冀教版八年级下册数学期末试题试卷含答案

合集下载

冀教版八年级下册数学期末测试卷及含答案

冀教版八年级下册数学期末测试卷及含答案

冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列判断错误的是()A.对角线相互垂直且相等的平行四边形是正方形B.对角线相互垂直平分的四边形是菱形C.对角线相等的四边形是矩形D.对角线相互平分的四边形是平行四边形2、如图,已知△ABC为直角三角形,∠C=90°,若沿图中虚线剪去∠C,则∠1+∠2等于 ( )A.90°B.135°C.270°D.315°3、在平面直角坐标系中,点(-3,-4)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限4、某同学要统计本校图书馆最受学生欢迎的图书种类,以下是排乱的统计步骤:①从扇形图中分析出最受学生欢迎的种类②去图书馆收集学生借阅图书的记录③绘制扇形图来表示各个种类所占的百分比④整理借阅图书记录并绘制频数分布表正确统计步骤的顺序是()A.②→③→①→④B.③→④→①→②C.①→②一④→③D.②→④→③→①5、一个多边形的内角和是900°,则它是()边形.A.八B.七C.六D.五6、如图,在四边形ABCD中,∠A+∠D=α,∠ABC的平分线与∠BCD的平分线交于点P,则∠P=()A.90°﹣αB. αC.90°+ αD.360°﹣α7、如图所示为某战役潜伏敌人防御工亭坐标地图的碎片,一号暗堡的坐标为(4,2),四号暗堡的坐标为(-2,4),由原有情报得知:敌军指挥部的坐标为(0,0),你认为敌军指挥部的位置大概()A. A处B. B处C. C处D. D处8、多边形的边数增加2,这个多边形的内角和增加()A.90°B.180°C.360°D.540°9、若一个多边形从一个顶点出发共有7条对角线,则这个多边形的边数为()A.8B.9C.10D.1110、若多边形的边数增加1,则其内角和的度数()A.增加180ºB.其内角和为360ºC.其内角和不变D.其外角和减少11、在平面直角坐标系中,点P(-3,b)到x轴的距离为4,则P点坐标为( )A.(-3,4)B.(-3,-4)C.(-3,4)或(-3,-4)D.(3,4)或(3,-4)12、若一个多边形的每个外角都是36°,则这个多边形是()A.九边形B.十边形C.十一边形D.以上都有可能13、下列统计活动中,不宜用问卷调查的方式收集数据的是()A.七年级同学家中电脑的数量。

最新冀教版八年级数学下册期末考试卷及答案【完整版】

最新冀教版八年级数学下册期末考试卷及答案【完整版】

最新冀教版八年级数学下册期末考试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.下列式子中,属于最简二次根式的是( )ABCD2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.已知关于x 的分式方程21m x -+=1的解是负数,则m 的取值范围是( ) A .m ≤3 B .m ≤3且m ≠2 C .m <3 D .m <3且m ≠25.下列各组数中,能构成直角三角形的是( )A .4,5,6B .1,1C .6,8,11D .5,12,236.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<-B .116a 2-<<-C .1162a -<-D .1162a -- 7.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A.4 B.3 C.2 D.18.已知直线m∥n,将一块含30°角的直角三角板ABC按如图方式放置(∠ABC=30°),其中A,B两点分别落在直线m,n上,若∠1=20°,则∠2的度数为()A.20°B.30°C.45°D.50°9.将长方形ABCD纸片沿AE折叠,得到如图所示的图形,已知∠CED'=70°,则∠EAB的大小是()A.60°B.50°C.75°D.55°10.已知:如图,∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=AC B.BD=CD C.∠B=∠C D.∠BDA=∠CDA 二、填空题(本大题共6小题,每小题3分,共18分)1123=________.2.已知x=2是关于x的一元二次方程kx2+(k2﹣2)x+2k+4=0的一个根,则k 的值为__________.364________.4.如图,▱ABCD 中,AB =3cm ,BC =5cm ,BE 平分∠ABC 交AD 于E 点,CF 平分∠BCD 交AD 于F 点,则EF 的长为________m .5.如图,已知函数y ax b =+和y kx =的图象交于点P, 则根据图象可得,关于y ax b y kx =+⎧⎨=⎩的二元一次方程组的解是_____________.6.某水果店销售11元,18元,24元三种价格的水果,根据水果店一个月这三种水果销售量的统计图(如图),可计算出该店当月销售出水果的平均价格是______元.三、解答题(本大题共6小题,共72分)1.解方程:2420x x +-=2.先化简,再从﹣1、2、3、4中选一个合适的数作为x 的值代入求值.2222444424x x x x x x x ⎛⎫---÷ ⎪-+--⎝⎭.3.若关于,x y 的二元一次方程组213x y a x y +=+⎧⎨-=-⎩的解都为正数.(1)求a 的取值范围;(2)若上述方程组的解是等腰三角形的腰和底边的长,且这个等腰三角形周长为9,求a 的值.4.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.5.如图,在平面直角坐标系xOy 中,函数(0)k y x x=>的图象与直线2y x =-交于点A(3,m).(1)求k 、m 的值;(2)已知点P(n ,n)(n>0),过点P 作平行于x 轴的直线,交直线y=x-2于点M ,过点P 作平行于y 轴的直线,交函数(0)k y x x => 的图象于点N.①当n=1时,判断线段PM 与PN 的数量关系,并说明理由;②若PN ≥PM ,结合函数的图象,直接写出n 的取值范围.6.某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的35,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、D3、A4、D5、B6、A7、B8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)12、﹣33、4、15、42 xy-⎩-⎧⎨==6、15.3三、解答题(本大题共6小题,共72分)1、12x=-22x=-.2、x+2;当1x=-时,原式=1.3、(1)a>1;(2)a 的值为2.4、(1)略;(2)75.5、(1) k的值为3,m的值为1;(2)0<n≤1或n≥3.6、(1)该网店甲种羽毛球每筒的售价为60元,乙种羽毛球每筒的售价为45元;(2)①进货方案有3种,具体见解析;②当m=78时,所获利润最大,最大利润为1390元.。

最新冀教版八年级数学下册期末试卷及答案【完美版】

最新冀教版八年级数学下册期末试卷及答案【完美版】

最新冀教版八年级数学下册期末试卷及答案【完美版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.12-的相反数是( ) A .2- B .2 C .12- D .122.已知多项式2x 2+bx +c 分解因式为2(x -3)(x +1),则b ,c 的值为( ).A .b =3,c =-1B .b =-6,c =2C .b =-6,c =-4D .b =-4,c =-63.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .2x x y +-B .22y xC .3223y xD .222()y x y - 4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅- ⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.某旅店一共70个房间,大房间每间住8个人,小房间每间住6个人,一共480个学生刚好住满,设大房间有x 个,小房间有y 个.下列方程正确的是( )A .7086480x y x y +=⎧⎨+=⎩B .7068480x y x y +=⎧⎨+=⎩C .4806870x y x y +=⎧⎨+=⎩D .4808670x y x y +=⎧⎨+=⎩6.已知关于x 的不等式组0320x a x ->⎧⎨->⎩的整数解共有5个,则a 的取值范围是( )A .﹣4<a <﹣3B .﹣4≤a <﹣3C .a <﹣3D .﹣4<a <327.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0 8.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为()A.90°B.60°C.45°D.30°9.如图,菱形ABCD的周长为28,对角线AC,BD交于点O,E为AD的中点,则OE的长等于()A.2 B.3.5 C.7 D.1410.如图,已知∠ABC=∠DCB,下列所给条件不能证明△ABC≌△DCB的是()A.∠A=∠D B.AB=DC C.∠ACB=∠DBC D.AC=BD二、填空题(本大题共6小题,每小题3分,共18分)1.若a-b=1,则222a b b--的值为____________.2.已知x,y满足方程组x2y5x2y3-=⎧+=-⎨⎩,则22x4y-的值为__________.3.如果实数a,b满足a+b=6,ab=8,那么a2+b2=________.4.如图,将周长为8的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD 的周长为_____________.5.如图,正方形纸片ABCD 的边长为12,E 是边CD 上一点,连接AE .折叠该纸片,使点A 落在AE 上的G 点,并使折痕经过点B ,得到折痕BF ,点F 在AD 上.若5DE =,则GE 的长为__________.6.如图,在平行四边形ABCD 中,连接BD ,且BD =CD ,过点A 作AM ⊥BD 于点M ,过点D 作DN ⊥AB 于点N ,且DN =32,在DB 的延长线上取一点P ,满足∠ABD =∠MAP +∠PAB ,则AP =________.三、解答题(本大题共6小题,共72分)1.解方程组:(1)329817x y x y -=⎧⎨+=⎩ (2)272253x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩2.先化简,再求值:22x 4x 4x 1x 1x 11x ⎛⎫-+-+÷ ⎪--⎝⎭,其中x 满足2x x 20+-=.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.在▱ABCD 中,∠BAD 的平分线交直线BC 于点E ,交直线DC 于点F(1)在图1中证明CE=CF ;(2)若∠ABC=90°,G 是EF 的中点(如图2),直接写出∠BDG 的度数;(3)若∠ABC=120°,FG ∥CE ,FG=CE ,分别连接DB 、DG (如图3),求∠BDG 的度数.5.如图所示,在△ABC 中,D 是BC 边上一点,∠1=∠2,∠3=∠4,∠BAC =63°,求∠DAC 的度数.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、D4、D5、A6、B7、C8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、12、-153、204、10.5、49 136、6三、解答题(本大题共6小题,共72分)1、(1)11xy=⎧⎨=⎩;(2)23xy=⎧⎨=⎩2、112x-;15.3、(1)略(2)1或24、(1)略;(2)45°;(3)略.5、24°.6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

冀教版数学八年级下册期末测试题及答案(共4套)

冀教版数学八年级下册期末测试题及答案(共4套)

冀教版数学八年级下册期末测试题(一)(时间:90分钟分值:120分)一、选择题(每小题3分,共24分)1.某人骑车外出,所行路程s(km)与时间t(h)的函数关系如图21-24所示,现有四种说法:第3h时的速度比第1h的速度快;第3h时的速度比第1h中的速度慢;第3h后已停止前进;第3h后保持匀速前进。

