初三数学提高性试题

合集下载

最新怎样提高初三数学压轴题

最新怎样提高初三数学压轴题

最新怎样提高初三数学压轴题初三数学压轴题解题方法技巧1、以坐标系为桥梁,运用数形结合思想纵观最近几年各地的中考压轴题,绝大部分都是与坐标系有关的,其特点是通过建立点与数即坐标之间的对应关系,一方面可用代数方法研究几何图形的性质,另一方面又可借助几何直观,得到某些代数问题的解答。

2、以直线或抛物线知识为载体,运用函数与方程思想直线与抛物线是初中数学中的两类重要函数,即一次函数与二次函数所表示的图形。

因此,无论是求其解析式还是研究其性质,都离不开函数与方程的思想。

例如函数解析式的确定,往往需要根据已知条件列方程或方程组并解之而得。

3、利用条件或结论的多变性,运用分类讨论的思想分类讨论思想可用来检测学生思维的准确性与严密性,常常通过条件的多变性或结论的不确定性来进行考察。

有些问题,如果不注意对各种情况分类讨论,就有可能造成错解或漏解,纵观近几年的中考压轴题分类讨论思想解题已成为新的热点。

4、综合多个知识点,运用等价转换思想任何一个数学问题的解决都离不开转换的思想,初中数学中的转换大体包括由已知向未知,由复杂向简单的转换,而作为中考压轴题,更注意不同知识之间的联系与转换。

中考压轴题所考察的并非孤立的知识点,也并非个别的思想方法,它是对考生综合能力的一个全面考察。

因此有的考生对压轴题有一种恐惧感,认为自己的水平一般,做不了,当然也就得不到应得的分数,为了提高压轴题的得分率,考试中还需要有一种分题、分段的得分策略。

5、分题得分中考压轴题一般在大题下都有两至三个小题,难易程度是第(1)小题较易,第(2)小题中等,第(3)小题偏难,在解答时要把第(1)小题的分数一定拿到,第(2)小题的分数要力争拿到,第(3)小题的分数要争取得到,这样就大大提高了获得中考数学高分的可能性。

6、分段得分一道中考压轴题做不出来,不等于一点不懂,一点不会,要将片段的思路转化为得分点,因此,要强调分段得分,最大限度地发挥自己的水平,把中考数学的压轴题变成最有价值的压台戏。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.的倒数是( ) A .B .C .2D .2.若一个正n 边形的每个内角为156°,则这个正n 边形的边数是( ) A .13 B .14 C .15 D .163.小明在白纸上任意画了一个锐角,他画的角在45º到60º之间的概率是( ) A . B . C . D .4.(2011•淮安)如图,反比例函数的图象经过点A (﹣1,﹣2).则当x >1时,函数值y 的取值范围是( )A .y >1B .0<y <lC .y >2D .0<y <25.学校要组织足球比赛,赛制为单循环形式(每两队之间赛一场),计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,下面所列方程正确的是( ). A .B .C .D .6.如图,在△ABC 中,∠ACB =90º,AC >BC ,分别以AB 、BC 、CA 为一边向△ABC 外作正方形ABDE 、BCMN 、CAFG ,连接EF 、GM 、ND ,设△AEF 、△BND 、△CGM 的面积分别为S 1、S 2、S 3,则下列结论正确的是( )A .S 1=S 2=S 3B .S 1=S 2<S 3C .S 1=S 3<S 2D .S 2=S 3<S 1 7.下列运算正确的是 ……………………………………………( ) A .B .C .D .8.如图,已知∠ABC =∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A =∠DB .AB =DC C .∠ACB =∠DBCD .AC =BD 9.矩形具有而菱形不一定具有的性质是 ( ) A .两组对边分别平行 B .对角线相等C.对角线互相平分D.两组对角分别相等10.菱形ABCD一条对角线长为6,边AB长为方程y2﹣7y+10=0的一个根,则菱形ABCD周长为()A.8 B.20 C.8或20 D.10二、判断题11.某中学为促进课堂教学,提高教学质量,对七年级学生进行了一次“你最喜欢的课堂教学方式”的问卷调查.根据收回的问卷,学校绘制了如下图表,请你根据图表中提供的信息,解答下列问题.(1)请把三个图表中的空缺部分都补充完整;(2)你最喜欢以上哪一种教学方式或另外的教学方式,请提出你的建议,并简要说明理由(字数在20字以内).12.一商店1月份的利润是2500元,3月份的利润达到3025元,这两个月的利润平均月增长的百分率是多少?13.为缓解交通拥堵,某区拟计划修建一地下通道,该通道一部分的截面如图所示(图中地面与通道平行),通道水平宽度为8米,,通道斜面的长为6米,通道斜面的坡度.(1)求通道斜面的长为米;(2)为增加市民行走的舒适度,拟将设计图中的通道斜面的坡度变缓,修改后的通道斜面的坡角为30°,求此时的长.(结果保留根号)14.计算15.如图,以线段AB为直径的⊙O交线段AC于点E,点M是 AE 的中点,OM交AC于点D,BC=2∠BOE=60°,∠C=60°.(1)求∠A的度数;(2)求证:BC是⊙O的切线;(3)求MD的长度.评卷人得分三、填空题16.对于实数a,b,定义运算“﹡”:a﹡b=例如4﹡2,因为4>2,所以4﹡2.若是一元二次方程的两个根,则﹡=17.如图,光源P在横杆AB的上方,AB在灯光下的影子为CD,AB∥CD,若PA=2cm,PC="6" cm ,AB=3cm,那么CD=_______cm.18.分解因式:2x2-2=___________________。

初三数学试卷带答案解析

初三数学试卷带答案解析

初三数学试卷带答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.在Rt △ABC 中,∠C=90°,若sinA=,则cosB 的值是( )A .B .C .D .2.某村原有林地108公顷,旱地54公顷,为保护环境,需把一部分旱地改造为林地,使旱地面积占林地面积的20%.设把x 公顷旱地改为林地,则可列方程( ) A .54-x=20%×108B .54-x=20%(108+x )C .54+x=20%×162D .108-x=20%(54+x )3.(2014湖北武汉)如图,线段AB 两个端点的坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB 缩小为原来的后得到线段CD ,则端点C 的坐标为( )A .(3,3)B .(4,3)C .(3,1)D .(4,1) 4.(本题8分) 先化简,再求值:,其中a=-2.5.方程的根为( )A .3B .4C .4或3D .或36. 如图,AB 为⊙O 的直径,点C 在⊙O 上,若∠C=,则∠BOC 的度数是( )A.B.C.D.7.如图,直线a∥b,c是截线,∠1的度数是()A.55° B.75° C.110° D.125°8.班主任为了解学生星期六、日在家的学习情况,家访了班内的六位学生,了解到他们在家的学习时间如下表所示.那么这六位学生学习时间的众数与中位数分别是学生姓名小丽小明小颖小华小乐小恩学习时间(小时)463458A.4小时和4.5小时B.4.5小时和4小时C.4小时和3.5小时D.3.5小时和4小时9.下面各角能成为某多边形的内角和是()A.4300° B.4343° C.4320° D.4360°10.在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是()A. B. C. D.二、判断题11.为支援灾区,某学校爱心活动小组准备和筹集的资金购买A、B两种型号的学习用品共1000件.已知B型学习用品的单价比A型学习用品的单价多10元,用180元购买B型学习用品的件数与用120元购买A型学习用品的件数相同.(1)求A、B两种学习用品的单价各是多少元?(2)若购买这批学习用品的费用不超过28000元,则最多购买B型学习用品多少件?12.提出问题在一个图形上画一条直线,若这条直线既平分该图形的面积,又平分该图形的周长,我们称这条直线为这个图形的“等分积周线”.探究问题(1)如图①,在中,,,,请你过点画出的一条“等分积周线”,与交于点,并求出的长;(2)如图②,在中,,且,过点画一条直线,其中点为上一点,你觉得可能是的“等分积周线”吗?请说明理由;解决问题(3)西安市区的环境越来越美,随处可见的街心花园成为人们休闲的好去处.在某地的街心花园中有一块如图③所示的空地,其中,,,,现要在这块空地上修建一条笔直的水渠(渠宽不计),使这条水渠所在的直线既平分四边形的周长,又平分四边形的面积,且要求这条水渠必须经过边.请你画出所有满足条件的水渠,说明理由,并求出该水渠与边的交点到点的距离.13.如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.(1)求证:∠BDC=∠A;(2)若CE=4,DE=2,求AD的长.14.如图,点E为矩形ABCD中AD边中点,将矩形ABCD沿CE折叠,使点D落在矩形内部的点F处,延长CF交AB于点G,连接AF.(1)求证:AF∥CE;(2)探究线段AF,EF,EC之间的数量关系,并说明理由;(3)若BC=6,BG=8,求AF的长.15.某商店购进一批单价为20元的日用品,如果以单价30元销售,那么半个月内可以售出400件.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高1元,销售量相应减少20件.问如何提高售价,才能在半个月内获得最大利润?三、填空题16.下列说法中,正确的是_____(填序号).①一年有365天,如果你随便说出一天,恰好是我的生日,这是绝对不可能的.②一个自然数不是偶数便是奇数,这是必然的.③有理数中不是正数,就一定是负数.④在一个袋子里装有形状和大小都相同的5个红球和3个黑球,从中随机摸出一个,那么摸出红球的可能性要比摸出黑球的可能性大. ⑤若每500000张彩票有一个特等奖,小明前去买了1张,那么他是不可能中特等奖的.17.在Rt △ABC 的直角边AC 边上有一动点P (点P 与点A ,C 不重合),过点P 作直线截得的三角形与△ABC 相似,满足条件的直线最多有 _条.18.点A(2,y 1)、B(3,y 2)是二次函数y =x 2-2x +1的图象上两点,则y 1与y 2的大小关系为y 1________y 2(填“>”、“<”、“=”).19.如图,等腰Rt △ABC 中,∠ACB=90°,AC=BC=1,且AC 边在直线a 上,将△ABC 绕点A 顺时针旋转到位置①可得到点P 1,此时AP 1=;将位置①的三角形绕点P 1顺时针旋转到位置②,可得到点P 2,此时AP 2=1+;将位置②的三角形绕点P 2顺时针旋转到位置③,可得到点P 3,此时AP 3=2+;…,按此规律继续旋转,直至得到点P 2014为止.则AP2014= .20.若代数式有意义,则x 的取值范围是________. 四、计算题21.计算:;22.某学校课程安排中,各班每天下午只安排三节课.(1)初一(1)班星期二下午安排了数学、英语、生物课各一节,通过画树状图求出把数学课安排在最后一节的概率;(2)星期三下午,初二(1)班安排了数学、物理、政治课各一节,初二(2)班安排了数学、语文、地理课各一节,此时两班这六节课的每一种课表排法出现的概率是.已知这两个班的数学课都有同一个老师担任,其他课由另外四位老师担任.求这两个班数学课不相冲突的概率(直接写结果). 五、解答题23.在正方形网格中以点A为圆心,AB为半径作圆A交网格于点C(如图(1)),过点C作圆的切线交网格于点D,以点A为圆心,AD为半径作圆交网格于点E(如图(2)).问题:(1)求∠ABC的度数;(2)求证:△AEB≌△ADC;(3)△AEB可以看作是由△ADC经过怎样的变换得到的?并判断△AED的形状(不用说明理由).(4)如图(3),已知直线a,b,c,且a∥b,b∥c,在图中用直尺、三角板、圆规画等边三角形A′B′C′使三个顶点A′,B′,C′,分别在直线a,b,c上.要求写出简要的画图过程,不需要说明理由.24.已知抛物线y=x2+bx+c过点(-6,-2),与y轴交于点C,且对称轴与x轴交于点B(-2,0),顶点为A.(1)求该抛物线的解析式和A点坐标;(2)若点D是该抛物线上的一个动点,且使△DBC是以B为直角顶点BC为腰的等腰直角三角形,求点D坐标;(3)若点M是第二象限内该抛物线上的一个动点,经过点M的直线MN与y轴交于点N,是否存在以O、M、N为顶点的三角形与△OMB全等?若存在,请求出直线MN的解析式;若不存在,请说明理由.参考答案1 .【解析】试题分析:在Rt△ABC中,∵∠C=90°,∴∠A+∠B=90°,∴cosB=sinA,∵sinA=,∴cosB=.故选:B.考点:1、同角三角函数的关系;2、互余两角三角函数的关系2 .B.【解析】试题解析:设把x公顷旱地改为林地,根据题意可得方程:54-x=20%(108+x).故选B.考点:一元一次方程的应用.3 .A 【解析】∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的坐标为(3,3).故选A.4 .见解析【解析】原式=--------------------3分==a-1----------------------------------------------5分∵a≠0,a≠1,a≠-2,---------------------------------7分∴当a=-2时,原分式无意义。

江苏初三初中数学专题试卷带答案解析

江苏初三初中数学专题试卷带答案解析

江苏初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、解答题1.如图,在平面直角坐标系中,已知点A(8,1)、B(0,-3),反比例函数y=(x>0)的图像经过点A,过点(t,0)且平行于y轴的直线(0<t<8),与反比例函数的图像交于点M,与直线AB交于点N.(1)当t=2时,求△BMN面积;(2)若MA⊥AB,求t的值。

2.甲、乙两人沿同一路线登山,图中线段OC、折线OAB分别是甲、乙两人登山的路程y(米)与登山时间x (分)之间的函数图象.请根据图象所提供的信息,解答如下问题:(1)求甲登山的路程与登山时间之间的函数关系式,并写出自变量x的取值范围;(2)求乙出发后多长时间追上甲?此时乙所走的路程是多少米?3.如图,已知点A、C在反比例函数的图象上,点B、D在反比例函数(0<<4)的图象上,AB∥CD∥x 轴,AB、CD在x轴的两侧,A、C的纵坐标分别为()、().(1)若,求证:四边形ABCD为平行四边形;(2)若AB=,CD=,,求的值.4.某天早晨,张强从家跑步去体育锻炼,同时妈妈从体育场晨练结束回家,途中两人相遇,张强跑到体育场后发现要下雨,立即按原路返回,遇到妈妈后两人一起回到家(张强和妈妈始终在同一条笔直的公路上行走).如图是两人离家的距离y(米)与张强出发的时间x(分)之间的函数图象,根据图象信息解答下列问题:(1)求张强返回时的速度;(2)妈妈比按原速返回提前多少分钟到家?(3)请直接写出张强与妈妈何时相距1000米?5.如图,已知点A在反比例函数上,作Rt△ABC,点D为斜边AC的中点,连DB并延长交y轴于点E ,若△BCE 的面积为8。

(1)求证:△EOB ∽△ABC ;(2)求反比例函数的解析式。

6.如图,在直角坐标系xOy 中,一直线y=2x+b 经过点A (-1,0)与y 轴正半轴交于B 点,在x 轴正半轴上有一点D ,且OB=OD ,过D 点作DC ⊥x 轴交直线y=2x+b 于C 点,反比例函数y=(x >O )经过点C . (1)求b ,k 的值;(2)求△BDC 的面积;(3)在反比例函数y=(x >0)的图象上找一点P (异于点C ),使△BDP 与△BDC 的面积相等,求出P 点坐标.7.同时点燃甲乙两根蜡烛,蜡烛燃烧剩下的长度y (cm )与燃烧时间x (min )的关系如图所示.(1)求乙蜡烛剩下的长度y 与燃烧时间x 的函数表达式;(2)求点P 的坐标,并说明其实际意义;(3)求点燃多长时间,甲蜡烛剩下长度是乙蜡烛剩下长度的1.1倍.8.如图,在平面直角坐标系xOy 中,一次函数y=ax+b 的图象与x 轴相交于点A (-2,0),与y 轴交于点C ,与反比例函数在第一象限内的图象交于点B (m ,n ),连结OB .若S △AOB =6,S △BOC =2.(1)求一次函数的表达式;(2)求反比例函数的表达式.9.某工厂甲、乙两个车间同时开始生产某种产品,产品总任务量为m 件,开始甲、乙两个车间工作效率相同.乙车间在生产一段时间后,停止生产,更换新设备,之后工作效率提高.甲车间始终按原工作效率生产.甲、乙两车间生产的产品总件数y 与甲的生产时间x (时)的函数图象如图所示.(1)甲车间每小时生产产品 件,a= . (2)求乙车间更换新设备之后y 与x 之间的函数关系式,并求m 的值.(3)若乙车间在开始更换新设备时,增加两名工作人员,这样可便更换设备时间减少0.5小时,并且更换后工作效率提高到原来的2倍,那么两个车间完成原任务量需几小时?10.如图,四边形ABCD为正方形,点A的坐标为(0,2),点B的坐标为(0,-3),反比例函数的图象经过点C,一次函数y=ax+b的图象经过点A、C(1)求反比例函数和一次函数的解析式(2)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,请直接写出P点的坐标. 11.有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.12.一列快车由甲地开往乙地,一列慢车由乙地开往甲地, 两车同时出发,匀速运动.快车离乙地的路程y(km)与行驶1(km)与行驶的时间x(h)之间的函数关系,如的时间x(h)之间的函数关系,如图中线段AB所示;慢车离乙地的路程y2图中线段OC所示。

初三数学试题答案及答案

初三数学试题答案及答案

初三数学试题答案及答案一、选择题(每题3分,共30分)1. 下列哪个选项是二次函数的一般形式?A. y = ax^2 + bx + cB. y = a^x + bx + cC. y = ax^2 + bx + c^xD. y = ax + bx + c答案:A2. 一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 6C. 7D. 8答案:A3. 一个数的平方根是它本身,这个数是?A. 0B. 1C. -1D. 2答案:A4. 下列哪个选项是不等式的基本性质?A. 如果a > b,那么a + c > b + cB. 如果a > b,那么ac > bcC. 如果a > b,那么a/c > b/cD. 如果a > b,那么a^2 > b^2答案:A5. 一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 75πD. 100π答案:B6. 一个等腰三角形的底角是45度,那么顶角是多少度?A. 45度B. 60度C. 90度D. 120度答案:C7. 一个数的立方根是它本身,这个数是?A. 0B. 1C. -1D. 8答案:A8. 一个等差数列的前三项分别是2,5,8,那么第四项是多少?A. 11B. 12C. 13D. 14答案:A9. 一个二次方程ax^2 + bx + c = 0的判别式是?A. b^2 - 4acB. b^2 + 4acC. a^2 - 4bcD. a^2 + 4bc答案:A10. 一个正多边形的内角和是720度,那么这个多边形有多少条边?A. 4B. 5C. 6D. 7答案:C二、填空题(每题3分,共15分)11. 一个数的绝对值是5,这个数可能是________。

答案:±512. 一个等腰三角形的顶角是100度,那么它的底角是________。

答案:40度13. 一个二次方程的根的和是-3,根的积是6,那么这个二次方程可能是________。

初三数学提高(内容:全等三角形 相似三角形 三个二次:二次根式 一元二次方程 二次函数)

初三数学提高(内容:全等三角形  相似三角形   三个二次:二次根式  一元二次方程  二次函数)

