高中数学《计数原理》(理)知识点串讲

合集下载

高中数学选修第一章计数原理全章复习与小结教学课件人教版ppt课件

高中数学选修第一章计数原理全章复习与小结教学课件人教版ppt课件
A33 6(种)
涂色问题
例3:如图,要给地图A、B、C、D四个区域分别涂上3种不同 颜色中的某一种,允许同一种颜色使用多次,但相邻区域必须涂 不同的颜色,不同的涂色方案有多少种?
若用2色、4色、5色等,结果 又怎样呢?
涂色问题
例、某城市在中心广场建造一个花圃,花圃分为6个 部分(如右图)现要栽种4种不同颜色的花,每部分 栽种一种且相邻部分不能栽种同样颜色的花,不同的 栽种方法有______种.(以数字作答)
C42C
2 2
A22

A22
问题3:三名教师教六个班的课,每人至少教一个班,
分配方案共有多少种?

C
61C
52C
3 3
+C
4 6

C
C 1 1
21
A22
+
C
62C
42C
2 2
A33

A33
多个分给少个时,采用先分组再分配的策 略
练习: (1)今有10件不同奖品,从中选6件分成三份, 二份各1件,另一份4件, 有多 少种分法?
数叫做从n个不同元素中取出m个元素的组合数。用符号 表示.
C
m n
组合数公式:
C
m n

nn 1n 2n m 1
m!

n!
m!n m !
其中: n, m N * , 并 且m n.
判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺 序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什 么”.
(2)证明:310 39 C110 38 C120 37 C130 36 C140 35 C150

高二数学计数原理知识点总结归纳

高二数学计数原理知识点总结归纳

高二数学计数原理知识点总结归纳1. 排列与组合在数学中,排列与组合是计数原理的基本概念。

排列表示对给定的一组元素进行有序的安排,而组合则表示选取给定集合中的若干元素的无序集合。

2. 排列排列是从一个给定的元素集合中选取出一些元素按照一定的顺序进行排列的算法。

根据排列的性质,可以分为两种类型:有重复元素的排列和无重复元素的排列。

2.1 有重复元素的排列设有 n 个元素中,其中有 m1个元素相同,m2个元素相同,...,mk 个元素相同。

则排列数 P 的计算公式为:P = n! / (m1! * m2! * ... * mk!)2.2 无重复元素的排列设有 n 个不同的元素要进行排列,选取其中 r 个元素进行排列的方式,计算排列数的公式为:P = n! / (n - r)!3. 组合组合是从一个给定的元素集合中选取出若干元素的无序集合。

与排列不同的是,组合不考虑元素的顺序。

根据组合的性质,可以分为两种类型:有重复元素的组合和无重复元素的组合。

3.1 有重复元素的组合设有 n 个元素中,其中有 m1 个元素相同,m2 个元素相同,...,mk 个元素相同。

则组合数 C 的计算公式为:C = (n + 1)! / (m1! * m2! * ... * mk! * (n - m1 - m2 - ... - mk)!)3.2 无重复元素的组合设有 n 个不同的元素要进行组合,选取其中 r 个元素进行组合的方式,计算组合数的公式为:C = n! / (r! * (n - r)!)4. 二项式定理二项式定理是数学中一个重要的公式,它描述了两个数的二次方的展开式中,各个项的系数与指数之间的关系。

二项式定理的公式如下:(a + b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + ... + C(n, r) *a^(n-r) * b^r + ... + C(n, n) * a^0 * b^n其中,C(n, r) 表示了 n 中取 r 的组合数。