其中正确的说法有()。

A.②③B.①③C.①④D.②④2.开发区某消毒液厂家自2003年以来,在库存为m(m>0)的情况下,日销售量与产量持平,自4月抵抗“非典”以来,消毒液需求量猛增,在生产能力不变的情况下,消毒液一度脱销。

图21-25表示2003年初至脱销期间,时间t与库存量y之间函数关系的图象是______。

3.有一游泳池注满水,现按一定的速度将水排尽,然后进行清洗,再按相同的速度注满清水。

使用一段时间后,又按相同的速度将水排尽。

则游泳池的存水量V(m3)随时间t(h)变化的大致图象可以是()。

4.如图21-27,射线l甲、l乙分别表示分别表示甲、乙两名运动员在自行车比赛中所走路程s与时间t的函数关系,则他们行进的速度关系是()。

A.甲比乙快B.乙比甲快C.甲、乙同速D.不一定5.如图21-28向放在水槽底部的烧杯注水(流量一定),注满烧杯后,继续注水,直至注满水槽,水槽中水面上升高度h与注水时间t之间的函数关系,大致是图21-29图象中的()。

6.下列图形中的曲线不表示y是x的函数的是()(B)7. 甲乙两同学从A 地出发,骑自行车在同一条路上行驶到B 地,他们离出发地的距离s (千米)和行驶时间t (时)之间的函数关系的图象,如图所示。

根据图中提供的信息,有下列说法: ① 他们都行驶了18千米。

② 甲车停留了0.5小时。

③ 乙比甲晚出发了0.5小时。

④ 相遇后甲的速度小于乙的速度。

⑤ 甲、乙两人同时到达目的地。

其中符合图象描述的说法有( )(A )2个 (B )3个 (C )4个 (D )5个8.如图,四幅图象分别表示变量之间的关系,请按图象..的顺序,将下面的四种情境与之对应排序.① ② ③ ④.a 运动员推出去的铅球(铅球的高度与时间的关系).b 静止的小车从光滑的斜面滑下(小车的速度与时间的关系).c 一个弹簧由不挂重物到所挂重物的质量逐渐增加(弹簧的长度与所挂重物的质量的关系).d 小明从A 地到B 地后,停留一段时间,然后按原速度原路返回(小明离A 地的距离与时间的关系)正确的顺序是( )(A )abcd (B )adbc (C )acbd (D )acdb二、填空题(每小题3分,共24分)9.函数自变量x 的取值范围是______________________。

冀教版八年级下册数学期末试卷(含答案)

冀教版八年级下册数学期末试卷(含答案)