内容:全等三角形 相似三角形 三个二次:二次根式 一元二次方程 二次函数 考点一、全等三角形 (3~8分) 1、全等三角形的概念能够 的两个图形叫做全等形。

能够 的两个三角形叫做全等三角形。

两个三角形全等时,互相重合的顶点叫做对应顶点,互相重合的边叫做对应边,互相重合的角叫做对应角。

就是三角形中相邻两角的公共边, 就是三角形中有公共端点的两边所成的角。

2、全等三角形的表示和性质全等用符号“≌”表示,读作“全等于”。

如△ABC ≌△DEF ,读作“三角形ABC 全等于三角形DEF ”。

注:记两个全等三角形时,通常把表示 写在对应的位置上。

3、三角形全等的判定(1SAS ”) (2ASA ”) (3”)。

4(1(2(3基础1. ∴AB =DE ( )2.如图, 已知AB=AC, BE ⊥AC 于E, CF ⊥AB 于F, BE 、CF 交于点D. 求证: (1)△ABE ≌△ACF; (2)点D 在∠BAC 的平分线上.3. 已知如图,E 、F 在BD 上,且AB =CD ,BF =DE ,AE =CF求证:AC 与BD 互相平分A BEO F巩固如图∠ABC=900,AB=BC ,AE 是角平分线,CD ⊥AE 于D 。

求证:CD = 21AE 提高1.如图,在等腰Rt ABC △中,908C AC ∠==°,,F 是AB 边上的中点,点D 、E 分别在AC 、BC 边①DFE △③DE A .①②③2.3. (1) (2)FDECB AC4.如图甲,在ABC △中,ACB ∠为锐角,点D 为射线BC 上一点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .如果AB AC =,90BAC =∠,解答下列问题:①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF BD ,之间的位置关系为 ,数量关系为 .②当点D 在线段BC 的延长线时,请画出图形,①中的结论是否仍然成立,为什么?1234512、计算: (1) 25341122÷⨯3.2(-C(三)精讲点拨在二次根式的计算、化简及求值等问题中,常运用以下几个式子:(1)22(0)(0)a a a a =≥=≥与(2)⎪⎩⎪⎨⎧<-=>==0a a 0a 00a a 2a a (30,0)0,0)a b a b =≥≥≥≥(40,0)0,0)a b a b =≥>=≥>(5)(a 12、已知1(1(2A 4-≥x B 2>x C 24≠-≥x x 且 D 24≠->x x 且(3)下列各运算,正确的是( )A 565352=⋅B 532592519==⎪⎭⎫⎝⎛-⨯- C ()12551255-⨯-=-⨯- D y x y x y x +=+=+2222(40)y >是二次根式,化为最简二次根式是( )0)y >B0)y >0)y > D .以上都不对 (5)化简2723-的结果是()33A B C D --2、计算.(1)453227+-(3)3、已知a 1(1)=a A a,b(2A35(3)把(A B CD-2、计算: (1)5426362+-- (2) (3)22(-3、归纳与猜想:观察下列各式及其验证过程:= = (1)按上述两个等式及其验证过程的基本思路,猜想1544的变化结果并进行验证.(2)针对上述各式反映的规律,写出n(n 为任意自然数,且n ≥2)表示的等式并进行验证.1.通常 数项23 例如:不解方程,判断下列方程根的情况:(1) x(5x+21)=20 (2) x 2+9=6x (3)x 2—3x = —54.设一元二次方程ax 2+bx +c =0 (a ≠0)的两个根分别为x 1,x 2 则x 1 +x 2= ;x 1 ²x 2= ____________ 例如:方程2x 2+3x —2=0的两个根分别为x 1,x 2 则x 1+x 2= ;x 1 ²x 2= _________交流提高请形成本章的知识结构。

中考数学试卷含答案初三九年级数学试题

中考数学试卷含答案初三九年级数学试题

中考数学试卷一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+93.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣34.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.85.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.27.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:559.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为克.12.一个多边形的每一个外角都是18°,这个多边形的边数为.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为cm.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有(只填序号)三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.17.(7分)先化简,再求值:÷(﹣),其中a =+2.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为人;(2)由表中的数据可知:a=,b=;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.中考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)每小题给出的四个选项中,只有一个是符合题意的.1.﹣3的绝对值是()A.±3B.﹣3C.3D.【分析】根据绝对值的定义回答即可.【解答】解:﹣3的绝对值是3.故选:C.【点评】本题主要考查了绝对值得定义,一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解答此题的关键.2.下列运算中正确的是()A.(a2)3=a5B.(2x+1)(2x﹣1)=2x2﹣1C.a8a2=a4D.(a﹣3)2=a2﹣6a+9【分析】根据幂的乘方、同底数幂的乘法、平方差公式和完全平方公式分别求出每个式子的值,再判断即可.【解答】解:A、结果是a6,故本选项不符合题意;B、结果是4x2﹣1,故本选项不符合题意;C、结果是a10,故本选项不符合题意;D、结果是a2﹣6a+9,故本选项符合题意;故选:D.【点评】本题考查了幂的乘方、同底数幂的乘法、平方差公式和完全平方公式等知识点,能正确求出每个式子的值是解此题的关键.3.已知关于x的一元一次方程2(x﹣1)+3a=3的解为4,则a的值是()A.﹣1B.1C.﹣2D.﹣3【分析】将x=4代入方程中即可求出a的值.【解答】解:将x=4代入2(x﹣1)+3a=3,∴2×3+3a=3,∴a=﹣1,故选:A.【点评】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.4.某小组长统计组内5人一天在课堂上的发言次数分別为3,3,0,4,5.关于这组数据,下列说法错误的是()A.众数是3B.中位数是0C.平均数3D.方差是2.8【分析】根据方差、众数、平均数、中位数的含义和求法,逐一判断即可.【解答】解:将数据重新排列为0,3,3,4,5,则这组数的众数为3,中位数为3,平均数为=3,方差为×[(0﹣3)2+2×(3﹣3)2+(4﹣3)2+(5﹣3)2]=2.8,故选:B.【点评】本题考查了众数、中位数、平均数以及方差,解题的关键是牢记概念及公式.5.如图是由几个相同小正方体组成的立体图形的俯视图,图上的数字表示该位置上方小正方体的个数,这个立体图形的左视图是()A.B.C.D.【分析】根据从左边看得到的图形是左视图,可得答案.【解答】解:根据该几何体中小正方体的分布知,其左视图共2列,第1列有1个正方形,第2列有3个正方形,故选:B.【点评】本题考查了简单组合体的三视图,从左边看得到的图形是左视图.6.一元一次不等式组的最大整数解是()A.﹣1B.0C.1D.2【分析】求出不等式组的解集,即可求出正最大整数解;【解答】解:,由①得到:2x+6﹣4≥0,∴x≥﹣1,由②得到:x+1>3x﹣3,∴x<2,∴﹣1≤x<2,∴最大整数解是1,故选:C.【点评】本题考查一元一次不等式组的整数解,解题的关键是熟练掌握解不等式组的方法,属于中考常考题型.7.如图,⊙O是正五边形ABCDE的外接圆,点P是的一点,则∠CPD的度数是()A.30°B.36°C.45°D.72°【分析】连接OC,OD.求出∠COD的度数,再根据圆周角定理即可解决问题;【解答】解:如图,连接OC,OD.∵ABCDE是正五边形,∴∠COD==72°,∴∠CPD=∠COD=36°,故选:B.【点评】本题考查正多边形和圆、圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.8.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:55【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.9.如图为一次函数y=ax﹣2a与反比例函数y=﹣(a≠0)在同一坐标系中的大致图象,其中较准确的是()A.B.C.D.【分析】根据题意列出方程组,根据一元二次方程解的情况判断..【解答】解:ax﹣2a=﹣,则x﹣2=﹣,整理得,x2﹣2x+1=0,△=0,∴一次函数y=ax﹣2a与反比例函数y=﹣只有一个公共点,故选:B.【点评】本题主要考查了反比例函数的图象性质和一次函数的图象性质,要掌握它们的图象和性质,函数图象的交点的求法是解题的关键.10.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【分析】根据题目中的新规定和二次函数的性质、不等式的性质,可以判断各个选项中的结论是否正确,本题得以解决.【解答】解:∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣1+,x2=﹣1﹣,故选项B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+)2+>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选:D.【点评】本题考查抛物线与x轴的交点、非负数的性质、解一元一次方程、解一元一次不等式,解答本题的关键是明确题意,可以判断各个选项中的说法是否正确.二、填空题(每小题3分,共15分)把正确答案直接填写在答题卡对应题目的横线上.11.某物体质量为325000克,用科学记数法表示为 3.25×105克.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:某物体质量为325000克,用科学记数法表示为3.25×105克.故答案为:3.25×105.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.一个多边形的每一个外角都是18°,这个多边形的边数为二十.【分析】根据多边形的外角和为360°,求出多边形的边数即可.【解答】解:设正多边形的边数为n,由题意得,n×18°=360°,解得:n=20.故答案为:二十.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.13.如图,∠A=22°,∠E=30°,AC∥EF,则∠1的度数为52°.【分析】依据∠E=30°,AC∥EF,即可得到∠AGH=∠E=30°,再根据∠1是△AGH的外角,即可得出∠1=∠A+∠AGH=52°.【解答】解:如图,∵∠E=30°,AC∥EF,∴∠AGH=∠E=30°,又∵∠1是△AGH的外角,∴∠1=∠A+∠AGH=22°+30°=52°,故答案为:52°.【点评】本题主要考查了平行线的性质,解题时注意:两条平行线被第三条直线所截,内错角相等.14.如图是一块测环形玉片的残片,作外圆的弦AB与内圆相切于点C,量得AB=8cm、点C与的中点D的距离CD=2cm.则此圆环形士片的外圆半径为5cm.【分析】根据垂径定理求得AC=4cm,然后根据勾股定理即可求得半径.【解答】解:如图,连接OA,∵CD=2cm,AB=8cm,∵CD⊥AB,∴OD⊥AB,∴AC=AB=4cm,∴设半径为r,则OD=r﹣2,根据题意得:r2=(r﹣2)2+42,解得:r=5.∴这个玉片的外圆半径长为5cm.故答案为:5.【点评】本题考查了垂径定理的应用以及勾股定理的应用,作出辅助线构建直角三角形是本题的关键.15.如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,以点A为原点建立平面直角坐标系,使AB在x轴正半轴上,点D是AC边上的一个动点,DE∥AB交BC于E,DF⊥AB于F,EG⊥AB 于G.以下结论:①△AFD∽△DCE∽△EGB;②当D为AC的中点时,△AFD≌△DCE;③点C的坐标为(3.2,2.4);④将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1的坐标为(1.6,4.8);⑤矩形DEGF的最大面积为3.在这此结论中正确的有①③⑤(只填序号)【分析】①正确,根据两角对应相等的两个三角形相似即可判断;②错误.根据斜边不相等即可判断;③正确.求出点C坐标即可判断;④错误.求出点B1即可判断;⑤正确.首先证明四边形DEGF是矩形,推出DF=EG,DE=FG,设DF=EG=x,构建二次函数,利用二次函数的性质即可判断;【解答】解:如图,作CH⊥AB于H.∵DF⊥AB于F,EG⊥AB于G,∴∠AFD=∠DCE=∠EGB=90°,∵DE∥AB,∴∠CDE=∠DAF,∠CED=∠EBG,∴△AFD∽△DCE∽△EGB;故①正确;当AD=CD时,∵DE>CD,∴DE>AD,∴△AFD与△DCE不全等,故②错误,在Rt△ACB中,∵AC=4,BC=3,∴AB=5,CH===2.4,∴AH==3.2,∴C(3.2,2.4),故③正确,将△ABC沿AC所在的直线翻折到原来的平面,点B的对应点B1,设B1为(m,n),则有=3.2,m=1.4,=2.4,n=4.8,∴B1(1.4,4.8),故④错误;∵DF⊥AB于F,EG⊥AB于G,∴DF∥EG,∵DE∥AB,∴四边形DEGF是平行四边形,∵∠DFG=90°,∴四边形DEGF是矩形,∴DF=EG,DE=FG,设DF=EG=x,则AF x,BG=x,∴DE=FG=5﹣x﹣x=5﹣x,∵S矩形DEGF=x(5﹣x)=﹣x2+5x,∵﹣<0,∴S的最大值==3,故⑤正确,综上所述,正确的有:①③⑤,故答案为①③⑤.【点评】本题考查相似三角形综合题、全等三角形的判定和性质、矩形的判定和性质、二次函数的性质等知识,解题的关键是灵活运用所学知识解决问题,学会构建二次函数,解决最值问题,属于中考压轴题.三、解答题(共75分)要求写出必安的解答步骤或证明过程.16.(6分)计算:+(sin75°﹣2018)0﹣(﹣)﹣2﹣4cos30°.【分析】根据零指数幂的意义、负整数指数幂的意义以及特殊角锐角三角函数的值即可求出答案.【解答】解:原式=2+1﹣(﹣3)2﹣4×=2+1﹣9﹣2=﹣8【点评】本题考查实数的运算,解题的关键是熟练运用有关运算性质,本题属于基础题型.17.(7分)先化简,再求值:÷(﹣),其中a=+2.【分析】原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将a的值代入计算即可求出值.【解答】解:÷(﹣),=÷,=÷,=•,=.当a =+2时,原式==1+2.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.(7分)如图,在菱形ABCD中,过B作BE⊥AD于E,过B作BF⊥CD于F.求证:AE=CF.【分析】根据菱形的性质和全等三角形的判定和性质解答即可.【解答】证明:∵菱形ABCD,∴BA=BC,∠A=∠C,∵BE⊥AD,BF⊥CD,∴∠BEA=∠BFC=90°,在△ABE与△CBF中,∴△ABE≌△CBF(AAS),∴AE=CF.【点评】此题考查菱形的性质,关键是根据菱形的性质和全等三角形的判定和性质解答.19.(8分)为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、兵乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:项目篮球足球排球乒乓球羽毛球报名人数1284a1024%b 占总人数的百分比(1)该班学生的总人数为50人;(2)由表中的数据可知:a=16,b=24%;(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.【分析】(1)用篮球的人数除以其所占百分比即可得总人数;(2)根据各项目的人数之和等于总人数可求得a的值,用羽毛球的人数除以总人数可得b的值;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与选中一男一女的情况,再利用概率公式即可求得答案.【解答】解:(1)该班学生的总人数为12÷24%=50(人),故答案为:50;(2)a=50﹣(12+8+4+10)=16,则b=×100%=20%,故答案为:16,24%;(3)画树状图如下:由树状图知,共有12种等可能结果,其中刚好选中一男一女的有8种结果,∴刚好选中一男一女的概率为=.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.20.(8分)某报刊销售处从报社购进甲、乙两种报纸进行销售.已知从报社购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元(1)求购进甲、乙两种报纸的单价;(2)已知销售处卖出甲、乙两种报纸的售价分别为每份1元、1.5元.销售处每天从报社购进甲、乙两种报纸共600份,若每天能全部销售完并且销售这两种报纸的总利润不低于300元,问该销售处每天最多购进甲种报纸多少份?【分析】(1)设甲、乙两种报纸的单价分别是x元、y元,根据购进甲种报纸200份与乙种报纸300份共需360元,购进甲种报纸300份与乙种报纸200份共需340元列出方程组,解方程组即可;(2)设该销售处每天购进甲种报纸a份,根据销售这两种报纸的总利润不低于300元列出不等式,求解即可.【解答】解:(1)设甲、乙两种报纸的单价分别是x元、y元,根据题意得,解得.答:甲、乙两种报纸的单价分别是0.6元、0.8元;(2)设该销售处每天购进甲种报纸a份,根据题意,得(1﹣0.6)a+(1.5﹣0.8)(600﹣a)≥300,解得a≤400.答:该销售处每天最多购进甲种报纸400份.【点评】本题考查了二元一次方程组的应用,一元一次不等式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系与不等关系.21.(8分)如图,雨后初睛,李老师在公园散步,看见积水水面上出现梯步上方树的倒影,于是想利用倒影与物体的对称性测量这颗树的高度,他的方法是:测得树顶的仰角∠1、测量点A到水面平台的垂直高度AB、看到倒影顶端的视线与水面交点C到AB的水半距离BC.再测得梯步斜坡的坡角∠2和长度EF,根据以下数据进行计算,如图,AB=2米,BC=1米,EF=4米,∠l=60°,∠2=45°.已知线段ON和线段OD关于直线OB对称.(以下结果保留根号)(1)求梯步的高度MO;(2)求树高MN.【分析】(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.解Rt△EHF求出EH即可解决问题;(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2,想办法构建方程求出m即可解决问题;【解答】解:(1)如图,作EH⊥OB于H.则四边形MOHE是矩形.∴OM=EH,∵∠EHF=90°,EF=4,∠2=45°,∴EH=FH=OM=4米.(2)设ON=OD=m.作AK⊥ON于K.则四边形AKOB是矩形,AK=BO,OK=AB=2∵AB∥OD,∴=,∴=,∴OC=,∴AK=OB=+1,NK=m﹣2,在Rt△AKN中,∵∠1=60°,∴NK=AK,∴m﹣2=(+1),∴m=(14+8)米,∴MN=ON﹣OM=14+8﹣4=(14+4)米.【点评】本题考查解直角三角形的应用,轴对称的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,学会利用参数解决问题,属于中考常考题型.22.(9分)如图,矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),E是AD的中点;反比例函数y1=(x>0)图象经过点C和点E,过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4.(1)求反比例函数的解析式和点E的坐标;(2)求直线BF的解析式;(3)直接写出y1>y2时,自变量x的取值范围.【分析】(1)把C点的坐标代入,即可求出反比例函数的解析式,再求出E点的坐标即可;(2)求出B、F的坐标,再求出解析式即可;(3)先求出两函数的交点坐标,即可得出答案.)【解答】解:(1)∵反比例函数y1=(x>0)图象经过点C,C点的坐标为(6,2),∴k=6×2=12,即反比例函数的解析式是y1=,∵矩形ABCD在平面直角坐标系的第一象限内,BC与x轴平行,AB=1,点C的坐标为(6,2),∴点E的纵坐标是2+1=3,把y=3代入y1=得:x=4,即点E的坐标为(4,3);(2)∵过点B的直线y2=ax+b与反比例函数图象交于点F,点F的纵坐标为4,把y=4代入y1=得:4=,解得:x=3,即F点的坐标为(3,4),∵E(4,3),C(6,2),E为矩形ABCD的边AD的中点,∴AE=DE=6﹣4=2,∴B点的横坐标为4﹣2=2,即点B的坐标为(2,2),把B、F点的坐标代入直线y2=ax+b得:,解得:a=2,b=﹣2,即直线BF的解析式是y=2x﹣2;(3)∵反比例函数在第一象限,F(3,4),∴当y1>y2时,自变量x的取值范围是0<x<3.【点评】本题考查了一次函数与反比例函数的交点问题、函数的图象、用待定系数法求出一次函数与反比例函数的解析式、矩形的性质等知识点,能正确求出两函数的解析式是解此题的关键.23.(10分)如图1,D是⊙O的直径BC上的一点,过D作DE⊥BC交⊙O于E、N,F是⊙O上的一点,过F的直线分别与CB、DE的延长线相交于A、P,连结CF交PD于M,∠C=P.(1)求证:PA是⊙O的切线;(2)若∠A=30°,⊙O的半径为4,DM=1,求PM的长;(3)如图2,在(2)的条件下,连结BF、BM;在线段DN上有一点H,并且以H、D、C为顶点的三角形与△BFM相似,求DH的长度.【分析】(1)如图1中,作PH⊥FM于H.想办法证明∠PFH=∠PMH,∠C=∠OFC,再根据等角的余角相等即可解决问题;(2)解直角三角形求出AD,PD即可解决问题;(3)分两种情形①当△CDH∽△BFM时,=.②当△CDH∽△MFB时,=,分别构建方程即可解决问题;【解答】(1)证明:如图1中,作PH⊥FM于H.∵PD⊥AC,∴∠PHM=∠CDM=90°,∵∠PMH=∠DMC,∴∠C=∠MPH,∵∠C=∠FPM,∴∠HPF=∠HPM,∵∠HFP+∠HPF=90°,∠HMP+∠HPM=90°,∴∠PFH=∠PMH,∵OF=OC,∴∠C=∠OFC,∵∠C+∠CDM=∠C+∠PMF=∠C+∠PFH=90°,∴∠OFC+∠PFC=90°,∴∠OFP=90°,∴直线PA是⊙O的切线.(2)解:如图1中,∵∠A=30°,∠AFO=90°,∴∠AOF=60°,∵∠AOF=∠OFC+∠OCF,∠OFC=∠OCF,∴∠C=30°,∵⊙O的半径为4,DM=1,∴OA=2OF=8,CD=DM=,∴OD=OC﹣CD=4﹣,∴AD=OA+OD=8+4﹣=12﹣,在Rt△ADP中,DP=AD•tan30°=(12﹣)×=4﹣1,∴PM=PD﹣DM=4﹣2.(3)如图2中,由(2)可知:BF=BC=4,FM=BF=4,CM=2DM=2,CD=,∴FM=FC﹣CM=4﹣2,①当△CDH∽△BFM时,=,∴=,∴DH=②当△CDH∽△MFB时,=,∴=,∴DH=,∵DN==,∴DH<DN,符合题意,综上所述,满足条件的DH的值为或.【点评】本题考查圆综合题、切线的判定、解直角三角形、相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,学会用分类讨论的思想思考问题,属于中考压轴题.24.(12分)已知抛物线的顶点为(2,﹣4)并经过点(﹣2,4),点A在抛物线的对称轴上并且纵坐标为﹣,抛物线交y轴于点N.如图1.(1)求抛物线的解析式;(2)点P为抛物线对称轴上的一点,△ANP为等腰三角形,求点P的坐标;(3)如图2,点B为直线y=﹣2上的一个动点,过点B的直线l与AB垂直①求证:直线l与抛物线总有两个交点;②设直线1与抛物线交于点C、D(点C在左侧),分别过点C、D作直线y=﹣2的垂线,垂足分别为E、F.求EF的长.【分析】(1)由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入求出a即可解决问题;(2)利用勾股定理求出AN的长,分三种情形分别求解即可解决问题;(3)①设B(m,﹣2),则直线AB的解析式为y=x+,由直线l⊥AB,推出直线l 的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,只要证明△>0即可;②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,求出方程的两根即可解决问题;【解答】(1)解:由题意设抛物线的解析式为y=a(x﹣2)2﹣4,把(﹣2,4)代入得到a=,∴抛物线的解析式为y=(x﹣2)2﹣4,即y=x2﹣2x﹣2.(2)解:由题意:A(2,﹣1.5),N(0,﹣2).∴AN==,当PA=AN时,可得P1(2,﹣),P3(2,﹣﹣).当NA=NP时,可得P2(2,﹣),当PN=PA时,设P4(2,a),则有(a+)2=22+(a+2)2,解得a=﹣,∴P4(2,﹣),综上所述,满足条件的点OP坐标为P1(2,﹣),P2(2,﹣),P3(2,﹣﹣),P4(2,﹣);(3)①证明:如图2中,设B(m,﹣2),则直线AB的解析式为y=x+,∵直线l⊥AB,∴直线l的解析式为y=(2m﹣4)x﹣2m2+4m﹣2,由,消去y得到:∴x2+4(1﹣m)x+4(m2﹣2m)=0,∴△=[4(1﹣m)]2﹣4•1•4(m2﹣2m)=16>0,∴直线l与抛物线有两个交点.②设C(x1,y1),D(x2,y2),由①可知:EF=x2﹣x1,∵x2+4(1﹣m)x+4(m2﹣2m)=0,∴x==,∴x2=,x1=,∴EF=x2﹣x1=4.【点评】本题考查二次函数综合题、一次函数的应用、等腰三角形的判定和性质、一元二次方程的根判别式等知识,解题的关键是学会利用参数解决问题,学会构建一次函数,利用方程组解决问题,属于中考压轴题.中考数学二模试卷一.选择题(共10小题,满分30分,每小题3分)1.给出四个数0,,1,﹣2,其中最大的数是()A.0B.C.1D.﹣22.下列各数中,能使有意义的是()A.0B.2C.4D.63.共享单车的投放使用为人们的工作和生活带来了极大的便利,不仅有效缓解了出行“最后一公里”问题,而且经济环保,据相关部门2018年11月统计数据显示,郑州市互联网租赁自行车累计投放超过49万辆,将49万用科学记数法表示正确的是()A.4.9×104B.4.9×105C.0.49×104D.49×1044.如图,由五个完全相同的小正方体组合搭成一个几何体,把正方体A向右平移到正方体P前面,其“三视图”中发生变化的是()A.主视图B.左视图C.俯视图D.主视图和左视图5.下列各式计算正确的是()A.a3+2a2=3a5B.3+4=7C.(a6)2÷(a4)3=0D.(a3)2•a4=a96.下列说法正确的是()A.周长相等的两个三角形全等B.面积相等的两个三角形全等C.三个角对应相等的两个三角形全等D.三条边对应相等的两个三角形全等7.在下列函数中,其图象与x轴没有交点的是()A.y=2x B.y=﹣3x+1C.y=x2D.y=8.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是()A.18分,17分B.20分,17分C.20分,19分D.20分,20分9.下列图形中,属于轴对称图形的是()A.B.C.D.。

