9/3
(3)流速u的选定 适宜流速的选择应根据经济核算确定,通常可选
2019/9/3
u22 2g
p2 g
2 z2
(2)对于实际流体,在管路内流动时,应满足:
上游截面处的总机械能大于下游截面处的总机械
能。即:
g1 Zu212p 1gZ 2u222p2
【问题】为何水往低处流?
2019/9/3
(3)当体系处于静止状态时:
gz1
p1

g
z2

p2

丹尼尔的数学研究包含微积分、微分方程、概率、弦振动 理论,在气体运动论方面的尝试和应用数学领域中的许多其 它问题。丹尼尔被称为数学物理的奠基人。
伯努力家族的成员,有一半以上的天赋超越一般人的水准 ,至少超过120人以上的伯努力家族后裔,在法律、学术、科 学、文学、专门技术等方面享有名望。
2019/9/3
2019/9/3
② 若为实际流体,则:
Z1u 21 g 2p g 1HZ2u 22 g 2pg 2 H f [m]
ΣHf ——损失压头,流动阻力; H——输送设备对流体所提供的有效压头(外加压 头)。
2019/9/3
(6)计算过程中,静压强项P可以用绝对压强值代 入,也可以用表压强值代入。 (7)对于可压缩流体的流动,当所取系统两截面之 间的绝对压强变化小于原来压强的20%,即:

化工原理--流体流动

化工原理--流体流动

第一章流体流动1.1概述1.1.1 流体流动是各单元操作的基础化工生产中,经常应用流体流动的基本原理及其流动规律:流体的输送、压强、流速和流量的测定、为强化设备提供适宜的流动条件等。

流程分析:流体(水和煤气)在泵(或鼓风机)、流量计以及管道中流动等,是流体动力学问题。

流体在压差计,水封箱中的水处于静止状态,则是流体静力学问题。

为了确定流体输送管路的直径,需要计算流体流动过程产生的阻力和输送流体所需的动力。

根据阻力与流量等参数选择输送设备的类型和型号,以及测定流体的流量和压强等。

流体流动将影响系统中的传热、传质过程等,是其他单元操作的主要基础。

1.1.2 连续介质假定连续性假定:研究流体在静止和流动状态下的规律性时,常将流体视为由无数质点组成的连续介质。

所谓流体质点是指含有大量分子的极小单元或微团。

1.1.3 流体流动中的作用力在流体中任取一微元体积作为研究对象,进行受力分析,它受到的力有表面力和质量力两类。

表面力与作用的表面积成正比,单位面积上的表面力称之为应力。

通常可以将表面力分解为法向分力与切向分力,如图1.1.2所示。

法向应力总是垂直且指向流体微元之任一表面。

单位面积上的法向力又称之为压强。

单位面积上的切向力称之为剪切应力F c(N/m2)。

静止流体不能承受任何剪切力,所以,只有法向力。

1.1.4 流体的特征和密度及其压缩性流体:液体和气体统称为流体。

流体区别于固体的主要特征是具有流动性,其形状随容器形状而变化;受外力作用时内部产生相对运动。

密度是流体的物理性质。

液体的密度几乎不随压强而变化,但温度对液体密度有一定影响。

液体的密度可由实验测定或用查找手册计算的方法获取。

气体的密度随温度和压强而变化,而且比液体显著得多,因此要根据温度及压强条件来确定气体的密度。

1.2 流体静力学流体静力学主要研究流体在静止状态下所受的各种力之间的关系,实质上是讨论流体静止时其内部压强变化的规律。

1.2.1 流体的压强及其特性Array工程上,习惯上常常将压强称之为压力,流体的压力除了用不同的单位来计量外,还可以用如图所示的不同的计量基准来表示: 绝对压力、表压、真空度。