冀教版八年级下册数学期末试卷一、选择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2分)在平面直角坐标系中,第二象限内的一点P到x轴的距离是3,到y轴的距离是2,则点P的坐标为()A.(3,﹣2)B.(﹣3,2)C.(2,﹣3)D.(﹣2,3)2.(2分)下列调查方式,你认为最合适的是()A.要检测一批节能灯的使用寿命,采用全面调查B.要了解滦河的水质,采用抽样调查C.某高铁站对乘车旅客实施安检,采用抽样调查D.要了解全市初中生的睡眠情况,采用全面调查3.(2分)在▱ABCD中,对角线AC、BD交于点O,若AD=5,AC=10,BD=6,△BOC 的周长为()A.13B.16C.18D.214.(2分)为了解全市6300名八年级学生的期中数学成绩,教研室随机从全部考生中抽取了500名学生的数学成绩进行分析,对于此次调查下列说法:①6300名学生是调查的总体;②500名学生的数学成绩是总体的一个样本;③每个学生的数学成绩是个体;④样本容量是500名学生.其中正确的有()A.1个B.2个C.3个D.4个5.(2分)如图所示,在Rt△ABC中,∠A=30°,BC=3,D、E分别是直角边BC、AC 的中点,则DE的长为()A.1.5B.2C.2.5D.36.(2分)据测试,拧不紧的水龙头每分钟滴出100滴水,每滴水约0.05毫升.小明洗手后没有把水龙头拧紧,水龙头以测试速度滴水,当小明离开x分钟后,水龙头滴水y毫升水,则y与x之间的函数关系式是()A.y=0.05x B.y=5xC.y=100x D.y=0.05x+1007.(2分)如图,矩形ABCD中,对角线AC、BD交于点O,点P为AD边上一点,过点P 分别作AC、BD的垂线,垂足分别为E、F,若AB=6,BC=8,则PE+PF的值为()A.4.8B.6C.8D.不能确定8.(2分)小明在计算某多边形的内角和时,由于马虎漏掉了一个角,结果得到970°,则原多边形是一个()A.七边形B.八边形C.九边形D.十边形9.(2分)某仓库调拨一批物资,调进物资共用8小时,调进物资4小时后同时开始调出物资(调进与调出的速度保持不变).该仓库库存物资m(吨)与时间t(小时)之间的函数关系如图所示.则这批物资从开始调进到全部调出所需要的时间是()A.8.4小时B.8.6小时C.8.8小时D.9小时10.(2分)如图,△ABO缩小后变为△A'B'O,其中A、B的对应点分别为A'、B',点A、B、A'、B'均在格点上,若线段AB上有点P(m,n),则点P在A'B'上的对应点P'的坐标为()A.(,n)B.(m,n)C.(m,)D.()二、填空题(本大题共10个小题,每小题3分,共30分,)11.(3分)把点A(3,1)向左平移2个单位,再向下平移3个单位后与点B重合,则点B 的坐标是.12.(3分)已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是10,5,7,6,第五组的频率是0.2,则第六组的频率是.13.(3分)函数y=的自变量x的取值范围是.14.(3分)如图所示,直线l1:y=x+b与直线l2:y=kx+4交于点A,则不等式x+b≥kx+4的解集是.15.(3分)如图,在菱形ABCD中,对角线AC、BD交于点O,过点A作AH⊥BC于点H,若AC=6,BD=8,则AH=.16.(3分)已知点A(m﹣1,2m+3)在第二象限,则m的取值范围是.17.(3分)已知一次函数y=kx+2k+3的图象交y轴于正半轴,且函数值y随x的增大而减小,则k所能取到的整数值为.18.(3分)已知,在▱ABCD中,∠A的平分线交BC边于点E,若BC边被点E分为4和5两部分,则▱ABCD的周长为.19.(3分)如图,菱形ABCD中,∠A=120°,E是AD上的点,沿BE折叠△ABE,点A 恰好落在BD上的点F,那么∠BFC的度数是.20.(3分)如图所示,正方形ABCD和正方形CEFG的边长分别为2和3,则图中阴影部分的面积为.三、解答题:(本大题共6个小题,50分,解答过程应写出文字说明,证明过程或演算步骤)21.(6分)已知:▱ABCD中,对角线AC、BD交于点O,EF过点O交AD于点E,交BC 于点F.(1)求证:AE=CF.(2)若▱ABCD的周长是18cm,且OE=1.5cm,请直接写出四边形CDEF的周长是cm.22.(7分)某校开展“阳光体育活动”,开设了以下体育项目:篮球、羽毛球、乒乓球和跳绳要求每名学生必须且只能选择其中的一项,为了解选择各体育项目的学生人数,随机抽取了部分学生进行调查,并对调查获取的数据进行了整理,绘制出两幅不完整的统计图,请根据统计图回答下列问题:(1)在这次调查中,一共调查了名学生;(2)计算选择跳绳的人数并补全条形统计图;(3)在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数是;(4)请根据此统计数据估算该校1800名学生中有多少人选择了球类项目.23.(8分)某水果店以6元/千克的价格购进油桃若干千克,销售了一部分后,余下的油桃每千克降价2元进行销售,直至全部售完.销售金额y(元)与销量x(千克)之间的函数关系如图所示.请根据图象提供的信息解决下列问题:(1)降价前油桃的销售单价是元/千克.(2)求降价后销售总金额y(元)与总销量x(千克)之间的函数关系式,并写出自变量的取值范围;(3)该水果店销售这些油桃总共盈利多少元?24.(9分)已知:如图,四边形ABCD中,M、N、P、Q分别是AD、BC、BD和AC的中点.(1)求证:四边形MPNQ是平行四边形.(2)若满足AB=CD.试判断MN与PQ的位置关系(不用说明理由).25.(10分)已知:如图所示,在平面直角坐标系中,过点A(﹣6,0)的直线l1与直线l2:y=2x相交于点B(m,4),与y轴交于点M.(1)求直线l1的表达式.(2)求△BOM的面积.(3)点P(n,0)是x轴上一个动点,过点P垂直于x轴的直线分别与直线l1和l2交于C、D两点,当点C位于点D上方时,直接写出n的取值范围.26.(10分)已知:如图1所示,O是△ABC中AC边上一点,过点O的直线MN∥BA,D 是BA延长线上一点,∠BAC和∠DAC的角平分线分别交MN于点E、F.(1)请直接写出线段OA和EF的数量关系.(2)如图2所示,连接CE、CF,若点O是AC中点,试判断四边形AECF的形状并写出详细推理过程.(3)在(2)的条件下,在△ABC中添加什么条件能使四边形AECF是正方形.(直接写出结果即可)参考答案与试题解析一、选择题(本大题共10个小题,每小题2分,满分20分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【分析】根据第二象限内点的坐标特征以及点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值解答.【解答】解:∵第二象限的点P到x轴的距离是3,到y轴的距离是2,∴点P的横坐标是﹣2,纵坐标是3,∴点P的坐标为(﹣2,3).故选:D.2.【分析】根据调查对象的特点,结合普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果接近准确数值,从而可得答案.【解答】解:A.要检测一批节能灯的使用寿命,适合采用抽样调查,故本选项不合题意;B.要了解滦河的水质,适合采用抽样调查,故本选项符合题;C.某高铁站对乘车旅客实施安检,适合采用全面调查方式,故本选项不合题意;D.要了解全市初中生的睡眠情况,适合采用抽样调查,故本选项不合题意.故选:B.3.【分析】利用平行四边形的性质对角线互相平分,进而得出BO,CO的长,即可得出△BOC的周长.【解答】解:∵▱ABCD的两条对角线交于点0,AC=10,BD=6,AD=5,∴BO=DO=3,AO=CO=5,BC=AD=5∴△BOC的周长为:BO+CO+BC=3+5+3=13.故选:A.4.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:①6300名学生的数学成绩是调查的总体;故命题错误;②500名学生的数学成绩是总体的一个样本;故命题正确;③每个学生的数学成绩是个体;故命题正确;④样本容量是500.故命题错误;故选:B.5.【分析】根据直角三角形的性质求出AB,根据三角形中位线定理计算即可.【解答】解:在Rt△ABC中,∠A=30°,∴AB=2BC=6,∵D,E分别是直角边BC,AC的中点,∴DE=AB=3,故选:D.6.【分析】每分钟滴出100滴水,每滴水约0.05毫升,则一分钟滴水100×0.05毫升,则x 分钟可滴100×0.05x毫升,据此即可求解.【解答】解:根据题意可得:y=100×0.05x,即y=5x.故选:B.7.【分析】首先连接OP.由矩形ABCD的两边AB=6,BC=8,可求得OA=OD=5,然后由S△AOD=S△AOP+S△DOP求得答案.【解答】解:连接OP,∵矩形ABCD的两边AB=6,BC=8,∴S矩形ABCD=AB•BC=48,OA=OC,OB=OD,AC=BD,AC==10,∴S△AOD=S矩形ABCD=12,OA=OD=5,∴S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=OA(PE+PF)=×5×(PE+PF)=12,∴PE+PF==4.8.故选:A.8.【分析】根据n边形的内角和公式,则内角和应是180°的倍数,且每一个内角应大于0°而小于180度,根据这些条件进行分析求解即可.【解答】解:∵970°÷180°=5…70°,则边数是:5+1+2=8,故选:B.9.【分析】通过分析题意和图象可求调进物资的速度,调出物资的速度;从而可计算最后调出物资20吨所花的时间.【解答】解:调进物资的速度是60÷4=15吨/时,当在第4小时时,库存物资应该有60吨,在第8小时时库存20吨,从4小时到8小时,物资既调进也调出,共调进15×4=60吨,实际这4个小时调出的物资是原来的60吨+调进的60吨减去仓库剩余的20吨,所以调出速度是=25(吨/时),所以剩余的20吨完全调出需要20÷25=0.8(小时).故这批物资从开始调进到全部调出需要的时间是8+0.8=8.8(小时).故选:C.10.【分析】根据A,B两点坐标以及对应点A′,B′点的坐标得出坐标变化规律,进而得出P′的坐标.【解答】解:∵△ABO缩小后变为△A′B′O,其中A、B的对应点分别为A′、B′点A、B、A′、B′均在图中在格点上,即A点坐标为:(4,6),B点坐标为:(6,2),A′点坐标为:(2,3),B′点坐标为:(3,1),∴线段AB上有一点P(m,n),则点P在A′B′上的对应点P′的坐标为:().故选:D.二、填空题(本大题共10个小题,每小题3分,共30分,)11.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:点P(3,1)向下平移3个单位,向左平移2个单位,得到点P'的坐标是(3﹣2,1﹣3),即(1,﹣2),故答案为:(1,﹣2).12.【分析】根据频率=频数÷总数,以及第五组的频率是0.2,可以求得第五组的频数;再根据各组的频数和等于1,求得第六组的频数,从而求得其频率.【解答】解:根据第五组的频率是0.2,其频数是40×0.2=8;则第六组的频数是40﹣(10+5+7+6+8)=4.故第六组的频率是,即0.1.13.【分析】根据二次根式的被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:根据题意得:x﹣2>0,解得x>2∴自变量x的取值范围是x>2.故答案为:x>2.14.【分析】写出直线l1在直线l2上方所对应的自变量的范围即可.【解答】解:∵直线l1:y=x+b与直线l2:y=kx+4交于点A(2,2),当x≥2时,直线l1在直线l2的上方,∴不等式x+b≥kx+4的解集是x≥2.故答案为x≥2.15.【分析】由菱形面积=对角线积的一半可求面积,由勾股定理求出BC,然后由菱形的面积即可得出结果.【解答】解:∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∴BC=,∵菱形ABCD的面积=,∴AH=,故答案为:.16.【分析】根据第二象限内点的坐标的符号特点列出关于m的不等式组,解之即可得出答案.【解答】解:∵点A(m﹣1,2m+3)在第二象限,∴,解不等式①,得:m<1,解不等式②,得:m>﹣1.5,则不等式组的解集为﹣1.5<m<1,故答案为:﹣1.5<m<1.17.【分析】由一次函数图象与系数的关系可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:由题意得:,解得:﹣<k<0.∵k为整数,∴k=﹣1,故答案为﹣1.18.【分析】根据AE平分∠BAD及AD∥BC可得出AB=BE,BC=BE+EC,从而根据AB、AD的长可求出平行四边形的周长.【解答】解:在平行四边形ABCD中,AD∥BC,则∠DAE=∠AEB.∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴AB=BE,BC=BE+EC,①当BE=4,EC=5时,平行四边形ABCD的周长为:2(AB+AD)=2×(4+4+5)=26.②当BE=5,EC=4时,平行四边形ABCD的周长为:2(AB+AD)=2×(5+5+4)=28.故答案为:26或28.19.【分析】根据菱形的性质可得AB=BC,∠A+∠ABC=180°,BD平分∠ABC,然后再计算出∠FBC=30°,再证明FB=BC,再利用等边对等角可得∠BFC=∠BCF,利用三角形内角和可得答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC,∠A+∠ABC=180°,BD平分∠ABC,∵∠A=120°,∴∠ABC=60°,∴∠FBC=30°,根据折叠可得AB=BF,∴FB=BC,∴∠BFC=∠BCF=(180°﹣30°)÷2=75°,故答案为:75°.20.【分析】用两个正方形面积减去三个空白三角形面积即可求得.【解答】解:由题意知,阴影面积S=22+32﹣×(2+3)×3﹣×(3﹣2)×3﹣×22=×22=2,故答案为:2.三、解答题:(本大题共6个小题,50分,解答过程应写出文字说明,证明过程或演算步骤)21.【分析】(1)利用平行线的性质结合全等三角形的判定与性质得出即可.(2)根据全等三角形的性质和平行四边形的性质解答即可.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEO=∠CFO,在△AEO和△CFO中,∴△AEO≌△CFO(ASA),∴AE=CF;(2)∵AE=CF,∴CF+ED=AE+ED=AD,∵▱ABCD的周长是18cm,∴AD+DC=9(cm),∴四边形CDEF的周长=DE+CF+DC+EF=AD+DC+EF=9+1.5+1.5=12(cm).故答案为:12.22.【分析】(1)根据选择篮球的人数和所占的百分比,可以计算出本次调查的学生人数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出选项跳绳的人数,然后即可将条形统计图补充完整;(3)根据(1)中的结果和条形统计图中的数据,可以计算出在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数;(4)根据条形统计图中的数据,可以计算出该校1800名学生中有多少人选择了球类项目.【解答】解:(1)在这次调查中,一共调查了16÷32%=50名学生,故答案为:50;(2)选择跳绳的学生有:50﹣16﹣12﹣10=12(人),补全的条形统计图如右图所示;(3)在扇形统计图中,乒乓球项目所对应的扇形圆心角的度数是360°×=72°,故答案为:72°;(4)1800×=1368(人),答:估算该校1800名学生中有1368人选择了球类项目.23.【分析】(1)由函数图象可知:销售50千克所得销售收入为550元,由此可得降价前油桃的销售单价;(2)根据“余下的油桃每千克降价2元进行销售”求出降价后的销售单价,再利用减价后的收入为(730﹣550)元,可求减价后销售的油桃数,再利用待定系数法可求函数关系式;(3)根据盈利=销售收入﹣成本可得.【解答】解:(1)由图象可知,降价前油桃的销售单价是550÷50=11(元/千克),故答案为:11;(2)降价后销售的油桃数是:(730﹣550)÷(11﹣2)=20(千克),∴销售的油桃总数为50+20=70(千克),设降价后销售金额y(元)与销售量x(千克)之间的函数解析式是y=kx+b(k≠0),把(50,550),(70,730)代入得:,解得,∴y=9x+100(50<x≤70);(3)730﹣6×70=310(元).答:该水果店销售这些油桃总共盈利310元.24.【分析】(1)根据三角形中位线定理得到PM=AB,PM∥AB,NQ=AB,NQ∥AB,根据平行四边形的判定定理证明四边形PMQN是平行四边形,根据平行四边形的性质定理证明结论;(2)根据菱形的判定定理和性质定理解答即可.【解答】(1)证明:∵P、M分别是BD,AD的中点,∴PM=AB,PM∥AB,同理NQ=AB,NQ∥AB,∴PM∥NQ,PM=NQ,∴四边形PMQN是平行四边形;(2)PQ⊥MN,理由如下:由(1)知,PM=AB,PN=CD,当AB=CD时,PM=PN,∴平行四边形PMQN是菱形,∴PQ⊥MN.25.【分析】(1)先求出点B坐标,再利用待定系数法即可解决问题.(2)把x=0代入解析式,求出M坐标,利用三角形面积公式解答即可;(3)由图象可知直线l1在直线l2上方即可,由此即可写出n的范围.【解答】解:(1)∵点B(m,4)直线l2:y=2x上,∴4=2m,∴m=2,∴点B(2,4),设直线l1的表达式为y=kx+b,将A(﹣6,0),B(2,4)代入得:,解得,∴直线l1的表达式为y=x+3;(2)将x=0代入y=x+3,得:y=3,∴M(0,3),∴OM=3,∴△BOM的面积=OM•|x B|=×3×2=3;(3)当点C位于点D上方时,即是直线l1在直线l2上方,如图:由图象可知n<2.26.【分析】(1)根据MN∥BA,得∠OEA=∠BAE,由AE平分∠BAC,得∠BAE=∠CAE,从而∠OEA=∠CAE,则有OE=OA,同理可证:OF=OA,即可得出EF=2OA;(2)先通过对角线互相平分得出:四边形AECF是平行四边形,再证AC=EF即可;(3)添加∠BAC=90°,可得∠EAC=45°,从而CE=AE,得出结论.【解答】解:(1)∵MN∥BA,∴∠OEA=∠BAE,∵AE平分∠BAC,∴∠BAE=∠CAE,∴∠OEA=∠CAE,∴OE=OA,同理可证:OF=OA,∴EF=2OA;故答案为:EF=2OA;(2)四边形AECF是矩形,∵点O是AC中点,∴OC=OA,AC=2OA,由(1)知:OE=OF,∴四边形AECF是平行四边形,∵EF=2OA,∴EF=AC,∴▱AECF是矩形;(3)添加∠BAC=90°,能使四边形AECF是正方形,∵AE平分∠BAC,∠BAC=90°,∴∠EAC=45°,∴CE=AE,∴矩形AECF是正方形,故添加:∠BAC=90°.。