初三中考数学专项练习 待定系数法求二次函数的解析式—知识讲解(提高)

初三中考数学专项练习 待定系数法求二次函数的解析式—知识讲解(提高)

待定系数法求二次函数的解析式—知识讲解(提高)【学习目标】1. 能用待定系数法列方程组求二次函数的解析式;2. 经历探索由已知条件特点,灵活选择二次函数三种形式的过程,正确求出二次函数的解析式,二次函数三种形式是可以互相转化的.【要点梳理】要点一、用待定系数法求二次函数解析式 1.二次函数解析式常见有以下几种形式 :(1)一般式:2y ax bx c =++(a ,b ,c 为常数,a ≠0); (2)顶点式:2()y a x h k =-+(a ,h ,k 为常数,a ≠0);(3)交点式:12()()y a x x x x =--(1x ,2x 为抛物线与x 轴交点的横坐标,a ≠0). 2.确定二次函数解析式常用待定系数法,用待定系数法求二次函数解析式的步骤如下第一步,设:先设出二次函数的解析式,如2y ax bx c =++或2()y a x h k =-+,或12()()y a x x x x =--,其中a ≠0;第二步,代:根据题中所给条件,代入二次函数的解析式中,得到关于解析式中待定系数的方程(组); 第三步,解:解此方程或方程组,求待定系数; 第四步,还原:将求出的待定系数还原到解析式中. 要点诠释:在设函数的解析式时,一定要根据题中所给条件选择合适的形式:①当已知抛物线上的三点坐标时,可设函数的解析式为2y ax bx c =++;②当已知抛物线的顶点坐标或对称轴或最大值、最小值时.可设函数的解析式为2()y a x h k =-+;③当已知抛物线与x 轴的两个交点(x 1,0),(x 2,0)时,可设函数的解析式为12()()y a x x x x =--.【典型例题】类型一、用待定系数法求二次函数解析式1. 已知抛物线经过A ,B ,C 三点,当时,其图象如图1所示.求抛物线的解析式,写出顶点坐标.图1【答案与解析】设所求抛物线的解析式为().由图象可知A,B,C的坐标分别为(0,2),(4,0),(5,-3).∴=++=++=-⎧⎨⎪⎩⎪ca b ca b c216402553,,,解之,得抛物线的解析式为该抛物线的顶点坐标为.【总结升华】这道题的一个特点是题中没有直接给出所求抛物线经过的点的坐标,需要从图象中获取信息.已知图象上三个点时,通常应用二次函数的一般式列方程求解析式.要特别注意:如果这道题是求“图象所表示的函数解析式”,那就必须加上自变量的取值范围.2.(2016•丹阳市校级模拟)形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,顶点坐标是(0,﹣5)的抛物线的关系式为.【思路点拨】形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,因此可设顶点式为y=﹣2(x﹣h)2+k,其中(h,k)为顶点坐标.将顶点坐标(0,﹣5)代入求出抛物线的关系式.【答案】y=﹣2x2﹣5.【解析】解:∵形状与抛物线y=2x2﹣3x+1的图象形状相同,但开口方向不同,设抛物线的关系式为y=﹣2(x﹣h)2+k,将顶点坐标是(0,﹣5)代入,y=﹣2(x﹣0)2﹣5,即y=﹣2x2﹣5.∴抛物线的关系式为y=﹣2x2﹣5.【总结升华】在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.3. 已知抛物线的顶点坐标为(-1,4),与轴两交点间的距离为6,求此抛物线的函数关系式. 【答案与解析】因为顶点坐标为(-1,4),所以对称轴为,又因为抛物线与轴两交点的距离为6,所以两交点的横坐标分别为: ,, 则两交点的坐标为(,0)、(2,0);求函数的函数关系式可有两种方法: 解法(1):设抛物线的函数关系式为顶点式:(a ≠0),把(2,0)代入得,所以抛物线的函数关系式为;解法(2):设抛物线的函数关系式为两点式:(4)y a x =+(x-2)(a ≠0),把(-1,4)代入得,所以抛物线的函数关系式为:4(4)9y x =-+(x-2); 【总结升华】在求函数的解析式时,要根据题中所给条件选择合适的形式. 举一反三:【变式】(2014•永嘉县校级模拟)已知抛物线经过点(1,0),(﹣5,0),且顶点纵坐标为,这个二次函数的解析式 . 【答案】y=﹣x 2﹣2x+ .提示:设抛物线的解析式为y=a (x+2)2+,将点(1,0)代入,得a (1+2)2+=0, 解得a=﹣,即y=﹣(x+2)2+,∴所求二次函数解析式为y=﹣x 2﹣2x+.类型二、用待定系数法解题4.(2015春•石家庄校级期中)已知二次函数的图象如图所示,根据图中的数据, (1)求二次函数的解析式;(2)设此二次函数的顶点为P ,求△ABP 的面积.【答案与解析】 解:(1)由二次函数图象知,函数与x 轴交于两点(﹣1,0),(3,0), 设其解析式为:y=a (x+1)(x ﹣3), 又∵函数与y 轴交于点(0,2), 代入解析式得, a ×(﹣3)=2, ∴a=﹣,∴二次函数的解析式为:,即;(2)由函数图象知,函数的对称轴为:x=1, 当x=1时,y=﹣×2×(﹣2)=, ∴△ABP 的面积S===.【总结升华】此题主要考查二次函数图象的性质,对称轴及顶点坐标,另外巧妙设函数的解析式,从而来减少计算量.【答案与解析】(1)把A(2,0),B(0,-6)代入212y x bx c =-++ 得220,6,b c c -++=⎧⎨=-⎩ 解得4,6.b c =⎧⎨=-⎩∴ 这个二次函数的解析式为21462y x x =-+-. (2)∵ 该抛物线的对称轴为直线44122x =-=⎛⎫⨯- ⎪⎝⎭,∴ 点C 的坐标为(4,0), ∴ AC =OC-OA =4-2=2. ∴ 1126622ABC S AC OB ==⨯⨯=△.【总结升华】求△ABC 的面积时,一般要将坐标轴上的边作为底边,另一点的纵(横)坐标的绝对值为高进行求解.(1)将A 、B 两点坐标分别代入解析式求出b ,c 的值.(2)先求出点C 的坐标再求出△ABC 的面积.举一反三:【变式】已知二次函数图象的顶点是(12)-,,且过点302⎛⎫ ⎪⎝⎭,.(1)求二次函数的表达式;(2)求证:对任意实数m ,点2()M m m -,都不在这个二次函数的图象上. 【答案】(1)23212+--=x x y ; (2)证明:若点2()M m m -,在此二次函数的图象上,则221(1)22m m -=-++. 得2230m m -+=.△=41280-=-<,该方程无实根.所以原结论成立.。

初三数学考试试卷

初三数学考试试卷

初三数学考试试卷考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.(2009威海)化简的结果是( )A .B .C .D .2.下列几何图形中,既是中心对称图形又是轴对称图形的是( ) A .正三角形 B .等腰直角三角形 C .等腰梯形 D .正方形3.反比例函数上有两个点,,其中,则与的大小关系是( ) A .B .C .D .以上都有可能4.今年某市约有5.2万学生参加初中毕业会考,为了解这5.2万名学生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,以下说法正确的是 ( )A .1000名学生是样本容量B .5.2万名考生是总体C .这1000名考生是总体的一个样本D .每位考生的数学成绩是个体5.某校研究性学习小组测量学校旗杆AB 的高度,如图在教学楼一楼C 处测得旗杆顶部的仰角为60°,在教学楼三楼D 处测得旗杆顶部的仰角为30°,旗杆底部与教学楼一楼在同一水平线上,已知CD =6米,则旗杆AB 的高度为( )A .9米B .9(1+)米 C .12米 D .18米6.如图,已知圆心角∠AOB 的度数为100°,则圆周角∠ACB 等于( )A.100º B.60 º C.130 º D.90 º7.如图,平面直角坐标系中,△ABC的顶点坐标分别是A( 3,1),B( 1,1),C( 2,2),当直线y﹦x+b与△ABC有公共点时,b的取值范围是()A.1≤b≤ B.1≤b≤1 C.≤b≤1 D.≤b≤8.如图,直线AB∥CD,AF交CD于点E,∠CEF=140°,则∠A等于A.50° B.45° C.40° D.35°9.(2011山东济南,14,3分)观察下列各式:(1)1=12;(2)2+3+4=32;(3)3+4+5+6+7=52;(4)4+5+6+7+8+9+10=72…请你根据观察得到的规律判断下列各式正确的是()A.1005+1006+1007+…+3016=20112B.1005+1006+1007+…+3017=20112C.1006+1007+1008+…+3016=20112D.1007+1008+1009+…+3017=2011210.如图,已知:在梯形ABCD中,CD∥AB,AD、BC的延长线相交于点E,AC、BD相交于点O,连接EO并延长交AB于点M,交CD于点N.则S△AOE:S△BOE等于()A.1∶1 B.4∶3 C.3∶4 D.3∶2二、判断题11.“学雷锋活动日”这天,阳光中学安排七、八、九年级部分学生代表走出校园参与活动,活动内容有:A.打扫街道卫生;B.慰问孤寡老人;C.到社区进行义务文艺演出.学校要求一个年级的学生代表只负责一项活动内容.(1)若随机选一个年级的学生代表和一项活动内容,请你用画树状图法表示所有可能出现的结果;(2)求九年级学生代表到社区进行义务文艺演出的概率.12.如图,抛物线(<0)与轴交于A,B两点,与y轴正半轴交于点C,且∠ACB=90°,点P是直线BC上方抛物线上的一个动点.(1)请直接写出A,B,C三点的坐标及抛物线的解析式;(2)连接PB,以BP,BC为一组邻边作平行四边形BCDP,当平行四边形BCDP的面积最大时,求P,D两点的坐标;(3)若点Q是x轴上一动点,是否存在以P,C,Q为顶点的三角形为等腰直角三角形?若存在,请直接写出P,Q两点的坐标;若不存在,请说明理由.13.如图,一次函数y=kx+b与反比例函数y=的图象交开A(﹣2,1),B(1,a)两点.(1)分别求出反比例函数与一次函数的关系式;(2)观察图象,直接写出关于x,y的方程组的解.14.( 本小题满分12分)如图,已知以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D, 点F为BC的中点,连接EF.⑴求证: EF是⊙O的切线;⑵若AD的长,∠EAC=60°,求①⊙O的半径;②求图中阴影部分的面积(保留π及根号).15.化简求值:(1+)÷,其中x=2.三、填空题16.我们知道,下身长与身高的比等于黄金数的人身材比较协调。

河南初三初中数学专题试卷带答案解析

河南初三初中数学专题试卷带答案解析

河南初三初中数学专题试卷班级:___________ 姓名:___________ 分数:___________一、填空题1.、在Rt△ABC中,∠C=90°,BC=12cm,BC边上的中线AD=10cm则sinB=2.如图,某建筑物BC直立于水平地面,∠BAC=30°,AC=9m,需建造阶梯AB,使每阶高不超过20cm,则此阶梯最少要建阶。

(取1.732)3.如图,当矩形ABCD变成边长不变的BCEF时,面积变为原来是的一半,则∠FBG= 。

4.、如图,在△ABC中,∠ACB=90°,AC=2,斜边AB在x轴上,点C在y轴的正半轴上,点A的坐标为(2,0),则直角边BC所在直线的解析式为。

5.某商品进货单价为30元,按40元一个销售,能卖40个,若销售单价每涨一元,销售量就减少一个,则为了获得最大利润,此商品的最佳售价应为 _____元。

6.x人去旅游共需支出y元,若x,y之间满足关系式y="2x2" - 20x + 1050,则当人数为_____时总支出最少。

7.已知一直角三角形两条直角边的和是6cm,则以这个直角三角形的斜边为边长的正方形的面积的最小值是______.8.周长为16cm的矩形的最大面积为____,此时矩形边长为____,实际上此时矩形是______.9.某厂的年利润为50万元,年增长率为x, 第三年的利润为y万元,则y与x之间的函数关系式为____________.10.已知等腰三角形的面积s与底边x有如下关系:s=-5x2+10x+14,要使s有最大值,则x=_____.11.把4m的木料锯成六段,制成如图所示的窗户,若用Xm表示横料AB的长,Ym2表示窗户的面积,则Y与X 之间的函数关系式为________,当X=____时窗户面积最大。

12.周长为8米的铝合金条制成如图形状的窗框,使窗户的透光面积最大,则最大透光面积是____.二、解答题1.计算。

2023北京平谷区初三一模数学试题及参考答案

2023北京平谷区初三一模数学试题及参考答案

2023年平谷一模一、选择题(共16分,每题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.下面几何体中,是圆柱体的为A B C D2.为了确保我国粮食种植的稳定性,国家提出了“严防死守18亿亩耕地的红线目标”,经过了多年的努力和坚守,我国耕地面积止住了下跌趋势,而且还实现了增长。