2025届高中数学一轮复习课件《计数原理》ppt

2025届高中数学一轮复习课件《计数原理》ppt

高考一轮总复习•数学
第20页
解析:(1)因为学生只能从东门或西门进入校园, 所以 3 名学生进入校园的方式共 23= 8(种).因为教师只可以从南门或北门进入校园, 所以 2 名教师进入校园的方式共有 22= 4(种).所以 2 名教师和 3 名学生进入校园的方式共有 8×4=32(种).故选 D.
A.12 种 B.24 种 C.72 种 D.216 种
高考一轮总复习•数学
第15页
(2)设 I={1,2,3,4},A 与 B 是 I 的子集,若 A∩B={1,2},则称(A,B)为一个“理想配集”.若
将(A,B)与(B,A)看成不同的“理想配集”,
按其中一个子集中元素个数分类23个个;; 4个.
即十位数字最小. 称该数为“驼峰数”.比如 102,546 为“驼峰数”,由数字 1,2,3,4 构成的无重复数字 的“驼峰数”有________个.
高考一轮总复习•数学
第22页
解析:(1)由分步乘法计数原理知,用 0,1,…,9 十个数字组成三位数(可有重复数字) 的个数为 9×10×10=900,组成没有重复数字的三位数的个数为 9×9×8=648,则组成有 重复数字的三位数的个数为 900-648=252.故选 B.
(2)根据题意知,a,b,c 的取值范围都是区间[7,14]中的 8 个整数,故公差 d 的范围是区 间[-3,3]中的整数.①当公差 d=0 时,有 C18=8(种);②当公差 d=±1 时,b 不取 7 和 14, 有 2×C16=12(种);③当公差 d=±2 时,b 不取 7,8,13,14,有 2×C14=8(种);④当公差 d=±3 时,b 只能取 10 或 11,有 2×C12=4(种).综上,共有 8+12+8+4=32(种)不同的分珠计数 法.

高中数学知识点总结 计数原理

高中数学知识点总结 计数原理

高中数学知识点总结计数原理一、分类加法计数原理和分步乘法计数原理1.分类加法计数原理和分步乘法计数原理【注意】区分分类与分步的依据在于“一次性”完成.若能“一次性”完成,则不需分步,只需分类;否则就分步处理.2.两个计数原理的区别与联系123,,,,{}n a a a a 的子集有2n 个,真子集有21n -个.二、排列1.排列的定义一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. 特别提醒确定一个具体问题是否为排列问题的方法:(1)首先要保证元素的无重复性,即是从n 个不同元素中取出m (m ≤n )个不同的元素,否则不是排列问题.(2)其次要保证元素的有序性,即安排这m 个元素时是有顺序的,有序的就是排列,无序的不是排列.而检验它是否有顺序的依据是变换元素的位置,看结果是否发生变化,有变化就是有顺序,无变化就是无顺序.2.解决排列应用问题的步骤:(1)分清问题是否与元素的顺序有关,若与顺序有关则是排列问题.(2)注意对元素或位置有无特殊要求.(3)借助排列数公式计算. 特别提醒当问题的正面分类较多或计算较复杂,而问题的反面分类较少或计算更简便时往往使用“间接法”.