冀教版八年级下册数学期末测试卷及含答案(典型题)

冀教版八年级下册数学期末测试卷及含答案(典型题)

冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、内角为108°的正多边形是()A.3B.4C.5D.62、如果多边形的内角和是外角和的k倍,那么这个多边形的边数是().A.kB.2k+1C.2k+2D.2k-23、如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则么的度数为()A.120°B.180°C.240°D.300°4、六边形一共有对角线()A.7条B.8条C.9条D.10条5、根据下列表述,能确定位置的是( )A.光明剧院 2 排B.某市人民路C.北偏东 40°D.东经112°,北纬 36°6、一个多边形恰有三个内角是钝角,那么这个多边形的边数最多为()A.5B.6C.7D.87、下列说法中,正确有()①估计的值在7和8之间;②六边形的内角和是外角和的2倍;③2的相反数是﹣2;④若a>b,则a﹣b>0.它的逆命题是真命题;⑤一个角是126°43',则它的补角是53°17';A.1个B.2个C.3个D.4个8、如图所示,∠1+∠2+∠3+∠4+∠5+∠6=_____()A.180°B.360°C.540°D.不能确定9、如图所示,若在象棋盘上建立平面直角坐标系,使“将”位于点(1,-2),“象”位于点(3,-2),则“炮”位于点()A.(1,3)B.(-2,0)C.(-1,2)D.(-2,2)10、如图所示,若干个全等的正五边形排成环状,要完成这一圆环共需要正五边形的个数为()A.10B.9C.8D.711、一个多边形的内角和与它的外角和相等,这个多边形的边数是()A.3B.4C.5D.612、一个正多边形的一个内角为150°,则正多边形的边数是()A.10B.11C.12D.1513、若一个多边形的各内角都相等,则一个内角与一个外角的度数之比不可能是()A.2:1B.1:1C.5:2D.5:414、已知△ABC的∠A=80 ,剪去∠A后得到一个四边形,则∠1+∠2的度数为( )A.100B.160C.260D.28015、一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为()A.7B.7或9C.8或9D.7或8或9二、填空题(共10题,共计30分)16、已知在一个样本中,40个数据分别在4个组内,第一、二、四组数据的频数分别为5,12,8则第三组的频率为________.17、如图,平面直角坐标系中是原点,的顶点的坐标分别是,点把线段三等分,延长分别交于点,连接,则下列结论:①是的中点;②与相似;③四边形的面积是;④;其中正确的结论是 ________.(填写所有正确结论的序号)18、如图,在平面直角坐标系中,菱形OABC的边OA在x轴的负半轴上,反比例函数y=(x<0)的图象经过对角线OB的中点D和顶点C.若菱形OABC 的面积为6,则k的值等于________.19、如图,已知正方形ABCD的边长为2,以点A为圆心,1为半径作圆,E是⊙A上的任意一点,将点E绕点D按逆时针方向转转90°得到点F,则线段AF 的长的最小值________.20、已知菱形ABCD的周长为20cm,O是两条对角线的交点,AC=8cm,DB=6cm,菱形的边长是________cm,面积是________cm2.21、已知一个多边形的每个外角都是24°,此多边形是________边形.22、如图,在平面直角坐标系中,点A,C分别在x轴、y轴上,四边形ABCO 是边长为4的正方形,点D为AB的中点,点P为OB上的一个动点,连接DP,AP,当点P满足DP+AP的值最小时,直线AP的解析式为________.23、点(-3,5)到x轴上的距离是________.24、直线一定不经过第________象限.25、点到轴的距离是________。

冀教版八年级数学下册期末考试卷及完整答案

冀教版八年级数学下册期末考试卷及完整答案

冀教版八年级数学下册期末考试卷及完整答案 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2-的相反数是( )A .2-B .2C .12D .12- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.若x ,y 均为正整数,且2x +1·4y =128,则x +y 的值为( )A .3B .5C .4或5D .3或4或55.实数a ,b 在数轴上对应点的位置如图所示,化简|a|+2()a b +的结果是( )A .﹣2a-bB .2a ﹣bC .﹣bD .b6.如果2a a 2a 1+-+=1,那么a 的取值范围是( )A .a 0=B .a 1=C .a 1≤D .a=0a=1或7.在平面直角坐标系中,一次函数y=kx+b 的图象如图所示,则k 和b 的取值范围是( )A .k >0,b >0B .k >0,b <0C .k <0,b >0D .k <0,b <08.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.809.如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC10.如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.12B.1 C2D.2二、填空题(本大题共6小题,每小题3分,共18分)13x x=,则x=__________2.比较大小:23133x2-x的取值范围是________.4.如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x 的不等式组22{20x m x x +----<<的解集为________.5.如图,直线AB ,CD 被BC 所截,若AB ∥CD ,∠1=45°,∠2=35°,则∠3= _________度。

冀教版八年级下册数学期末试题试卷含答案

冀教版八年级下册数学期末试题试卷含答案

冀教版八年级下册数学期末试题试卷含答案(本文按照试卷的格式进行排版)冀教版八年级下册数学期末试题试卷含答案一、选择题(共10小题,每小题4分,共40分)1. 下列选项中,不能构成数列的是()A. 1,2,3,4B. 2,4,6,8C. 5,3,1,-1D. -1,-2,-3,-4答案:C2. 下面一个函数图象是抛物线.则abcd的笛卡尔坐标分别是.()(A是一个函数图象上的点)A. x1<x2<x3<x4B. x1>x2>x3>x4C. x1<x2>x3<x4D.x1>x2<x3>x4答案:A3. 如图,根据图形关系写“是”或“不是”。

A. 是B. 不是答案:B4. 一半半成品饼干的袋数是已知的,剩下的都是一盒一盒装的。

盒数是未知数,则现在一共有多少个饼干的算式是()A. 已知数×盒数+1/2×已知数B. 已知数÷盒数+1/2×已知数C. (已知数÷盒数+1/2)×已知数D. (已知数×盒数+1/2)×已知数答案:C5. 根据给定的定义判断下面每个数是否符合。

符合写√,否则写X。

A. √B. XC. XD. √答案:C6. 设a,b,c都是非零数,下面图形可以记号为()A. |a|÷b+cB. a|b|+cC. a÷b+cD. a+b+c答案:D7. 一条机器零件的长度为a cm,则4条机器零件的总长度为()A. 4a cmB. a÷4 cmC. a cmD. a+4 cm答案:A8. 一只大象的一天喝水a升,已知3只大象喝水的天数相同,共喝水45升,则3只大象共喝水的天数是()A. 45-a天B. 45÷a天C. 45a天D. 45+a天答案:B9. 定义两个数a,b的“运”是从数a出发走a步再向右拐走b步,得距离定点的位置,若两数a=25,b=-7.1,则经过从a出发走a步这“运”走b步后的位置是()A. -32.1B. -18.1C. -57.1D. -7.1答案:C10. 在高中英语足球比赛中某同学对上某高中英语足球突破能力不如自身的人。

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年冀教版八年级数学下册期末复习试题(一)(含答案)