到2020年,全国耕地保有量回升至18.65亿亩以上,1865000000用科学计数法表示为A .71.86510⨯B .818.6510⨯C .91.86510⨯D .121.86510⨯3.把一根细线固定在半圆形量角器的圆心处,细线的另一端系一个小重物,制成一个简单的测角仪,如图所示,细线与BC 边重合,则∠A 的度数为A .30°B .40°C .50°D .75°第3题第4题第7题4.实数a 在数轴上的对应点的位置如图所示.若实数b 满足b a <-,则b 的值可以是A .1B .0C .1-D .2-5.不透明的袋子中有三个小球,上面分别写着数字“1”“2”“3”,除数字外三个小球无其他差别.从中随机摸出一个小球,记录其数字,不放回,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是A .14B .13C .12D .236.若关于x 的一元二次方程220x x m ++=有两个不相等的实数根,则实数m 的取值范围为A .1m ≥B .1m ≤C .1m >D .1m <7.瓷器上的纹饰是中国古代传统文化的重要载体之一,如图所示的图片即为瓷器上的纹饰,该图形即为中心对称图形也为轴对称图形,该图形的对称轴的条数为A .1B .2C .4D .58.摄氏温度(℃)与华氏温度(°F )是表示温度的两种方法,它们的关系如下:若设摄氏温度(℃)为x ,华氏温度(°F )为y ,y 与x 之间满足如下我们学习过的一种函数关系,则y 与x 满足的函数关系为A .正比例函数B .一次函数C .反比例函数D .二次函数二、填空题(共16分,每题2分)9.若61x -在实数范围内有意义,则实数x 的取值范围是___________.10.分解因式:22mx mx m -+=___________.11.方程31211x x =+-的解为___________.12.写出一个比3大比4小的无理数___________.13.在平面直角坐标系xOy 中,反比例函数(0)ky k x=≠的图象过点(2,1)(m,2)A B --和,则m =_____14.为了提高大家的环境保护意识,某小区在假期开展了废旧电池回收的志愿者活动,该社区的10名中学生参与了该项活动,回收的旧电池数量如下表:根据以上数据,这10名中学生收集废旧电池的平均数为________.15.如图,在ABC ∆中,∠C =90°,∠A =30°,BD 平分,ABC ∠1BCD S ∆=若,AB D S ∆=则_______.16.某货运公司临时接到一个任务,从工厂同时运送A 、B 两种货物各20箱到展馆,货运公司调派甲货车运送A 种货物,乙货车运送B 种货物,A 种货物每箱80千克,B 种货物每箱70千克,因为两种货物包装箱完全一样,装运工人一时疏忽两车虽然所装货物数量正确,但部分货物却装混了.运送途中安检时,两车过地秤,发现甲车比乙车的货物重160千克,则甲、乙两车各有_____箱货物装错,到达展馆,为了尽快把货物区分开,乙车司机借来了一台最多可以称300千克的秤,精选最优称重方案,根据被错装货物出现的所有可能情况,最多需要称_______次就能把乙车上装错的货物区分出来.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.计算:0(2023)2sin 601π-++ 18.解不等式组:241,23.3x x x x +≥-⎧⎪+⎨<⎪⎩电池数量(节)256810人数1422119.已知2210,x x +-=求代数式(2)(x 2)x(1)x x +-++的值.20.已知:如图,ABC ∆为锐角三角形.求作:以BC 为一边作Rt △MBC ,使∠MBC =90°,∠M =∠A .作法:①作AC 边的垂直平分线DE ;②作BC 边的垂直平分线FG ,与直线DE 交于点O ;③以O 为圆心,OA 为半径作O ;④连接CO 并延长,交O 于点M ,连接BM ;△MBC 即为所求作的三角形(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵DE 是AC 的垂直平分线,FG 是BC 的垂直平分线,DE 与FG 交于点O∴OA =OB =OC∴点A 、B 、C 都在O 上∵CM 为O 的直径∴MBC ∠=°.∵ BCBC =∴M A ∠=∠()(填推理依据).∴△MBC 即为所求作的三角形.21.如图,在ABCD 中,点E 是BC 中点,点F 是AD 中点,连接AE 、CF 、EF ,EF 平分∠AEC .(1)求证:四边形AECF 是菱形;(2)连接AC 与EF 交于点O ,连接OD ,若AF =5,35sin FAC ∠=,求OD 的长.22.在平面直角坐标系xOy 中,函数(0)y kx b k =+≠的图象经过点(1,0),(0,1)-.(1)求该函数的解析式;(2)当2x >-时,对于x 的每一个值,函数2y x n =+的值大于函数(0)y kx b k =+≠的值,求n 的取值范围.23.明明学完了统计部分的相关知识后,对数据的统计产生了浓厚的兴趣,他从网上查阅了2023年3月1号至10号A 、B 两个城市的日最高气温数据,并对数据进行整理、描述和分析,下面给出了部分信息.a .A 、B 两个城市3月1号至10号的日最高气温数据的折线图:b .A 、B 两个城市3月1号至10号的日最高气温数据的平均数、中位数、众数、极差:城市平均数中位数众数极差A 17.517.519z B12.4mn8根据以上信息,回答下列问题:(1)求表中m 、n 、z 的值;(2)记A 城市3月1号至10号的日最高气温的方差为21s ,B 城市3月1号至10号的日最高气温的方差为22s ,则21s _________22s (填“>”“<”或“=”);(3)如果你是明明,请根据以上统计数据,对A 、B 两个城市3月1号至10号的日最高气温情况做简单的分析.(至少从两个方面进行说明)24.如图,AB 是⊙O 的直径,C 、D 是⊙O 上的两点,且 DB DC ,过点D 作⊙O的切线交AC 的延长线于点E .(1)求证:∠E =90°;(2)连接CD .若2cos 3ECD ∠=,9AB =,求CE 的长.25.如图所示,某农场的小麦收割机正在收割小麦,脱离后的谷粒沿着喷射管道飞出,飞行路线可以看作是抛物线的一部分,建立如图所示的平面直角坐标系,谷粒从喷射出到着陆的过程中,谷粒的竖直高度y (单位:m )与距离喷射口的水平距离x (单位:m )近似满足函数关系2()(0).y a x h k a =-+<(1)谷粒距离喷射口的水平距离x (单位:m )与竖直高度y (单位:m )的几组数据如下:水平距离x /m 02345竖直高度y /m3.54.34.44.34.0根据上述数据,若用货车接运谷粒,保证和喷射口在同一平面的情况下,谷粒下落过程中恰好落到车厢的中心点,若货车车厢的中心点距地面1.9米,则货车车厢的中心点应距离喷射口几米?(2)谷粒喷出的同时石子等较重的杂质会跟随谷粒一起在重力作用下沿抛物线①被分离出来,谷皮和颗粒等较轻的杂质也会跟着谷粒一起沿抛物线②被分离出来,若已知两条抛物线的解析式分别为A :20.09( 3.2) 4.42.y x =--+,B :20.12( 2.8) 4.44.y x =--+则A 、B 对应的抛物线分别为A :;B (写①或②即可)26.在平面直角坐标系xOy 中,点12(1,y ),(3,y )在抛物线222y x mx m =-+上.(1)求抛物线的对称轴用含(m 的式子表示);(2)若12y y <,求m 的取值范围;(3若点00(,y )x 在抛物线上,若存在010,x -≤≤102,y y y <<使成立求m 的取值范围..在ABC ∆中,BD ⊥AC 于点D ,E 为AB 边中点,连接CE ,BD 与CE 相交于点F ,过E 作EM ⊥EF ,交线段BD 于点M ,连接CM .(1)依题意补全图形;(2)求证:∠EMF =∠ACF ;(3)判断BM 、CM 、AC 的数量关系,并证明.28.在平面直角坐标系xOy中,已知点(m,n)M,我们将点M的横纵坐标交换位N(n,m)置得到点给出如下定义:对于平面上的点C,若满足NC=1,则称点C为点M的“对炫点”.(1)已知点A(2,0),①下列各点:Q1(0,1),Q2(1,1),Q3(-1,2)中是点A的“对炫点”的是;②点P是直线y=x+2上一点,若点A是点P的“对炫点”,求出点P的坐标;(3)设点A(a,b)是第一象限内一点,点P是直线y=x+b上一点,至少存在一个点P,使得点A的“对炫点”也是点P的“对炫点”,求a、b的取值范围.平谷区2023年一模试卷评分标准初三数学2023年4月一、选择题(本题共16分,每小题2分)二、填空题(本题共16分,每小题2分)题号910111213141516答案1≠x 2)1x (-m x=4答案不唯一例:101622;8三、解答题(本题共68分,第17-20、22、25题,每题5分,第21、23、24、26题,每题6分,第27-28题,每题7分)解答应写出文字说明、演算步骤或证明过程.17.解:0(2023)2sin 601π-+-- 3=1+212⨯-+-....................................................................4. (5)18.解不等式组:241,23.3x x x x +≥-⎧⎪+⎨<⎪⎩解①得1x ≥-.....................................................................................2解②得3x <.. (4)13x ∴-≤< (5)19.先化简,再求值:题号12345678答案ACBDBDCB(2)(x 2)x(1)x x +-++224x x x =-++......................................................................................2224x x =+- (3)22210,2x 1x x x +-=∴+= (4)1-4-3∴==原式 (5)20.(1)尺规作图...........................................................................................................2(2)90. (3)同弧(或等弧)所对的圆周角相等·························································521.(1)证明:∵四边形ABCD 是平行四边形∴AD ∥BC ,AD=BC ································································1∵F 是AD 中点,E 是BC 中点∴AF ∥EC ,AF=EC∴四边形AECF 是平行四边形·················································2∵EF 平分∠AEC∴∠AEF=∠FEC ∵AF ∥EC∴∠AFE=∠FEC=∠AEF∴AE=AF∴四边形AECF 是菱形 (3)(2)解:∵四边形AECF 是菱形∴AO=OC ,EO=FO ,∠AOF=90°···················································4∵EF=6∴FO=3∵AF=5∴AO=4··············································································∵AO=CO ,F 为AD 中点∴CD=2OF=6,CD ∥EF ∴∠ACD=90°∵OC=4,CD=6∴= (6)22.∵一次函数(0)y kx b k =+≠的图象经过点(-1,0)和(0,1)∴01k b b -+=⎧⎨=⎩ (1)∴11k b =⎧⎨=⎩ (21)y x ∴=+(2)当直线y=x+1中x=-2时,y=-1 (3)当2y x n =+过点(-2,-1)时,n=3 (4)3n ∴≥时结论成立 (5)23.解:(1)m=12.5,n=14,z=15; (3)(2)>;······················································································4(3)A 城市3月1日至10日日平均气温的平均值更高,极差较大,温度波动较大,不稳定,B 城市3月1日至10日日平均气温的平均值较小,极差小,温度变化较稳定。

苏州备战中考数学(锐角三角函数提高练习题)压轴题训练

苏州备战中考数学(锐角三角函数提高练习题)压轴题训练

苏州备战中考数学(锐角三角函数提高练习题)压轴题训练一、锐角三角函数1.如图1,四边形ABCD是正方形,点E是边BC上一点,点F在射线CM上,∠AEF=90°,AE=EF,过点F作射线BC的垂线,垂足为H,连接AC.(1) 试判断BE与FH的数量关系,并说明理由;(2) 求证:∠ACF=90°;(3) 连接AF,过A,E,F三点作圆,如图2. 若EC=4,∠CEF=15°,求的长.图1 图2【答案】(1)BE="FH" ;理由见解析(2)证明见解析(3)=2π【解析】试题分析:(1)由△ABE≌△EHF(SAS)即可得到BE=FH(2)由(1)可知AB=EH,而BC=AB,FH=EB,从而可知△FHC是等腰直角三角形,∠FCH 为45°,而∠ACB也为45°,从而可证明(3)由已知可知∠EAC=30°,AF是直径,设圆心为O,连接EO,过点E作EN⊥AC于点N,则可得△ECN为等腰直角三角形,从而可得EN的长,进而可得AE的长,得到半径,得到所对圆心角的度数,从而求得弧长试题解析:(1)BE=FH.理由如下:∵四边形ABCD是正方形∴∠B=90°,∵FH⊥BC ∴∠FHE=90°又∵∠AEF=90°∴∠AEB+∠HEF="90°" 且∠BAE+∠AEB=90°∴∠HEF=∠BAE ∴∠AEB=∠EFH 又∵AE=EF∴△ABE≌△EHF(SAS)∴BE=FH(2)∵△ABE≌△EHF∴BC=EH,BE=FH 又∵BE+EC=EC+CH ∴BE="CH"∴CH=FH∴∠FCH=45°,∴∠FCM=45°∵AC是正方形对角线,∴∠ACD=45°∴∠ACF=∠FCM +∠ACD =90°(3)∵AE=EF,∴△AEF是等腰直角三角形△AEF外接圆的圆心在斜边AF的中点上.设该中点为O.连结EO得∠AOE=90°过E作EN⊥AC于点NRt△ENC中,EC=4,∠ECA=45°,∴EN=NC=Rt△ENA中,EN =又∵∠EAF=45°∠CAF=∠CEF=15°(等弧对等角)∴∠EAC=30°∴AE=Rt△AFE中,AE== EF,∴AF=8AE所在的圆O半径为4,其所对的圆心角为∠AOE=90°=2π·4·(90°÷360°)=2π考点:1、正方形;2、等腰直角三角形;3、圆周角定理;4、三角函数2.如图(1),在平面直角坐标系中,点A(0,﹣6),点B(6,0).Rt△CDE中,∠CDE=90°,CD=4,DE=4,直角边CD在y轴上,且点C与点A重合.Rt△CDE沿y轴正方向平行移动,当点C运动到点O时停止运动.解答下列问题:(1)如图(2),当Rt△CDE运动到点D与点O重合时,设CE交AB于点M,求∠BME 的度数.(2)如图(3),在Rt△CDE的运动过程中,当CE经过点B时,求BC的长.(3)在Rt△CDE的运动过程中,设AC=h,△OAB与△CDE的重叠部分的面积为S,请写出S与h之间的函数关系式,并求出面积S的最大值.【答案】(1)∠BME=15°;(2BC=4;(3)h≤2时,S=﹣h2+4h+8,当h≥2时,S=18﹣3h.【解析】试题分析:(1)如图2,由对顶角的定义知,∠BME=∠CMA,要求∠BME的度数,需先求出∠CMA的度数.根据三角形外角的定理进行解答即可;(2)如图3,由已知可知∠OBC=∠DEC=30°,又OB=6,通过解直角△BOC就可求出BC的长度;(3)需要分类讨论:①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,S=S△EDC﹣S△EFM;②当h≥2时,如图3,S=S△OBC.试题解析:解:(1)如图2,∵在平面直角坐标系中,点A(0,﹣6),点B(6,0).∴OA=OB,∴∠OAB=45°,∵∠CDE=90°,CD=4,DE=4,∴∠OCE=60°,∴∠CMA=∠OCE﹣∠OAB=60°﹣45°=15°,∴∠BME=∠CMA=15°;如图3,∵∠CDE=90°,CD=4,DE=4,∴∠OBC=∠DEC=30°,∵OB=6,∴BC=4;(3)①h≤2时,如图4,作MN⊥y轴交y轴于点N,作MF⊥DE交DE于点F,∵CD=4,DE=4,AC=h,AN=NM,∴CN=4﹣FM,AN=MN=4+h﹣FM,∵△CMN∽△CED,∴,∴,解得FM=4﹣,∴S=S△EDC﹣S△EFM=×4×4﹣(44﹣h)×(4﹣)=﹣h2+4h+8,②如图3,当h≥2时,S=S△OBC=OC×OB=(6﹣h)×6=18﹣3h.考点:1、三角形的外角定理;2、相似;3、解直角三角形3.如图,AB是⊙O的直径,弦CD⊥AB于H,过CD延长线上一点E作⊙O的切线交AB 的延长线于切点为G,连接AG交CD于K.(1)求证:KE=GE;(2)若KG2=KD•GE,试判断AC与EF的位置关系,并说明理由;(3)在(2)的条件下,若sinE=,AK=,求FG的长.【答案】(1)证明见解析;(2)AC∥EF,证明见解析;(3)FG= .【解析】试题分析:(1)如图1,连接OG.根据切线性质及CD⊥AB,可以推出∠KGE=∠AKH=∠GKE,根据等角对等边得到KE=GE;(2)AC与EF平行,理由为:如图2所示,连接GD,由∠KGE=∠GKE,及KG2=KD•GE,利用两边对应成比例且夹角相等的两三角形相似可得出△GKD与△EKG相似,又利用同弧所对的圆周角相等得到∠C=∠AGD,可推知∠E=∠C,从而得到AC∥EF;(3)如图3所示,连接OG,OC,先求出KE=GE,再求出圆的半径,根据勾股定理与垂径定理可以求解;然后在Rt△OGF中,解直角三角形即可求得FG的长度.试题解析:(1)如图1,连接OG.∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.(2)AC∥EF,理由为连接GD,如图2所示.∵KG2=KD•GE,即,∴,又∵∠KGE=∠GKE,∴△GKD∽△EGK,∴∠E=∠AGD,又∵∠C=∠AGD,∴∠E=∠C,∴AC∥EF;(3)连接OG,OC,如图3所示,∵EG为切线,∴∠KGE+∠OGA=90°,∵CD⊥AB,∴∠AKH+∠OAG=90°,又∵OA=OG,∴∠OGA=∠OAG,∴∠KGE=∠AKH=∠GKE,∴KE=GE.∵sinE=sin∠ACH=,设AH=3t,则AC=5t,CH=4t,∵KE=GE,AC∥EF,∴CK=AC=5t,∴HK=CK-CH=t.在Rt△AHK中,根据勾股定理得AH2+HK2=AK2,即(3t)2+t2=(2)2,解得t=.设⊙O半径为r,在Rt△OCH中,OC=r,OH=r-3t,CH=4t,由勾股定理得:OH2+CH2=OC2,即(r-3t)2+(4t)2=r2,解得r= t=.∵EF为切线,∴△OGF为直角三角形,在Rt△OGF中,OG=r=,tan∠OFG=tan∠CAH=,∴FG=【点睛】此题考查了切线的性质,相似三角形的判定与性质,垂径定理,勾股定理,锐角三角函数定义,圆周角定理,平行线的判定,以及等腰三角形的判定,熟练掌握定理及性质是解本题的关键.4.在Rt △ACB 和△AEF 中,∠ACB =∠AEF =90°,若点P 是BF 的中点,连接PC ,PE. 特殊发现:如图1,若点E 、F 分别落在边AB ,AC 上,则结论:PC =PE 成立(不要求证明). 问题探究:把图1中的△AEF 绕点A 顺时针旋转.(1)如图2,若点E 落在边CA 的延长线上,则上述结论是否成立?若成立,请给予证明;若不成立,请说明理由;(2)如图3,若点F 落在边AB 上,则上述结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由;(3)记AC BC=k ,当k 为何值时,△CPE 总是等边三角形?(请直接写出后的值,不必说)【答案】()1 PC PE =成立 ()2 ,PC PE =成立 ()3当k 3CPE V 总是等边三角形【解析】【分析】 (1)过点P 作PM ⊥CE 于点M ,由EF ⊥AE ,BC ⊥AC ,得到EF ∥MP ∥CB ,从而有EM FP MC PB=,再根据点P 是BF 的中点,可得EM=MC ,据此得到PC=PE . (2)过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,先证△DAF ≌△EAF ,即可得出AD=AE ;再证△DAP ≌△EAP ,即可得出PD=PE ;最后根据FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,可得FD ∥BC ∥PM ,再根据点P 是BF 的中点,推得PC=PD ,再根据PD=PE ,即可得到结论.(3)因为△CPE 总是等边三角形,可得∠CEP=60°,∠CAB=60°;由∠ACB=90°,求出∠CBA=30°;最后根据AC k BC =,AC BC =tan30°,求出当△CPE 总是等边三角形时,k 的值是多少即可.【详解】解:(1)PC=PE 成立,理由如下:如图2,过点P 作PM ⊥CE 于点M ,∵EF ⊥AE ,BC ⊥AC ,∴EF ∥MP ∥CB ,∴EM FP MC PB=,∵点P 是BF 的中点,∴EM=MC ,又∵PM ⊥CE ,∴PC=PE ;(2)PC=PE 成立,理由如下:如图3,过点F 作FD ⊥AC 于点D ,过点P 作PM ⊥AC 于点M ,连接PD ,∵∠DAF=∠EAF ,∠FDA=∠FEA=90°,在△DAF 和△EAF 中,∵∠DAF=∠EAF ,∠FDA=∠FEA ,AF=AF ,∴△DAF ≌△EAF (AAS ),∴AD=AE ,在△DAP 和△EAP 中,∵AD=AE ,∠DAP=∠EAP ,AP=AP ,∴△DAP ≌△EAP (SAS ),∴PD=PE ,∵FD ⊥AC ,BC ⊥AC ,PM ⊥AC ,∴FD ∥BC ∥PM , ∴DM FP MC PB=, ∵点P 是BF 的中点,∴DM=MC ,又∵PM ⊥AC ,∴PC=PD ,又∵PD=PE ,∴PC=PE ;(3)如图4,∵△CPE 总是等边三角形,∴∠CEP=60°,∴∠CAB=60°,∵∠ACB=90°,∴∠CBA=90°﹣∠ACB=90°﹣60°=30°,∵AC k BC =,AC BC=tan30°,∴k=tan30°=3,3∴当k为3时,△CPE总是等边三角形.【点睛】考点:1.几何变换综合题;2.探究型;3.压轴题;4.三角形综合题;5.全等三角形的判定与性质;6.平行线分线段成比例.5.在正方形ABCD中,BD是一条对角线.点P在射线CD上(与点C,D不重合),连接AP,平移△ADP,使点D移动到点C,得到△BCQ,过点Q作QH⊥BD于点H,连接AH、PH.(1)若点P在线CD上,如图1,①依题意补全图1;②判断AH与PH的数量关系与位置关系并加以证明;(2)若点P在线CD的延长线上,且∠AHQ=152°,正方形ABCD的边长为1,请写出求DP长的思路.(可以不写出计算结果)【答案】(1)①如图;②AH=PH,AH⊥PH.证明见解析(2)或【解析】试题分析:(1)①如图(1);②(1)法一:轴对称作法,判断:AH=PH,AH⊥PH.连接CH,根据正方形的每条对角线平分一组对角得:△DHQ等腰Rt△,根据平移的性质得DP=CQ,证得△HDP≌△△HQC,全等三角形的对应边相等得PH=CH,等边对等角得∠HPC=∠HCP,再结合BD是正方形的对称轴得出∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)轴对称作法同(1)作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由代入HR,CR解方程即可得出x的值. 四点共圆作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.试题解析:(1)①法一:轴对称作法,判断:AH=PH,AH⊥PH证:连接CH,得:△DHQ等腰Rt△,又∵DP=CQ,∴△HDP≌△△HQC,∴PH=CH,∠HPC=∠HCPBD为正方形ABCD对称轴,∴AH=CH,∠DAH=∠HCP,∴AH=PH,∠DAH=∠HPC,∴∠AHP=180°-∠ADP=90°,∴AH=PH且AH⊥PH.法二:四点共圆作法,同上得:∠HPC=∠DAH,∴A、D、P、H共向,∴∠AHP=90°,∠APH=∠ADH=45°,∴△APH等腰Rt△.(2)法一:轴对称作法考虑△DHQ等腰Rt△,PD=CQ,作HR⊥PC于R,∵∠AHQ=152°,∴∠AHB=62°,∴∠DAH=17°∴∠DCH=17°.设DP=x,则.由得:,∴.即PD=法二:四点共向作法,A、H、D、P共向,∴∠APD=∠AHB=62°,∴.考点:全等三角形的判定;解直角三角形;正方形的性质;死电脑共圆6.如图,抛物线C1:y=(x+m)2(m为常数,m>0),平移抛物线y=﹣x2,使其顶点D 在抛物线C1位于y轴右侧的图象上,得到抛物线C2.抛物线C2交x轴于A,B两点(点A 在点B的左侧),交y轴于点C,设点D的横坐标为a.(1)如图1,若m=.①当OC=2时,求抛物线C2的解析式;②是否存在a,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP=BP?若存在,求出a的值;若不存在,请说明理由;(2)如图2,当OB=2﹣m(0<m<)时,请直接写出到△ABD的三边所在直线的距离相等的所有点的坐标(用含m的式子表示).【答案】(1) ①y=﹣x2+x+2.②.(2)P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【解析】试题分析:(1)①首先写出平移后抛物线C2的解析式(含有未知数a),然后利用点C (0,2)在C2上,求出抛物线C2的解析式;②认真审题,题中条件“AP=BP”意味着点P在对称轴上,“点B与点C到直线OP的距离之和最大”意味着OP⊥BC.画出图形,如图1所示,利用三角函数(或相似),求出a的值;(2)解题要点有3个:i)判定△ABD为等边三角形;ii)理论依据是角平分线的性质,即角平分线上的点到角两边的距离相等;iii)满足条件的点有4个,即△ABD形内1个(内心),形外3个.不要漏解.试题解析:(1)当m=时,抛物线C1:y=(x+)2.∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+)2).∴抛物线C2:y=﹣(x﹣a)2+(a+)2(I).①∵OC=2,∴C(0,2).∵点C在抛物线C2上,∴﹣(0﹣a)2+(a+)2=2,解得:a=,代入(I)式,得抛物线C2的解析式为:y=﹣x2+x+2.②在(I)式中,令y=0,即:﹣(x﹣a)2+(a+)2=0,解得x=2a+或x=﹣,∴B(2a+,0);令x=0,得:y=a+,∴C(0,a+).设直线BC的解析式为y=kx+b,则有:,解得,∴直线BC的解析式为:y=﹣x+(a+).假设存在满足条件的a值.∵AP=BP,∴点P在AB的垂直平分线上,即点P在C2的对称轴上;∵点B与点C到直线OP的距离之和≤BC,只有OP⊥BC时等号成立,∴OP⊥BC.如图1所示,设C2对称轴x=a(a>0)与BC交于点P,与x轴交于点E,则OP⊥BC,OE=a.∵点P在直线BC上,∴P(a,a+),PE=a+.∵tan∠EOP=tan∠BCO=,∴,解得:a=.∴存在a=,使得线段BC上有一点P,满足点B与点C到直线OP的距离之和最大且AP="BP"(3)∵抛物线C2的顶点D在抛物线C1上,且横坐标为a,∴D(a,(a+m)2).∴抛物线C2:y=﹣(x﹣a)2+(a+m)2.令y=0,即﹣(x﹣a)2+(a+m)2=0,解得:x1=2a+m,x2=﹣m,∴B(2a+m,0).∵OB=2﹣m,∴2a+m=2﹣m,∴a=﹣m.∴D(﹣m,3).AB=OB+OA=2﹣m+m=2.如图2所示,设对称轴与x轴交于点E,则DE=3,BE=AB=,OE=OB﹣BE=﹣m.∵tan∠ABD=,∴∠ABD=60°.又∵AD=BD,∴△ABD为等边三角形.作∠ABD的平分线,交DE于点P1,则P1E=BE•tan30°=×=1,∴P1(﹣m,1);在△ABD形外,依次作各个外角的平分线,它们相交于点P2、P3、P4.在Rt△BEP2中,P2E=BE•tan60°=•=3,∴P2(﹣m,﹣3);易知△ADP3、△BDP4均为等边三角形,∴DP3=DP4=AB=2,且P3P4∥x轴.∴P3(﹣﹣m,3)、P4(3﹣m,3).综上所述,到△ABD的三边所在直线的距离相等的所有点有4个,其坐标为:P1(﹣m,1),P2(﹣m,﹣3),P3(﹣﹣m,3),P4(3﹣m,3).【考点】二次函数综合题.7.如图,四边形ABCD是菱形,对角线AC与BD交于点O,且AC=80,BD=60.动点M、N分别以每秒1个单位的速度从点A、D同时出发,分别沿A→O→D和D→A运动,当点N到达点A时,M、N同时停止运动.设运动时间为t秒.(1)求菱形ABCD的周长;(2)记△DMN的面积为S,求S关于t的解析式,并求S的最大值;(3)当t=30秒时,在线段OD的垂直平分线上是否存在点P,使得∠DPO=∠DON?若存在,这样的点P有几个?并求出点P到线段OD的距离;若不存在,请说明理由.【答案】解:(1)在菱形ABCD中,∵AC⊥BD,AC=80,BD=60,∴。

