2018年东北三省三校一模考试(数学理科)
最新-2018年东北三省三校第一次高考模拟考试理科综合试题及答案 精品
高三第一次模拟考试物理试题答案哈师大附中高三物理组一、选择题 (14—18,6分每题,19—21,6分每题,不完全分3分)22(1)使斜槽末端O 点的切线水平.。
2分(2)2144tan x Hy μθ=-。
3分(3)y。
2分23(1)右。
2分(2)C E 。
4分,每个选项2分(3)0.04.。
2分 24. (1)由图象乙可知:棒下滑的任意状态有2210.5B v T m s -=⋅⋅。
2分 对棒下滑过程中某一状态由牛顿第二定律得:ma r R v L B mg =+-22030sin 。
2分 以上两式代入数据可得物体的加速度a =4m/s 2,。
1分可见导体棒在斜面上做a =4m/s 2的匀加速度直线运动s t 2=时,棒的速度8/v at m s ==;。
2分 棒的位移2182s at m ==。
2分(2)由能量守恒得:Q mv mgs +=222130sin ,。
3分 代入数据解得:2Q =J 。
2分当22010137sin 37cos N N F F f μ=+时刚好开始滑动。
2分解得:n =3.6所以物块滑动到第4块劈时,劈开始相对地面滑动。
1(3)物块的加速度:mf mg a 1037sin +=。
2 代入数值a=10m/s 2。
1劈开始滑动时物块的速度:()()L a v v 322021-=-。
2 解得:231=v m/s 。
133. 1.ABD (正确选择1个得2分,正确选择2个得4分,选错一个扣3分,最低0分)2.(1)设气缸倒置前后被封闭的气体的压强分别为p 1和p 2,气柱体积分别为V 1和V 2,活塞移动向下移动的距离为x ,则510+1.210mgp p S==⨯Pa ,11V L S = 。
2分 5200.810mgp p S=-=⨯Pa ,121V L S L x S ==+() 。
2分因为气缸导热良好,则气缸倒置前后温度不变,由玻意耳定律得:1122p V p V = 。
2018年东北三省三校(哈师大附中东北师大附中辽宁省实验中学)高考数学一模试卷(理科)
2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)复数的模为()A.B.C.D.22.(5分)已知集合,B={x|x≥a},假设A∩B=A,那么实数a的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣3)C.(﹣∞,0]D.[3,+∞)3.(5分)从标有一、二、3、4、5的五张卡片中,依次抽出2张,那么在第一次抽到奇数的情形下,第二次抽到偶数的概率为()A.B.C.D.4.(5分)已知s,那么=()A.B.C.D.5.(5分)中心在原点,核心在y轴上的双曲线的一条渐近线通过点(﹣2,4),那么它的离心率为()A.B.2C.D.6.(5分)展开式中的常数项是()A.12B.﹣12C.8D.﹣87.(5分)某几何体的三视图如下图,且该几何体的体积是3,那么正视图中的x的值()A.2B.3C.D.8.(5分)已知函数的图象的相邻两条对称轴之间的距离是,那么该函数的一个单调增区间为()A.B.C.D.9.(5分)辗转相除法是欧几里德算法的核心思想,如下图的程序框图所描述的算法确实是辗转相除法,假设输入m=8251,n=6105,那么输出m的值为()A.148B.37C.333D.010.(5分)底面是正多边形,极点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S﹣ABCD,该四棱锥的侧面积为,那么该半球的体积为()A.B.C.D.11.(5分)已知抛物线C:y2=2x,直线与抛物线C交于A,B两点,假设以AB为直径的圆与x轴相切,那么b的值是()A.B.C.D.12.(5分)在△ABC,∠C=90°,AB=2BC=4,M,N是边AB上的两个动点,且|MN|=1,那么的取值范围为()A.B.[5,9]C.D.二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)在△ABC中,AB=2,,,那么BC=.14.(5分)假设x,y知足约束条件,那么的最大值为.15.(5分)甲、乙、丙三位教师别离在哈尔滨、长春、沈阳的三所中学里教不同的学科A、B、C,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C学科;③在长春工作的教师教A学科;④乙不教B学科.能够判定乙教的学科是.16.(5分)已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是.(填出所有正确命题的序号)三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)已知正项数列{a n}知足:,其中S n为数列{a n}的前n项和.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.18.(12分)某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,依照往年的体会,天天的需求量与当天的最低气温有关,若是最低气温位于区间[﹣20,﹣10],需求量为100台;最低气温位于区间[﹣25,﹣20),需求量为200台;最低气温位于区间[﹣35,﹣25),需求量为300台.公司销售部为了确信11月份的订购打算,统计了前三年11月份各天的最低气温数据,取得下面的频数散布表:最低气温(℃)[﹣35,﹣30)[﹣30,﹣25)[﹣25,﹣20)[﹣20,﹣15)[﹣15,﹣10]天数112536162以最低气温位于各区间的频率代替最低气温位于该区间的概率.(1)求11月份这种电暖气每日需求量X(单位:台)的散布列;(2)假设公司销售部以每日销售利润Y(单位:元)的数学期望为决策依据,打算11月份每日订购200台或250台,二者当当选其一,应选哪个?19.(12分)如图,四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,且PA=PD,底面ABCD为矩形,点M、E、N别离为线段AB、BC、CD的中点,F是PE上的一点,PF=2FE.直线PE与平面ABCD 所成的角为.(1)证明:PE⊥平面MNF;(2)设AB=AD,求二面角B﹣MF﹣N的余弦值.20.(12分)已知椭圆过抛物线M:x2=4y的核心F,F1,F2别离是椭圆C 的左、右核心,且.(1)求椭圆C的标准方程;(2)假设直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.21.(12分)已知函数f(x)=e x,g(x)=lnx,h(x)=kx+b.(1)当b=0时,假设对任意x∈(0,+∞)均有f(x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设直线h(x)与曲线f(x)和曲线g(x)相切,切点别离为A(x1,f(x1)),B(x2,g(x2)),其中x1<0.①求证:x2>e;②当x≥x2时,关于x的不等式a(x1﹣1)+xlnx﹣x≥0恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴成立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的一般方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|•|AQ|的值.[选修4-5:不等式选讲]23.已知不等式|2x﹣5|+|2x+1|>ax﹣1.(1)当a=1时,求不等式的解集;(2)假设不等式的解集为R,求a的范围.2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.1.(5分)复数的模为()A.B.C.D.2【解答】解:∵=,∴||=|1+i|=.应选:C.2.(5分)已知集合,B={x|x≥a},假设A∩B=A,那么实数a的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣3)C.(﹣∞,0]D.[3,+∞)【解答】解:集合={x|9﹣x2≥0}={x|﹣3≤x≤3},B={x|x≥a},假设A∩B=A,那么A⊆B;∴实数a的取值范围是a≤﹣3.应选:A.3.(5分)从标有一、二、3、4、5的五张卡片中,依次抽出2张,那么在第一次抽到奇数的情形下,第二次抽到偶数的概率为()A.B.C.D.【解答】解:从标有一、二、3、4、5的五张卡片中,依次抽出2张,设事件A表示“第一张抽到奇数”,事件B表示“第二张抽取偶数”,那么P(A)=,P(AB)==,那么在第一次抽到奇数的情形下,第二次抽到偶数的概率为:P(A|B)===.应选:B.4.(5分)已知s,那么=()A.B.C.D.【解答】解:∵s,∴=cos[+()]=﹣sin()=﹣.应选:B.5.(5分)中心在原点,核心在y轴上的双曲线的一条渐近线通过点(﹣2,4),那么它的离心率为()A.B.2C.D.【解答】解:∵核心在y轴上的双曲线的渐近线方程是y=±x,∴4=﹣•(﹣2),∴=2,a=2b,a2=4b2=4c2﹣4a2,e=.应选:A.6.(5分)展开式中的常数项是()A.12B.﹣12C.8D.﹣8【解答】解:的展开式的通项为=.取r﹣5=﹣2,得r=3,取r﹣5=0,得r=5.∴展开式中的常数项是﹣﹣2=﹣12.应选:B.7.(5分)某几何体的三视图如下图,且该几何体的体积是3,那么正视图中的x的值()A.2B.3C.D.【解答】解:由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为1和2,高为2,如图:AD=1,BC=2,SB=x,AD∥BC,SB⊥平面ABCD,AD⊥AB.∴底面的面积S=×(1+2)×2=3.该几何体为x,几何体的体积V==1,可得x=3.应选:B.8.(5分)已知函数的图象的相邻两条对称轴之间的距离是,那么该函数的一个单调增区间为()A.B.C.D.【解答】解:函数=2sin(ωx+);由f(x)的图象相邻两条对称轴之间的距离是,∴T=2×=π,∴ω==2;∴f(x)=2sin(2x+),令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+2kπ,k∈Z,∴函数f(x)的一个单调增区间为[﹣,].应选:A.9.(5分)辗转相除法是欧几里德算法的核心思想,如下图的程序框图所描述的算法确实是辗转相除法,假设输入m=8251,n=6105,那么输出m的值为()A.148B.37C.333D.0【解答】解:由程序框图知:程序的运行功能是求m=82511,n=6105的最大公约数,∵8251=6105+2146;6105=2×2146+1813;2146=1813+333;1813=5×333+148;333=2×148+37,148=4×37+0∴现在m=37.∴输出m的值是37,应选:B.10.(5分)底面是正多边形,极点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S﹣ABCD,该四棱锥的侧面积为,那么该半球的体积为()A.B.C.D.【解答】解:连结AC,BD交点为0,设球的半径为r,由题意可知SO=AO=OC=OD=OB=r.那么AB=r,四棱锥的侧面积为:4×=,解得r=,四棱锥的外接半球的体积为:V==,应选:D.11.(5分)已知抛物线C:y2=2x,直线与抛物线C交于A,B两点,假设以AB为直径的圆与x轴相切,那么b的值是()A.B.C.D.【解答】解:联立得:y2+4y﹣4b=0.依题意应有△=16+16b>0,解得b>﹣1.设A(x1,y1),B(x2,y2),∴y1+y2=﹣4,y1y2=﹣4b,∴x1+x2=﹣2(y1+y2)+4b=8+4b设圆心Q(x0,y0),那么应有x0=(x1+x2)=4+2b,y0=(y1+y2)=﹣2.∵以AB为直径的圆与x轴相切,取得圆半径为r=|y0|=2,又|AB|=•=•=4•,∴|AB|=2r,即4•=4,解得b=﹣.应选:C.12.(5分)在△ABC,∠C=90°,AB=2BC=4,M,N是边AB上的两个动点,且|MN|=1,那么的取值范围为()A.B.[5,9]C.D.【解答】解:以CA,CB为坐标轴成立坐标系如下图:∵AB=2BC=4,∴∠BAC=30°,AC=2设AN=a,那么N(2﹣,),M(2﹣,),∴=(2﹣)(2﹣)+=a2﹣5a+9.∵M,N在AB上,∴0≤a≤3.∴当a=0时,取得最大值9,当a=时,取得最小值.应选:A.二、填空题(每题5分,总分值20分,将答案填在答题纸上)13.(5分)在△ABC中,AB=2,,,那么BC=1.【解答】解:依照题意,设BC=t,△ABC中,AB=2,,,那么有cos∠ABC==﹣,变形可得:t2+2t﹣3=0,解可得:t=﹣3或t=1,又由t>0,那么t=1,即BC=1;故答案为:114.(5分)假设x,y知足约束条件,那么的最大值为.【解答】解:由约束条件作出可行域如图,联立,解得A(1,3),由的几何意义,即可行域内的动点与定点P(﹣1,0)连线的斜率可得,的最大值为.故答案为:.15.(5分)甲、乙、丙三位教师别离在哈尔滨、长春、沈阳的三所中学里教不同的学科A、B、C,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C学科;③在长春工作的教师教A学科;④乙不教B学科.能够判定乙教的学科是C.【解答】解:由①得甲不在哈尔滨工作,乙不在长春工作;由②得在哈尔滨工作的教师不教C学科,甲不教C;由③得在长春工作的教师教A学科;由④得乙不教B学科和A学科.综上,乙教C学科.故答案为:C.16.(5分)已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是①③.