2023-2024学年度下期冀教版数学八年级下册期末复习习题精选(一)(满分120分,限时100分钟)一、选择题(每小题3分,共42分)1.(2023河北保定期末)为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.下列判断:①这种调查方式是抽样调查;②8 000名学生是总体;③每名学生的身高是个体;④60名学生是总体的一个样本;⑤60名学生是样本容量.其中正确的判断有( )A.5个B.4个C.3个D.2个2.(2023广东深圳南山二模)剪纸艺术是中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),则m+n的值为( )A.-1B.0C.1D.-93.(2023陕西西安雁塔模拟)一次函数y=(-2m+1)x的图像经过(-1,y1),(2,y2)两点,且y1>y2,则m的值可以是( )A. B.0 C.1 D.-4.(2023浙江温州三模)某校九(1)班50名学生的视力频数分布直方图如图所示(每一组含前一个边界值,不含后一个边界值),若视力达到 4.8以上(含 4.8)为达标,则该班学生视力的达标率为( )A.8%B.18%C.29%D.36%5.(2023山东临沂兰陵期中)下面的三个问题中都有两个变量:①正方形的周长y与边长x;②汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时);③水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min).其中,变量y与变量x之间的函数关系可以利用如图所示的图像表示的是( )A.①②B.①③C.②③D.①②③6.(2023天津南开期末)已知张强家、体育场、文具店在同一直线上.给出的图像反映的过程是:张强从家跑步去体育场,在体育场锻练了若干分钟后又走到文具店去买笔,然后散步走回家.图中x(min)表示张强离开家的时间,y(km)表示张强离家的距离,则下列说法错误的是( )A.体育场离文具店1 kmB.张强在文具店停留了20 minC.张强从文具店回家的平均速度是 km/minD.当30≤x≤45时,y=7.(2023重庆忠县期末)如图,四边形ABCD是矩形,有一动点P从点B出发,沿B→C→D→A绕矩形的边匀速运动,当点P到达点A时停止运动.在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是( )8.【新独家原创】在菱形ABCD中,AC=6,BD=8,点E为BC上一动点,则的最小值为( )A. B. C. D.9.(2023河南新乡长垣期末)随着暑假临近,某游泳馆推出了甲、乙两种消费卡,设消费次数为x,所需费用为y元,且y与x的函数关系的图像如图所示.根据图中信息判断,下列说法错误的是( )A.甲种消费卡为20元/次=10x+100B.y乙C.点B的坐标为(10,200)D.洋洋爸爸准备了240元钱用于洋洋在该游泳馆消费,选择甲种消费卡划算10.(2023上海虹口期末)在平面直角坐标系中,点A(0,6),点B(-6,0),坐标轴上有一点C,使得△ABC为等腰三角形,则这样的点C一共有( )A.5个B.6个C.7个D.8个11.(2023河南濮阳二模)如图,以矩形ABCD的顶点A为圆心,AD长为半径画弧交CB的延长线于点E,过点D作DF∥AE交BC于点F,连接AF.若AB=4,AD=5,则AF的长是( )A.2B.3C.3D.312.(2023福建福州台江模拟)“开开心心”商场2021年1~4月的销售总额如图1,其中A商品的销售额占当月销售总额的百分比如图2.根据图中信息,有以下四个结论,其中推断不合理的是( )A.1~4月该商场的销售总额为290万元B.2月份A商品的销售额为12万元C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是4月D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了13.【新考法】(2023河南郑州金水期末)现有一四边形ABCD,借助此四边形作平行四边形EFGH,两位同学提供了如图所示的方案,对于方案Ⅰ、Ⅱ,下列说法正确的是( )方案Ⅰ方案Ⅱ作边AB,BC,CD,AD的垂直平分线l1,l2,l3,l4,分别交AB,BC,CD,AD于点E,F,G,H,顺次连接这四点得到的四边形EFGH即为所求连接AC,BD,过四边形ABCD各顶点分别作AC,BD 的平行线EF,GH,EH,FG,这四条平行线围成的四边形EFGH即为所求A.Ⅰ可行、Ⅱ不可行B.Ⅰ不可行、Ⅱ可行C.Ⅰ、Ⅱ都可行D.Ⅰ、Ⅱ都不可行14.【一题多解】(2022贵州黔东南州中考)如图,在边长为2的等边三角形ABC的外侧作正方形ABED,过点D作DF⊥BC交CB的延长线于点F,则DF的长为( )A.2+2B.5-C.3-D.+1二、填空题(每小题4分,共12分)15.(2023北京房山期末)如图,菱形ABCD的对角线AC,BD相交于点O,点E为BC的中点,连接OE,若OE=,OA=4,则AB= ,菱形ABCD的面积是.16.【河北常考·双填空题】(2023河北石家庄桥西期末)在同一直线上,甲骑自行车,乙步行,分别由A,B两地同时向右匀速出发,当甲追上乙时,两人同时停止.下图是两人之间的距离y(km)与所经过的时间t(h)之间的函数关系图像,观察图像,出发后h甲追上乙.若乙的速度为8 km/h,则经过1.5 h甲行驶的路程为.17.(2023河北沧州献县期末)五子棋是一种两人对弈的棋类游戏,规则是:在正方形棋盘中,由黑方先行,白方后行,轮流弈子,下在棋盘横线与竖线的交叉点上,直到某一方首先在任一方向(横向、竖向或者是斜着的方向)上连成五子获胜.如图,这一部分棋盘是两个五子棋爱好者的对弈图.观察棋盘,以点O为原点,在棋盘上建立平面直角坐标系,将每个棋子看成一个点.若黑子A的坐标为(7,5),为了不让白方获胜,此时黑方应该下在坐标为的位置.三、解答题(共66分)18.[含评分细则](2023湖北武汉期中)(12分)已知点P(2a-2,a+5),解答下列各题:(1)若点P在x轴上,求出点P的坐标.(2)若点Q的坐标为(4,5),直线PQ∥y轴,求出点P的坐标.(3)若点P在第二象限,且它到x轴的距离与到y轴的距离相等,求a2 023+2 023的值.19.[含评分细则](2023广东深圳期中)(12分)自行车骑行爱好者小轩为备战中国国际自行车公开赛,积极训练.下图是他最近一次在深圳湾体育公园骑车训练时,离家的距离s(km)与所用时间t(h)之间的函数图像.请根据图像回答下列问题:(1)途中小轩共休息了h.(2)小轩第一次休息后,骑行速度恢复到第1小时的速度,请求出目的地离家的距离a是多少.(3)小轩第二次休息后返回家时,速度和到达目的地前的最快车速相同,则全程最快车速是km/h.(4)已知小轩是早上7点离开家的,请通过计算,求出小轩回到家的时间.20.[含评分细则]【新素材】(2023四川绵阳涪城模拟)(14分)青少年“心理健康”问题引起社会的广泛关注,某区为了解学生的心理健康状况,对中学初二学生进行了一次“心理健康”知识测试,随机抽取了部分学生的成绩作为样本,绘制了不完整的频率分布表和频率分布直方图(频率分布表每组含前一个边界值,不含后一个边界值).学生心理健康测试成绩频率分布表分组频数频率50~60 4 0.0860~70 14 0.2870~80 m 0.3280~90 6 0.1290~100 10 0.20合计 1.00请解答下列问题:(1)学生心理健康测试成绩频率分布表中,m= .(2)请补全学生心理健康测试成绩频数分布直方图.(3)若成绩在60分以下(不含60分)心理健康状况为不良,60分~70分(含60分)为一般,70分~90分(含70分)为良好,90分(含90分)以上为优秀,请补全学生心理健康测试成绩扇形统计图.21.[含评分细则](2023江苏无锡梁溪期末)(14分)某学校新建的初中部即将投入使用,为了改善教室空气环境,该校八年级1班班委会计划到朝阳花卉基地购买绿植,已知该基地一盆绿萝与一盆吊兰的费用之和是16元.班委会决定用80元购买绿萝,用120元购买吊兰,所购绿萝数量正好是吊兰数量的两倍.(1)分别求出每盆绿萝和每盆吊兰的价格.(2)该校八年级所有班级准备一起到该基地购买绿萝和吊兰共计120盆,其中绿萝数量不超过吊兰数量的一半,则八年级购买这两种绿植各多少盆时总费用最少?最少费用是多少元?22.[含评分细则](2023四川达州渠县期末)(14分)如图,在△ABC中,∠BAC=90°,∠B=45°,BC=10,过点A作AD∥BC,且点D在点A的右侧.点P从点A出发沿射线AD以每秒1个单位长度的速度运动,同时点Q从点C出发沿射线CB以每秒2个单位长度的速度运动,在线段QC 上取点E,使得QE=2,连接PE,设点P的运动时间为t秒.(1)若PE⊥BC,求BQ的长.(2)是否存在t值,使以A,B,E,P为顶点的四边形为平行四边形?若存在,求出t的值;若不存在,请说明理由.答案解析1.D 为了解某市七年级8 000名学生的身高情况,从中抽取了60名学生进行身高检查.①这种调查方式是抽样调查,说法正确;②8 000名学生的身高情况是总体,故原说法错误;③每名学生的身高是个体,说法正确;④60名学生身高情况是总体的一个样本,故原说法错误;⑤60是样本容量,故原说法错误.所以正确的判断有2个.故选D.2.A ∵图中点E的坐标为(m,3),其关于y轴对称的点F的坐标为(4,n),∴m=-4,n=3,∴m+n=-4+3=-1,故选A.3.C ∵-1<2,且y1>y2,∴y随x的增大而减小,∴-2m+1<0,解得m>.故选C.4.D 若视力达到4.8以上(含4.8)为达标,则该班学生视力的达标率为×100%=36%.故选D.5.A 正方形的周长y与边长x的关系式为y=4x,故①符合题意;汽车以30千米/时的速度行驶,它的行驶路程y(千米)与时间x(小时)的关系式为y=30x,故②符合题意;水箱以0.8 L/min的流量往外放水,水箱中的剩余水量y(L)与放水时间x(min)的关系式为y=水箱原来的水量-0.8x,故③不符合题意.所以变量y与变量x之间的函数关系可以用题中的图像表示的是①②.故选A.6.D A.体育场到文具店的距离为2.5-1.5=1(km),故A选项正确,不符合题意;B.张强在文具店停留了65-45=20(min),故B选项正确,不符合题意;C.张强从文具店回家的平均速度为 1.5÷(100-65)= km/min,故C选项正确,不符合题意;D.当30≤x≤45时,设y=kx+b(k≠0),则∴当30≤x≤45时,y=-,故D选项错误,符合题意.故选D.7.B 由题意可知,当点P从点B向点C运动时,S=AB·BP,△ABP的面积S与t成正比例函数关系且随时间t的增大而增大;当点P从点C向点D运动时,S=AB·BC,△ABP的面积S不随时间t的变化而变化;当点P从点D向点A运动时,S=AB·AP,△ABP的面积S是t的一次函数且随时间t的增大而减小.所以在点P的运动过程中,△ABP的面积S随时间t变化的函数图像大致是选项B的图像.故选B.8.B ∵四边形ABCD是菱形,AC=6,BD=8,∴OB=AC=3,AC⊥BD.OB是定值,要想的值最小,则OE取最小值.当OE⊥BC时,OE取最小值,由勾股定理可求得BC==5,∵BC·OE=OB·OC,∴OE=,∴.故选B.9.D 设甲对应的函数解析式为y甲=kx(k≠0),∵点(5,100)在该函数图像上,∴5k=100,解得k=20,即甲对应的函数解析式为y甲=20x,即甲种消费卡为20元/次,故选项A不符合题意;设乙对应的函数解析式为y乙=ax+b(a≠0),∵点(0,100),(20,300)在该函数图像上,∴即乙对应的函数解析式为y乙=10x+100,故选项B不符合题意;令20x=10x+100,解得x=10,20×10=200,故点B的坐标为(10,200),故选项C不符合题意;当y=240时,甲种消费卡可消费240÷20=12(次),乙种消费卡可消费的次数为(240-100)÷10=14,因为12<14,所以洋洋爸爸准备240元钱用于洋洋在该游泳馆消费,选择乙种消费卡划算,故选项D符合题意.故选D.10.C 如图,当BC=AB时,以点B为圆心、AB长为半径画圆,与坐标轴分别交于点C1、C2、C3、A.当AC=AB时,以点A为圆心、AB长为半径画圆,与坐标轴分别交于点C4、C5、C6、B.当AC=BC时,点C应该在AB的垂直平分线上,∵OA=OB,∴点O在AB的垂直平分线上.综上,这样的C点共有7个,分别是点C1、C2、C3、C4、C5、C6、O.故选C.11.A ∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,∴∠ABE=90°,∵DF∥AE,AD∥EF,∴四边形ADFE是平行四边形,由作图得AE=AD=5,∴四边形ADFE是菱形,∴FE=AE=5,∵BE==3,∴BF=FE-BE=5-3=2,∴AF=.12.C A.1~4月该商场的销售总额为85+80+60+65=290万元,故A不符合题意;B.2月份A商品的销售额为80×15%=12万元,故B不符合题意;C.1~4月A商品的销售额占当月销售总额的百分比最低的月份是2月,故C符合题意;D.2~4月A商品的销售额占当月销售总额的百分比与1月份相比都下降了,故D不符合题意. 故选C.12.C 本题列举两种方案,从中选取可行方案,考查形式比较新颖.方案Ⅰ,如图,连接AC,∵l1,l2,l3,l4分别垂直平分AB,BC,CD,AD,∴E,F,G,H分别是AB,BC,CD,AD的中点,∴EF是△ABC的中位线,GH是△ADC的中位线,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,且EF=GH,∴四边形EFGH是平行四边形,∴方案Ⅰ可行.方案Ⅱ,∵EF∥AC,GH∥AC,∴EF∥GH,∵EH∥BD,FG∥BD,∴EH∥FG,∴四边形EFGH是平行四边形,方案Ⅱ可行.故选C.14.D 解法一:如图1,延长DA,BC交于点G,∵四边形ABED是正方形,∴∠BAD=90°,AD=AB,∴∠BAG=180°-90°=90°.∵△ABC是边长为2的等边三角形,∴AB=AC=2,∠ABC=∠BAC=60°,∴∠CAG=∠BAG-∠BAC=30°,∠G=90°-∠ABC=30°,∴∠CAG=∠G,∴AC=CG=2,∴BG=BC+CG=4,∴AG=,∴DG=AD+AG=2+2.在△DFG中,DF⊥BC,∠G=30°,∴DF=×(2+2.故选D.解法二:如图2,过点E作EG⊥DF于点G,作EH⊥BC交CB的延长线于点H,则∠BHE=∠DGE=90°.∵△ABC是边长为2的等边三角形,∴AB=2,∠ABC=60°.∵四边形ABED是正方形,∴BE=DE=AB=2,∠ABE=∠BED=90°,∴∠EBH=180°-∠ABC-∠ABE=180°-60°-90°=30°,∴EH=×2=1,∴BH=.∵EG⊥DF,EH⊥BC,DF⊥BC,∴∠EGF=∠EHB=∠DFH=90°,∴四边形EGFH是矩形,∴FG=EH=1,∠BEH+∠BEG=∠GEH=90°.∵∠DEG+∠BEG=90°,∴∠BEH=∠DEG.在△BEH和△DEG中,∴△BEH≌△DEG(AAS),∴DG=BH=,∴DF=DG+FG=+1.故选D.15.2;16解析∵菱形ABCD的对角线AC与BD相交于点O,∴DO⊥CO,AC=2OA=2OC=8,∵E是BC的中点,∴OE是△CAB的中位线,∴AB=2OE=2,∴OB==2,∴BD=2OB=4,∴菱形ABCD的面积=×8×4=16.16.2;30km解析由图像可知,出发后2 h甲追上乙,A,B两地相距24 km,设甲的速度为x km/h,根据题意得2x=8×2+24,解得x=20,20×1.5=30(km).经过1.5 h甲行驶的路程为30 km.17.(3,7)或(7,3)18.解析(1)∵点P在x轴上,∴a+5=0,∴a=-5,∴2a-2=-12,∴点P的坐标为(-12,0).4分(2)∵点Q的坐标为(4,5),直线PQ∥y轴,∴2a-2=4,∴a=3,∴a+5=8,∴P(4,8).8分(3)∵点P在第二象限,且它到x轴的距离与到y轴的距离相等,∴2a-2=-(a+5),∴a=-1,此时P(-4,4)在第二象限,符合题意,∴a2 023+2 023=(-1)2 023+2 023=2 022,∴a2 023+2 023的值为2 022.12分19.解析(1)途中小轩共休息了2-1.5+4-3=1.5(h).故答案为1.5.3分(2)25+15×(3-2)=40(km).∴a=40.6分(3)全程最快车速是(25-15)÷(1.5-1)=20(km/h).故答案为20.9分(4)4+40÷20=6(h),7+6=13,∴小轩回到家的时间是13点.12分20.解析(1)由表格可得,抽取的学生数为4÷0.08=50,∴m=50×0.32=16.故答案为16.4分(2)补全的学生心理健康测试成绩频数分布直方图如图1所示.8分(3)良好率:(0.32+0.12)×100%=44%,9分优秀率:0.2×100%=20%,10分补全的学生心理健康测试成绩扇形统计图如图2所示.14分21.解析(1)设每盆绿萝x元,则每盆吊兰(16-x)元.根据题意得=2×,解得x=4.4分经检验,x=4是方程的解且符合题意.∴16-x=12.答:每盆绿萝4元,每盆吊兰12元.6分(2)设购买吊兰a盆,总费用为y元.依题意得,购买绿萝(120-a)盆,则y=12a+4(120-a)=8a+480.9分∵绿萝数量不超过吊兰数量的一半,∴120-a≤a,解得a≥80.10分对于y=8a+480,y随a的增大而增大,∴当a=80时,y取得最小值,最小值为8×80+480=1 120,12分此时120-a=40.答:购买吊兰80盆,绿萝40盆时,总费用最少,为1 120元.14分22.解析(1)如图,过A点作AM⊥BC于点M,设AC交PE于点N.∵∠BAC=90°,∠B=45°,∴∠C=45°=∠B,∴AB=AC,∴BM=CM,∴AM=BC=5,2分∵AD∥BC,∴∠PAN=∠C=45°,∵PE⊥BC,∴PE=AM=5,PE⊥AD,∴△APN和△CEN是等腰直角三角形,4分∴PN=AP=t,∴CE=NE=PE-PN=5-t,∵CE=CQ-QE=2t-2,∴5-t=2t-2,6分解得t=,∴BQ=BC-CQ=10-2×.7分(2)存在.8分若以A,B,E,P为顶点的四边形为平行四边形,则AP=BE,分两种情况:①当点E在点B的右侧时,有解得t=4.②当点E在点B的左侧时,有解得t=12.∴存在t值,使以A,B,E,P为顶点的四边形为平行四边形,此时t的值为4或12.14分。