化工原理 第一章 流体流动

化工原理 第一章  流体流动

化工原理第一章流体流动第一章 流体流动一、流体流动的数学描述在化工生产中,经常遇到流体通过管道流动这一最基本的流体流动现象。

当流体在管内作稳定流动时,遵循两个基本衡算关系式,即质量衡算方程式和机械能衡算方程式。

质量衡算方程式在稳定的流动系统中,对某一划定体积而言,进入该体积的流体的质量流量等于流出该体积的质量流量。

如图1—1所示,若取截面1—1′、2—2′及两截面间管壁所围成的体积为划定体积,则ρρρuA A u A u ==222111 (1-1a)对不可压缩、均质流体(密度ρ=常数)的圆管内流动,上式简化为2221211ud d u d u == (1-1b)机械能衡算方程式在没有外加功的情况下,流动系统中的流体总是从机械能较高处流向机械能较低处,两处机械能之差为流体克服流动阻力做功而消耗的机械能,以下简称为阻力损失。

如图1—1所示,截面1—1′与2—2′间单位质量流体的机械能衡算式为f 21w Et Et += (1-2)式中 221111u p gz Et ++=ρ,截面1—1′处单位质量流体的机械能,J /kg ;222222u p gz Et ++=ρ,截面2—2′处单位质量流体的机械能,J /kg ;∑⎥⎦⎤⎢⎣⎡∑+∑=⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛∑+=2)(222f u d l l u d l w e λζλ,单位质量流体在划定体积内流动时的总阻力损失,J /kg 。

其中,λ为雷诺数Re 和相对粗糙度ε / d 的函数,即⎪⎪⎭⎫ ⎝⎛=d du εμρφλ,。

上述方程式中,若将Et 1、Et 2、w f 、λ视为中间变量,则有z 1、z 2、p 1、p 2、u 1、u 2、d 1、d 2、d 、u 、l 、∑ζ(或∑l e )、ε、ρ、μ等15个变量,而独立方程仅有式(1-1)(含两个独立方程)、式(1-2)三个。

因此,当被输送流体的物性(ρ,μ)已知时,为使方程组有唯一解,还需确定另外的10个变量,其余3个变量才能确定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

f(Red,)
02.11.2020
27
(4)完全湍流区 (虚线以上的区域)
λ与Re无关,只与 d 有关 。 d 一定时,Wf u2
该区又称为阻力平方区。
经验公式 :
(1)柏拉修斯(Blasius)式:
比较得
64 Re
02.11.2020
21
四、湍流时的摩擦系数 1. 因次分析法 目的:(1)减少实验工作量;
(2)结果具有普遍性,便于推广。 基础:因次一致性
即每一个物理方程式的两边不仅数值相等, 而且每一项都应具有相同的因次。
02.11.2020
22
基本定理:白金汉(Buckinghan)π定理 设影响某一物理现象的独立变量数为n个,
这些变量的基本因次数为m个,则该物理现象可 用N=(n-m)个独立的无因次数群表示。
湍流时压力损失的影响因素:
(1)流体性质:, (2)流动的几何尺寸:d,l,(管壁粗糙度)
(3)流动条件:u
02.11.2020
23
p f f,,u ,d ,l,
物理变量 n= 7 基本因次 m=3 无因次数群 N=n-m=4
lRe,u2
d d
(Re, )
d
02.11.2020
25
莫狄(Moody)摩擦因数图:
02.11.2020
26
(1)层流区(Re≤ 2000)
λ与 d无关,与Re为直线关系,即
64 Re
Wf u ,即 W f 与u的一次方成正比。
(2)过渡区(2000<Re<4000)
将湍流时的曲线延伸查取λ值 。 (3)湍流区(Re≥4000以及虚线以下的区域)
速度分布方程 umax(p14lp2)R2

u
1 2
umax
Rd 2
(p1 p2)3d22lu
pf
32lu
d2
——哈根-泊谡叶 (Hagen-Poiseuille)方程
02.11.2020
20
能量损失
Wf
32lu d 2
层流时阻力与速度的一次方成正比 。
变形: W f 3d 2 l2u6 d u 4d lu 2 2R 64 e d lu 2 2
n1 7
n 1 10
1/7次方定律
当 1n /7 次1 方定律时,流体的平均速度 :
7
u
VS A
0.82umax
02.11.2020
2
流体流动边界层 一、边界层的形成与发展
流动边界层:存在着较大速度梯度的流体层区域,
域。
即流速降为主体流速的99%以内的区
边界层厚度:边界层外缘与壁面间的垂直距离。
02.11.2020