含“至多”、“至少”类词语的排列(组合)问题,是需要分类问题,常用间接法(即排除法)解答.这时可以先不考虑特殊元素(位置),而列出所有元素的全排列数,从中再减去不满足特殊元素(位置)要求的排列数,即排除法.3.排列数、排列数公式从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数叫做从n 个不同元素中取出m 个元素的排列数,用符号A mn 表示.特别提醒排列与排列数是两个不同的概念,一个排列是指“按照一定的顺序排成一列”,它是具体的一件事,排列数是指“从n 个不同元素中取出()m m n ≤个元素的所有不同排列的个数”,它是一个数.三、组合1.组合的定义一般地,从n 个不同元素中取出()m m n ≤个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合.特别提醒解答排列、组合综合问题的一般思路和注意点:(1)一般思路:“先选后排”,也就是把符合题意的元素都选出来,再对元素或位置进行排列.(2)注意点:①元素是否有序是区分排列与组合的基本方法,元素无序是组合问题,元素有序是排列问题.②对于有多个限制条件的复杂问题,应认真分析每个限制条件,然后再考虑是分类还是分步,这是处理排列、组合的综合问题的一般方法.3.组合数的性质性质1:C C m n m n n-=. 性质1表明从n 个不同元素中取出m 个元素的组合,与剩下的n m -个元素的组合是一一对应关系.性质2:11C C C m m m n n n-+=+. 性质2表明从1n +个不同元素中任取m 个元素的组合,可以分为两类:第1类,取出的m 个元素中不含某个元素a 的组合,只需在除去元素a 的其余n 个元素中任取m 个即可,有C mn 个组合;第2类,取出的m 个元素中含有某个元素a 的组合,只需在除去a 的其余n 个元素中任取1m -个后再取出元素a 即可,有1C m n-个组合.四、二项式定理1.二项式定理 011()C C C C ()n n n k n k k n n n n n na b a a b a b b n --*+=+++++∈L L N ,这个公式叫做二项式定理,等号右边的多项式叫做()n a b +的二项展开式,共有n +1项,其中各项的系数C ({0,1,2,,})kn k n ∈L 叫做二项式系数.二项展开式中的C k n k k n a b -叫做二项展开式的通项,用1k T +表示,即通项为展开式的第1k +项:1C k n k k k nT a b -+=. 2.二项式系数的性质(4)奇数项的二项式系数之和等于偶数项的二项式系数之和,即2131C C C C 2n n n n n -++=++=L L . 特别提醒求二项展开式的特定项问题,实质是考查通项的特点,一般需要建立方程求k,再将k 的值代回通项求解,注意k的取值范围(0,1,2,,L).k n(1)第m项::此时k+1=m,直接代入通项.(2)常数项:即这项中不含“变元”,令通项中“变元”的幂指数为0建立方程.(3)有理项:令通项中“变元”的幂指数为整数建立方程.。