初三数学试卷附答案解析

初三数学试卷附答案解析

初三数学试卷附答案解析考试范围:xxx ;考试时间:xxx 分钟;出题人:xxx 姓名:___________班级:___________考号:___________1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.甲和乙入选学校的定点投篮大赛,他们每天训练后投10个球测试,记录命中的个数,五天后将记录的数据绘制成折线统计图,如右图所示.则下列对甲、乙数据描述正确的是A .甲的方差比乙的方差小B .甲的方差比乙的方差大C .甲的平均数比乙的平均数小D .甲的平均数比乙的平均数大 2.已知二次函数的图象如图所示,对称轴为.下列结论中正确的是( )A .B .C .D .3.在下列手机软件图标中是轴对称图形的是( )A .B .C .D .4.在同一平面直角坐标系中,直线与直线的交点不可能在( )A .第一象限B .第二象限C .第三象限D .第四象限5.某县盛产枇杷,四星级枇杷的批发价比五星级枇杷的批发价每千克低4元。

某天,一位零售商分别用去240元,160元来购进四星级与五星级这两种枇杷,其中,四星级枇杷比五星级枇杷多购进10千克。

假设零售商当天购进四星级枇杷x 千克,则列出关于x 的方程为( ) A .+4= B .-4= C .+4= D .-4=6.分式方程的解是( )。

A .x=-4B .x=1C .x 1=4,x 2=1D .x 1=—4,x 2=17.(2012•绵阳)把一个正五棱柱如图摆放,当投射线由正前方射到后方时,它的正投影是( )A .B .C .D .8.已知二次函数,其中a 、b 、c 满足a+b+c=0和9a-3b+c=0,则该二次函数图象的对称轴是直线( ) A .B .C .D .9.计算(-18)÷6的结果等于( ) A .-3 B .3 C .D .10.如图所示,渔船在A 处看到灯塔C 在北偏东60º方向上,渔船向正东方向航行了12海里到达B 处,在B 处看到灯塔C 在正北方向上,这时渔船与灯塔C 的距离是【 】二、判断题11.解不等式组,并把它的解集在数轴上表示出来.12.随着经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,汽车消费成为新亮点.抽样调查显示,截止2016年底某市汽车拥有量为14.4万辆.己知2014年底该市汽车拥有量为10万辆.(1)求2014年底至2016年底该市汽车拥有量的年平均增长率?(2)为保护城市环境,要求该市到2018年底汽车拥有量不超过15.464万辆,据估计从2016年底起,此后每年报废的汽车数量是上年底汽车拥有量的10%,那么每年新增汽车数量最多不超过多少辆?(假定每年新增汽车数量相同)13.有一种用“☆”定义的新运算:对于任意实数a,b都有a☆b=b2+a.例如7☆4=42+7=23.(1) 已知m☆2的结果是6,则m的值是多少?(2) 将两个实数n和n+2用这种新定义“☆”加以运算,结果为4,则n的值是多少?14.如图,经过原点的抛物线与轴的另一个交点为A。

河南初三初中数学单元试卷带答案解析

河南初三初中数学单元试卷带答案解析

河南初三初中数学单元试卷班级:___________ 姓名:___________ 分数:___________一、单选题1.抛物线y=-2x2+1的对称轴是( )A.直线x=B.直线x=-C.y轴D.直线x=22.若二次函数的图象经过点(2,0),其对称轴为,则使函数值成立的的取值范围是()A.或B.≤≤C.≤或≥D.二、选择题1.将二次函数y=x2-2x+3化为y=(x-h)2+k的形式,结果为( )A.y=(x+1)2+4B.y=(x+1)2+2C.y=(x-1)2+4D.y=(x-1)2+22.若函数y=a是二次函数且图象开口向上,则a=().A.﹣2B.4C.4或﹣2D.4或33.在平面直角坐标系中,二次函数y=a(x−h)2(a≠0)的图象可能是()A.B.C.D.4.二次函数y=(x-2)2+3是由二次函数y=x2怎样平移得到的( )A.向右平移2个单位长度,向上平移3个单位长度B.向左平移2个单位长度,向上平移3个单位长度C.向右平移3个单位长度,向上平移2个单位长度D.向右平移2个单位长度,向下平移3个单位长度5.如图所示的桥拱是抛物线形,其函数的表达式为y=-x2,当水位线在AB位置时,水面宽12 m,这时水面离桥顶的高度为( )A.3 m B.2m C.4m D.9 m6.如图,二次函数(a >0)图象的顶点为D ,其图象与x 轴的交点A 、B 的横坐标分别为﹣1和3,则下列结论正确的是( )A .2a ﹣b=0B .a+b+c >0C .3a ﹣c=0D .当a=时,△ABD 是等腰直角三角形7.若二次函数y =ax 2+1的图像经过点(-2,0),则关于x 的方程a(x -2)2+1=0的实数根为( ) A .x 1=0,x 2=4 B .x 1=-2,x 2=6 C .x 1=,x 2=D .x 1=-4,x 2=08.如图,垂直于x 轴的直线AB 分别与抛物线C 1:y =x 2(x≥0)和抛物线C 2:y =(x≥0)交于A ,B 两点,过点A作CD ∥x 轴分别与y 轴和抛物线C 2交于点C ,D ,过点B 作EF ∥x 轴分别与y 轴和抛物线C 1交于点E ,F ,则的值为( )A .B .C .D .三、填空题1.如果点A (﹣2,y 1)和点B (2,y 2)是抛物线y=(x+3)2上的两点,那么 y 1 y 2.(填“>”、“=”、“<”)2.已知函数y =ax 2+bx +c ,当x =3时,函数的最大值为4,当x =0时,y =-14,则函数关系式____.3.平时我们在跳绳时,绳子甩到最高处的形状可近似看作抛物线,如图,建立平面直角坐标系,抛物线的函数表达式为y =-x 2+x +(单位:m),绳子甩到最高处时刚好通过站在x =2点处跳绳的学生小明的头顶,则小明的身高为______m.4.如图,抛物线y =ax 2+bx +c 与x 轴相交于点A 、B(m +2,0),与y 轴相交于点C ,点D 在该抛物线上,坐标为(m ,c),则点A 的坐标是________.5.老师出示了小黑板上的题后(如图),小华说:过点(3,0);小彬说:过点(4,3);小明说:a =1;小颖说:抛物线被x 轴截得的线段长为2.你认为四人的说法中,正确的有_____________.(填写姓名即可)四、解答题1.已知二次函数y=ax2+bx+c中,函数值y与自变量x的部分对应值如下表:(1)求该二次函数的表达式;(2)当x为何值时,y有最小值,最小值是多少?2.已知:如图,抛物线y=ax2+bx+c与x轴交于点A(2,0),B(4,0),且过点C(0,4).(1)求出抛物线的表达式和顶点坐标;(2)请你求出抛物线向左平移3个单位长度,再向上平移1.5个单位长度后抛物线的表达式.3.请先仔细阅读下列要求,然后解答相关问题.(1)请补全以下求一元二次不等式-2x2-4x≥0的解集的过程;①构造函数,画出图象:根据不等式特征构造二次函数y=-2x2-4x;并在平面直角坐标系中(如图)画出二次函数y=-2x2-4x的图象(只画出草图即可);②求得界点,标示所需:当y=0时,求得方程-2x2-4x=0的解为;不等式-2x2-4x≥0的解集即为函数值y≥0时所对应的自变量x的取值范围;③借助图象,写出解集;由所标示图象,可得不等式-2x2-4x≥0的解集为;(2)请你利用(1)中求不等式解集的方法和步骤,①直接写出一元二次不等式x2-6x+3<10的解集为;②直接写出一元二次不等式x2+3x>-1的解集为.解:如图所示.4.如图,以直线x=1为对称轴的抛物线y=ax2+bx+c(a,b,c为常数)经过A(4,0)和B(0,4)两点,其顶点为C.(1)求该抛物线的表达式及其顶点C的坐标;(2)若点M是抛物线上的一个动点,且位于第一象限内.①设△ABM的面积为S,试求S的最大值;②若S为整数,则这样的M点有个.5.某企业投资100万元引进一条农产品加工线,若不计维修、保养费用,预计投产后每年可获利33万元,该生产线投资后,从第1年到第年的维修、保养费用累计为(万元),且,若第1年的维修、保养费用为2万元,第2年为4万元。

上海初三数学试题及答案

上海初三数学试题及答案

上海初三数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是正整数?A. -3B. 0C. 1.5D. 2答案:D2. 一个数的相反数是-5,那么这个数是:A. 5B. -5C. 0D. 1答案:A3. 如果a和b互为倒数,那么ab的值是:A. 0B. 1C. -1D. 无法确定答案:B4. 一个等腰三角形的两边长分别为3cm和5cm,那么这个三角形的周长是:A. 11cmB. 13cmC. 16cmD. 无法确定答案:B5. 下列哪个选项是无理数?A. 0.5B. 0.333...C. πD. 1/3答案:C6. 一个数的平方等于9,那么这个数是:A. 3B. -3C. ±3D. 无法确定答案:C7. 一个数的立方等于-8,那么这个数是:A. 2B. -2C. 8D. -8答案:B8. 如果一个角的补角是120°,那么这个角是:A. 60°B. 30°C. 90°D. 120°答案:B9. 一个直角三角形的两个锐角分别是30°和60°,那么这个三角形是:A. 等边三角形B. 等腰三角形C. 直角三角形D. 无法确定答案:C10. 下列哪个选项是二次根式?A. √4B. √(-1)C. √(2/3)D. √(2)^2答案:C二、填空题(每题3分,共30分)11. 一个数的绝对值是5,这个数可以是______。