(审定版)冀教版八年级下册数学期末测试卷及含答案

(审定版)冀教版八年级下册数学期末测试卷及含答案

冀教版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角2、已知一个多边形的内角和是它的外角和的2倍,那么这个多边形的边数是()A.3B.4C.5D.63、九边形的对角线有()A.25条B.31条C.27条D.30条4、若一个多边形的内角和等于1620°,则这个多边形的边数为()A.9B.10C.11D.125、如果一个多边形的内角和是外角和的3倍,那么这个多边形是()A.四边形B.六边形C.八边形D.十边形6、如图,一个等边三角形纸片,剪去一个角后得到一个四边形,则图中的度数是()A.180°B.220°C.240°D.300°7、一个多边形的每个外角都等于30°,则这个多边形的边数是()A.10B.11C.12D.138、如果一个多边形的内角和等于360度,那么这个多边形的边数为()A.4B.5C.6D.79、一个多边形的每个外角都等于72°,则这个多边形的边数为( )A.5B.6C.7D.810、在四边形ABCD中,∠A=∠B=∠C,点E在边AB上,∠AED=60°,则一定有()A.∠ADE=20°B.∠ADE=30°C.∠ADE=∠ADCD.∠ADE=∠ADC11、正多边形的每个内角都是135°,则这个正多边形的边数为()A.4B.6C.8D.1012、从多边形一条边上的一点(不是顶点)出发,连接各个顶点得到个三角形,则这个多边形的边数为()A. B. C. D.13、已知一个多边形的内角和等于它的外角和,则这个多边形的边数为()A.3B.4C.5D.614、将一长方形纸片沿一条直线剪成两个多边形,那么这两个多边形的内角和之和不可能是( )A.360°B.540°C.720°D.900°15、如图,⊙A、⊙B、⊙C、⊙D两两外离,且半径都是,则图中的四个扇形(即阴影部分)面积之和是()A. B. C. D.二、填空题(共10题,共计30分)16、如图,在矩形ABCD中,AB=4,点E,F分别在BC,CD上,将△ABE沿AE 折叠,使点B落在AC上的点B′处,又将△CEF沿EF折叠,使点C落在直线EB′与AD的交点C′处,DF=________.17、如图,在菱形ABCD中,点P是对角线AC上的一点,PE⊥AB于点E.若PE=3,则点P到AD的距离为________.18、如图,将边长为6的正方形沿其对角线剪开,再把沿着方向平移,得到,当两个三角形重叠部分的面积为5时,则为________.19、如图,已知,,第四象限的点到轴的距离为,若,满足,则点坐标为________;与轴的交点坐标为________.20、在函数y=中,自变量x的取值范围是________.21、在▱ABCD中,AB<BC,已知∠B=30°,AB=,将△ABC沿AC翻折至△AB′C,使点B′落在▱ABCD所在的平面内,连接B′D.若△AB′D是直角三角形,则BC的长为________ .22、写出图象经过点(﹣1,1)的一个函数的解析式是________.23、若点P在第四象限,且距离每个坐标轴都是3个单位长度,则点P的坐标为________.24、如图,一次函数与的图象交于点P.下列结论中,所有正确结论的序号是________.①;②;③当时,;④;⑤.25、函数的自变量x取值范围是________ .三、解答题(共5题,共计25分)26、一次函数y =kx+b()的图象经过点,,求一次函数的表达式.27、如图,在矩形ABCD中,E是AD边上的一点,BE⊥AC,垂足为点F。