(填出所有正确命题的序号)【解答】解:∵函数f(x)=xlnx+x2,(x>0)∴f′(x)=lnx+1+x,易患f′(x)=lnx+1+x在(0,+∞)递增,∴f′()=>0,∵x→0,f′(x)→﹣∞,∴0<x0<,即①正确,②不正确;∵lnx0+1+x0=0∴f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x02<0,即③正确,④不正确.故答案为:①③.三、解答题(本大题共5小题,共70分.解许诺写出文字说明、证明进程或演算步骤.)17.(12分)已知正项数列{a n}知足:,其中S n为数列{a n}的前n项和.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.【解答】(此题总分值12分)解:(1)令n=1,得,且a n>0,解得a1=3.当n≥2时,,即,整理得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1=2,因此数列{a n}是首项为3,公差为2的等差数列,故a n=3+(n﹣1)×2=2n+1.(2)由(1)知:,∴T n=b1+b2+…+b n =.18.(12分)某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,依照往年的体会,天天的需求量与当天的最低气温有关,若是最低气温位于区间[﹣20,﹣10],需求量为100台;最低气温位于区间[﹣25,﹣20),需求量为200台;最低气温位于区间[﹣35,﹣25),需求量为300台.公司销售部为了确信11月份的订购打算,统计了前三年11月份各天的最低气温数据,取得下面的频数散布表:最低气温(℃)[﹣35,﹣30)[﹣30,﹣25)[﹣25,﹣20)[﹣20,﹣15)[﹣15,﹣10]天数112536162以最低气温位于各区间的频率代替最低气温位于该区间的概率.(1)求11月份这种电暖气每日需求量X(单位:台)的散布列;(2)假设公司销售部以每日销售利润Y(单位:元)的数学期望为决策依据,打算11月份每日订购200台或250台,二者当当选其一,应选哪个?【解答】(此题总分值12分)解:(1)由已知X的可能取值为100,200,300,P(X=100)==0.2,P(X=200)==0.4,P(X=300)==0.4,∴X的散布列为:X100200300P0.20.40.4(2)由已知:①当订购200台时,E(Y)=[200×100﹣50×(200﹣100)]×0.2+200×200×0.8=35000(元)②当订购250台时,E(Y)=[200×100﹣50×(250﹣100)]×0.2+[200×200﹣50×(250﹣200)]×0.4+[200×250]×0.4=37500(元)综上所求,当订购250台时,Y的数学期望最大,11月每日应订购250台.19.(12分)如图,四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,且PA=PD,底面ABCD为矩形,点M、E、N别离为线段AB、BC、CD的中点,F是PE上的一点,PF=2FE.直线PE与平面ABCD 所成的角为.(1)证明:PE⊥平面MNF;(2)设AB=AD,求二面角B﹣MF﹣N的余弦值.【解答】证明:(1)方式一:取AD中点O,连接OE,交MN于点Q,连接FQ,那么OP⊥AD.因为平面PAD⊥平面ABCD,因此OP⊥平面ABCD,∠PEO=,OP=OE.因为MN∥BC,OE∥AB,因此MN⊥OE,因此MN⊥PE.又EF=PE=OE,EQ=OE,因此,因此△EFQ∽△EOP,因此,因此PE=FQ.且MN∩FQ=Q,因此PE⊥平面MNF.方式二:取AD中点O,连接OE,交MN于点Q,连接FQ,那么OP⊥AD.因为平面PAD⊥平面ABCD,因此OP⊥平面AC,,OP=OE.又因为MN∥BC,OE∥AB,因此MN⊥OE,因此MN⊥PE.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴,成立空间直角坐标系O﹣xyz.设AB=m,AD=n,那么P(0,0,m),E(0,m,0),M(,0),F(0,),于是=(0,m,﹣m),=(﹣).因此=0,因此PE⊥MF,且MN∩MF=M,因此PE⊥平面MNF解:(2)取AD中点O,连接OE,交MN于点Q,连接FQ,那么OP⊥AD.因为平面PAD⊥平面AC,因此OP⊥平面AC,,OP=OE.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴的正方向,成立空间直角坐标系O﹣xyz.设AB=AD=m,那么P(0,0,m),E(0,m,0),B(),M(,0),F(0,),于是=(0,m,﹣m),=(0,﹣,0),=(﹣).设平面BMF的一个法向量为=(x,y,z),则,令x=1,得=(1,0,2).而平面NMF的一个法向量为==(0,m,﹣m).因此cos<>===﹣.由图形得二面角B﹣MF﹣N的平面角是钝角,故二面角B﹣MF﹣N的余弦值为﹣.20.(12分)已知椭圆过抛物线M:x2=4y的核心F,F1,F2别离是椭圆C 的左、右核心,且.(1)求椭圆C的标准方程;(2)假设直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.【解答】(此题总分值12分)解:(1)∵F(0,1),∴b=1,又,∴.又a2﹣b2=c2,∴a=2,∴椭圆C的标准方程为.(2)设直线l与抛物线相切于点P(x0,y0),那么,即,联立直线与椭圆,消去y,整理得.由,得.设A(x1,y1),B(x2,y2),那么:.则原点O到直线l的距离.故△OAB面积=,当且仅当,即取等号,故△OAB面积的最大值为1.21.(12分)已知函数f(x)=e x,g(x)=lnx,h(x)=kx+b.(1)当b=0时,假设对任意x∈(0,+∞)均有f(x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设直线h(x)与曲线f(x)和曲线g(x)相切,切点别离为A(x1,f(x1)),B(x2,g(x2)),其中x1<0.①求证:x2>e;②当x≥x2时,关于x的不等式a(x1﹣1)+xlnx﹣x≥0恒成立,求实数a的取值范围.【解答】解:(1)当b=0时:h(x)=kx,由f(x)≥h(x)≥g(x)知:e x≥kx≥lnx,依题意:对x∈(0,+∞)恒成立,设,当x∈(0,1)时m′(x)<0;当x∈(1,+∞)时m′(x)>0,∴[m(x)]min=m(1)=e,设,当x∈(0,e)时n′(x)>0;当x∈(e,+∞)时n′(x)<0,∴,故:实数k的取值范围是(2)由已知:f′(x)=e x,①:由得:由得:故∵x1<0,∴,∴lnx2>1,故:x2>e;②由①知:,且x2>e>1由a(x1﹣1)+xlnx﹣x≥0得:a(x1﹣1)≥x﹣xlnx,(x≥x2)设G(x)=x﹣xlnx(x≥x2)G′(x)=1﹣lnx﹣1=﹣lnx<0,∴G(x)在[x2,+∞)为减函数,∴[G(x)]max=G(x2)=x2﹣x2lnx2由a(x1﹣1)≥x2﹣x2lnx2,得:a(x1﹣1)≥x2(1﹣lnx2),∴a(x1﹣1)≥(x1﹣1)又x1<0,∴a≤1.[选修4-4:坐标系与参数方程选讲]22.(10分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴成立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的一般方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|•|AQ|的值.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x,故曲线C1的直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4.由,消去参数t,可得.∴曲线C2:;(2)将代入x2+y2=4x,得t2﹣t﹣3=0,∵△=1+4×3=13>0,∴方程有两个不等实根t1,t2别离对应点P,Q,∴|AP|•|AQ|=|t1|•|t2|=|t1•t2|=|﹣3|=3,即|AP|•|AQ|=3.[选修4-5:不等式选讲]23.已知不等式|2x﹣5|+|2x+1|>ax﹣1.(1)当a=1时,求不等式的解集;(2)假设不等式的解集为R,求a的范围.【解答】(本小题总分值10分)解:(1)当a=1时:不等式为:|2x﹣5|+|2x+1|>x﹣1,等价于:解得:,因此不等式的解集为:(﹣∞,+∞);(2)设函数f(x)=|2x﹣5|+|2x+1|=,设函数g(x)=ax﹣1过定点A(0,﹣1),画出f(x),g(x)的图象,不等式|2x﹣5|+|2x+1|>ax﹣1.不等式的解集为R,k AB==,由数形结合得a的范围是.。
2018年东北三省四市教研联合体高考数学一模试卷(理科)
2018年东北三省四市教研联合体高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合4={x\\x\<1],B={x\x(x-3)<0),则4U B=()A.(-l,0)B.(0,1)C.(-l,3)D.(l,3)2.若复数z=芒为纯虚数,则实数a的值为()l+aiA.lB.O c.-i D.-l3.中国有个名句"运筹帷幄之中,决胜千里之外”,其中的“筹”原意是指《孙子算经》中记载的算筹.古代用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行计算,算筹的摆放形式有横纵两种形式(如图所示),表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位、百位、万位数用纵式表示,十位、千位、十万位用横式表示,以此类推.例如3266用算筹表示就是=I_L T,贝U8771用算筹可表示为()123456789I I III Illi IIIIITTTUir^_=三至三_|_」=上孔横式中国古代的算筹数码A.iiTI C.B.Tiil D.TiT_4,如图所示的程序框图是为了求出满足2"-n2>28的最小偶数n,那么空白框中的语句及最后输出的"值分别是()A.n=7i+1和6 C.n=n+1和8B.n=71+2和6 D.n=n+2和85.函数f(x)=l+x2+亨的部分图象大致为()A.6.某几何体的三视图如图所示(单位:cm),其俯视图为等边三角形,则该几何体的体积(单位:cm3)是()A.4V3B.yV3C.2V3D.^V37.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两段端,丙、丁两本书必须相邻,则不同的摆放方法有()种.A.24B.36C.48D.608.A ABC的内角A,B,C的对边分别为a,b,c,若2b cosB=acosC+ccosX,b=2,则△ABC面积的最大值是()A.l B,V3 C.2 D.49.已知边长为2的等边三角形D为BC的中点,以?1D为折痕,将4ABC折成直二面角B-AD-C,则过4,B,C,D四点的球的表面积为()A.3ttB.4ttC.5?rD.6?r10,将函数=sin(2x+§的图象向右平移a(a>0)个单位得到函数g(x)=cos(2x+的图象,贝此的值可以为()A.竺B.竺C华121224-417T D.—242211.已知双曲线C:%-〈一=1的左、右焦点分别为Fi,F2,若C上存在一点P满足m2m2-lPF1IPF2,且△PF1F2的面积为3,则该双曲线的离心率为()A史B阻 C.2 D.3 2212.若直线kx—y—k+1=0(k E R)和曲线=ax3+bx2+。
2018届东北三省四市高三高考第一次模拟考试数学(理)试题
2018届东北三省四市高三高考第一次模拟考试数学(理)试题2018年东北三省四市教研联合体高考模拟试卷数学(一)第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合{}|||1A x x =<,{}|(3)0B x x x =-<,则A B =( )A .(1,0)-B .(0,1)C .(1,3)-D .(1,3)2.若复数11iz ai +=+为纯虚数,则实数a 的值为( )A .1B .0C .12- D .1-3.中国有个名句“运城帷幄之中,决胜千里之外.”其中的“筹”原意是指《孙子算经》中记载的算筹.古代是用算筹来进行计算,算筹是将几寸长的小竹棍摆在平面上进行运算,算筹的摆放形式有纵横两种形式(如图所示)表示一个多位数时,像阿拉伯计数一样,把各个数位的数码从左到右排列,但各位数码的筹式需要纵横相间,个位,百位,万位数用纵式表示,十位,千位,十万位数用横式表示,以此类推,例如3266用算筹表示就是≡||⊥T ,则8771用算筹可表示为( )8.ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,若2cos cos cos b B a C c A=+,2b =,ABC ∆面积的最大值是( )A .1B 3C .2D .49.已知边长为2的等边三角形ABC ,D 为BC 的中点,以AD 为折痕,将ABC ∆折成直二面角B AD C --,则过A ,B ,C ,D 四点的球的表面积为( ) A .3πB .4πC .5πD .6π10.将函数()sin(2)3f x x π=+的图象向右平移a 个单位得到函数()cos(2)4g x x π=+的图象,则a 的值可以为( )A .512πB .712πC .924π1D .4124π11.已知焦点在x 轴上的双曲线222211x y m m -=-的左右两个焦点分别为1F 和2F ,其右支上存在一点P 满足12PF PF ⊥,且12PF F ∆的面积为3,则该双曲线的离心率为( ) A 5B .72C .2D .312.若直线10kx y k --+=(k R ∈)和曲线:E 3253y ax bx =++(0ab ≠)的图象交于11(,)A x y ,22(,)B x y ,33(,)C x y (123x xx <<)三点时,曲线E 在点A ,点C 处的切线总是平行,则过点(,)b a 可作曲线E的( )条切线A .0B .1C .2D .3第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.