8 u 2
02.11.2020
18

Wf
l u2
d2
J/kg
——直管阻力通式(范宁Fanning公式)
——摩擦系数(摩擦因数)
其它形式:
压头损失
hf
l
d
u2 2g
m
ቤተ መጻሕፍቲ ባይዱ压力损失
pf
l
d
u2
2
Pa
该公式层流与湍流均适用;
注意 p 与 p f 的区别。
02.11.2020
19
三、层流时的摩擦系数
3
流体在平板上流动时的边界层:
02.11.2020
4
边界层区(边界层内):沿板面法向的速度梯度 很大,需考虑粘度的影响,剪应力不可忽略。
主流区(边界层外):速度梯度很小,剪应力可 以忽略,可视为理想流体 。
02.11.2020
5
边界层流型:层流边界层和湍流边界层。
层流边界层:在平板的前段,边界层内的流型为层流。
Wf (p 1z1g)(p 2z2g)
流体的流动阻力表现为静压能的减少;
水平安装时,流动阻力恰好等于两截面的静压 能之差。
02.11.2020
17
二、直管阻力的通式
由于压力差而产生的推动力:
p1
p2
d 2
4
流体的摩擦力: FAd l
定态流动时
(p1 p2)d42 dl
Wf
4l d
Wf
8 u2
l u2 d2
即该过程可用4个无因次数群表示。
无因次化处理
pf
u2
du,
l, d
d
式中:Eu p f ——欧拉(Euler)准数
u 2
02.11.2020
24
Re du ——雷诺数
l d ——管道的几何尺寸
d ——相对粗糙度
根据实验可知,流体流动阻力与管长成正比,即
pf
u2
l Re,
d d

Wf pf
10
2. 边界层的分离
A
02.11.2020
B
S
11
A →C:流道截面积逐渐减小,流速逐渐增加,压 力逐渐减小(顺压梯度);
C → S:流道截面积逐渐增加,流速逐渐减小,压 力逐渐增加(逆压梯度);
S点:物体表面的流体质点在逆压梯度和粘性剪应 力的作用下,速度降为0。
SS’以下:边界层脱离固体壁面,而后倒流回来, 形成涡流,出现边界层分离。
局部阻力:流体流经管件、阀门等局部地方由于流速 大小及方向的改变而引起的阻力。
1.4.1 直管阻力 一、阻力的表现形式
02.11.2020
15
流体在水平等径直管中作定态流动。
z1g1 2u12p 1z2g1 2u22p 2W f
02.11.2020
16
u1u2 z1 z2
Wf
p1 p2
若管道为倾斜管,则
湍流时的速度分布
.
剪应力 : ( e) d u
dy
e为湍流粘度,与流体的流动状况有关。
湍流速度分布 的经验式:
.
u
umax1
r n
R
02.11.2020
1
n与Re有关,取值如下:
4 104 Re 1.1105 , 1.1105 Re 3.2 106 ,
Re 3.2 106
n1 6
湍流边界层:离平板前沿一段距离后,边界层内的流型
转为湍流。
02.11.2020
6
流体在圆管内流动时的边界层
02.11.2020
7
充分发展的边界层厚度为圆管的半径; 进口段内有边界层内外之分 。 也分为层流边界层与湍流边界层。
进口段长度: 层流:x0 d 0.05Re 湍流:x0 d 40~50
02.11.2020
8
湍流流动时:
02.11.2020
9
湍流主体:速度脉动较大,以湍流粘度为主,径向 传递因速度的脉动而大大强化;
过渡层:分子粘度与湍流粘度相当;
层流内层:速度脉动较小,以分子粘度为主,径向 传递只能依赖分子运动。
——层流内层为传递过程的主要阻力
Re越大,湍动程度越高,层流内层厚度越薄。
02.11.2020
02.11.2020
12
边界层分离的必要条件: 流体具有粘性; 流动过程中存在逆压梯度。
边界层分离的后果: 产生大量旋涡; 造成较大的能量损失。
02.11.2020
13
流体流动阻力
直管阻力 局部阻力
02.11.2020
14
1.4 流体流动阻力
直管阻力:流体流经一定直径的直管时由于内摩擦而 产生的阻力;
相关文档
最新文档