冀教版八年级数学下册期末测试卷及答案

冀教版八年级数学下册期末测试卷及答案

冀教版八年级数学下册期末测试卷及答案冀教版八年级数学下册期末测试卷一、选择题(每小题3分,共30分)1.如图1,在平行四边形ABCD中,CE⊥AB,E为垂足,如果∠A=125°,则∠BCE=()A.55°B.35°C.25°D.30°2.已知a⊥b,b∥c,则直线a和直线c的关系为()A.相交B.垂直C.平行D.以上都不对3.已知一次函数y=kx+b的图象经过第一、二、三象限,那么k、b的符号是()A.k>0,b>0B.k>0,b04.多边形的内角和等于1080°,这个多边形的边数是()A.6B.7C.8D.95.一组数据20、20、50、20、37、2,把2换成其他的任意数,不改变的是()A.众数B.平均数C.中位数D.众数和中位数6.如果函数y=ax+b(a0)图像交于点P,那么点P应该位于()A.第一象限B.第二象限C.第三象限D.第四象限7.如图2,AB∥CD,那么∠A+∠C+∠E=()A.360°B.270°C.200°D.180°8.人数相等的甲、乙两班学生参加同一次数学测验,班级平均分和方差如下:甲:平均分x=80,方差22乙:平均分x=100,方差x=240则成绩较为整齐的是()A.甲班B.乙班C.两班一样整齐D.无法确定9.某校学生到距学校6千米的郊外春游,一部分同学步行,另一部分同学骑自行车,沿相同路线前往.如图3,a、b分别表示步行和骑车的同学前往目的地所走的路程y(千米)与所用时间x(分钟)之间的函数图象,则下列判断错误的是()A.骑车的同学比步行的同学晚出发30分钟B.步行的速度是6千米/小时C.骑车的同学从出发到追上步行的同学用了20分钟D.骑车的同学和步行的同学同时到达目的地10.炎炎夏日,甲安装队为A小区安装66台空调,乙安装队为B小区安装60台空调,两队同时开工且恰好同时完工,甲队比乙队每天多安装2台.设乙队每天安装x台,根据题意,下面所列方程中正确的是()A.66=30+2xB.66=30+xC.66=60+2xD.66=60+x二、填空题(每小题3分,共30分)1.如图4,设∠ABC=60°,AB=2,BC=√3,则AC=______。

冀教版八年级下册数学期末测试卷(附答案)

冀教版八年级下册数学期末测试卷(附答案)

冀教版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、如下图所示,一方队正沿箭头所指的方向前进,A的位置为三列四行,表示为(3,4),那么B的位置是()A.(4,5)B.(5,4)C.(4,2)D.(4,3)2、若一个多边形的每个外角都等于60°,则它的内角和等于()A.360°B.540°C.720°D.960°3、一个多边形的外角和等于其内角和的,则它的边数为()A.12B.11C.10D.94、从n边形一个顶点出发,可以作()条对角线.A.nB.n﹣1C.n﹣2D.n﹣35、如图,⊙A、⊙B、⊙C、⊙D两两外离,且半径都是,则图中的四个扇形(即阴影部分)面积之和是()A. B. C. D.6、已知四边形ABCD中,∠A与∠B互补,∠D=70°,则∠C的度数为()A.70°B.90°C.110°D.140°7、已知一个多边形的内角和等于这个多边形外角和的2倍,则这个多边形的边数是()A.4B.5C.6D.88、一个多边形的外角和是内角和的,这个多边形的边数为()A.5B.6C.7D.89、若从n边形的某个顶点引出的所有对角线,把这个n边形分成51个三角形,则n等于()A.49B.51C.53D.5610、如图,四边形ABCD中,F是CD上一点,E是BF上一点,连接AE、AC、DE.若AB=AC,AD=AE,∠BAC=∠DAE=70°,AE平分∠BAC,则下列结论中:①△ABE≌△ACD:②BE=EF;③∠BFD=110°;④AC垂直平分DE,正确的个数有()A.1个B.2个C.3个D.4个11、一个多边形的每一个外角都等于36 ,则该多边形的内角和等于()A.1080°B.900°C.1440°D.720°12、在平面直角坐标系中,点(-3,)所在的象限是()A.第一象限B.第二象限C.第三象限D.第四象限13、如图,六边形ABCDEF的内角都相等,,则下列结论成立的个数是① ;② ;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF即是中心对称图形,又是轴对称图形()A.2B.3C.4D.514、一个五边形的5个内角中,钝角至少有()A.5个B.4个C.3个D.2个15、n边形所有对角线的条数有()A. 条B. 条C. 条D. 条二、填空题(共10题,共计30分)16、如图,在平面直角坐标系中,点A(4,0),B(0,2),反比例函数的图象经过矩形ABCD的顶点C,且交边AD于点E,若E为AD的中点,则k的值为________.17、点( ,2)关于原点对称的点的坐标是________.18、如图所示,四边形OABC为正方形,边长为6,点A、C分别在x轴,y轴的正半轴上,点D在OA上,且D点的坐标为(2,0),P是OB上的一个动点,试求PD+PA和的最小值是________19、矩形是特殊的平行四边形.________(判断对错)20、如图,在平面直角坐标系中,点的坐标,将线段绕点O按顺时针方向旋转45°,再将其长度伸长为的2倍,得到线段;又将线段绕点O按顺时针方向旋转45°,长度伸长为的2倍,得到线段;如此下去,得到线段、,……,(n为正整数),则点的坐标是________.21、将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF.若AB=3,则菱形AECF的面积为________.22、如图,七边形ABCDEFG中,AB,ED的延长线交于点O,外角∠1,∠2,∠3,∠4的和等于220°,则∠BOD的度数是________度.23、如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连接AC、AE.若∠D=78°,则∠EAC=________°.24、在平面直角坐标系中,点A(2,0),B(0,4),作△BOC,使△BOC与△ABO全等,则点C坐标为________.25、如图,平面直角坐标系中,已知点B(﹣3,2),将△ABO绕点O沿顺时针方向旋转90°后得到△A1B1O,则点B的对应点B1的坐标是________.三、解答题(共5题,共计25分)26、已知,当时,;当时,. 求出k,b 的值;27、如图,矩形ABCD的两条对角线AC、BD相交于点O,∠AOD=120°,AB=2.求矩形边BC的长?28、如图,点A坐标为(﹣2,3),将点A绕原点O顺时针旋转90°得点A′,求A′的坐标.29、已知正比例函数图象(记为直线l1)经过(1,﹣1)点,现将它沿着y轴的正方向向上平移1个单位得到直线l2,(1)求直线l2的表达式;(2)若直线l与x轴、y轴的交点分别为A点、B点,求△AOB的面积.230、如图,已知正方形ABCD中,E为CD边上的一点,F为BC延长线上一点,且CE=CF.若∠BEC=60°,求∠EFD的度数.参考答案一、单选题(共15题,共计45分)1、A2、C3、B4、D5、A6、C7、C8、C9、C10、C11、C12、C13、D14、D15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、30、。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