设实数x ,y 满足约束条件0,40,5,y x y x y ≥⎧⎪-≥⎨⎪+≤⎩则25z x y =++的最大值为.14.为了了解居民天气转冷时期电量使用情况,某调查人员由下表统计数据计算出回归直线方程为2.1161.13y x =-+,现表中一个数据为污损,则被污损的数据为 .(最后结果精确到整数位)15.已知函数()f x 满足1()(1)1()f x f x f x ++=-,当(1)2f =时,(2018)(2019)f f +的值为 .16.已知腰长为2的等腰直角ABC ∆中,M 为斜边AB 的中点,点P 为该平面内一动点,若||2PC =,则()()PA PB PC PM ⋅⋅⋅的最小值是 .三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.设数列{}na 的前n 项和为nS ,且21nSn n =-+,正项等比数列{}n b 的前n 项和为n T ,且22b a =,45b a =.(1)求{}na 和{}nb 的通项公式;(2)数列{}nc 中,11c a =,且1nn ncc T +=-,求{}nc 的通项nc .18.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(2)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求这2组恰好抽到2人的概率;(3)若从所有参与调查的人(人数很多)中任意选出3人,设其中关注环境治理和保护问题的人数为随机变量X,求X的分布列与数学期望.19.在如图所示的几何体中,四边形ABCD是正方形,PA⊥平面ABCD,E,F分别是线段AD,PB的中点,1==.PA AB(1)证明://EF平面DCP;(2)求平面EFC与平面PDC所成锐二面角的余弦值.20.在平面直角坐标系中,椭圆C:22221(0)x y a b a b+=>>的离心率为12,点3(1,)2M 在椭圆C 上. (1)求椭圆C 的方程;(2)已知(2,0)P -与(2,0)Q 为平面内的两个定点,过(1,0)点的直线l 与椭圆C 交于A ,B 两点,求四边形APBQ 面积的最大值.21.已知函数2()45xaf x xx e =-+-(a R ∈).(1)若()f x 为在R 上的单调递增函数,求实数a 的取值范围; (2)设()()xg x ef x =,当1m ≥时,若12()()2()g x g x g m +=(其中1x m <,2x m>),求证:122x xm+<.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22.选修4-4:坐标系与参数方程在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线1C :cos 3ρθ=,曲线2C :4cos ρθ=(02πθ≤<). (1)求1C 与2C 交点的极坐标;(2)设点Q 在2C 上,23OQ QP =,求动点P 的极坐标方程. 23.选修4-5:不等式选讲 已知函数()|2||23|f x x x m =+++,m R ∈. (1)当2m =-时,求不等式()3f x ≤的解集;(2)对于(,0)x ∀∈-∞都有2()f x x x≥+恒成立,求实数m 的取值范围.2018年东北三省四市教研联合体高考模拟试卷(一)数学答案一、选择题1-5:CDCDD 6-10:BABCC 11、12:BC二、填空题13.14 14.38 15.72- 16.32242-三、解答题17.解:(1)∵21nSn n =-+,∴令1n =,11a=,12(1)n n n a S S n -=-=-,(2)n ≥,经检验11a =不能与na (2n ≥)时合并, ∴1,1,2(1), 2.n n a n n =⎧=⎨-≥⎩又∵数列{}nb 为等比数列,222b a ==,458ba ==,∴2424bq b==,∴2q =,∴11b =,∴12n nb-=. (2)122112nn n T -==--,∵12121cc -=-,23221cc -=-,…,1121n nn cc ---=-,以上各式相加得112(12)(1)12n n c c n ---=---,111c a ==,∴121n nc n -=--, ∴21n nc=-.18.解:(1)由10(0.0100.0150.0300.010)1a ⨯++++=,得0.035a =, 平均数为200.1300.15400.35500.3600.141.5⨯+⨯+⨯+⨯+⨯=岁;设中位数为x ,则100.010100.015(35)0.0350.5x ⨯+⨯+-⨯=,∴42.1x ≈岁. (2)第1,2组抽取的人数分别为2人,3人. 设第2组中恰好抽取2人的事件为A , 则1223353()5C C P A C ==.(3)从所有参与调查的人中任意选出1人,关注环境治理和保护问题的概率为45P =,X的所有可能取值为0,1,2,3,∴03341(0)(1)5125P X C ==-=,11234412(1)()(1)55125P X C ==-=,2234448(2)()(1)55125P X C ==-=,333464(3)()5125P X C ===,所以X 的分布列为:X0 123P 1125 121254812564125∵4~(3,)5X B , ∴412()355E X =⨯=. 19.解:(1)取PC 中点M ,连接DM ,MF , ∵M ,F 分别是PC ,PB 中点,∴//MF CB ,12MF CB =, ∵E 为DA 中点,ABCD 为矩形,∴//DE CB ,12DE CB =, ∴//MF DE ,MF DE =,∴四边形DEFM 为平行四边形, ∴//EF DM ,∵EF ⊄平面PDC ,DM ⊂平面PDC , ∴//EF 平面PDC .(2)∵PA ⊥平面ABC ,且四边形ABCD 是正方形,∴AD ,AB ,AP两两垂直,以A 为原点,AP ,AB ,AD 所在直线为x ,y ,z轴,建立空间直角坐标系A xyz -,则(1,0,0)P ,(0,0,1)D ,(0,1,1)C ,1(0,0,)2E ,11(,,0)22F , 设平面EFC 法向量1(,,)n x y z =,111(,,)222EF =-,11(,,1)22FC =-, 则110,0,EF n FC n ⎧⋅=⎪⎨⋅=⎪⎩即0,110,22x y z x y z +-=⎧⎪⎨-++=⎪⎩取1(3,1,2)n =-,设平面PDC 法向量为2(,,)n x y z =,(1,0,1)PD =-,(1,1,1)PC =-, 则220,0,PD n PC n ⎧⋅=⎪⎨⋅=⎪⎩即0,0,x z x y z -+=⎧⎨-++=⎩取2(1,0,1)n =, 12121257cos ,||||142n n n n n n ⋅<>===⋅⨯所以平面EFC 与平面PDC 5720.解:(1)∵12c a =,∴2a c =, 椭圆的方程为2222143x y c c+=,将3(1,)2代入得22191412cc +=,∴21c =,∴椭圆的方程为22143x y +=.(2)设l 的方程为1x my =+,联立221,431,x y x my ⎧+=⎪⎨⎪=+⎩消去x ,得22(34)690my my ++-=,设点11(,)A x y ,22(,)B x y , 有122634m y ym -+=+,122934y ym -=+, 有2222212112(1)||13434m m AB m m m ++=+=++,点P (2,0)-到直线l 的距离为21m +点(2,0)Q 到直线l 的距离为21m+从而四边形APBQ 的面积2222112(1)2412341m m S m m++=⨯=++(或121||||2S PQ y y =-)令21t m =+,1t ≥,有22431tS t =+2413t t=+,设函数1()3f t t t =+,21'()30f t t=->,所以()f t 在[1,)+∞上单调递增,有134t t +≥,故2242461313tS t t t==≤++,所以当1t =,即0m =时,四边形APBQ 面积的最大值为6. 21.解:(1)∵()f x 的定义域为x R ∈且单调递增, ∴在x R ∈上,'()240xa f x x e =-+≥恒成立,即:(42)xa x e ≥-,所以设()(42)xh x x e =-,x R ∈,∴'()(22)xh x x e =-,∴当(,1)x ∈-∞时,'()0h x >,∴()h x 在(,1)x ∈-∞上为增函数, ∴当[1,)x ∈+∞时,'()0h x ≤,∴()h x 在[1,)x ∈+∞上为减函数, ∴max()(1)2h x h e ==,∵max(42)xa x e ⎡⎤≥-⎣⎦,∴2a e ≥,即[2,)a e ∈+∞. (2)∵2()()(45)xx g x ef x x x e a==-+-,∵12()()2()g x g x g m +=,[1,)m ∈+∞, ∴122221122(45)(45)2(45)2x x m xx e a x x e a m m e a -+-+-+-=-+-,∴122221122(45)(45)2(45)x x mxx e x x e m m e -++-+=-+,∴设2()(45)xx xx e ϕ=-+,x R ∈,则12()()2()x x m ϕϕϕ+=,∴2'()(1)0xx x eϕ=-≥,∴()x ϕ在x R ∈上递增,∴设()()()F x m x m x ϕϕ=++-,(0,)x ∈+∞,∴22'()(1)(1)m xm xF x m x em x e +-=+----,∵0x >, ∴0m xm x ee +->>,22(1)(1)(22)20m x m x m x +----=-≥,∴'()0F x ≥,()F x 在(0,)x ∈+∞上递增, ∴()(0)2()F x F m ϕ>=,∴()()2()m x m x m ϕϕϕ++->,(0,)x ∈+∞, 令1x m x =-,∴11()()2()m m x m m x m ϕϕϕ+-+-+>,即11(2)()2()m x x m ϕϕϕ-+>,又∵12()()2()x x m ϕϕϕ+=,∴12(2)2()()2()m x m x m ϕϕϕϕ-+->,即12(2)()m x x ϕϕ->,∵()x ϕ在x R ∈上递增, ∴122m xx ->,即122x xm+<得证.22.解:(1)联立cos 3,4cos ,ρθρθ=⎧⎨=⎩3cos 2θ=±,∵02πθ≤<,6πθ=,3ρ= ∴所求交点的极坐标(23,)6π.(2)设(,)P ρθ,0(,)Q ρθ且04cos ρθ=,0[0,)2πθ∈,由已知23OQ QP=,得02,5,ρρθθ⎧=⎪⎨⎪=⎩∴24cos 5ρθ=,点P 的极坐标方程为10cos ρθ=,[0,)2πθ∈.23.解:(1)当2m =-时,41,0,3()|2||23|21,0,2345,.2x x f x x x x x x ⎧⎪+≥⎪⎪=++-=-<<⎨⎪⎪--≤-⎪⎩当413,0,x x +≤⎧⎨≥⎩解得102x ≤≤;当302x -<<,13≤恒成立; 当453,3,2x x --≤⎧⎪⎨≤-⎪⎩解得322x -≤≤-, 此不等式的解集为1|22x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)令233,0,22()()2353,,2x m x x g x f x x x x m x x ⎧--++-≤<⎪⎪=--=⎨⎪--+-≤-⎪⎩当302x -≤<时,22'()1g x x=-+,当20x -≤<时,'()0g x ≥,所以()g x 在[2,0)上单调递增,当322x -≤≤-时,'()0g x ≤,所以()g x 在3[,2)2--上单调递减, 所以min()(2)g x g =-2230m =+≥,所以223m ≥-,当32x ≤-时,22'()50g x x =-+<,所以()g x 在3(,]2-∞-上单调递减, 所以min335()()026g x g m =-=+≥,所以356m ≥-, 综上,223m ≥-.。
黑龙江省哈师大东北师大辽宁实验东北三省三校2018届高三第三次联合模拟数学理
黑龙江省哈师大附中、东北师大附中、辽宁省实验中学2018届东北三省三校高三第三次联合模拟考试理科数学第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则=()A. B . C . D .2.已知复数,则复数的模为()A .5B .C .D .3.在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩,若已知,则从哈市高中教师中任选位教师,他的培训成绩大于90分的概率为()A .0.85B .0.65C .0.35D .0.154.已知等比数列的前项和为,若,则()A .2B . C.4 D .15.已知,则=( )A .B . C. D .6.非零向量满足;,则与夹角的大小为()A .135°B .120° C.60° D .45°7.下面是某几何体的视图,则该几何体的体积为()1=0,0.1.2.31x A x B x A B -10.1,01,-10,021-2)2i zi (z 531052~85.9X N 8085=0.35P X n a n Sn 11,3;a Sn S 4a 24cos 45a sin 2a 7-257251-515,a b 0a b a a b a b bA .B . C. D.8.已知实数满足,则函数存在极值的概率为()A . B . C.D .9.执行下面的程序框图,若输入的值分别为1,2,输出的值为4,则的取值范围为()A .B . C.D .10.已知点分别是双曲线,的左、右焦点,为坐标原点,点在双曲线的右支上,的面积为4,且该双曲线的两条渐近线互相垂直,则双曲线的方程为()A . B . C. D .11.棱长为2的正方体中,为棱中点,过点,且与平面平行的正738393103,a b 01,01a b 321f x x ax bx 19132589,S a n m 37m 715m 1531m 3163m 12F F 2222:1(0x y C a a b ,b>0)O P C 122F F OP 12PF F C 22122x y 22144x y 2284x y 22124x y 1111ABCD A BC D E AD 1B 1A BE。