答案:±512. 一个数的平方根是2,那么这个数是______。

答案:413. 如果一个角的正弦值是1/2,那么这个角可能是______。

答案:30°或150°14. 一个数的立方根是-2,那么这个数是______。

答案:-815. 一个直角三角形的斜边长为5cm,一个锐角是30°,那么这个三角形的周长是______。

答案:10cm16. 如果一个角的余弦值是-√3/2,那么这个角可能是______。

2022——2023学年四川省乐山市中考数学专项提升仿真模拟试题(一模二模)含答案

2022——2023学年四川省乐山市中考数学专项提升仿真模拟试题(一模二模)含答案

2022-2023学年四川省乐山市中考数学专项提升仿真模拟试题(一模)一、选一选(每小题3分,共24分)1.下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3|C.3﹣2D.(﹣3)22.下列函数中,自变量的取值范围是x >3的是()A.y=x ﹣3B.13y x =- C.y =D.y =3.已知反比例函数y =﹣3x,下列结论没有正确的是()A.图象必点(﹣1,3)B.若x >1,则﹣3<y <0C.图象在第二、四象限内D.y 随x 的增大而增大4.下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.掷一枚硬币,正面朝上的概率为12D.若2=S 甲0.1,2=S 乙0.01,则甲组数据比乙组数据稳定5.一个几何体的三视图如图所示,则这个几何体是()A. B. C. D.6.如图,在平面直角坐标系中,菱形OACB 的顶点O 在原点,点C 的坐标为(4,0),点B 的纵坐标是−1,则顶点A 坐标是A.(2,1)B.(1,−2)C.(1,2)D.(2,-1)7.如图,RtΔOAB 的顶点O 与坐标原点重合,AOB ∠=90°,AO 2BO =,当点A 在反比例函数2y x=(x >0)的图像上移动时,点B B 的坐标满足的函数解析式为()A.1y (x 0)x=-< B.1y (x 0)2x=-< C.1y (x 0)4x=-< D.1y (x 0)8x=-<8.如图,在正方形ABCD 中,AD=5,点E、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为()A.32B.C.75D.二、填空题(每小题3分,共30分)9.16的平方根是.10.南海资源丰富,其面积约为35000002km ,相当于我国渤海、黄海和东海总面积的3倍.该面积可用科学记数法表示为____________2km .11.如果有理数x,y满足方程组4221x yx y+=⎧⎨-=⎩那么x2-y2=________.12.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.13.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是_____.14.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.15.如图,△ABC的三个顶点都在⊙O上,AD是直径,且∠CAD=56°,则∠B的度数为______°.16.如图,在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=__________.17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲(结果保留π).18.如图,在平面直角坐标系中,直线y=kx(k≠)(a>0),线段BC的两个端点分别在x轴与直线y=kx上(点B、C均与原点O没有重合)滑动,且BC=2,分别作BP⊥x轴,CP⊥直线y=kx,交点为P.经探究,在整个滑动过程中,P、O两点间的距离为定值______.三、解答题(本大题共有10小题,共86分)19.(1)计算:21()12---;(2)化简:232(1)121x x x x x ---÷--+.20.(1)解方程:x 2-x-3=0;(2)解没有等式组:()523113822x x x x ⎧->+⎪⎨≤-⎪⎩,.21.某中学初三(1)班共有40名同学,在30秒跳绳测试中他们的成绩统计如下表:跳绳数/个818590939598100人数128115将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(没有完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳没有能得满分.22.甲、乙、丙、丁四位同学进行羽毛球单打比赛,要从中选出两位同学打场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.23.已知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF=∠DAE ,AE 与BD 交于点G .(1)求证:BE=DF;(2)当DF ADFC DF时,求证:四边形BEFG是平行四边形.24.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.25.某班数学兴趣小组利用数学课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.26.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD 对应的函数表达式;(2)求E 点的坐标,并解释E 点的实际意义;(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x=小时,货车和轿车相距30千米.27.阅读下面材料:小明遇到这样一个问题:如图1,在边长为()2a a >的正方形ABCD 各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ 的面积.小明发现:分别延长QE、MF 、NG 、PH 交FA、GB 、HC 、ED 的延长线于点R、S 、T 、W 可得△RQF、△G 、△TNH 、△WPE 是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,没有重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ 的面积.参考小明思考问题的方法,解决问题:如图3,在等边△ABC 各边上分别截取AD=BE=CF,再分别过点D、E、F 作BC、AC、AB 的垂线,得到等边△RPQ,若33RPQ S =,则AD 的长为__________.28.在平面直角坐标系中,抛物线24y ax bx =++A(-3,0)、B(4,0)两点,且与y 轴交于点C,点D 在x 轴的负半轴上,且BD=BC,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的表达式;(2)若t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA 的值最小?若存在,求出点M 的坐标;若没有存在,请说明理由.2022-2023学年四川省乐山市中考数学专项提升仿真模拟试题(一模)一、选一选(每小题3分,共24分)1.下列各式结果是负数的是()A.﹣(﹣3)B.﹣|﹣3|C.3﹣2D.(﹣3)2【正确答案】B【分析】根据相反数、值、乘方,进行化简,即可解答.【详解】A 、(3)3--=,故错误.B 、33--=-,正确.C 、2139-=,故错误.D 、()239-=,故错误.所以B 选项是正确的.本题考查了相反数、值、乘方,解决本题的关键是熟记相反数、值、乘方的法则.2.下列函数中,自变量的取值范围是x >3的是()A .y=x ﹣3B.13y x =- C.y =D.y =【正确答案】D【详解】试题分析:A 、x 为全体实数,故本选项错误;B 、x-3≠0,解得x≠3,故本选项错误;C 、x-3≥0,解得x≥3,故本选项错误;D 、x-3>0,解得x >3,故本选项正确.故选D.考点:函数自变量的取值范围.3.已知反比例函数y =﹣3x,下列结论没有正确的是()A.图象必点(﹣1,3)B.若x >1,则﹣3<y <0C.图象在第二、四象限内D.y 随x 的增大而增大【正确答案】D【详解】A .∵(−1)×3=−3,∴图象必点(−1,3),故正确;B .∵k =−3<0,∴函数图象的两个分支分布在第二、四象限,故正确;C .∵x =1时,y =−3且y 随x 的增大而而增大,∴x >1时,−3<y <0,故正确;D.函数图象的两个分支分布在第二、四象限,在每一象限内,y 随x 的增大而增大,故错误.故选D.4.下列说法中,正确的是()A.对载人航天器“神舟十号”的零部件的检查适合采用抽样的方式B.某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的地区降雨C.掷一枚硬币,正面朝上的概率为12D.若2=S 甲0.1,2=S 乙0.01,则甲组数据比乙组数据稳定【正确答案】C【详解】分析:根据普查和抽样的意义可判断出A 的正误;根据概率的意义可判断出B 、C 的正误;根据方差的意义,方差大则数据没有稳定可判断出D 的正误.详解:A .对载人航天器“神舟十号”的零部件的检查,因为意义重大,适合采用全面的方式,故此选项错误;B .某市天气预报中说“明天降雨的概率是80%”,表示明天该市有80%的可能降水,故此选项错误;C .一枚硬币,正面朝上的概率为12,故此选项正确;D .若甲组数据的方差2S 甲=0.1,乙组数据的方差2S 乙=0.01,则乙组数据比甲组数据稳定,故此选项错误.故选C .点睛:本题主要考查了方差、概率、全面和抽样,关键是掌握概率是频率(多个)的波动稳定值,是对发生可能性大小的量的表现;方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.5.一个几何体的三视图如图所示,则这个几何体是()A. B. C. D.【正确答案】C【分析】根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱.【详解】解:A的俯视图是圆,故没有符合题意;B的俯视图是正方形,没有符合题意;C的主视图是两个矩形,俯视图是三角形,左视图是矩形,故符合题意;D的左视图是三角形,故没有符合题意;故选C.6.如图,在平面直角坐标系中,菱形OACB的顶点O在原点,点C的坐标为(4,0),点B的纵坐标是−1,则顶点A坐标是A.(2,1)B.(1,−2)C.(1,2)D.(2,-1)【正确答案】A【详解】∵点C的坐标为(4,0),∴OC=4,∴点B的纵坐标是-1,∴A(2,1).故选A.7.如图,RtΔOAB 的顶点O 与坐标原点重合,AOB ∠=90°,AO 2BO =,当点A 在反比例函数2y x=(x >0)的图像上移动时,点B B 的坐标满足的函数解析式为()A.1y (x 0)x=-< B.1y (x 0)2x=-< C.1y (x 0)4x=-< D.1y (x 0)8x=-<【正确答案】B【详解】分析:过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,设B 点坐标满足的函数解析式是y =kx,易得△AOC ∽△OBD ,然后由相似三角形面积比等于相似比的平方,求得S △AOC :S △BOD =4,继而求得答案.详解:如图,过点A 作AC ⊥x 轴于点C ,过点B 作BD ⊥x 轴于点D ,设B 点坐标满足的函数解析式是y =kx ,∴∠ACO =∠BDO =90°,∴∠AOC +∠OAC =90°.∵∠AOB =90°,∴∠AOC +∠BOD =90°,∴∠BOD =∠OAC ,∴△AOC ∽△OBD ,∴S △AOC :S △BOD =(AO BO)2.∵AO =2BO ,∴S △AOC :S △BOD =4.∵当A 点在反比例函数y =2x(x >0)的图象上移动,∴S △AOC =12OC •AC =12•x •2x=1,∴S △BOD =12DO •BD =12(﹣x •k x )=﹣12k ,∴1=4×(﹣12k ),解得:k =﹣12∴B 点坐标满足的函数解析式y =﹣12x(x <0).故选B .点睛:本题考查了相似三角形的判定与性质以及反比例函数的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形思想的应用是解题的关键.8.如图,在正方形ABCD 中,AD=5,点E、F 是正方形ABCD 内的两点,且AE=FC=3,BE=DF=4,则EF 的长为()A.32B.C.75D.【正确答案】D【分析】延长AE 交DF 于G ,再根据全等三角形的判定得出△AGD 与△ABE 全等,得出AG =BE =4,由AE =3,得出EG =1,同理得出GF =1,再根据勾股定理得出EF 的长.【详解】解:延长AE 交DF 于G .如图,∵四边形ABCD 为正方形∴AB=AD=DC=5,∠BAD=∠ADC=90°,∵AE =3,BE =4,∴△ABE 是直角三角形,∴同理可得△DFC 是直角三角形,∵AE=FC ,BE=DF ,AB =DC,∴△ABE ≌△CDF ,∴∠BAE=∠DCF ,∵∠FCD+∠CDF=90°,∴∠BAE+∠CDF=90°,∴∠DAG+∠ADG=90°,∴△AGD 是直角三角形,∴∠ABE +∠BAE =∠DAE +∠BAE ,∴∠GAD =∠EBA ,同理可得:∠ADG =∠BAE .在△AGD 和△BAE 中,∵EAB GDA AD AB ABE DAG ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AGD ≌△BAE (ASA ),∴AG =BE =4,DG =AE =3,∴EG =4﹣3=1,同理可得:GF =1,∴EF=.故选D .本题考查了正方形的性质,关键是根据全等三角形的判定和性质得出EG =FG =1,再利用勾股定理计算.二、填空题(每小题3分,共30分)9.16的平方根是.【正确答案】±4【详解】由(±4)2=16,可得16的平方根是±4,故±4.10.南海资源丰富,其面积约为35000002km ,相当于我国渤海、黄海和东海总面积的3倍.该面积可用科学记数法表示为____________2km .【正确答案】63.510⨯【详解】分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的值与小数点移动的位数相同.当原数值≥1时,n是正数;当原数的值<1时,n是负数.详解:3500000用科学记数法表示为3.5×106.故答案为3.5×106.点睛:本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.如果有理数x,y满足方程组4221x yx y+=⎧⎨-=⎩那么x2-y2=________.【正确答案】2【分析】把个方程乘以2,然后利用加减消元法求解得到x、y的值,然后代入代数式进行计算即可得解.【详解】4221x yx y+=⎧⎨-=⎩①②,①×2得,2x+2y=8③,②+③得,4x=9,解得x=9 4,把x=94代入①得,94+y=4,解得y=7 4,∴方程组的解是94 {74 xy==,∴x2-y2=(94)2-(74)2=32216=.考点:解二元方程组.12.某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是______.【分析】根据降价前后的价格,列式计算即可.【详解】解:设该药品平均每次降价的百分率是x ,根据题意得25×(1-x )(1-x )=16,整理得()225116x -=,解得x =0.2或1.8(没有合题意,舍去);即该药品平均每次降价的百分率是20%,故20%.本题考查一元二次方程的应用.根据题意正确列出方程是解题的关键.13.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是_____.【正确答案】0.3.【详解】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.14.若正多边形的一个内角等于140°,则这个正多边形的边数是_______.【正确答案】9【分析】此题主要考查了多边形的外角与内角,做此类题目,首先求出正多边形的外角度数,再利用外角和定理求出求边数.首先根据求出外角度数,再利用外角和定理求出边数.【详解】∵正多边形的一个内角是140°,∴它的一个外角是:180°-140°=40°,∵多边形的外角和为360°,∴这个正多边形的边数是:360°÷40°=9.故9.15.如图,△ABC 的三个顶点都在⊙O 上,AD 是直径,且∠CAD=56°,则∠B 的度数为______°.【详解】连接CD,AD为直径∴∠ACD=90°,∠CAD=56°∴∠ADC=34°,根据同弧所对的圆周角相等可得:∠B=∠ADC=34°.故34考点:圆的基本性质16.如图,在△ABC中,AB=AC,CD=CB,若∠ACD=42°,则∠BAC=__________.【正确答案】32°【详解】试题解析:设∠BAC=x,则∠BDC=42°+x.∵CD=CB,∴∠B=∠BDC=42°+x.∵AB=AC,∴∠ACB=∠B=42°+x,∴∠BCD=∠ACB-∠ACD=x,∴∠ADC=∠B+∠BCD=42°+x+x=42°+2x.∵∠ADC+∠BDC=180°,∴42°+2x+42°+x=180°,解得x=32°,所以∠BAC=32°.考点:等腰三角形的性质.17.如图,在▱ABCD中,AD=2,AB=4,∠A=30°,以点A为圆心,AD的长为半径画弧交AB于点E,连接CE,则阴影部分的面积是▲(结果保留π).【正确答案】1 33π-【详解】过D点作DF⊥AB于点F.∵AD=2,AB=4,∠A=30°,∴DF=AD•sin30°=1,EB=AB﹣AE=2.∴阴影部分的面积=平行四边形ABCD的面积-扇形ADE面积-三角形CBE的面积=230211 4121336023ππ⨯⨯⨯--⨯⨯=-.故答案为.1 33π-18.如图,在平面直角坐标系中,直线y=kx(k≠)(a>0),线段BC的两个端点分别在x轴与直线y=kx上(点B、C均与原点O没有重合)滑动,且BC=2,分别作BP⊥x轴,CP⊥直线y=kx,交点为P.经探究,在整个滑动过程中,P、O两点间的距离为定值______.【正确答案】3【详解】试题分析:根据题意可得:COB=60°,当△OCB 为等边三角形时求出OP的长度.考点:勾股定理.三、解答题(本大题共有10小题,共86分)19.(1)计算:21()12---;(2)化简:232(1)121x x x x x ---÷--+.【正确答案】(1)5;(2)22x x --+【详解】分析:(1)先化简二次根式、计算负整数指数幂、去掉值符号,然后进行加减运算即可;(2)首先计算括号内的式子,通分相加,把除法转化为乘法,然后进行约分即可.详解:(1)原式=41)+-=41+-=5+;(2)原式=[31x -﹣111x x x +--()()]•212x x --()=241x x --•212x x --()=221x x x ()()+---•212x x --()=﹣(x +2)(x ﹣1)=﹣x 2﹣x +2.点睛:主要考查分式的混合运算,通分、因式分解和约分是解答的关键.20.(1)解方程:x 2-x-3=0;(2)解没有等式组:()523113822x x x x ⎧->+⎪⎨≤-⎪⎩,.【正确答案】(1)112x +=,212x -=;(2)542x <≤【详解】分析:(1)利用公式法解方程即可;(2)分别解两个没有等式得到x >2.5和x ≤4,然后根据大小小大中间找确定没有等式组的解集.详解:(1)a =1,b =-1,c =-3,△=b 2-4ac =2(1)41(3)--⨯⨯-=13>0,∴x=12,∴112x =,212x =;(2)解①得x >2.5,解②得x ≤4,所以没有等式组的解集为2.5<x ≤4.点睛:本题考查了解一元二次方程﹣公式法:将一元二次方程化成一般形式,再利用求根公式求解.也考查了解一元没有等式组.21.某中学初三(1)班共有40名同学,在30秒跳绳测试中他们的成绩统计如下表:跳绳数/个818590939598100人数128115将这些数据按组距5(个)分组,绘制成如图的频数分布直方图(没有完整).(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次跳绳成绩的众数是个,中位数是个;(3)若跳满90个可得满分,学校初三年级共有720人,试估计该中学初三年级还有多少人跳绳没有能得满分.【正确答案】(1)见解析;(2)95;95;(3)54人.【分析】(1)首先根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,从而求得跳98个的人数;(2)根据众数和中位数的定义填空即可;(3)用样本估计总体即可.【详解】解:(1)根据直方图得到95.5﹣100.5小组共有13人,由统计表知道跳100个的有5人,∴跳98个的有13﹣5=8(人),跳90个的有40﹣1﹣2﹣8﹣11﹣8﹣5=5(人),故统计表为:跳绳数/个818590939598100人数12581185直方图为:(2)观察统计表知:众数为95个,中位数为95个;(3)估计该中学初三年级没有能得满分的有720×1240=54(人).本题考查了频数分布表以及频率分布直方图的知识,解题的关键是读懂题目意思并读懂两个统计图,难度中等.22.甲、乙、丙、丁四位同学进行羽毛球单打比赛,要从中选出两位同学打场比赛.请用树状图法或列表法,求恰好选中甲、乙两位同学的概率.【正确答案】16【详解】画树状图:∴共有12个等可能的结果,其中恰好是甲乙的占2个,∴P (甲乙)=21126=本题考查了树状图求概率,解决此题的关键是认真审题,找到总的情况和分类的情况.23.已知:如图,在菱形ABCD 中,点E 、F 分别在边BC 、CD ,∠BAF=∠DAE ,AE 与BD 交于点G .(1)求证:BE=DF ;(2)当DF AD FC DF=时,求证:四边形BEFG 是平行四边形.【正确答案】(1)证明见解析;(2)证明见解析.【分析】(1)由菱形的性质和∠BAF=∠DAE ,证得△ABF 与△AFD 全等后即可证得结论.(2)由AD ∥BC 证得△ADG ∽△EBG ,从而AD DG BE BG =;由DF AD FC DF=和BE=DF 即可得证得DF AD DG FC BE BG==.从而根据平行线分线段成比例定理证得FG ∥BC ,进而得到∠DGF=∠DBC=∠BDC,根据等腰三角形等角对等边的判定和BE=DF,证得BE=GF.利用一组对边平行且相等即可判定平行四边形.【详解】证明:(1)∵四边形ABCD是菱形,∴AB=AD,∠ABC=∠ADF,∵∠BAF=∠DAE,∴∠BAF﹣∠EAF=∠DAE﹣∠EAF,即:∠BAE=∠DAF.∴△BAE≌△DAF(ASA).∴BE=DF.(2)∵四边形ABCD是菱形,∴AD∥BC.∴△ADG∽△EBG.∴AD DG BE BG=.又∵BE=DF,DF AD FC DF=,∴DF AD DG FC BE BG==.∴GF∥BC.∴∠DGF=∠DBC=∠BDC.∴DF=GF.又∵BE=DF,∴BE=GF.∴四边形BEFG是平行四边形.24.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.【正确答案】甲、乙两个工厂每天分别能加工40件、60件新产品【分析】设甲工厂每天能加工x件产品,表示8出乙工厂每天加工1.5x件产品,然后根据甲加工产品的时间比乙加工产品的时间多10天列出方程求解即可.【详解】解:设甲工厂每天能加工x件产品,则乙工厂每天加工1.5x件产品,根据题意得,12001200101.5x x-=,解得x=40.经检验,x=40是原方程的解,并且符合题意.1.5x=1.5×40=60.答:甲、乙两个工厂每天分别能加工40件、60件新产品.本题考查的是分式方程的应用题,读懂题意列出方程时解决此题的关键.25.某班数学兴趣小组利用数学课时间测量位于烈山山顶的炎帝雕像高度,已知烈山坡面与水平面的夹角为30°,山高857.5尺,组员从山脚D处沿山坡向着雕像方向前进1620尺到达E点,在点E处测得雕像顶端A的仰角为60°,求雕像AB的高度.【正确答案】雕像AB的高度为95尺.【详解】试题分析:过点E作EF⊥AC,EG⊥CD,在Rt△DEG中,求得EG的长,即可得BF的长;在Rt△BEF中,可得,在Rt△AEF中,∠AEF=60°,设AB=x,根据锐角三角函数求得x即可.试题解析:如图,过点E作EF⊥AC于F,EG⊥CD于G,∵AC⊥CD,∴四边形EFCG是矩形,∴CF=EG,在Rt△DEG中,∵DE=1620,∠D=30°,∴EG=DEsin∠D=1620×12=810,∵BC=857.5,CF=EG,∴BF=BC﹣CF=47.5,∵EF∥DC,∴∠BEF=30°,在Rt△BEF中,tan∠BEF=BF EF,∴,在Rt△AEF中,∠AEF=60°,设AB=x,∵tan∠AEF=AF EF,∴AF=EF×tan∠AEF=3BF,∴x+47.5=3×47.5,∴x=95,答:雕像AB的高度为95尺.考点:解直角三角形的应用.26.甲乙两地相距400千米,一辆货车和一辆轿车先后从甲地出发驶向乙地,如图,线段OA 表示货车离甲地的路程y(千米)与所用时间x(小时)之间的函数关系,折线BCD表示轿车离甲地的路程y(千米)与x(小时)之间的函数关系,根据图象解答下列问题:(1)求线段CD对应的函数表达式;(2)求E点的坐标,并解释E点的实际意义;(3)若已知轿车比货车晚出发2分钟,且到达乙地后在原地等待货车,则当x=小时,货车和轿车相距30千米.【正确答案】(1)y=120x-140(2≤x≤4.5);(2)E点的坐标为(3.5,280),即表示当货车出发3.5小时时货车和轿车相遇;(3)12、114、174、378.【详解】试题分析:(1)设线段CD对应的函数解析式为y=kx+b,由待定系数法求出其解即可;(2)根据两图象相交的交点指的是两车相遇解答即可.(3)先由货车和轿车相距30千米列出方程解答即可.试题解析:(1)设线段CD对应的函数解析式为y=kx+b,可得:1002{400 4.5k bk b=+=+,解得:120{140 kb==-.所以线段CD对应的函数表达式为:y=120x-140(2≤x≤4.5);(2)由图象可得:直线OA的解析式为:y=80x,根据两图象相交的交点指的是两车相遇,可得:80x=120x-140,解得:x=3.5,把x=3.5代入y=80x,得:y=280;所以E点的坐标为(3.5,280),即表示当货车出发3.5小时时货车和轿车相遇;(3)设货车出发xh后,可得:120x-140-30=80x,解得:x=4.25.故答案为4.25.(3)由题意知,B(13,0),∴BC段解析式为y=60x-20(13≤x≤2),货车与轿车相距30km有四种情况:1)当13≤x≤2时,80x-(60x-20)=30,解得x=12;2)当2<x≤72时,80x-(120x-140)=30,解得x=114;3)当72<x≤92时,120x-140-80x=30,解得x=174;4)当92<x≤5时,400-80x=30,解得x=378;∴x=12、114、174、378.考点:函数的应用.27.阅读下面材料:小明遇到这样一个问题:如图1,在边长为()2a a>的正方形ABCD各边上分别截取AE=BF=CG=DH=1,当∠AFQ=∠BGM=∠CHN=∠DEP=45°时,求正方形MNPQ的面积.小明发现:分别延长QE、MF、NG、PH交FA、GB、HC、ED的延长线于点R、S、T、W可得△RQF、△G、△TNH、△WPE是四个全等的等腰直角三角形(如图2)请回答:(1)若将上述四个等腰直角三角形拼成一个新的正方形(无缝隙,没有重叠),则这个新的正方形的边长为__________;(2)求正方形MNPQ的面积.参考小明思考问题的方法,解决问题:如图3,在等边△ABC各边上分别截取AD=BE=CF,再分别过点D、E、F作BC、AC、AB的垂线,得到等边△RPQ,若33RPQS=,则AD的长为__________.【正确答案】(1)a(2)2(3)2 3【详解】试题分析:(1)四个等腰直角三角形的斜边长为a,其拼成的正方形面积为a2,边长为a;(2)如题图2所示,正方形MNPQ的面积等于四个虚线小等腰直角三角形的面积之和,据此求出正方形MNPQ的面积;(3)参照小明的解题思路,对问题做同样的等积变换.如答图1所示,三个等腰三角形△RSF,△QET,△PDW的面积和等于等边三角形△ABC的面积,故阴影三角形△PQR的面积等于三个虚线等腰三角形的面积之和.据此列方程求出AD的长度.试题解析:(1)四个等腰直角三角形的斜边长为a,则斜边上的高为12 a,每个等腰直角三角形的面积为:12a•12a=14a2,则拼成的新正方形面积为:4×14a2=a2,即与原正方形ABCD面积相等,∴这个新正方形的边长为a;(2)∵四个等腰直角三角形的面积和为a2,正方形ABCD的面积为a2,∴S正方形MNPQ=S△ARE+S△DWH+S△GCT+S△F=4S△ARE=4×12×12=2;(3)如答图1所示,分别延长RD,QF,PE,交FA,EC,DB的延长线于点S,T,W.由题意易得:△RSF,△QET,△PDW均为底角是30°的等腰三角形,其底边长均等于△ABC的边长.没有妨设等边三角形边长为a,则SF=AC=a.如答图2所示,过点R作RM⊥SF于点M,则MF=12SF=12a,在Rt △RMF 中,RM=MF•tan30°=12a×36=36a,∴S △RSF =12a•36a=34a 2.过点A 作AN ⊥SD 于点N,设AD=AS=x,则AN=AD•sin30°=12x,∴S △ADS =12SD•AN=12x•12x=34x 2.∵三个等腰三角形△RSF,△QET,△PDW 的面积和=3S △RSF =3×34a 2=34a 2,∴S +S △CFT +S △BEW =3S △ADS ,4x 2,得x 2=23,解得x=23或x=(没有合题意,舍去)∴x=23,即AD 的长为23.考点:四边形综合题.28.在平面直角坐标系中,抛物线24y ax bx =++A(-3,0)、B(4,0)两点,且与y 轴交于点C,点D 在x 轴的负半轴上,且BD=BC,有一动点P 从点A 出发,沿线段AB 以每秒1个单位长度的速度向点B 移动,同时另一个动点Q 从点C 出发,沿线段CA 以某一速度向点A 移动.(1)求该抛物线的表达式;(2)若t 秒的移动,线段PQ 被CD 垂直平分,求此时t 的值;(3)该抛物线的对称轴上是否存在一点M,使MQ+MA 的值最小?若存在,求出点M 的坐标;若没有存在,请说明理由.【正确答案】(1)211433y x x =-++(2)线段PQ 被CD 垂直平分时,t 的值为177(3)在抛物线211433y x x =-++的对称轴上存在一点M 12218,使得MQ+MA 的值最小【详解】解:(1)∵抛物线A (-3,0),B (4,0)两点,∴9340164b+40a b a -+=⎧⎨+=⎩解得1313a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线的解析式为.211433y x x =-++(2)如图,依题意知AP =t ,连接DQ ,由A (-3,0),B (4,0),C (0,4),可得AC =5,BC =42,AB =7.∵BD =BC ,∴742AD AB BD =-=-.∵CD 垂直平分PQ ,∴QD =DP ,∠CDQ =∠CDP .∵BD =BC ,∴∠DCB =∠CDB .∴∠CDQ =∠DCB .∴DQ ∥BC .∴△ADQ ∽△ABC .∴AD DQ AB BC =.∴AD DP AB BC =.∴7427-=.解得327P =-.∴177AP AD DP =+=.∴线段PQ 被CD 垂直平分时,t 的值为177.(3)设抛物线211433y x x =-++的对称轴12x =与x 轴交于点E .点A 、B 关于对称轴12x =对称,连接BQ 交该对称轴于点M .则MQ MA MQ MB +=+,即MQ MA BQ +=.当BQ ⊥AC 时,BQ 最小.此时,∠EBM =∠ACO .∴3tan tan 4EBM ACO ∠=∠=.∴34ME BE =.∴3742ME =,解得ME=218.∴M 12218.即在抛物线211433y x x =-++的对称轴上存在一点M (12,218),使得MQ +MA 的值最小.2022-2023学年四川省乐山市中考数学专项提升仿真模拟试题(二模)一、选一选;(每小题3分,共计36分)1.3--的倒数是()A.13- B.-3 C.3 D.132.下列计算正确的是()A. B. C.=6 D.=43.有三张正面分别标有数字-2,3,4的没有透明卡片,它们除数字没有同外,其余全部相同,现将它们背面朝上洗匀后,从中任取一张(没有放回),再从剩余的卡片中任取一张,则两次抽取的卡片上的数字之积为正偶数的概率是()A.49 B.112 C.13 D.164.随着生活水平的提高,小林家购置了私家车,这样他乘坐私家车上学比乘坐公交车上学所需的时间少用了15分钟,现已知小林家距学校8千米,乘私家车平均速度是乘公交车平均速度的2.5倍,若设乘公交车平均每小时走x千米,根据题意可列方程为()A.88152.5x x+= B.8184 2.5x x+= C.88152.5x x=+ D.8812.54x x=+5.已知一元二次方程x2-8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC 的周长为()A.13B.11或13C.11D.126.如图,在△ABC中,点E,D,F分别在边AB,BC,CA上,且DE∥CA,DF∥BA.下列四个判断:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.正确..的个数是()。