冀教版八年级下册数学期末考试试卷一、选择题(第1~10小题各3分,第11~16小题各2分,共42分)1. 下列调查中,比较适合用普查而不适合抽样调查方式的是( )A .调查一批显像管的使用寿命 B.调查“永春芦柑”的甜度和含水量C.调查某县居民的环保意识 D .调查你所在学校数学教师的年龄状况2. 为了考查一批电脑的质量,从中抽取100 台进行检测,在这个问题中的样本是( )A .电脑的全体 B.100 台电脑 C.100 台电脑的全体 D.100 台电脑的质量3. 某校有300名学生参加毕业考试,其数学成绩在80~90 分之间的有180人,则在80~90分之间的频率是( )A.0.1B.0.3C.0.5D.0.64. 在如图所示的象棋盘上,建立适当的平面直角坐标系,使“炮”位于点(-1,1)上,“相”位于点(4,-2) 上,则“帅”位于点( )A .(-3,3) B.(-2,2) C .(3,-3) D .(2,-1)5. 若点P(a,b)在第二象限,则点P 到x轴,y轴的距离分别是( )A.a,bB.b,aC.-a,-b D .b,-a6. 已知点A与点B关于y轴对称,若点A的坐标为(-1,a),点B的坐标为(b,3),则ab等于()A.-3B.3C.-1D.17. 函数y=中,自变量x 的取值范围是( )A.x>5B.x ≥3 C .3≤x<5 D .x≥3,x ≠58. 济南市某储运部紧急调拨一批物资,调进物资共用 4 小时,调进物资2小时后开始调出物资(调进物资与调出物资的速度均保持不变).储运部库存物资S(吨)与时间t(时)之间的函数关系如图所示,这批物资从开始调进到全部调出需要的时间是( )A.4 小时B.4.4 小时9. 已知函数 :①y=0.2x+6;②y=-x-7;③y=4-2x;④y=-x;⑤y=4x;⑥y=-(2-x),其中,y 的值随 x 的增 大而增大的函数有 ( )A.1 个B.2 个C.3 个D.4 个11. 如图所示 ,在直角坐标系中 ,直线 l 所表示的一次函数是 ( ) 12. 如图所示 ,小球从点 A 运动到点 B,速度 v(米/秒 )和时间 t(秒 )的函数关系式是 v =2t.如果小球运动到点 B 时的速度为 6米/秒,那么小球从点 A 到点 B 的时间是 ( )A.1 秒B.2 秒C.3 秒D.4 秒 13.已知和是二元一次方程 ax+by=-3 的两个解 ,则一次函数 y=ax+b 与 y 轴的交点坐标是 ()A .(0,-7) B.(0,4) C .(0,7) D .(0,-4)14.平行四边形的一个内角是70 °,则其他三个内角分别是( )x 的减小而增大 ,则它的大致图像是A .y=3x+3y= kx - b,kb<0,且函数值随B.y =3 x -3(第 12 题图 )A.70 °,130 ,°130 B°.110 °,70 ,°120C.110 °,70 ,°110 °D.70 °,120 ,°120 °15. 如图所示 ,在四边形 ABCD 中,Q 是 CD 上的一定点 ,P 是BC 上的一动点 ,点E,F 分别是 PA,PQ 的中点,当点P 在BC 上移动时 ,线段 EF 的长度 ( ) A.先变大 ,后变小 B.保持不变 16. 如图所示 ,矩形 ABCD 中,E 是 BC 的中点 ,且∠ AED =90 °.当 AD =10 cm 时,AB 等于()A.10 cmB.5 cmC.5 cmD.5 cm二、填空题 (第17~18小题各 3分,第19小题 4分,共10分)17.如图所示 ,在菱形 ABCD 中,对角线 AC,BD 相交于点O,AC=8 cm, BD=6 cm,则 AB= cm,菱形 ABCD 的面积 = cm 2.18. 如图所示 ,BF 平行于正方形 ABCD 的对角线 AC,点E 在BF 上,且AE= AC ,CF ∥AE ,则 ∠BCF 的度数为 .C.先变小 ,后变大D .无法确定(第 15 题图)(第 16 题图 )19.在正方形 ABCD 所在的平面内 ,到正方形三边所在直线距离相等的点有 个.三、解答题 (共 68 分)分 )将某雷达测速区监测到的一组汽车的时速数据整理 ,得到其频数及频率如下表):注:30~40为时速大于等于 30千米而小于 40千米,其他类同 . (1) 请你把表中的数据填写完整 ; (2) 补全频率分布直方图 ;(3) 如果此地汽车时速不低于 60 千米即为违章 ,则违章车辆共有多少辆 ?21. (9 分)如图所示 ,四边形 ABCD 的四个顶点的坐标分别为 A(-2,2),B(-4,-3),C(3,-3),D(2,1),求 四边形 ABCD 的面积 .22. (9 分)已知一次函数 y=(m+3)x+m 2-16,且 y 的值随 x 值的增大而增大 (1) 求 m 的取值范围 ;(2) 若此一次函数又是正比例函数 ,试 m 的值.23. (9分)[2016 北·京中考 ]如图所示 ,在四边形 ABCD 中,∠ABC=90°,AC=AD,M,N 分别为 AC,CD 的中点 ,连接 BM,MN ,BN.数据段频数频率30~40 10 0.05 40~50 3650~60 0.3960~7070~80合计200.10 1(未(1) 求证BM =MN ;(2) ∠BAD =60 °,AC 平分∠ BAD ,AC=2,求BN 的长.24. (10 分)为了号召市民向贫困山区的孩子捐赠衣物,某校七年(1)班的同学准备发放倡议书倡议书的制作有两种方案可供选择:方案一:由复印店代做,所需费用y 1与倡议书张数x 满足如图(1)所示的函数关系;方案二:租赁机器自己制作,所需费用y2(包括租赁机器的费用和制作倡议书的费用)与倡议书张数x 满足如图(2) 所示的函数关系.(1)方案一中每张倡议书的价格是元;方案二中租赁机器的费用是元.(2)请分别求出y1,y2关于x 的函数关系式;(3) 从省钱角度看,如何选择制作方案?25. (10分)已知:如图所示,四边形ABCD 中,∠ABC=∠ADC =90 °,M是AC上任一点,O是BD 的中点,连接MO ,并延长MO 到N,使NO=MO,连接BN与ND.(1) 判断四边形BNDM 的形状,并证明;(2) 若M 是AC 的中点,则四边形BNDM 的形状又如何?说明理由(第25 题图)(第26 题图)26. (12 分)如图所示,点M 是正方形ABCD 的边CD 的中点,正方形ABCD 的边长为 4 cm,点P按A -B-C-M -D的顺序在正方形的边上以每秒1 cm的速度做匀速运动,设点P的运动时间为x(秒),△ APM 的面积为y(cm 2).(1)直接写出点P运动2秒时,△AMP 的面积;(2)在点P运动4秒后至8秒这段时间内,y与x的函数关系式;(3) 在点P整个运动过程中,当x为何值时,y=3?答案与解析】1. D2. D3. D4. D(解析:∵“炮”位于点(-1,1)上,“相”位于点(4,-2)上,∴可得原点的位置,即可得出“帅”位于点(2,-1) 上.)5. D(解析:∵点P(a,b)在第二象限,∴ a<0, b>0, ∴点P到x轴、y轴的距离分别是b,-a.)6. B(解析:∵点 A (-1, a)和B(b,3)关于y轴对称,∴a=3,b=1,∴ab=3×1=3.)7. D( 解析:根据题意有解得x≥3,x ≠5.)8. B(解析:解法1:调进物资共用4小时,且速度保持不变,则4小时共调进物资60吨;货物还剩10吨,说明在2小时内,调出物资50吨,可得调出物资的速度为25吨/时,则剩下10吨用时:=0 .4(小时),故共用时间 4.4小时.解法2:由图中可以看出,2 小时调进物资30吨,调进物资共用4小时,说明物资一共有60吨;2小时后,调进物资和调出物资同时进行,4小时后,物资调进完毕,仓库还剩10 吨,说明调出速度为:(60-10) 2÷=25(吨/时),需要时间为:60 ÷25=2.4(小时),∴这批物资从开始调进到全部调出需要的时间是:2+2.4=4.4(小时).)9. C10. B(解析:∵一次函数y = kx-b,函数值随x 的减小而增大,∴k<0 .又∵ kb<0,∴b>0,-b<0,∴一次函数y=kx-b 的图像经过第二、三、四象限.)11. A12. C13. C14. C15. B(解析:连接AQ ,∵E,F分别为PA,PQ的中点,∴EF为△PAQ 的中位线,∴EF=AQ.∵Q 为定点,∴AQ 的长度不变,∴EF 的长度不变.)16. B(解析:∵矩形ABCD 中,E是BC的中点,∴AB=CD,BE=CE,∠B=∠C=90°.在△ABE 和△DCE 中,∴ △ ABE ≌△ DCE ,∴AE =DE. ∵∠ AED =90 °,∴∠ DAE =45 °,∴∠ BAE =90 °- ∠DAE =45°,∴∠ BEA= ∠BAE=45°.∴ AB=BE=AD =×10=5(cm) .)17.5 2418.105 °(解析:过点 A 作AO ⊥FB交FB的延长线于点O,连接BD ,交AC于点Q.∵四边形ABCD 是正方形,∴BQ⊥AC.∵BF∥AC,∴AO ∥BQ 且∠QAB =∠ QBA =45°,∴ AO =BQ =AQ =AC. ∵ AE =AC ,∴ AO =AE ,∴∠AEO=30°.∵BF∥AC, ∴∠ CAE =∠ AEO =30°,∵ BF∥AC ,CF ∥AE ,∴四边形AEFC 是平行四边形,∴∠CFE=∠CAE=30°.∵BF∥AC,∴∠CBF=∠BCA=45°,∴∠ BCF=180°-∠CBF- ∠CFE=180°-45 °-30 °=105°.)19.5(解析:共有5 个点.在正方形内,正方形的两条对角线的交点;在正方形外,分别以四条边为一边再作四个正方形,每个正方形的两条对角线交点也符合条件.)20. 解:(1)如下表:数据段频数频率30~40 10 0.0540~50 36 0.1850~60 78 0.3960~70 56 0.2870~80 20 0.10合计200 1(2)频率分布直方图如图所示. (3)违章车辆共有200 ×(0.28+0.10)=76( 辆).21. 解:作AE⊥BC 于E,过点 D 作DF ⊥BC 于F,=S△ABE++S△CDF=×2×5+×(4+5) ×4+×1×4=5+18+2=25 .22. 解:(1)∵一次函数y=( m+3) x+ m2-16,且y的值随x值的增大而增大,∴ m+3>0,得出m>-3.(2)又∵此一次函数又是正比例函数,∴m2-16=0,解得m = ±4.∵ m>-3, ∴m=4.23. (1)证明:在△CAD 中,∵M,N 分别是AC,CD 的中点,∴MN ∥AD ,MN =AD.在Rt △ABC 中,∵M 是AC的中点,∴ BM = AC. ∵AC = AD ,∴ MN = BM. (2)解:∵∠ BAD =60°,AC 平分∠BAD ,∴∠ BAC =∠DAC =30°.由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°.∵MN∥AD,∴∠NMC = ∠DAC=30°,∴∠ BMN =∠BMC +∠NMC =90°,∴ BN 2= BM 2+ MN 2,由(1)可知MN =BM =AC =1,∴ BN = .24. 解:(1)由函数图像,得方案一中每张倡议书的价格是:50 1÷00=0.5(元),方案二中租赁机器的费用是:120 元.故填0.5,120. (2)设y1=kx,y2=k2x+b,由题意,得50=100 k,解得k=0.5,∴y1=0.5x,y2=0.3x+120. (3)当y1>y2时,0.5x >0 .3x+120,解得x>600;当y1=y2 时,0.5x=0.3x+120,解得x=600;当y1<y2时,0.5x<0.3x+120,解得x<600 .综上所述,当x<600时, 方案一优惠;当x=600 时,两种方案一样优惠;当x>600 时方案二优惠.25. 解:(1)四边形BNDM 是平行四边形.证明如下:∵O是BD 的中点,∴OB=OD.∵NO=MO ,∴四边形BNDM 是平行四边形. (2)四边形BNDM 是菱形.理由如下:∵∠ABC =∠ADC =90°,M 是AC的中点,∴BM=AC,DM=AC,∴BM=DM. ∴平行四边形BNDM 是菱形.26. 解:(1)如图(1)所示,当x=2时,AP=2 cm .∵四边形ABCD 是正方形,∴AB=BC=CD=AD=4 cm,∠B=∠D=∠C=90°.∴S△AMP=×2×4=4(cm2). (2)如图(2)所示,当4<x≤8时,BP=x- 4,PC=8-x,∴S△ABP=×4(x-4)=2x-8,S△PCM=×2×(8-x)=8-x,S△ADM =×2×4=4,∴y=16-4-(2x-8)-(8-x)=12-x.∴在点P 运动4秒后至8 秒这段时间内,y 与x 的函数关系式为y=12- x. (3)当0<x≤4 时,y=×4x=2x;当4<x ≤8 时,y=12-x,当8<x≤10时,如图(3)所示,y=20-2x,当10< x≤12 时,如图所示,y=2x-20,∴y= ∴当y=3 时,有2x=3,12-x=3,20-2x=3 或2x-20=3,解得x=, x =9(不成立),x=8.5或x=11.5.∴在点P 整个运动过程中,当x=1.5,x=8.5或x =11 .5 时,y=3.。

相关文档
最新文档