东北三省三校2018届高三第三次联合模拟考试数学(理)试卷(含答案)
黑龙江省哈师大附中、东北师大附中、辽宁省实验中学
2018届东北三省三校高三第三次联合模拟考试
理科数学
第Ⅰ卷(共60分)
一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合1
=0,0.1.2.31x A x B x ,则A B =()
A.-10.1, B .01, C .-10, D .0
2.已知复数2
1-2)2i z i (,则复数z 的模为()
A .5
B .5
C .3
10 D .5
2
3.在2018年初的高中教师信息技术培训中,经统计,哈尔滨市高中教师的培训成绩
~85.9X N ,若已知8085=0.35P X ,则从哈市高中教师中任选位教师,他的培训成绩大于
90分的概率为()
A .0.85
B .0.65
C .0.35
D .0.15
4.已知等比数列n a 的前n 项和为Sn ,若11,3;a Sn S ,则4a ()
A .2
B .2 C.4 D .1
5.已知4
cos 45a ,则sin 2a =( )
A .7-25
B .7
25 C.1
-5 D .1
5
6.非零向量,a b 满足;0a b a a b ,则a b 与b 夹角的大小为(
)A .135° B .120° C.60° D .45°。
2018高三数学(理)第一次模拟考试题(东北三省三校有答案)
2018高三数学(理)第一次模拟考试题(东北三省三校有答案)2018高三数学(理)第一次模拟考试题(东北三省三校有答案)哈尔滨师大附中、东北师大附中、辽宁省实验中学 2018年高三第一次联合模拟考试理科数学试卷第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数的模为( ) A. B. C. D. 2.已知集合,,若,则实数的取值范围是( ) A. B. C. D. 3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( ) A. B. C. D. 4.已知,则 ( ) A. B. C. D. 5.中心在原点,焦点在轴上的双曲线的一条渐近线经过点,则它的离心率为( ) A. B.2 C. D. 6. 展开式中的常数项是( ) A. B. C.8 D. 7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的的值是( ) A. B. C.1 D.3 8.已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为( ) A.B. C. D. 9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入,,则输出的值为( ) A.148 B.37 C.333 D.0 10.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥,该四棱锥的侧面积为,则该半球的体积为( ) A. B. C. D. 11.已知抛物线,直线与抛物线交于,两点,若以为直径的圆与轴相切,则的值是( ) A. B. C. D. 12.在,,,是边上的两个动点,且,则的取值范围为( ) A. B. C. D. 二、填空题(每题5分,满分20分,将答案填在答题纸上) 13.在中,,,,则 ______________.14.若满足约束条件,则的最大值为______________. 15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科、、,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教学科;③在长春工作的教师教学科;④乙不教学科. 可以判断乙教的学科是______________. 16.已知函数,是函数的极值点,给出以下几个命题:① ;② ;③ ;④ ;其中正确的命题是______________.(填出所有正确命题的序号) 三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知正项数列满足:,其中为数列的前项和.(1)求数列的通项公式; (2)设,求数列的前项和 . 18.某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间,需求量为100台;最低气温位于区间,需求量为200台;最低气温位于区间,需求量为300台。
高考最新-东北三校2018年高三第一次联合考试数学(理科)试卷 精品
2018年高三第一次联合考试数学(理科)试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第I 卷(选择题 共60分)一、选择题:本题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是正确的.1.已知i z i 32)33(-=⋅+,那么复数z 对应的点位于复平面内的 ( )A .第一象限B .第二象限C .第三象限D .第四象限 2.函数)1)(1ln(<-=x x y 的反函数为( )A .)(1R x e y x∈-=- B .)(1R x e y x∈-=C .)(1R x ey x∈-=-D .)(1R x e y x∈-= 3.=-→)cos(2sin lim2x xx ππ( )A .-2B .2C .-1D .14.过点(2,3)的直线l 与圆C :03422=+++x y x 交于A 、B 两点,当弦|AB|的取最大值时,直线l 的方程为( )A .3x -4y+6=0B .3x -4y -6=0C .4x -3y+8=0D .4x +3y -8=05.在等差数列}{n a 中,)(3)(2119741a a a a a ++++=24,则此数列的前13项之和等于( )A .13B .26C .52D .156哈师大附中 东北师大附中 辽宁省实验中学6.把正方形ABCD 沿对角线AC 折起,当点D 到平面ABC 的距离最大时,直线BD 和平面ABC 所成的角的大小为 ( )A .90°B .60°C .45°D .30°7.将函数x x f y sin )(=的图象按向量)2,4(π-=平移后,得到函数x y 2sin 23-=的图象,则)(x f 是( )A .cos xB .2cos xC .sin xD .2sin x8.已知集合}2|12||{},21|{<-=>-=x x N x xx M ,则M ∩N= ( ) A .}223|{<<x x B .}2321|{<<-x xC .}231|{<<x xD .}121|{<<-x x9.设函数0)(),4)(3)(2)(1()(='----=x f x x x x x f 则有( )A .分别位于区间(1,2),(2,3),(3,4)内三个根B .四个实根)4,3,,2,1(,==i i x iC .分别位于区间(0,1),(1,2),(2,3),(3,4)内四个根D .分别位于区间(0,1),(1,2),(2,3)内三个根10.抛物线y=x 2上点A 处的切线与直线013=+-y x 的夹角为45°,则点A 的坐标是( ) A .(-1,1) B .)161,41(C .(1,1)D .(-1,1)或)161,41( 11.设全集U={1,2,3,4,5,6},集合A ,B 都是U 的子集,若A ∩B={1,3,5},则称A ,B 为“理想配集”,记作(A ,B ),这样的“理想配集”(A ,B )共有 ( )A .7对B .8对C .27对D .28对12.正实数21,x x 及函数)(x f 满足)(,1)()(,)(1)(142121x x f x f x f x f x f x+=+-+=则且的最小值为( )A .4B .2C .54 D .41第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每题4分,共16分. 13.在83)12(xx -的展开式中常数项是 . 14.设函数⎩⎨⎧+∞∈-∞∈=-),1(log )1,(2)(81x xx x f x ,则满足x x f 的41)(=值是 .15.设双曲线12222=-by a x 的一条准线与两条渐近线交于A 、B 两点,相应的焦点为F ,若以AB 为直径的圆恰好过F 点,则离心率为 .16.已知m ,l 是异面直线,那么:①必存在平面α过m 且与l 平行;②必存在平面β过m且与l 垂直;③必存在平面γ与m ,l 都垂直;④必存在平面δ与m ,l 距离都相等,其中正确的命题的序号为 .三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分12分)已知向量x x x x b a b x x a tan 1)tan 1(2sin ,24,58),2,2(),sin ,(cos -+<<=⋅==求且若ππ的值.18.(本题满分12分)甲、乙、丙三人分别独立解一道数学题,已知甲做对这道题的概率是43,甲、丙两人都做错的概率是121,乙、丙两都对的概率是.41(Ⅰ)求乙、丙两人各自做对这道题的概率; (Ⅱ)求做对该题的人数随机变量ξ的分布列和E ξ.19.(本题满分12分)在四棱锥P —ABCD 中, PD ⊥底面ABCD, AB//CD ,PD=CD=AD=21AB ,∠ADC=120°. (Ⅰ)求证:AD ⊥PB ;(Ⅱ)若AB 的中点为E ,求二面角D —PC —E 的大小.20.(本题满分14分)设不等式组⎪⎩⎪⎨⎧+-≤>>n nx y y x 300所表示的平面区域为D n ,记D n 内的整点个数*).(N n a n ∈(整点即横坐标和纵坐标均为整数的点)(Ⅰ)求数列}{n a 的通项公式;(Ⅱ)记数列}{n a 的前n 项和为S n ,且123-⋅=n nn S T .若对于一切的正整数n ,总有m T n ≤,求实数m 的取值范围.21.(本题满分12分)已知F 1、F 2为椭圆C :)0(12222>>=+b a by a x 在左、右两个焦点,直线52:+=x y l 与椭圆C 交于两点P 1、P 2,已知椭圆中心O 点关于l 的对称点恰好落在C 的左准线l '上.(Ⅰ)求左准线l '的方程; (Ⅱ)已知,,95,2222211OF P F a OF P F ⋅-⋅成等差数列,求椭圆C 的方程.22.(本题满分14分)已知函数),()1(2131)(23为常数c b cx x b x x f +-+=. (Ⅰ)若31)(==x x x f 和在处取得极值,试求b 、c 的值;(Ⅱ)若),(),,()(21+∞-∞x x x f 在上单调递增且在),(21x x 上单调递减,又满足,112>-x x 求证:);2(22c b b +>(Ⅲ)在(Ⅱ)的条件下,若121,x c bt t x t 与试比较++<的大小,并加以证明.高三数学(理)参考答案及评分标准一、选择题:CBAAB CBCAD CC 二、填空题:13.7 14.3 15.2 16.①④ 三、解答题: 17.解:54)4cos(,58sin 2cos 2,58=-=+∴=⋅πx x x 即 …………4分 ∵43)4tan(,53)4sin(,440,24=-=-<-<∴<<ππππππx x x x ……6分 34)4cot()4tan(-=--=+ππx x2571)4(cos 2)22cos(2sin 2=--=-=ππx x x …………8分∴.7528)34(257)4tan(2sin tan 1)tan 1(2sin -=-⨯=+⋅=-+πx x x x x …………12分 18.解:(Ⅰ)记甲、乙、丙三人独立做对这道题的事件分别为A ,B ,C.依题设条件得:,32)(,83)(,41)()()(121)](1)][(1[)(43)(==⎪⎪⎪⎩⎪⎪⎪⎨⎧==⋅=--=⋅=C P B P C P B P C B P C P A P C A P A P 解得所以,乙、丙两人各自做对这道题的概率分别为.32,83 …………6分 (Ⅱ)随机变量ξ的可能取值为0,1,2,3.则:,965)321)(831)(431()()()(0)(=---===C P B P A P P ξ,247)()()()()()()()()()1(=++==C P B P A P C P B P A P C P B P A P P ξ,9645)()()()()()()()()()2(=++==B P C P A P C P B P A P C P B P A P P ξ 163)()()()3(===C P B P A P P ξ …………10分 所以ξ的分布列为:E ξ=244316339645224719650=⨯+⨯+⨯+⨯…………12分 19.解:(Ⅰ)连结BD ,∵∠ADC=120°,AB//CD∴∠DAB=60°,又,23,21AB BD AB AD =∴=∴AD ⊥BD ,又∵PD ⊥平面ABCD ,∴PD ⊥AD 而PD ∩BD=D , ∴AD ⊥面PDB , PB ⊂平面PDB ,∴AD ⊥PB(Ⅱ)连结DE ,CE , ∵∠DAB=60°,AD=AE ,∴△DEC 为正三角形. 取DC 的中点F ,连结EF ,则EF ⊥CD , ∵PD ⊥面ABCD , ∴EF ⊥PD , ∴EF ⊥面PCD , 过F 作FG ⊥PC 于G ,连EG , 则∠EGF 即为二面角D —PC —E 的平面角. 