初三练习题十大排行榜

初三练习题十大排行榜

初三练习题十大排行榜随着初三学业的逐渐深入,学生们面临着越来越多的练习题。

为了帮助初三学生们更好地备考,小编整理了初三练习题的十大排行榜。

通过这些练习题的训练,学生们可以提高解题能力,巩固学习内容,以便顺利应对考试。

一、数学数学是初三学生们最为重要的科目之一。

以下是初三数学练习题的十大排行榜:1. 同步测试卷:同步测试卷是学生们进行数学复习的必备材料。

这些试卷覆盖了各个章节的知识点,能够全面考察学生对数学知识的掌握情况。

2. 高考真题:高考数学真题是初三学生进行高难度训练的好材料。

通过解析高考真题,学生们可以更好地了解命题规律,提高解题技巧。

3. 经典习题集:经典习题集是初三数学学习的必备工具。

这些习题集覆盖了各个知识点的典型题目,能够帮助学生们快速巩固知识点。

4. 考前模拟题:考前模拟题是考前冲刺阶段必不可少的练习题。

通过模拟考试,学生们可以熟悉考试形式,提高应试能力。

5. 竞赛题:参加数学竞赛是提高数学水平的有效途径。

解决竞赛题可以锻炼学生们的思维能力和创新思维。

二、语文语文是初三学生们需要关注的重要科目之一。

以下是初三语文练习题的十大排行榜:1. 高考阅读理解题:高考阅读理解题是对学生阅读能力和理解能力的全面考察。

通过解答阅读理解题,学生们可以提高对文章的理解能力和阅读速度。

2. 名著导读题:名著导读题是对学生对名著理解的考查。

通过解答名著导读题,学生们可以深入理解名著中的思想和内涵。

3. 作文练习题:作文练习题是对学生写作能力的培养。

通过经常的写作练习,学生们可以提高写作水平,拓展思维能力。

4. 古诗文鉴赏题:通过解答古诗文鉴赏题,学生们可以提高对古代文化的理解和鉴赏能力。

5. 语法题:语法题是对学生语法知识掌握情况的考察。

通过解答语法题,学生们可以巩固语言基础知识。

三、英语英语作为一门重要的外语课,也需要学生们进行大量练习。

以下是初三英语练习题的十大排行榜:1. 高考英语阅读理解题:高考英语阅读理解题是对学生英语阅读理解能力的考察。

设计一份能够提高初三学生数学解题能力的作业

设计一份能够提高初三学生数学解题能力的作业

设计一份能够提高初三学生数学解题能力的作业数学是一门需要大量练习的学科,解题能力的提高需要不断的思考和实践。

为了帮助初三学生提升数学解题能力,设计一份针对性强、内容全面的作业是非常必要的。

本文将围绕这一目标,介绍一份可以提高初三学生数学解题能力的作业。

I. 知识巩固和运用(400字)1. 选择题:设计一些选择题,囊括初中数学的各个知识点。

每题都应有详细的解答步骤,以帮助学生理解解题思路和方法。

2. 计算题:设计一些有趣的计算题,包括四则运算、分数运算、整式运算等。

每题附带解题步骤和答案,学生可以通过解题过程巩固知识。

3. 程序设计题:引入一些需要编写程序解决的数学问题,鼓励学生运用所学的编程知识进行解答。

例如,设计一个程序求解斐波那契数列的第n项。

II. 探索与思考(400字)1. 综合应用题:设计一些综合应用题,要求学生灵活运用所学知识解决实际问题。

例如,设计一个涉及面积和周长的实际情境问题,让学生通过计算得出最优解。

2. 探索性问题:给予学生一些探索性问题,引导他们思考解决问题的不同方法和思路。

例如,给出一个数列,要求学生推导出通项公式或找出规律。

III. 提高解题策略(400字)1. 举一反三题:设计一些需要学生运用类似题型的知识解决的题目,鼓励学生通过观察和比较题目的特点来解决问题。

这样的训练可以提高学生的归纳和分析能力。

2. 策略解题题:设计一些需要学生运用特定解题策略的题目,例如套用模型、逆向思维等。

这样的训练可以培养学生灵活运用解题策略的能力。

IV. 拓展与延伸(300字)1. 挑战题:设计一些难度适当的挑战题,要求学生思考较为复杂的问题,培养他们的解决问题的能力和兴趣。

这样的题目可以激发学生的思维活力和创造力。

2. 数学游戏:引入一些有趣的数学游戏,让学生在娱乐中学习和思考。

例如,数独、数学迷宫等游戏,可以培养学生的逻辑思维和问题解决能力。

V. 总结与反思(100字)通过这份作业,初三学生可以巩固和运用所学的数学知识,培养解题思维和策略,提高解题能力。

人教版初三数学:实际问题与二次函数—知识讲解(提高)

人教版初三数学:实际问题与二次函数—知识讲解(提高)

实际问题与二次函数—知识讲解(提高)1.能运用二次函数分析和解决简单的实际问题,培养分析问题、解决问题的能力和应用数学的意识.2.经历探索实际问题与二次函数的关系的过程,深刻理解二次函数是刻画现实世界的一个有效的数学模型.【要点梳理】要点一、列二次函数解应用题列二次函数解应用题与列整式方程解应用题的思路和方法是一致的,不同的是,学习了二次函数后,表示量与量的关系的代数式是含有两个变量的等式.对于应用题要注意以下步骤:(1)审清题意,弄清题中涉及哪些量,已知量有几个,已知量与变量之间的基本关系是什么,找出等量关系(即函数关系).(2)设出两个变量,注意分清自变量和因变量,同时还要注意所设变量的单位要准确.(3)列函数表达式,抓住题中含有等量关系的语句,将此语句抽象为含变量的等式,这就是二次函数.(4)按题目要求,结合二次函数的性质解答相应的问题。