数学高考知识点计数原理

数学高考知识点计数原理

数学高考知识点计数原理在高中数学中,计数原理是一个重要的知识点。

它涉及到如何统计和计算事件的可能结果数量,是很多概率和组合问题的基础。

本文将从排列、组合和种类等角度介绍计数原理的相关内容。

一、排列和组合在计数原理中,排列和组合是两个常见的概念。

排列指的是从一组元素中按照一定顺序选择若干个元素进行排列,而组合指的是从一组元素中选择若干个元素进行组合,顺序不重要。

1. 排列排列的计算是根据不同情况下元素选择的方式。

假设有n个元素,需要从中选取r个元素进行排列,那么计算排列数的公式为P(n, r) = n! / (n - r)!。

其中n!表示阶乘,即n!= n × (n - 1) × (n -2) … × 2 × 1。

2. 组合组合的计算是根据选择元素的方式,顺序不考虑。

同样假设有n个元素,需要从中选取r个元素进行组合,那么计算组合数的公式为C(n, r) = n! / (r! × (n - r)!)。

二、计数原理的应用计数原理的应用在高考中经常出现,下面以几个例子来介绍如何应用计数原理解决问题。

1. 乒乓球比赛某乒乓球比赛中,共有6名选手,每轮比赛两两对阵,两名选手按顺序开始比赛。

要求分别计算比赛进行了多少轮和总共进行了多少场比赛。

解析:每一场比赛是由两名选手来进行的,所以总场数等于选手人数除以2的商。

即6 / 2 = 3,所以比赛总共进行了3场。

而每一轮比赛都会淘汰一名选手,所以轮数等于选手的人数减一。

即6 - 1 = 5,所以比赛进行了5轮。

2. 数字密码某门锁的密码由4位数字组成,这些数字来自0-9这10个数字。

不允许重复数字,那么总共有多少种可能的密码?解析:第一位数字有10种选择,第二位数字有9种,第三位数字有8种,第四位数字有7种。

根据乘法原理,总共的可能性为10 × 9 × 8 × 7 = 5040种。

三、计数原理的延伸除了排列和组合,计数原理还可以应用在更复杂的问题中,例如种类问题。

高考数学计数原理知识点

高考数学计数原理知识点

高考数学计数原理知识点数学是高考中的一门重要科目,其中计数原理是数学中的一个重要知识点。

计数原理用于解决计数问题,是数学中的基础工具。

在高考中,计数原理常常出现在复合概率、组合数学等题目中。

掌握计数原理的知识点对于高分通过高考数学是非常重要的。

下面将介绍一些常见的计数原理知识点。

一、排列和组合排列是指从一组元素中选取若干元素进行有序排列的方式。

对于n个元素,从中选取k个元素进行排列,可以得到 nPk 种不同的排列,其中P表示排列。

组合是指从一组元素中选取若干元素进行无序选择的方式。

对于n个元素,从中选取k个元素进行组合,可以得到 nCk 种不同的组合,其中C表示组合。

排列和组合的计算公式如下:nPk = n! / (n-k)!nCk = n! / (k!(n-k)!)其中n!表示n的阶乘,即n! = n(n-1)(n-2)...3*2*1。

通过排列和组合的计算公式,我们可以快速计算出排列和组合的结果,而不用逐个枚举。

二、乘法原理和加法原理乘法原理是指若一个事件发生的方式有m种,而另一个事件发生的方式有n种,且这两个事件的发生方式相互独立,那么这两个事件同时发生的方式有m * n种。

加法原理是指若一个事件发生的方式有m种,而另一个事件发生的方式有n种,且这两个事件的发生方式互斥(即两者不能同时发生),那么这两个事件发生的方式有m + n种。

乘法原理和加法原理是解决计数问题的基本原理,它们在计数原理中有着广泛的应用。

通过灵活运用乘法原理和加法原理,我们可以简化计数问题的解决过程,提高解题效率。

三、重复排列和重复组合重复排列是指从n个元素中选择k个元素进行有序排列,允许元素重复出现的方式。

对于重复排列,共有 n^k 种不同的排列方式。

重复组合是指从n个元素中选择k个元素进行无序组合,允许元素重复出现的方式。

对于重复组合,共有C(n+k-1, k)种不同的组合方式。

通过重复排列和重复组合的计算公式,我们可以快速计算出重复排列和重复组合的结果,进而解决相关的计数问题。

高中数学计数原理知识点总结

高中数学计数原理知识点总结

高中数学计数原理知识点总结高中数学计数原理知识点总结如下:1. 计数原理:分类加法计数原理:完成一件事情,有n类方式,第一类有m1种方法,第二类有m2种方法,……,第n类有mn种方法,则完成这件事情共有N=m1+m2+...+mn种方法。

分步乘法计数原理:完成一件事情,需要分成n个步骤,第一步有m1种方法,第二步有m2种方法,……,第n步有mn种方法,则完成这件事情共有N=m1×m2×...×mn种方法。

2. 排列:从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列,叫做从n个元素中取出m个元素的一个排列。

所有排列的个数记作A(n,m)或anm,规定0≤m≤n。

3. 组合:从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个元素中取出m个元素的一个组合。

所有组合的个数记作C(n,m)或cnm,规定0≤m≤n。

C(n,m)=n!/(n-m)!C(n,m)=C(n,n-m)C(n,k)=C(n-1,k-1)+C(n-1,k)4. 二项式定理:(a+b)n的展开式为:二项式系数:C(n,k)=n!/[(n-k)!k!]展开式一共有n+1项各项系数为二项式系数各项次数之和等于(a+b)的次数5. 特殊项的二项式定理:当a=b=1时,(1+1)n=2n的展开式为:当k=0时,项为:1当k=1时,项为:n+1当k=2时,项为:C(n,2)+3C(n,3)/2!当k=3时,项为:C(n,3)+8C(n,4)/3!当k=4时,项为:C(n,4)+15C(n,5)/4!以上是高中数学计数原理知识点总结。