设CD=a ,则.23a EF =在△PCD 中,PC=.2222121,2a a aa PC PD CD FG a =⋅⋅=⋅=则 …………10分所以.6arctan ,62223tan =∠===∠EGF aFGEF EGF 所以 …………12分解法二(Ⅰ)如图,以D 为坐标原点,建立如图所示的空间直角坐标系.设PD=a ,则D (0,0,0),P (0,0,a ),A (a ,0,0),).0,23,2(),0,23,2(a a C a a E - ),3,0(),0,0,(),0,3,0(a a PB a DA a B -==∴∴PB AD PB DA ⊥∴=⋅,0 …………4分(Ⅱ)设平面PDC 的法向量为),,,(1z y x n = 则有⎪⎩⎪⎨⎧=⋅=⋅0011n DP n …………6分 即:⎪⎩⎪⎨⎧=+-=02320y x a az 于是).0,1,3(,1,3,01====n y x z 所以得令 ……8分 同样方法求得平面PEC 的一个法向量为)3,2,0(2=n . …………10分 于是有.77arccos ,,77722,cos 2121>=<=⨯>=<n n n n 所以 由图观察知,该二面角为锐二面角,所以二面角的大小为77arccos …………12分20.解:(Ⅰ)由.21,30,03,0==∴<<>-=>x x x nx n y x 或得∴D n 内的整点在直线x =1和x =2上 ………………2分 记直线l l n nx y ,3为+-=与直线x =1、x =2的交点的纵坐标分别为21,y y , 则.32,2321n n n y n n n y =+-==+-=∴*)(3N n n a n ∈= ………………6分 (Ⅱ)∵n n n n n T n n n S 2)1(,2)1(3)321(3+=∴+=++++= ……8分 ∴1112)2)(1(2)1(2)2)(1(+++-+=+-++=-n n n n n n n n n n n T T ……10分 ∴当.231,,33211==<=>≥+T T T T T n n n 且时 …………12分 于是T 2,T 3是数列}{n T 的最大项,故.232=≥T m …………14分 21.解:(Ⅰ)设原点O 关于52:+=x y l 的对称点为),(00y x ,则⎪⎪⎩⎪⎪⎨⎧+⨯=-=5222210000x y x y 解得:l x '∴==,40的方程为x =-4 …………4分(Ⅱ)设.4:)1(),,(),,(2222111c a y x P y x P =知由又)(),(22222211c x c OF P F c x c OF F -=⋅+=⋅ 由940:,910)()(21222-=+-=-++x x a c x c c x c 得 …………6分 又⎪⎩⎪⎨⎧=-++=14452222c c y c x x y 消去y 得:041610080)20(22=+-++-c c x x c ……8分 ∴ 9402080,208021-=--∴-=+c c x x …………10分 ∴ C=2,此时△>0, ∴所求椭圆方程为 14822=+y x …………12分 22.解:(Ⅰ)c x b x x f +-+=')1()(2,由题意得,1和3是方程c x b x +-+)1(2=0的两根,∴⎩⎨⎧=-=⎩⎨⎧⨯=+=-.3,3,31,311c b c b 解得 …………4分 (Ⅱ)由题得,当0)(,),(;0)(,),(),,(2121<'∈>'+∞-∞∈x f x x x x f x x x 时时 ∴c x b x x f x x +-+=')1()(,221是方程的两根, 则c x x b x x =-=+2121,1 … 6分∴14)1(42)2(2222---=--=+-c b c b b c b b 1)(14)(21221221--=--+=x x x x x x ,112>-x x ∴,01)(212>--x x ∴)2(22c b b +> …………9分 (Ⅲ)在(Ⅱ)的条件下,),)(()1(212x x x x c x b x --=+-+ 即 x x x x x c bx x +--=++))((212 …………12分 所以,)1)(())((2112112x t x t x t x t x t x c bx t -+-=-+--=-++, ,1112t x x +>+> ∴,0,0112x t x t <<<-+又 ∴01<-x t ∴,0)1)((21>-+-x t x t 即.12x c bx t >++ …………14分。
2018年三省三校一模考试理数答案
2018年三省三校一模考试(数学理科)答案一.选择题:CABBA BDABD CA 二.填空题:13.1 14.3215.C 16. ①③ 三.解答题:17. (本题满分12分)解:(Ⅰ)令1n =,得2111423a a a =+-,且0n a >,解得13a =. ……1分 当2n ≥时,221114422n n n n n n S S a a a a ----=-+-,即2211422n n n n n a a a a a --=-+-,整理得11()(2)0n n n n a a a a --+--=,Q 0n a >,12n n a a -∴-=, ……4分 所以数列{}n a 是首项为3,公差为2的等差数列,故3(1)221n a n n =+-⨯=+. …….6分 (Ⅱ)由(Ⅰ)知:22111111()1444(1)41n n b a n n n n n n ====--+++, ……9分 12+n n T b b b ∴=++L 11111111(1)(1)422314144nn n n n =-+-++-=-=+++ . ……12分18.(本题满分12分)解:(1)由已知X 的可能取值为100,200,300…….4分(2) 由已知①当订购200台时,E()[20010050(200100)]0.22002000.835000Y =⨯-⨯-⨯+⨯⨯=(元) …….7分② 当订购250台时,E()[20010050(250100)]0.2[20020050(250200)]0.4Y =⨯-⨯-⨯+⨯-⨯-⨯+[200250]0.437500⨯⨯=(元)…….11分综上所求,当订购250台时,Y 的数学期望最大,11月每日应订购250台。
…….12分 19.(本题满分12分) .解:(Ⅰ)取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OPAD ⊥. 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD ,4PEO π∠=,OP OE =.方法一:因为//MN BC ,//OE AB ,所以MN OE ⊥,所以MN PE ⊥. 又14EF PE ==,12EQ OE =,所以EF EQ EO EP ==,所以EFQ ∆∽EOP ∆, 所以2EFQ EOP π∠=∠=,所以PE FQ ⊥.且MN FQ Q = ,所以PE ⊥平面MNF .方法二:取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥. 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面AC ,4PEO π∠=,OP OE =.又因为//MN BC ,//OE AB ,所以MN OE ⊥,所以MN PE ⊥.以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴,建立空间直角坐标系O xyz -.设AB m =,AD n =,则()0,0,P m ,()0,,0E m ,,,022n m M ⎛⎫ ⎪⎝⎭,30,,44m m F ⎛⎫⎪⎝⎭, 于是()0,,PE m m =-,,,244n m m MF ⎛⎫=- ⎪⎝⎭.所以0PE MF ⋅=,所以PE M F ⊥,且MN MF M = ,所以PE ⊥平面MNF ……6分.(Ⅱ)取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥. 因为平面PAD ⊥平面AC ,所以OP ⊥平面AC ,4PEO π∠=,OP OE =.以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴的正方向, 建立空间直角坐标系O xyz -.设AB AD m ==,则()0,0,P m ,()0,,0E m ,,,02m B m ⎛⎫ ⎪⎝⎭,,,022m m M ⎛⎫ ⎪⎝⎭,30,,44m m F ⎛⎫⎪⎝⎭, 于是()0,,PE m m =- ,0,,02m BM ⎛⎫=- ⎪⎝⎭ ,,,244m m m BF ⎛⎫=-- ⎪⎝⎭. ……8分.设平面BMF 的一个法向量为=1n (),,x y z ,则00BM BF ⎧⋅=⎪⎨⋅=⎪⎩11n n , 从而020244my m m m x y z ⎧-=⎪⎪⎨⎪--+=⎪⎩,令1x =,得()1,0,2=1n .而平面NMF 的一个法向量为=2n ()0,,PE m m =-. ……10分.所以cos ,⋅<>==121212=n n n n n n ……12分.20.(本题满分12分).解: (Ⅰ)(0,1),1F b ∴= ,又1126F F F F ⋅=,226,c c ∴==又222,2a b c a -=∴=,∴ 椭圆C 的标准方程为2214x y +=. ……3分(Ⅱ)设直线l 与抛物线相切于点00(,)P x y ,则2000:()42x x l y x x -=-,即20024x x y x =-, 联立直线与椭圆200222414x x y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,整理得22340001(1)404x x x x x +-+-=.由240016(1)0x x ∆=+->,得2008x <<+ 设1122(,),(,)A x y B x y ,则:34001212220016,14(1)x x x x x x x x -+==++. ……6分则120|||AB x x =-== ……8分原点O 到直线l的距离2d =. ……9分故OAB ∆面积1||2S d AB =⋅=202000111x x +=≤=+, 当且仅当24400016(1)x x x +-=,即204x =+故OAB ∆面积的最大值为1. ……12分21.(本题满分12分) 解(Ⅰ):当0b =时:()h x kx =由()()()f x h x g x ≥≥知:ln xe kx x ≥≥依题意:ln x e xk x x≥≥对(0,)x ∈+∞恒成立 ……1分设/2(1)()(0),()x x e e x m x x m x x x-=>∴= 当(0,1)x ∈时/()0m x <;当(1+)x ∈∞,时/()0m x >,min [()](1)m x m e ∴== ……3分设/2ln 1ln ()(0),()x x n x x n x x x -=>∴= ……5分当(0,)x e ∈时/()0n x >;当(+)x e ∈∞,时/()0n x <,max 1[()]()n x n e e∴==故:实数k 的取值范围是1[]e e, ……6分(Ⅱ)由已知:()'x f x e =,()'1g x x=①:由()1111x x y e e x -=-得:()()1111x x h x ex e =+-⋅由()2221ln y x x x x -=-得:()221ln 1h x x x x =+- 故()11212111ln x x e x e x x⎧=⎪⎨⎪-=-⎩……8分Q 10x <,()1110x e x ∴-<,2ln 1x ∴>,故:2x e > ……9分②:由①知:12x x e -=,()11111xe x x -=+且21x e >>由()11ln 0a x x x x -+-≥得:()11ln a x x x x -≥-,()2x x ≥ 设()()2ln G x x x x x x =-≥ ()'1l n 1l n 0Gx x x=--=-<()G x ∴在)2,x +∞⎡⎣为减函数,()()2222max ln G x G x x x x ∴==-⎡⎤⎣⎦……11分由()12221ln a x x x x -≥-得:()()12211ln a x x x -≥- ∴ ()()1111a x x -≥-又10x < 1a ∴≤ ……12分22.解:(本小题满分10分)(Ⅰ)4cos ρθ=Qθρρcos 42=∴222cos ,sin x y x y ρρθρθ=+∴==Q x y x 422=+∴1C ∴的直角坐标方程为:x y x 422=+ ……3分13,23),x t y x y ⎧=-⎪⎪∴=-⎨⎪=⎪⎩Q 2C ∴的普通方程为)3(3--=x y ……5分(Ⅱ)将x y x t y t x 4,23,21322=+⎪⎪⎩⎪⎪⎨⎧=-=代入 得:)213(443)213(22t t t -=+-t t t 212932-=+-∴032=--∴t t3,12121-=⋅=+∴t t t t ……8分由t 的几何意义可得:32121===⋅⋅t t t t AQ AP ……10分23.(本小题满分10分)(Ⅰ)当1a =时:不等式为:25211x x x -++>-等价于::11552222252112521125211x x x x x x x x x x x x ⎧⎧⎧<--≤≤>⎪⎪⎪⎨⎨⎨⎪⎪⎪-+-->--+++>--++>-⎩⎩⎩或或 ……3分解得::11552222x x x <--≤≤>或或 所以:不等式的解集为:∞∞(-,+) ……5分(Ⅱ)设函数()2521f x x x =-++=1442156225442x x x x x ⎧-+<-⎪⎪⎪-≤≤⎨⎪⎪->⎪⎩设函数()1g x ax =-过定点(0,-1) ……7分画出f ……8分由数形结合得a 的范围是14[4,)5- ……10分。
【名校模拟】2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)