(5)检验所得解是否符合实际:即是否为所提问题的答案.(6)写出答案.要点诠释:常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.要点二、建立二次函数模型求解实际问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.要点诠释:(1)利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.(2)对于本节的学习,应由低到高处理好如下三个方面的问题:①首先必须了解二次函数的基本性质;②学会从实际问题中建立二次函数的模型;③借助二次函数的性质来解决实际问题.【典型例题】类型一、利用二次函数求实际问题中的最大(小)值1. (2016•黔东南州)凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.(1)求一次至少购买多少只计算器,才能以最低价购买?(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?【思路点拨】(1)设一次购买x只,由于凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降低0.10元,而最低价为每只16元,因此得到20﹣0.1(x﹣10)=16,解方程即可求解;(2)由于根据(1)得到x≤50,又一次销售x(x>10)只,因此得到自变量x的取值范围,然后根据已知条件可以得到y与x的函数关系式;(3)首先把函数变为y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,然后可以得到函数的增减性,再结合已知条件即可解决问题.【答案与解析】解:(1)设一次购买x只,则20﹣0.1(x﹣10)=16,解得:x=50.答:一次至少买50只,才能以最低价购买;(2)当10<x≤50时,y=[20﹣0.1(x﹣10)﹣12]x=﹣0.1x2+9x,当x>50时,y=(16﹣12)x=4x;综上所述:y=;(3)y=﹣0.1x2+9x=﹣0.1(x﹣45)2+202.5,①当10<x≤45时,y随x的增大而增大,即当卖的只数越多时,利润更大.②当45<x≤50时,y随x的增大而减小,即当卖的只数越多时,利润变小.且当x=46时,y1=202.4,当x=50时,y2=200.y1>y2.即出现了卖46只赚的钱比卖50只赚的钱多的现象.当x=45时,最低售价为20﹣0.1(45﹣10)=16.5(元),此时利润最大.【点评】本题考查了二次函数的应用.最大销售利润的问题常利函数的增减性来解答,我们首先要吃透题意,确定变量,建立函数模型,然后结合实际选择最优方案.其中要注意应该在自变量的取值范围内求最大值(或最小值),也就是说二次函数的最值不一定在x=﹣时取得.举一反三:【高清课程名称:实际问题与二次函数高清ID 号:356777 关联的位置名称(播放点名称):例4】【变式】某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?(总利润=总销售额-总成本)【答案】(1)设y 与x 的函数关系式为:y kx b =+(k≠0),∵函数图象经过点(60,400)和(70,300)∴⎩⎨⎧+=+=bk bk 7030060400 解得⎩⎨⎧=-=100010b k∴100010+-=x y(2))100010)(50(+--=x x P500001500102-+-=x x P (50≤x ≤70)∵752015002=--=-a b ,10-=a <0∴函数500001500102-+-=x x P 图象开口向下, 对称轴是直线x=75∵50≤x ≤70,此时y 随x 的增大而增大, ∴当x =70时,6000=最大值P .类型二、利用二次函数解决抛物线形建筑问题2.(2014秋•涿州市校级月考)某工厂大门是抛物线形水泥建筑,大门地面宽为4m ,顶部距离地面的高度为4.4m ,现有一辆满载货物的汽车欲通大门,其装货宽度为2.4m ,该车要想过此门,装货后 的最大高度应是多少m ?【思路点拨】因为校门是抛物线形,不妨将这一问题转化为二次函数进行研究,建立适当的直角坐标系,将已知数据转化为点的坐标,从而确定函数关系式,再根据关系式求高.【答案与解析】解:建立如图平面直角坐标系:设抛物线的解析式为y=ax2,由题意得:点A的坐标为(2,﹣4.4),∴﹣4.4=4a,解得:a=﹣1.1,∴抛物线的解析式为y=﹣1.1x2,当x=1.2时,y=﹣1.1×1.44=﹣1.584,∴线段OB的长为1.584米,∴BC=4.4﹣1.584=2.816米,∴装货后的最大高度为2.816米,故答案为:2.816米.【点评】利用二次函数解决抛物线形建筑问题一般步骤:(1)恰当地建立直角坐标系;(2)将已知条件转化为点的坐标;(3)合理地设出所求函数关系式;(4)代入已知条件或点的坐标,求出关系式;(5)利用关系式求解问题.类型三、利用二次函数求跳水、投篮等实际问题3. 如图所示,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5 m时,达到最大高度3.5 m,然后准确落入篮筐,已知篮筐中心到地面的距离为3.05 m,若该运动员身高1.8 m,在这次跳投中,球在头顶上方0.25 m处出手,问:球出手时,他跳离地面的高度是多少?【答案与解析】如图所示,在直角坐标系中,点A(1.5,3.05)表示篮筐,点B(0,3.5)表示球运行的最大高度,点C表示球员篮球出手处,其横坐标为-2.5,设C 点的纵坐标为n ,过点C 、B 、A 所在的抛物线的解析式为2()y a x h k =-+,由于抛物线开口向下,则点B(0,3.5)为顶点坐标,∴ 23.5y ax =+. ∵ 抛物线23.5y ax =+经过点A(1.5,3.05), ∴ 3.05=a ·1.52+3.5, ∴ 15a =-. ∴ 抛物线解析式为21 3.55y x =-+. ∴ 21( 2.5) 3.55n =-⨯-+,∴ n =2.25.∴ 球出手时,球员跳离地面的高度为2.25-(1.8+0.25)=0.20(米).【点评】首先要建立适当的平面直角坐标系,构造函数模型,将已知数据转化为点的坐标,然后利用待定系数法求出函数解析式,再利用解析式求出抛物线上已知横坐标的点的纵坐标,结合已知条件,得到实际问题的解.类型四、利用二次函数求图形的边长、面积等问题4. 一条隧道的截面如图所示,它的上部是一个以AD 为直径的半圆O ,下部是一个矩形ABCD .(1)当AD =4米时,求隧道截面上部半圆O 的面积;(2)已知矩形ABCD 相邻两边之和为8米,半圆O 的半径为r 米.①求隧道截面的面积S(m)2关于半径r(m)的函数关系式(不要求写出r 的取值范围);②若2米≤CD ≤3米,利用函数图象求隧道截面的面积S 的最大值.(π取3.14,结果精确到0.1米) 【思路点拨】①根据几何图形的面积公式可求关于面积的函数解析式;②利用二次函数的有关性质,在自变量的取值范围内确定面积的最大值. 【答案与解析】(1)2S π=半圆(米2);(2)①∵ AD =2r ,AD+CD =8,∴ CD =8-AD =8-2r , ∴ 2221112(82)416222S r AD CD r r r r r πππ⎛⎫=+=+-=-+ ⎪⎝⎭. ②由①知,CD =8-2r ,又∵ 1.2米≤CD≤3米,∴ 2≤8-2r≤3,∴ 2.5≤r≤3.由①知,214162S r r π⎛⎫=-+ ⎪⎝⎭228642.4316 2.434 2.43 2.43r r ⎛⎫-+=--+ ⎪⎝⎭≈. ∵ -2.43<0,∴ 函数图象为开口向下的抛物线,函数图象对称轴83.32.43r =≈, 又2.5≤r≤3,由函数图象知,在对称轴左侧S 随r 的增大而增大,故当r =3时,S 有最大值.21431632S π⎛⎫=-⨯+⨯ ⎪⎝⎭最大1 3.14494826.12⎛⎫⨯-⨯+ ⎪⎝⎭≈≈(米2).【点评】解此类问题,一般先应用几何图形的面积公式,写出图形的面积与边长之间的关系,再用配方法或公式法求顶点坐标,结合二次函数性质与自变量的取值范围确定最大面积.举一反三:【高清课程名称:实际问题与二次函数高清ID 号:356777 关联的位置名称(播放点名称):例3】 【变式】(2015•泗洪县校级模拟)如图,矩形纸片ABCD ,AD=8,AB=10,点F 在AB 上,分别以AF 、FB 为边裁出的两个小正方形纸片面积和S 的取值范围是 .【答案】50≤S ≤68.【解析】解:设AF=x ,则BF=10﹣x ,由题意,得S=x 2+(10﹣x )2, S=2x 2﹣20x+100, S=2(x ﹣5)2+50. ∴a=2>0,∴x=5时,S 最小=50. ∵2≤x ≤8,当x=2时,S=68,当x=8时,S=68.∴50≤S≤68.故答案为:50≤S≤68.附录资料:弧长和扇形面积、圆锥的侧面展开图—知识讲解(基础)【学习目标】1.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长和扇形面积的计算公式,并应用这些公式解决问题;2.了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,会应用公式解决问题;3. 能准确计算组合图形的面积.【要点梳理】要点一、弧长公式半径为R的圆中360°的圆心角所对的弧长(圆的周长)公式:n°的圆心角所对的圆的弧长公式:(弧是圆的一部分)要点诠释:(1)对于弧长公式,关键是要理解1°的圆心角所对的弧长是圆周长的,即;(2)公式中的n表示1°圆心角的倍数,故n和180都不带单位,R为弧所在圆的半径;(3)弧长公式所涉及的三个量:弧长、圆心角度数、弧所在圆的半径,知道其中的两个量就可以求出第三个量.要点二、扇形面积公式1.扇形的定义由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.2.扇形面积公式半径为R的圆中360°的圆心角所对的扇形面积(圆面积)公式:n°的圆心角所对的扇形面积公式:要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积S、扇形半径R、扇形的圆心角,知道其中的两个量就可以求出第三个量. (3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.要点三、圆锥的侧面积和全面积连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.圆锥的母线长为,底面半径为r ,侧面展开图中的扇形圆心角为n °,则圆锥的侧面积2360l S rl ππ=扇n =, 圆锥的全面积.要点诠释:扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积,全面积是由侧面积和底面圆的面积组成的.【典型例题】类型一、弧长和扇形的有关计算1.如图(1),AB 切⊙O 于点B ,OA=23,AB=3,弦BC∥OA,则劣弧BC 的弧长为( ). A .33π B .32πC .πD .32π图(1) 【答案】A.【解析】连结OB 、OC ,如图(2)则0OBA ∠︒=9,OB=3,0A ∠︒=3,0AOB ∠︒=6, 由弦BC ∥OA 得60OBC AOB ∠∠=︒=, 所以△OBC 为等边三角形,0BOC ∠︒=6. 则劣弧BC 的弧长为6033=1803ππ,故选A. 图(2) 【总结升华】主要考查弧长公式:.CBAO举一反三:【变式】制作弯形管道时,需要先按中心线计算“展直长度”再下料,•试计算如图所示的管道的展直长度,即的长(结果精确到0.1mm)【答案】R=40mm,n=110∴的长==≈76.8(mm)因此,管道的展直长度约为76.8mm.【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】2.如图,⊙O的半径等于1,弦AB和半径OC互相平分于点M.求扇形OACB的面积(结果保留π)【答案与解析】∵弦AB和半径OC互相平分,∴OC⊥AB,OM=MC=OC=OA.∴∠B=∠A=30°,∴∠AOB=120°∴S扇形=.【总结升华】运用了垂径定理的推论,考查扇形面积计算公式.举一反三:【高清ID号:359387 高清课程名称:弧长扇形圆柱圆锥关联的位置名称(播放点名称):经典例题1-2】【变式】如图(1),在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是().A.449-π B.849-π C.489-π D.889-πAEB F P图(1)【答案】连结AD,则AD⊥BC,△ABC的面积是:BC•AD=×4×2=4,∠A=2∠EPF=80°.则扇形EAF的面积是:2 8028=. 3609ππ⨯故阴影部分的面积=△ABC的面积-扇形EAF的面积=84-9π.图(2)故选B.类型二、圆锥面积的计算3.(2014秋•广东期末)如图,一个圆锥的高为cm,侧面展开图是半圆,求:(1)圆锥的底面半径r与母线R之比;(2)圆锥的全面积.【思路点拨】(1)设出圆锥的底面半径及圆锥的母线长,利用底面周长等于圆锥的弧长得到圆锥的母线与底面的半径之比即可;(2)首先求得圆锥的底面半径和圆锥的母线长,然后利用圆锥的侧面积的计算方法求得其侧面积即可.【答案与解析】解:(1)由题意可知∴,R=2r(3分)r:R=r:2r=1:2;(2)在Rt△AOC中,∵R2=r2+h2∴,4r2=r2+27r2=9,r=±3∵r>0∴r=3,R=6.∴S侧=πRr=18π(cm2)(cm2)∴S全=S侧+S底=18π+9π=27π(cm2).【总结升华】本题考查了圆锥的计算,解题的关键是牢记有关的公式.类型三、组合图形面积的计算4.(2015•槐荫区三模)如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,∠CDB=30°,CD=2,求图中阴影部分的面积.【答案与解析】解:∵AB是⊙O的直径,弦CD⊥AB,∴CE=.∵∠CDB=30°,∴∠COE=60°,在Rt△OEC中,OC==2,∵CE=DE,∠COE=∠DBE=60°∴Rt△COE≌Rt△DBE,∴S阴影=S扇形OBC=π×OC2=π×4=π.【总结升华】本题考查了垂径定理,扇形的面积等,解此题的关键是求出扇形和三角形的面积.。

初三数学动点问题练习题

初三数学动点问题练习题

初三数学动点问题练习题动点问题是初中数学中常见的一个重要知识点,通过此类问题的练习,可以帮助学生提高解决实际问题的能力以及数学思维的灵活性。

下面将介绍一些初三数学动点问题的练习题,希望对同学们的学习有所帮助。

1. 题目一从已知条件出发,列出方程,最终求解出未知量的数值。

一个火车以每小时60公里的速度向东行驶,另一个火车以每小时40公里的速度向西行驶。

两个火车同时从两个相距360公里的站点同时出发,向着彼此相对方向行驶。

请问两个火车相遇需要多少小时?解题思路:设两个火车相遇所需的时间为t,则根据速度和时间的关系可列出方程60t+40t=360,解得t=3,因此两个火车相遇需要3小时。

2. 题目二利用相似三角形的性质,解决动点问题。

甲乙两个地点相距80米,甲点有一根高20米的旗杆立在地面上,从甲点出发一人沿直线向乙点走去,当此人行走的距离为d时,乙点看到旗杆的仰角是30°。

求此人行走的距离d。

解题思路:设此人行走的距离为d,则可以建立相似三角形ABC和AED的关系,其中ABC为直角三角形,角A为30°,AE为旗杆高20米,ED为此人行走的距离d,AC为甲乙两点的距离80米。

根据相似三角形的性质可得:AC/AB = DE/AE,即80/DE = (DE+d)/20,解得d=60。

3. 题目三通过运动的相对性,解决动点问题。

甲点到乙点的距离为200米,两个人相对而行,速度分别为2米/秒和3米/秒,求两个人相遇所需的时间。

解题思路:设两个人相遇所需的时间为t,则甲点走过的距离为2t,乙点走过的距离为3t。

根据相对性可知,两个人相遇时,他们的总距离等于甲点到乙点的距离,即2t+3t=200,解得t=40,因此两个人相遇需要40秒。

通过这些练习题,我们可以锻炼动点问题的解题能力,并提高对数学知识的应用能力。

在解题过程中,我们可以灵活运用数学的相关知识,包括方程的建立、相似三角形的性质以及动点问题的相对性等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学提高性试题1.已知是整数,1632+n 则n 的最小整数值是 .2. 如图,O 是△ABC 的重心, AN 、CM 相交于点O ,那么△MON 与△AOC 面积的比是____________.3.如果x 2-2(m+1)x+m 2+5是一个完全平方式,则m= ;4、如图,点P 是∠AOB 的角平分线上一点,过点P 作PC∥OP 交OA 于点C .若∠AOB=60°,OC=4,则点P 到OA 的距离PD 等于________.(2题图) 4题图) 5、 47tan 46tan 44tan 43tan ∙∙∙= 。

6.在反比例函数10(0)y x x=>的图象上,有一系列点123n n+1A A A ...A A ,,,,,,若1A 的横坐标为2,且以后每点的横坐标与它前一个点的横坐标的差都为2,现分别过点123n n+1A A A ...A A ,,,,,作x 轴与y 轴的垂线段,构成若干个矩形如图8所示,将图中阴影部分的面积从左到右依次记为123n S S S ...S ,,,,,则1S =_______,123n S +S S ...S =+++______.(用n 的代数式表示)x( 7题图)7.已知:如图,△ABC 中,过AB 的中点F 作DE ⊥BC , 垂足为E ,交CA 的延长线于点D .若EF =3,BE =4,FDCBA∠C = 45°,则DF ∶FE 的值为8.如图7,已知⊙0是边长为2的等边△ABC 的内切圆。

则⊙0的面积为_____________。

图79.已知一元二次方程21)10x x -=的两根为12x x ,,则1211x x +=_________。

10、将正偶数按下表排成5列第1列 第2列 第3列 第4列 第5列第1行 2 4 6 8 第2行 16 14 12 10第3行 18 20 22 24 第4行 32 30 28 26 …… ……根据上面排列规律,2006应在( ). (A )第502行,第3列;(B )第501行,第5列; (C )第251行,第3列;(D )第251行,第4列. 11、(8分)先化简,后求值:232224)44122(xx x x x x x x x --÷+----+,其中21-=x . 12.关于x,y 的二元一次方程组的解是正整数,则整数p 的值为___13.如图,一个半径为的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为_________.14.如图,平行四边形AOBC 中,对角线交于点E,双曲线经过A 、E 两点,若平行四边形AOBC 的面积为18,则k =________.15.(本题满分6分)请阅读下列材料: 问题:已知方程012=-+x x ,求一个一元二次方程,使它的根分别是已知方程根的2倍.解:设所求方程的根为y ,则y =2x.所以x =2y . 把x =2y代入已知方程,得:01222=-+⎪⎪⎭⎫ ⎝⎛y y . 化简,得0422=-+y y.故所求方程为0422=-+y y .这种利用方程根的代换求新方程的方法,我们称为“换根法”.请用阅读材料提供的“换根法”求新方程(要求:把所求方程化为一般形式)(1) 已知方程022=-+x x,求一个一元二次方程,使它的根分别是已知方程根的相反数,则所求方程为_______________________.(2) 已知关于x 的一元二次方程)0(02≠=++a c bx ax有两个不等于零的实数根,求一个一元二次方程,使它的根分别是已知方程根的倒数.16.计算:(2010+1)0+(– 13)–1– ||2–2–2sin45°17. 先化简,再求值:22112()2y x y x y x xy y-÷-+-+,其中1x =,1y =18、(10分)如图,在梯形ABCD 中,AB ∥CD ,∠D =900,AB =3,DC =7,AD =15,请你在AD 上找一点P ,使得以P 、A 、B 和以P 、D 、C 为顶点的两个三角形相似吗?若能,这样的P 点有几个?并求出AP 的长;若不能,请说明理由。

19.(12分)如图,四边形ABCD 中,AB=3cm ,BC=4cm,CD=12cm ,AD=13cm,∠B=90°,求四边形的面积.20. (本大题满分10分)已知,如图: 四边形ABCD 中,∠C >90°,CD⊥AD 于D ,CB ⊥AB 于B ,AB =3,tan A 是关于x 的方程0)132(413222=+-+-m m x x 数根.(1)求tanA ;(2)若CD =m ,求BC 的值.21.如图所示,甲是把一个上底等于2,下底等于4•形纸片裁成面积相等的三块的一种方案.请在乙、丙、•丁中用二种不同的方法进行剪裁(必要时须标明相关的数量或辅助线).lll 2甲l乙丙丁22.已知:△ABC 中,AB=10.(1)如图①,若点D ,E 分别是AC ,BC 边的中点,求DE 的长;(2)如图②,若点A 1,A 2把AC 边三等分,过A 1,A 2作AB 边的平行线,分别交BC•边于点B 1,B 2,求A 1B 1+A 2B 2的值;(3)如图③,若点A 1,A 2,…,A 10把AC 边十一等分,过各点作AB 边的平行线,•分别交BC 边于点B 1,B 2,…,B 10.根据你所发现的规律,直接写出A 1B 1+A 2B 2+…+A 10B 10的结果.BA①ED CB 2B 1A 1A 2B A②CB 10B 3A 3A 10B 2B 1A 1A 2BA③C23. 已知关于x 的一元二次方程()2131022k x kx k --++=的一个根为x =2,且有||233202a k b a k +-+-+=,求()ab -13的值。

24. 已知二次函数y ax bx c =++2的图象的一部分如图所示,它的顶点M 在第二象限,且经过点A (1,0)和点B (0,1)(1)请判断实数a 的取值范围,并说明理由;(2)设此二次函数的图象与x 轴的另一个交点为C ,当△AMC 的面积为△ABC 面积的四分之五倍时,求a 的值。

y MB(0,1)A(1,0) C O 125. 阅读材料:已知p p q q 221010--=--=,,且pq ≠1,求pq q+1的值。

解:由p p q q 221010--=--=,有,又,所以p q pq p q≠≠≠≠0011则,可变形为:由,及可知与是方程的根因此有1011101011101112222--=⎛⎝ ⎫⎭⎪--=--=⎛⎝ ⎫⎭⎪--=+=q q q q p p q q p q pq q根据阅读材料所提供的方法,完成下面的解答: 已知251015201122m m n nm n m n --=+-=≠+,,且,求的值。

25.如图,有一直径是1米的圆形铁皮,要从中剪出一个圆心角是120°的扇形ABC ,求:(1)被剪掉阴影部分的面积。

(2)若用所留的扇形铁皮围成一个圆锥,该圆锥底面圆的半径是多少?(10题选D ); (11题答案2-x x ,51;) (12题答案5或7) (13题答案 8) (14题答案:6) 15题222222212011(2)(0).(0).1110,()00,0,00.00y y x x y x yx bx c a b c y y y cy by a c ax bx bx c c cy by a c --=≠=≠=++=+⋅+=++==+=++=∴≠++=≠答案:()设所求方程的根为y,则y=于是把代入方程ax 得去分母得,若有方程ax 有一个根为0,不符合题意故所求方程为(19题 解:连结AC ∵∠B=90°∴△ABC 是直角三角形 ∴AC=22AC AB +=5∴△ABC 的面积是 3×4÷2=6∵222AC CD AD +=∴△ACD 是直角三角形∴△ACD 的面积是 12×5÷2=30 ∴四边形的面积是 6+30=3623题 解:把x=2代入方程()()()||||21310230310312332023032023032022212222k x kx k k k k k k k a k b a k a k b a k a k b a k --++=+-=+-=∴=-=+-+-+=∴+-≥-+≥∴+-=-+=⎧⎨⎩中,;(1)当k 13=-时,23303290a b a --=-+=⎧⎨⎩∴==-⎧⎨⎩a b 31∴=⨯-=---()(())ab 13133127 (2)当k 21=时,a b ==113, ()ab --=⨯⎛⎝ ⎫⎭⎪⎡⎣⎢⎢⎤⎦⎥⎥=13131132724题 解:(1)∵抛物线的开口向下∴<a 0∵图象经过点A B ()()1001,、,∴++==++==--∴-<∴+<<∴+>∴>-a b c c a b b a M b a a aa a a 01101201200101①②将②代入①得:,顶点在第二象限,∴-<<10a(2)过M 点作MN x ⊥轴于NS AC MN S AC OB S S MN OB AMC ABC AMC ABC ∆∆∆∆===∴=12124545··依题意:又MN ac b aOB ac b a =-==∴-=441444522c b a a a a==+-+=1141445222,()()a a a a a a 21231035235210352++==-+=---<<∴=-+,x25题 解:由2510152022m m nn --=+-=,,有 m n m nm n≠≠≠∴≠0011,又则可变形为2510152022m m m m --=⎛⎝ ⎫⎭⎪--=由及可知与是方程的根152015201111522n n m m n m m n⎛⎝ ⎫⎭⎪+-=⎛⎝ ⎫⎭⎪--=∴+=-25.解:(1)设O 为圆心,连OA 、OB …………(1')∵OA =OC =OB AB =AC∴△ABO ≌△ACO (sss ) 又∠BAC =120° ∴∠BAO =∠CAO =60° ∴△ABO 是等边三角形∴AB =21…∴S 扇形ABC =360120π(21)2=12π ……………………………………………………………(5')∴S 阴影=π (21)2-12π =6π………………………………………………………………(6')(2)在扇形ABC中,的长为π180120·21=3π………………………………(7')设底面圆的半径为r 。

相关文档
最新文档