希望对您有帮助。

计数原理知识梳理-2024届高三数学一轮复习

计数原理知识梳理-2024届高三数学一轮复习

计数原理知识梳理一、两个原理1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N = 种不同的方法.推广:如果完成一件事有n 类不同方案,在第1类方案中有m 1种不同的方法,在第2类方案中有m 2种不同的方法,…,在第n 类方案中有m n 种不同的方法,那么完成这件事的方法总数为:N =m 1+m 2+…+m n .2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N = 种不同的方法.推广:如果完成一件事需要n 个步骤,做第1步有m 1种不同的方法,做第2步有m 2种不同的方法,…,做第n 步有m n 种不同的方法,那么完成这件事的方法总数为:N =m 1×m 2×…×m n .(1)将一个比较复杂的问题分解为若干个“类别”,先分类解决,然后将其整合,如何合理进行分类是解决问题的关键.(2)要准确把握分类加法计数原理的两个特点:①根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏; ②分类时,注意完成这件事情的任何一种方法必须属于某一类,不能重复; ③对于分类问题所含类型较多时也可考虑使用间接法. 5.利用分步乘法计数原理解决问题时要注意:(1)要按事件发生的过程合理分步,即考虑分步的先后顺序.(2)各步中的方法互相依存,缺一不可,只有各步骤都完成才算完成这个事件. (3)对完成各步的方法数要准确确定. 6. 应用两种原理解题要注意 (1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成,“类”间互相独立,“步”间互相联系; (3)有无特殊条件的限制; (4)检验是否有重漏.7.与两个计数原理有关问题的解题策略(1)在综合应用两个原理解决问题时,一般是先分类再分步,但在分步时可能又会用到分类加法计数原理. (2)对于较复杂的两个原理综合应用的问题,可恰当借助列表、画图的方法来帮助分析,使问题形象化、直观化.二、排列与组合 1.排列;如果与顺序无关,则是组合. 2.排列数、组合数的定义、公式、性质全排列:n 个不同元素全部取出的一个排列,全排列数公式:所有全排列的个数,即(1)(2)21!nn A n n n n =⨯-⨯-⋅⋅⋅⨯⨯=.3.排列、组合问题的求解常用方法与技巧解排列组合综合问题,先选后排法是解答排列、组合应用问题的根本方法,具体有下面几种常用方法: (1)特殊元素或特殊位置优先法:从元素入手时,先给特殊元素安排位置,再把其他元素安排在其他位置上;从位置入手时,先安排特殊位置,再安排其他位置.优先安排.(2)相邻问题捆绑法:把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列. (3)相间问题插空法:对不相邻问题,先将不相邻元素以外的“普通”元素全排列,然后在“普通”元素之间及两端插入不相邻元素.(4)定序问题倍除法:对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列. (5)多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理. (6)分球问题隔板法:相同元素的分配问题常用“隔板法”,每组至少一个.(7) 分组分配问题的策略:对于不等分问题,首先要对分配数量的可能情形进行一一列举,然后再对每一种情形分类考虑.对于整体均分,分组后一定要除以A n n (n 为均分的组数),避免重复计数.对于部分均分,若有m 组元素个数相等,则分组时应除以m !.(8)间接法:正难则反、等价转化的方法,比如“至少”或“至多”含有几个元素的题型. 三、二项式定理 1.二项式定理(1)二项式定理:(a +b )n =(n ∈N *),等号右边的式子称为()na b +的二项展开式.(2)通项公式:T k +1= ,它表示第 项;注意:(a +b )n 与(b +a )n 虽然相同,但用二项式定理展开后,具体到它们展开式的某一项时是不相同的,一定要注意顺序问题. 2.二项展开式的特征:(1)二项展开式共有 项;(2)二项式系数依次为组合数012,,,,,,knn n n n n C C C C C ⋅⋅⋅⋅⋅⋅;(3)各项次数都等于二项式的幂指数n ;(4)字母a 的指数由n 开始按降幂排列到0,b 的指数由0开始按升幂排列到n . 注意:二项式系数与项的系数是完全不同的两个概念.二项式系数是特指相应的组合数C 0n ,C 1n ,…,C n n ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关. 3.4.(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n = .(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…= .5.求二项展开式中特定项(或系数)的步骤第一步,利用二项式定理写出二项展开式的通项T k +1=C k n a n -k b k,把字母和系数分离开(注意符号不要出错);第二步,根据题目中的相关条件(如常数项要求指数为零,有理项要求指数为整数)先列出相应方程(组)或不等式(组),解出k ;第三步,把k 代入通项中,即可求出T k +1,有时还需要先求n ,再求k ,才能求出T k +1或者其他量. 6.求三项展开式中某些特定项(或系数)的策略(1)通过变形先把三项式转化为二项式,再用二项式定理求解. (2)两次利用二项式定理的通项求解.(3)由二项式定理的推证方法知,可用排列、组合的基本原理去求,即把三项式看作几个因式之积,要得到特定项看有多少种方法从这几个因式中取因式中的量.7.二项式定理中的字母可取任意数或式,在解题时根据题意给字母赋值是求解二项展开式各项系数和的一种重要方法.(1)“赋值法”普遍适用于恒等式,是一种重要的方法.对形如(ax +b )n ,(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n (a ,b ∈R )的式子求其展开式的各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n ,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.8.二项展开式中系数最大项的求法如求(a +bx )n (a ,b ∈R )的展开式系数最大的项,一般是采用待定系数法.设展开式各项系数分别为A 1,A 2,…,A n +1,且第k 项系数最大,应用⎩⎪⎨⎪⎧A k ≥A k -1,A k ≥A k +1,注意解出k 后要检验首末两项.。