2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的模为()A.B.C.D.22.已知集合,B={x|x≥a},若A∩B=A,则实数a的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣3)C.(﹣∞,0]D.[3,+∞)3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()A.B.C.D.4.已知s,则=()A.B.C.D.5.中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(﹣2,4),则它的离心率为()A.B.2 C.D.6.展开式中的常数项是()A.12 B.﹣12 C.8 D.﹣87.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值()A.2 B.3 C.D.8.已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为()A.B.C.D.9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入m=8251,n=6105,则输出m的值为()A.148 B.37 C.333 D.010.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S﹣ABCD,该四棱锥的侧面积为,则该半球的体积为()A. B. C.D.11.已知抛物线C:y2=2x,直线与抛物线C交于A,B两点,若以AB为直径的圆与x轴相切,则b的值是()A.B.C.D.12.在△ABC,∠C=90°,AB=2BC=4,M,N是边AB上的两个动点,且|MN|=1,则的取值范围为()A.B.[5,9]C.D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在△ABC中,AB=2,,,则BC=.14.若x,y满足约束条件,则的最大值为.15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A、B、C,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C学科;③在长春工作的教师教A学科;④乙不教B学科.可以判断乙教的学科是.16.已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是.(填出所有正确命题的序号)三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12.00分)已知正项数列{a n}满足:,其中S n为数列{a n}的前n项和.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.18.(12.00分)某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[﹣20,﹣10],需求量为100台;最低气温位于区间[﹣25,﹣20),需求量为200台;最低气温位于区间[﹣35,﹣25),需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:最低气温(℃)[﹣35,﹣30)[﹣30,﹣25)[﹣25,﹣20)[﹣20,﹣15)[﹣15,﹣10]天数112536162以最低气温位于各区间的频率代替最低气温位于该区间的概率.(1)求11月份这种电暖气每日需求量X(单位:台)的分布列;(2)若公司销售部以每日销售利润Y(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?19.(12.00分)如图,四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,且PA=PD,底面ABCD为矩形,点M、E、N分别为线段AB、BC、CD的中点,F是PE上的一点,PF=2FE.直线PE与平面ABCD所成的角为.(1)证明:PE⊥平面MNF;(2)设AB=AD,求二面角B﹣MF﹣N的余弦值.20.(12.00分)已知椭圆过抛物线M:x2=4y的焦点F,F1,F2分别是椭圆C的左、右焦点,且.(1)求椭圆C的标准方程;(2)若直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.21.(12.00分)已知函数f(x)=e x,g(x)=lnx,h(x)=kx+b.(1)当b=0时,若对任意x∈(0,+∞)均有f(x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设直线h(x)与曲线f(x)和曲线g(x)相切,切点分别为A(x1,f(x1)),B(x2,g(x2)),其中x1<0.①求证:x2>e;②当x≥x2时,关于x的不等式a(x1﹣1)+xlnx﹣x≥0恒成立,求实数a的取值范围.[选修4-4:坐标系与参数方程选讲]22.(10.00分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴建立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的普通方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|?|AQ|的值.[选修4-5:不等式选讲]23.已知不等式|2x﹣5|+|2x+1|>ax﹣1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的范围.2018年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数的模为()A.B.C.D.2【分析】利用复数代数形式的乘除运算化简,再由复数模的计算公式求解.【解答】解:∵=,∴||=|1+i|=.故选:C.【点评】本题考查复数代数形式的乘除运算化简,考查复数模的求法,是基础题.2.已知集合,B={x|x≥a},若A∩B=A,则实数a的取值范围是()A.(﹣∞,﹣3]B.(﹣∞,﹣3)C.(﹣∞,0]D.[3,+∞)【分析】求定义域得集合A,根据A∩B=A知A?B,由此求出a的取值范围.【解答】解:集合={x|9﹣x2≥0}={x|﹣3≤x≤3},B={x|x≥a},若A∩B=A,则A?B;∴实数a的取值范围是a≤﹣3.故选:A.【点评】本题考查了求函数的定义域和集合的运算问题,是基础题.3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为()A.B.C.D.【分析】设事件A表示“第一张抽到奇数”,事件B表示“第二张抽取偶数”,则P (A)=,P(AB)==,利用条件概率计算公式能求出在第一次抽到奇数的情况下,第二次抽到偶数的概率.【解答】解:从标有1、2、3、4、5的五张卡片中,依次抽出2张,设事件A表示“第一张抽到奇数”,事件B表示“第二张抽取偶数”,则P(A)=,P(AB)==,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为:P(A|B)===.故选:B.【点评】本题考查概率的求法,考查条件概率等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.4.已知s,则=()A.B.C.D.【分析】直接由已知结合同角三角函数基本关系式求得.【解答】解:∵s,∴=cos[+()]=﹣sin()=﹣.故选:B.【点评】本题考查同角三角函数基本关系式的应用,是基础题.5.中心在原点,焦点在y轴上的双曲线的一条渐近线经过点(﹣2,4),则它的离心率为()【分析】先求渐近线带入点的坐标,再用c2=a2+b2求离心率.【解答】解:∵焦点在y轴上的双曲线的渐近线方程是y=±x,∴4=﹣?(﹣2),∴=2,a=2b,a2=4b2=4c2﹣4a2,e=.故选:A.【点评】本题考查双曲线的几何性质,离心率的求法,考查计算能力.6.展开式中的常数项是()A.12 B.﹣12 C.8 D.﹣8【分析】写出二项式的通项,由x的指数为﹣2、0分别求得r值,再由多项式乘多项式得答案.【解答】解:的展开式的通项为=.取r﹣5=﹣2,得r=3,取r﹣5=0,得r=5.∴展开式中的常数项是﹣﹣2=﹣12.故选:B.【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题.7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x的值()【分析】由已知中的三视图可得该几何体是一个以直角梯形为底面的四棱锥,该几何体为x,根据体积公式建立关系,可得答案【解答】解:由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为1和2,高为2,如图:AD=1,BC=2,SB=x,AD∥BC,SB⊥平面ABCD,AD⊥AB.∴底面的面积S=×(1+2)×2=3.该几何体为x,几何体的体积V==1,可得x=3.故选:B.【点评】本题考查的知识点是三视图投影关系,体积公式的运用,根据已知的三视图,判断几何体的形状是解答的关键.8.已知函数的图象的相邻两条对称轴之间的距离是,则该函数的一个单调增区间为()A.B.C.D.【分析】化函数f(x)为正弦型函数,根据题意求出ω的值,写出f(x)的解析式,即可求出它的单调增区间.【解答】解:函数=2sin(ωx+);由f(x)的图象相邻两条对称轴之间的距离是,∴T=2×=π,∴ω==2;∴f(x)=2sin(2x+),令﹣+2kπ≤2x+≤+2kπ,k∈Z,解得﹣+kπ≤x≤+2kπ,k∈Z,∴函数f(x)的一个单调增区间为[﹣,].故选:A.【点评】本题考查了三角函数的图象与性质的应用问题,是基础题.9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入m=8251,n=6105,则输出m的值为()A.148 B.37 C.333 D.0【分析】程序的运行功能是求m=8521,n=6105的最大公约数,根据辗转相除法可得m的值.【解答】解:由程序框图知:程序的运行功能是求m=82511,n=6105的最大公约数,∵8251=6105+2146;6105=2×2146+1813;2146=1813+333;1813=5×333+148;333=2×148+37,148=4×37+0∴此时m=37.∴输出m的值是37,故选:B.【点评】本题考查了辗转相除法的程序框图,掌握辗转相除法的操作流程是关键.10.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S﹣ABCD,该四棱锥的侧面积为,则该半球的体积为()A. B. C.D.【分析】设出球的半径,利用棱锥的侧面积公式,求解半径,然后求解四棱锥的外接半球的体积.【解答】解:连结AC,BD交点为0,设球的半径为r,由题意可知SO=AO=OC=OD=OB=r.则AB=r,四棱锥的侧面积为:4×=,解得r=,四棱锥的外接半球的体积为:V==,故选:D.【点评】本题考查四棱锥SABCD的侧面积以及球的体积的计算,确定球的半径关系式是关键.11.已知抛物线C:y2=2x,直线与抛物线C交于A,B两点,若以AB为直径的圆与x轴相切,则b的值是()A.B.C.D.【分析】联立得:y2+4y﹣4b=0.由此利用根的判别式、弦长公式,即可求出b的值【解答】解:联立得:y2+4y﹣4b=0.依题意应有△=16+16b>0,解得b>﹣1.设A(x1,y1),B(x2,y2),∴y1+y2=﹣4,y1y2=﹣4b,∴x1+x2=﹣2(y1+y2)+4b=8+4b设圆心Q(x0,y0),则应有x0=(x1+x2)=4+2b,y0=(y1+y2)=﹣2.∵以AB为直径的圆与x轴相切,得到圆半径为r=|y0|=2,又|AB|=?=?=4?,∴|AB|=2r,即4?=4,解得b=﹣.故选:C.【点评】本题主要考查圆的性质,考查直线与抛物线、圆等知识,同时考查解析几何的基本思想方法和运算求解能力.12.在△ABC,∠C=90°,AB=2BC=4,M,N是边AB上的两个动点,且|MN|=1,则的取值范围为()A.B.[5,9]C.D.【分析】建立坐标系,设AN=a,用a表示出,得出关于a的函数,从而得出范围.【解答】解:以CA,CB为坐标轴建立坐标系如图所示:∵AB=2BC=4,∴∠BAC=30°,AC=2设AN=a,则N(2﹣,),M(2﹣,),∴=(2﹣)(2﹣)+=a2﹣5a+9.∵M,N在AB上,∴0≤a≤3.∴当a=0时,取得最大值9,当a=时,取得最小值.故选:A.【点评】本题考查了平面向量的数量积运算,属于中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在△ABC中,AB=2,,,则BC=1.【分析】根据题意,设BC=t,△ABC中,由余弦定理可得cos∠ABC==﹣,变形可得:t2+2t﹣3=0,解可得t的值,即可得答案.【解答】解:根据题意,设BC=t,△ABC中,AB=2,,,则有cos∠ABC==﹣,变形可得:t2+2t﹣3=0,解可得:t=﹣3或t=1,又由t>0,则t=1,即BC=1;故答案为:1【点评】本题考查余弦定理的应用,注意利用余弦定理构造关于BC的方程.14.若x,y满足约束条件,则的最大值为.【分析】由约束条件作出可行域,再由的几何意义,即可行域内的动点与定点P(﹣1,0)连线的斜率求得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(1,3),由的几何意义,即可行域内的动点与定点P(﹣1,0)连线的斜率可得,的最大值为.故答案为:.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A、B、C,已知:①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C学科;③在长春工作的教师教A学科;④乙不教B学科.可以判断乙教的学科是C.【分析】分析判断每一名话,能推理出正确结果.