计数原理高三知识点

计数原理高三知识点

计数原理高三知识点计数原理是离散数学的一个重要内容,也是高三数学中的一项重要知识点。

在学习计数原理时,我们需要了解基本的概念和原理,并学会应用相关的计数方法。

本文将以简洁明了的方式介绍计数原理的相关知识点。

一、排列与组合排列与组合是计数原理的基础,我们先来了解一下这两个概念。

1. 排列排列是指从一组事物中按照一定的顺序选取若干个事物进行排序的方式。

一般来说,排列分为有限排列和无限排列两种情况。

有限排列不允许重复选取,而无限排列允许重复选取。

2. 组合组合是指从一组事物中选取若干个事物进行组合的方式,不考虑事物的顺序。

同样,组合也分为有限组合和无限组合两种情况。

有限组合不允许重复选取,而无限组合允许重复选取。

在解决具体问题时,我们需要根据题目的情况选择使用排列或组合的方法进行计算,正确地理解题目中的条件和要求是解题的关键。

二、加法原理和乘法原理加法原理和乘法原理是计数原理中的基本原理,它们在解决复杂的计数问题时起到了重要的作用。

1. 加法原理加法原理是指对于两个同时发生的事件,其总数等于每个事件发生的情况数之和。

换句话说,当我们需要计算多种情况的总数时,可以将每种情况的数目相加得到结果。

2. 乘法原理乘法原理是指对于两个依次发生的事件,其总数等于每个事件发生的情况数相乘。

换句话说,当我们需要计算多个事件连续发生的情况总数时,可以将每个事件发生的情况数相乘得到结果。

通过灵活运用加法原理和乘法原理,我们可以解决更加复杂的计数问题,例如排队问题、密码问题等。

三、置换与组合的计算公式在计数原理中,我们还需要了解排列和组合的计算公式,以便可以快速地计算出特定情况下的排列和组合总数。

1. 排列计算公式排列计算公式表示从 n 个不同的元素中,取出 m 个元素进行排列的情况总数。

公式如下所示:P(n, m) = n! / (n - m)!其中,n! 表示 n 的阶乘,表示将 n 个数从大到小相乘的结果。

2. 组合计算公式组合计算公式表示从 n 个不同的元素中,取出 m 个元素进行组合的情况总数。

专题04计数原理(考点串讲)高二数学下学期期末考点大串讲(2020选修)

专题04计数原理(考点串讲)高二数学下学期期末考点大串讲(2020选修)
A88-A66·A33.故选 B.
易错点02
忽视排列数公式的隐含条件致误
【例 2】解不等式:A8x<6A8x-2.