【解答】解:由①得甲不在哈尔滨工作,乙不在长春工作;由②得在哈尔滨工作的教师不教C学科,甲不教C;由③得在长春工作的教师教A学科;由④得乙不教B学科和A学科.综上,乙教C学科.故答案为:C.【点评】本题考查简单的合理推理,考查推理论证能力等基础知识,考查运用求解能力,考查函数与方程思想,是基础题.16.已知函数,x0是函数f(x)的极值点,给出以下几个命题:①;②;③f(x0)+x0<0;④f(x0)+x0>0;其中正确的命题是①③.(填出所有正确命题的序号)【分析】求导数,利用零点存在定理,可判断①②;f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x0<0,可判断③④.【解答】解:∵函数f(x)=xlnx+x2,(x>0)∴f′(x)=lnx+1+x,易得f′(x)=lnx+1+x在(0,+∞)递增,∴f′()=>0,∵x→0,f′(x)→﹣∞,∴0<x0<,即①正确,②不正确;∵lnx0+1+x0=0∴f(x0)+x0=x0lnx0+x02+x0=x0(lnx0+x0+1)=﹣x02<0,即③正确,④不正确.故答案为:①③.【点评】本题考查利用导数研究函数的极值,考查学生的计算能力、转化思想,属于中档题.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12.00分)已知正项数列{a n}满足:,其中S n为数列{a n}的前n项和.(1)求数列{a n}的通项公式;(2)设,求数列{b n}的前n项和T n.【分析】(1)利用数列的递推关系式推出数列{a n}是首项为3,公差为2的等差数列,然后求解通项公式.(2)化简通项公式利用裂项相消法求解数列的和即可.【解答】(本题满分12分)解:(1)令n=1,得,且a n>0,解得a1=3.当n≥2时,,即,整理得(a n+a n﹣1)(a n﹣a n﹣1﹣2)=0,∵a n>0,∴a n﹣a n﹣1=2,所以数列{a n}是首项为3,公差为2的等差数列,故a n=3+(n﹣1)×2=2n+1.(2)由(1)知:,∴T n=b1+b2+…+b n=.【点评】本题考查数列的递推关系式的应用,考查转化思想以及计算能力.18.(12.00分)某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[﹣20,﹣10],需求量为100台;最低气温位于区间[﹣25,﹣20),需求量为200台;最低气温位于区间[﹣35,﹣25),需求量为300台.公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表:最低气温(℃)[﹣35,﹣30)[﹣30,﹣25)[﹣25,﹣20)[﹣20,﹣15)[﹣15,﹣10]天数112536162以最低气温位于各区间的频率代替最低气温位于该区间的概率.(1)求11月份这种电暖气每日需求量X(单位:台)的分布列;(2)若公司销售部以每日销售利润Y(单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?【分析】(1)由已知X的可能取值为100,200,300,分别求出相应的概率,由此能求出X的分布列.(2)当订购200台时,求出E(Y)=35000元;当订购250台时,求出E(Y)=37500元,由此求出11月每日应订购250台.【解答】(本题满分12分)解:(1)由已知X的可能取值为100,200,300,P(X=100)==0.2,P(X=200)==0.4,P(X=300)==0.4,∴X的分布列为:X100200300P0.20.40.4(2)由已知:①当订购200台时,E(Y)=[200×100﹣50×(200﹣100)]×0.2+200×200×0.8=35000(元)②当订购250台时,E(Y)=[200×100﹣50×(250﹣100)]×0.2+[200×200﹣50×(250﹣200)]×0.4+[200×250]×0.4=37500(元)综上所求,当订购250台时,Y的数学期望最大,11月每日应订购250台.【点评】本题考查概率的求法,考查离散型随机变量的分布列、数学期望的求法,考查频率分布表、列举法等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.19.(12.00分)如图,四棱锥P﹣ABCD中,平面PAD⊥平面ABCD,且PA=PD,底面ABCD为矩形,点M、E、N分别为线段AB、BC、CD的中点,F是PE上的一点,PF=2FE.直线PE与平面ABCD所成的角为.(1)证明:PE⊥平面MNF;(2)设AB=AD,求二面角B﹣MF﹣N的余弦值.【分析】(1)法一:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥ADOP⊥平面ABCD,推导出MN⊥OE,MN⊥PE.△EFQ∽△EOP,从而PE=FQ.由此能证明PE⊥平面MNF.方法二:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.以O 点为原点,射线OA、OE、OP方向为x轴、y轴、z轴,建立空间直角坐标系O﹣xyz.利用向量法能证明PE⊥平面MNF(2)取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴的正方向,建立空间直角坐标系O﹣xyz.利用向量法能求出二面角B﹣MF﹣N的余弦值.【解答】证明:(1)方法一:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面PAD⊥平面ABCD,所以OP⊥平面ABCD,∠PEO=,OP=OE.因为MN∥BC,OE∥AB,所以MN⊥OE,所以MN⊥PE.又EF=PE=OE,EQ=OE,所以,所以△EFQ∽△EOP,所以,所以PE=FQ.且MN∩FQ=Q,所以PE⊥平面MNF.方法二:取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面PAD⊥平面ABCD,所以OP⊥平面AC,,OP=OE.又因为MN∥BC,OE∥AB,所以MN⊥OE,所以MN⊥PE.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴,建立空间直角坐标系O﹣xyz.设AB=m,AD=n,则P(0,0,m),E(0,m,0),M(,0),F(0,),于是=(0,m,﹣m),=(﹣).所以=0,所以PE⊥MF,且MN∩MF=M,所以PE⊥平面MNF解:(2)取AD中点O,连接OE,交MN于点Q,连接FQ,则OP⊥AD.因为平面PAD⊥平面AC,所以OP⊥平面AC,,OP=OE.以O点为原点,射线OA、OE、OP方向为x轴、y轴、z轴的正方向,建立空间直角坐标系O﹣xyz.设AB=AD=m,则P(0,0,m),E(0,m,0),B(),M(,0),F(0,),于是=(0,m,﹣m),=(0,﹣,0),=(﹣).设平面BMF的一个法向量为=(x,y,z),则,令x=1,得=(1,0,2).而平面NMF的一个法向量为==(0,m,﹣m).所以cos<>===﹣.由图形得二面角B﹣MF﹣N的平面角是钝角,故二面角B﹣MF﹣N的余弦值为﹣.【点评】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.20.(12.00分)已知椭圆过抛物线M:x2=4y的焦点F,F1,F2分别是椭圆C的左、右焦点,且.(1)求椭圆C的标准方程;(2)若直线l与抛物线M相切,且与椭圆C交于A,B两点,求△OAB面积的最大值.【分析】(1)通过焦点坐标以及转化求解椭圆方程.(2)设直线l与抛物线相切于点P(x0,y0),求出切线方程,联立直线与椭圆,消去y,整理利用判别式,以及弦长公式,求解由原点O到直线l的距离,表示△OAB面积,推出△OAB面积的最大值为1.【解答】(本题满分12分)解:(1)∵F(0,1),∴b=1,又,∴.又a2﹣b2=c2,∴a=2,∴椭圆C的标准方程为.(2)设直线l与抛物线相切于点P(x0,y0),则,即,联立直线与椭圆,消去y,整理得.由,得.设A(x1,y1),B(x2,y2),则:.则原点O到直线l的距离.故△OAB面积=,当且仅当,即取等号,故△OAB面积的最大值为1.【点评】本题考查椭圆的方程的求法,直线与椭圆的位置关系的综合应用,三角形的面积的最值的求法,考查转化思想以及计算能力.21.(12.00分)已知函数f(x)=e x,g(x)=lnx,h(x)=kx+b.(1)当b=0时,若对任意x∈(0,+∞)均有f(x)≥h(x)≥g(x)成立,求实数k的取值范围;(2)设直线h(x)与曲线f(x)和曲线g(x)相切,切点分别为A(x1,f(x1)),B(x2,g(x2)),其中x1<0.①求证:x2>e;②当x≥x2时,关于x的不等式a(x1﹣1)+xlnx﹣x≥0恒成立,求实数a的取值范围.【分析】(1)依题意:对x∈(0,+∞)恒成立,根据函数的单调性求出k的范围即可;(2)①得到,∴,从而证明结论;②得到a(x1﹣1)≥x﹣xlnx,(x≥x2),设G(x)=x﹣xlnx(x≥x2)G′(x)=1﹣lnx﹣1=﹣lnx<0,根据函数的单调性求出G(x)的最大值,从而求出a的范围即可.【解答】解:(1)当b=0时:h(x)=kx,由f(x)≥h(x)≥g(x)知:e x≥kx≥lnx,依题意:对x∈(0,+∞)恒成立,设,当x∈(0,1)时m′(x)<0;当x∈(1,+∞)时m′(x)>0,∴[m(x)]min=m(1)=e,设,当x∈(0,e)时n′(x)>0;当x∈(e,+∞)时n′(x)<0,∴,故:实数k的取值范围是(2)由已知:f′(x)=e x,①:由得:由得:故∵x1<0,∴,∴lnx2>1,故:x2>e;②由①知:,且x2>e>1由a(x1﹣1)+xlnx﹣x≥0得:a(x1﹣1)≥x﹣xlnx,(x≥x2)设G(x)=x﹣xlnx(x≥x2)G′(x)=1﹣lnx﹣1=﹣lnx<0,∴G(x)在[x2,+∞)为减函数,∴[G(x)]max=G(x2)=x2﹣x2lnx2由a(x1﹣1)≥x2﹣x2lnx2,得:a(x1﹣1)≥x2(1﹣lnx2),∴a(x1﹣1)≥(x1﹣1)又x1<0,∴a≤1.【点评】本题考查了函数的单调性、最值问题,考查导数的应用以及分类讨论思想,转化思想,是一道综合题.[选修4-4:坐标系与参数方程选讲]22.(10.00分)已知在极坐标系中曲线C1的极坐标方程为:ρ=4cosθ,以极点为坐标原点,以极轴为x轴的正半轴建立直角坐标系,曲线C2的参数方程为:(t为参数),点A(3,0).(1)求出曲线C1的直角坐标方程和曲线C2的普通方程;(2)设曲线C1与曲线C2相交于P,Q两点,求|AP|?|AQ|的值.,y=ρsinθ即可求得曲线【分析】(1)把ρ=4cosθ两边同时乘以ρ,结合x=ρcosθC1的直角坐标方程,在中,直接消去参数t即可求得曲线C2的普通方程;(2)把曲线C2的参数方程代入x2+y2=4x,化为关于t的一元二次方程,利用根与系数的关系结合t的几何意义求得|AP|?|AQ|的值.【解答】解:(1)由ρ=4cosθ,得ρ2=4ρcosθ,∴x2+y2=4x,故曲线C1的直角坐标方程为x2+y2=4x,即(x﹣2)2+y2=4.由,消去参数t,可得.∴曲线C2:;(2)将代入x2+y2=4x,得t2﹣t﹣3=0,∵△=1+4×3=13>0,∴方程有两个不等实根t1,t2分别对应点P,Q,∴|AP|?|AQ|=|t1|?|t2|=|t1?t2|=|﹣3|=3,即|AP|?|AQ|=3.【点评】本题考查简单曲线的极坐标方程,考查参数方程化普通方程,关键是掌握直线参数方程中参数t的几何意义,是中档题.[选修4-5:不等式选讲]23.已知不等式|2x﹣5|+|2x+1|>ax﹣1.(1)当a=1时,求不等式的解集;(2)若不等式的解集为R,求a的范围.【分析】(1)当a=1时,化简不等式,去掉绝对值符号,转化求解不等式的解集;(2)化简函数为分段函数,画出函数的图象,然后求解即可.【解答】(本小题满分10分)解:(1)当a=1时:不等式为:|2x﹣5|+|2x+1|>x﹣1,等价于:解得:,所以不等式的解集为:(﹣∞,+∞);(2)设函数f(x)=|2x﹣5|+|2x+1|=,设函数g(x)=ax﹣1过定点A(0,﹣1),画出f(x),g(x)的图象,不等式|2x﹣5|+|2x+1|>ax﹣1.不等式的解集为R,k AB==,由数形结合得a的范围是.【点评】本题考查不等式的解法,不等式恒成立,考查数形结合以及计算能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年东北三省三校一模考试(数学理科)一、选择题:本大题共12个小题,每小题5分,共60分1.复数21ii +的模为( ) A.12B.2C.2D.22.已知集合{}29A x y x ==-,{}B x x a =≥,若A B A =I ,则实数a 的取值范围是( ) A.(],3-∞-B.(),3-∞-C.(],0-∞D.[)3,+∞3.从标有1、2、3、4、5的五张卡片中,依次抽出2张,则在第一次抽到奇数的情况下,第二次抽到偶数的概率为( ) A.14B.12C.13D.234.已知1sin 33a π⎛⎫-= ⎪⎝⎭,则5cos 6a π⎛⎫-=⎪⎝⎭( ) A.13B.13-C.22D.2-5.中心在原点,焦点在y 轴上的双曲线的一条渐近线经过点()2,4-,则它的离心率为( ) A.5B.2C.3D.56.()52121x x ⎛⎫+- ⎪⎝⎭展开式中的常数项是( )A.12B.12-C.8D.8-7.某几何体的三视图如图所示,且该几何体的体积是3,则正视图中的x 的值是( ) A.32B.92C.1D.38.已知函数()()3sin cos 0f x x x ωωω=+>的图象的相邻两条对称轴之间的距离是2π,则该函数的一个单调增区间为( ) A.,36ππ⎡⎤-⎢⎥⎣⎦ B.5,1212ππ⎡⎤-⎢⎥⎣⎦C.2,63ππ⎡⎤⎢⎥⎣⎦D.2,33ππ⎡⎤-⎢⎥⎣⎦9.辗转相除法是欧几里德算法的核心思想,如图所示的程序框图所描述的算法就是辗转相除法,若输入8521m =,6105n =,则输出m 的值为( ) A.148B.37C.333D.010.底面是正多边形,顶点在底面的射影是底面中心的棱锥叫做正棱锥.如图,半球内有一内接正四棱锥S ABCD -,该四棱锥的侧面积为,则该半球的体积为( )A.43πB.23π11.已知抛物线2:2C y x =,直线1:2l y x b =-+与抛物线C 交于A ,B 两点,若以AB 为直径的圆与x 轴相切,则b 的值是( )A.15-B.25-C.45-D.85-12.在ABC △,90C =∠°,24AB BC ==,,M N 是边AB 上的两个动点,且1MN =,则CM CN ⋅u u u u r u u u r的取值范围为( ) A.11,94⎡⎤⎢⎥⎣⎦B.[]5,9C.15,94⎡⎤⎢⎥⎣⎦D.11,54⎡⎤⎢⎥⎣⎦二、填空题(每题5分,满分20分,将答案填在答题纸上)13.在ABC △中,2AB =,AC =23ABC π=∠,则BC =______________. 14.若,x y 满足约束条件10040x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则1y x +的最大值为______________.15.甲、乙、丙三位教师分别在哈尔滨、长春、沈阳的三所中学里教不同的学科A 、B 、C ,已知: ①甲不在哈尔滨工作,乙不在长春工作;②在哈尔滨工作的教师不教C 学科;③在长春工作的教师教A 学科;④乙不教B 学科.可以判断乙教的学科是______________.16.已知函数()21ln 2f x x x x =+,0x 是函数()f x 的极值点,给出以下几个命题:①010x e <<;②01x e >;③()000f x x +<;④()000f x x +>;其中正确的命题是______________.(填出所有正确命题的序号)三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.已知正项数列{}n a 满足:2423n nn S a a =+-,其中n S 为数列{}n a 的前n 项和. (1)求数列{}n a 的通项公式; (2)设211n n b a =-,求数列{}n b 的前n 项和n T .18.某商场按月订购一种家用电暖气,每销售一台获利润200元,未销售的产品返回厂家,每台亏损50元,根据往年的经验,每天的需求量与当天的最低气温有关,如果最低气温位于区间[]20,10--,需求量为100台;最低气温位于区间[)25,20--,需求量为200台;最低气温位于区间[)35,25--,需求量为300台。
公司销售部为了确定11月份的订购计划,统计了前三年11月份各天的最低气温数据,得到下面的频数分布表: 最低气温(℃) [)35,30-- [)30,25-- [)25,20-- [)20,15-- []15,10--天数112536162以最低气温位于各区间的频率代替最低气温位于该区间的概率. (1) 求11月份这种电暖气每日需求量X (单位:台)的分布列;(2) 若公司销售部以每日销售利润Y (单位:元)的数学期望为决策依据,计划11月份每日订购200台或250台,两者之中选其一,应选哪个?19.如图,四棱锥P ABCD -中,平面PAD ⊥平面ABCD ,且PA PD =,底面ABCD 为矩形,点M 、E 、N 分别为线段AB 、BC 、CD 的中点,F 是PE 上的一点,2PF FE =.直线PE 与平面ABCD 所成的角为4π. (1)证明:PE ⊥平面MNF ;(2)设AB AD =,求二面角B MF N --的余弦值.20.已知椭圆()2222:10x y C a b a b+=>>过抛物线2:4M x y =的焦点F ,1F ,2F 分别是椭圆C 的左、右焦点,且1126F F F F ⋅=u u u u r u u u u r.(1)求椭圆C 的标准方程;(2)若直线l 与抛物线M 相切,且与椭圆C 交于A ,B 两点,求OAB △面积的最大值.21.已知函数()x f x e =,()ln g x x =,()h x kx b =+.(1)当0b =时,若对任意()0,x ∈+∞均有()()()f x h x g x ≥≥成立,求实数k 的取值范围;(2)设直线()h x 与曲线()f x 和曲线()g x 相切,切点分别为()()11,A x f x ,()()22,B x g x ,其中10x <. ①求证:2x e >;②当2x x ≥时,关于x 的不等式()11ln 0a x x x x -+-≥恒成立,求实数a 的取值范围.22.已知曲线1C 的极坐标方程为:4cos ρθ=,以极点为坐标原点,以极轴为x 轴的正半轴建立直角坐标系,曲线2C的参数方程为:132x t y ⎧=-⎪⎪⎨⎪=⎪⎩(t 为参数),点()3,0A .(1)求出曲线1C 的直角坐标方程和曲线2C 的普通方程; (2)设曲线1C 与曲线2C 相交于P ,Q 两点,求AP AQ ⋅的值.23.已知不等式25211x x ax -++>-. (1)当1a =时,求不等式的解集; (2)若不等式的解集为R ,求a 的范围.2018年三省三校一模考试(数学理科)答案一.选择题:CABBA BDABD CA 二.填空题:13.1 14.3215.C 16. ①③ 三.解答题:17. (本题满分12分)解:(Ⅰ)令1n =,得2111423a a a =+-,且0n a >,解得13a =.当2n ≥时,221114422n n n n n n S S a a a a ----=-+-,即2211422n n n n n a a a a a --=-+-,整理得11()(2)0n n n n a a a a --+--=,Q 0n a >,12n n a a -∴-=, 所以数列{}n a 是首项为3,公差为2的等差数列, 故3(1)221n a n n =+-⨯=+. (Ⅱ)由(Ⅰ)知:22111111()1444(1)41n n b a n n n n n n ====--+++, 12+n n T b b b ∴=++L 11111111(1)(1)422314144nn n n n =-+-++-=-=+++L .18.(本题满分12分)解:(1)由已知X 的可能取值为100,200,300(2) 由已知①当订购200台时,E()[20010050(200100)]0.22002000.835000Y =⨯-⨯-⨯+⨯⨯=(元) ② 当订购250台时,E()[20010050(250100)]0.2[20020050(250200)]0.4Y =⨯-⨯-⨯+⨯-⨯-⨯+[200250]0.437500⨯⨯=(元)综上所求,当订购250台时,Y 的数学期望最大,11月每日应订购250台。
19.(本题满分12分) .解:(Ⅰ)取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥. 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面ABCD ,PEO π∠=,OP OE =.方法一:因为//MN BC ,//OE AB ,所以MN OE ⊥,所以MN PE ⊥. 又1244EF PE OE ==,12EQ OE=,所以24EF EQ EO EP ==,所以EFQ ∆∽EOP ∆, 所以2EFQ EOP π∠=∠=,所以PE FQ ⊥.且MN FQ Q =I ,所以PE ⊥平面MNF .方法二:取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥. 因为平面PAD ⊥平面ABCD ,所以OP ⊥平面AC ,4PEO π∠=,OP OE =.又因为//MN BC ,//OE AB ,所以MN OE ⊥,所以MN PE ⊥.以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴,建立空间直角坐标系O xyz -.设AB m =,AD n =,则()0,0,P m ,()0,,0E m ,,,022n m M ⎛⎫ ⎪⎝⎭,30,,44m m F ⎛⎫⎪⎝⎭, 于是()0,,PE m m =-u u u r,,,244n m m MF ⎛⎫=- ⎪⎝⎭u u u u r .所以0PE MF ⋅=u u u r u u u u r,所以PE MF ⊥,且MN MF M =I ,所以PE ⊥平面MNF(Ⅱ)取AD 中点O ,连接OE ,交MN 于点Q ,连接FQ ,则OP AD ⊥. 因为平面PAD ⊥平面AC ,所以OP ⊥平面AC ,4PEO π∠=,OP OE =.以O 点为原点,射线OA 、OE 、OP 方向为x 轴、y 轴、z 轴的正方向, 建立空间直角坐标系O xyz -.设AB AD m ==,则()0,0,P m ,()0,,0E m ,,,02m B m ⎛⎫ ⎪⎝⎭,,,022m m M ⎛⎫ ⎪⎝⎭,30,,44m m F ⎛⎫ ⎪⎝⎭, 于是()0,,PE m m =-u u u r ,0,,02m BM ⎛⎫=- ⎪⎝⎭u u u u r ,,,244m m m BF ⎛⎫=-- ⎪⎝⎭u u ur .设平面BMF 的一个法向量为=1n (),,x y z ,则00BM BF ⎧⋅=⎪⎨⋅=⎪⎩11u u u u r u u u rn n , 从而020244my m m m x y z ⎧-=⎪⎪⎨⎪--+=⎪⎩,令1x =,得()1,0,2=1n .而平面NMF 的一个法向量为=2n ()0,,PE m m =-u u u r.所以cos ,5⋅<>==-121212=n n n n n n 20.(本题满分12分).解: (Ⅰ)(0,1),1F b ∴=Q ,又1126F F F F ⋅=u u u r u u u u r,226,c c ∴==又222,2a b c a -=∴=, ∴椭圆C 的标准方程为2214x y +=.(Ⅱ)设直线l 与抛物线相切于点00(,)P x y ,则2000:()42x x l y x x -=-,即20024x x y x =-, 联立直线与椭圆200222414x x y x x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,整理得22340001(1)404x x x x x +-+-=.由240016(1)0x x ∆=+->,得2008x <<+设1122(,),(,)A x y B x y ,则:34001212220016,14(1)x x x x x x x x -+==++.则120|||AB x x =-==原点O 到直线l的距离2d =故OAB ∆面积1||2S d AB =⋅=22000111x x +=≤=+, 当且仅当24400016(1)x x x +-=,即204x =+取等号,21.(本题满分12分) 解(Ⅰ):当0b =时:()h x kx = 由()()()f x h x g x ≥≥知:ln x e kx x ≥≥依题意:ln x e xk x x ≥≥对(0,)x ∈+∞恒成立 设/2(1)()(0),()x x e e x m x x m x x x -=>∴=当(0,1)x ∈时/()0m x <;当(1+)x ∈∞,时/()0m x >,min [()](1)m x m e ∴==设/2ln 1ln ()(0),()x xn x x n x x x -=>∴= 当(0,)x e ∈时/()0n x >;当(+)x e ∈∞,时/()0n x <,max 1[()]()n x n e e∴==故:实数k 的取值范围是1[]e e, (Ⅱ)由已知:()'x fx e =,()'1g x x=①:由()1111x xy e e x -=-得:()()1111xxh x e x e =+-⋅ 由()2221ln y x x x x -=-得:()221ln 1h x x x x =+- 故()11212111ln x x e x e x x ⎧=⎪⎨⎪-=-⎩Q 10x <,()1110x e x ∴-<,2ln 1x ∴>,故:2x e >②:由①知:12x x e-=,()11111xe x x -=+且21x e >>由()11ln 0a x x x x -+-≥得:()11ln a x x x x -≥-,()2x x ≥ 设()()2ln G x x x x x x =-≥()'1ln 1ln 0G x x x =--=-<()G x ∴在)2,x +∞⎡⎣为减函数,()()2222max ln G x G x x x x ∴==-⎡⎤⎣⎦由()12221ln a x x x x -≥-得:又10x < 1a ∴≤ 22.解:(本小题满分10分) (Ⅰ)4cos ρθ=Qθρρcos 42=∴222cos ,sin x y x y ρρθρθ=+∴==Q x y x 422=+∴1C ∴的直角坐标方程为:x y x 422=+13,23),2x t y x y ⎧=-⎪⎪∴=-⎨⎪=⎪⎩Q 2C ∴的普通方程为)3(3--=x y(Ⅱ)将x y x t y t x 4,23,21322=+⎪⎪⎩⎪⎪⎨⎧=-=代入得:)213(443)213(22t t t -=+-t t t 212932-=+-∴ 032=--∴t t 3,12121-=⋅=+∴t t t t由t 的几何意义可得:32121===⋅⋅t t t t AQ AP 23.(本小题满分10分)(Ⅰ)当1a =时:不等式为:25211x x x -++>-等价于::11552222252112521125211x x x x x x x x x x x x ⎧⎧⎧<--≤≤>⎪⎪⎪⎨⎨⎨⎪⎪⎪-+-->--+++>--++>-⎩⎩⎩或或解得::11552222x x x <--≤≤>或或(Ⅱ)设函数()2521f x x x =-++=1442156225442x x x x x ⎧-+<-⎪⎪⎪-≤≤⎨⎪⎪->⎪⎩设函数()1g x ax =-过定点(0,-1) 画出f由数形结合得a 的范围是14[4,)5-(0,-1)(52,6) (12-,6)。