A8x<6A8x-2,得
8!
8!
<6×
,2≤x≤8,
(8-x)

(10-x)

化简得 x2-19x+84<0,解得 7<x<12,
所以 7<x≤8.
由 x∈N *,得 x=8.
易错点03
T3=(-1)2C42 52x=150x.
3
③由②得,4- k∈Z(k=0,1,2,3,4),即 k所有的有理项为
T1=(-1)0C40 54x4=625x4,
T3=(-1)2C42 52x=150x,
T5=(-1)4C44 50x-2=x-2.
方法技巧应用二项式定理解题要注意的问题
n!
-m+1)=

n-m!
m!
m!n-m!
0
n
m
C
=C
n=1;
当 m=n 时,An 为全排 n
m
n-m
性质
C
=C
n
n ;
n
列 An=n!;0!=1
m
m-1
Cn +Cn =Cmn+1
备注
n,m∈N*且 m≤n
4.二项式定理
(1)与二项式定理有关:包括定理的正向应用、逆向应用,题型如证
明整除性、证明一些简单的组合恒等式等,此时主要是要构造二项式,
第2步,再将4个舞蹈节目排在一头一尾或两个节目中间(即图中“×”的位置),
这样相当于7个“×”选4个来排,一共有
根据分步乘法计数原理,

(完整版)高中数学计数原理知识点总结及练习教案-学生.docx

(完整版)高中数学计数原理知识点总结及练习教案-学生.docx

教:学生:: _ 2016_年 __月日段第 __次教学生姓名上日期月日学科数学年高二教材版本人教版型知解:√考解:√本人第()共()学案主修 2-3 第一章《数原理》复数量第()授段教学目1.明确分和分步数原理及用;2.掌握排列合概念和算,以及二式定理和用教学重点、排列合及数原理的用。

点掌握二式定理和用。

知点复【知点梳理】数原理基本知点1. 分数原理:做一件事情,完成它可以有n 法,在第一法中有m1种不同的方法,在第二法中有 m2种不同的方法,⋯⋯,在第n 法中有m n种不同的方法那么完成件事共有N m1 m2L m n种不同的方法2.分步数原理:做一件事情,完成它需要分成n 个步,做第一步有m1种不同的方法,做第二步有m2种不同的方法,⋯⋯,做第n 步有m n种不同的方法,那么完成件事有N m1 m2L m种n不同的方法3.排列的概念:从n个不同元素中,任取m (m n )个元素(里的被取元素各不相同)按照一定..的序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.......4.排列数的定:从n个不同元素中,任取m ( m n )个元素的所有排列的个数叫做从n 个元素中教学程A n m表示取出 m 元素的排列数,用符号5.排列数公式:A n m n( n1)(n 2)L( n m 1) ( m, n N ,m n )6乘: n! 表示正整数1到n的乘,叫做n的乘定 0! 1.7.排列数的另一个算公式:A n m=n!.(n m)!8 合的概念:一般地,从n个不同元素中取出m m n 个元素并成一,叫做从n 个不同元素中取出 m 个元素的一个合9m m n个元素的所有合的个数,叫做从 n 个不同元素.合数的概念:从 n 个不同元素中取出中取出 m 个元素的合数.用符号m表示....C nm A n m n(n1)(n2)L(n m1)m n!N ,且m n) 10.合数公式:C n或 C n( n, mA m m m!m! (n m)!11 合数的性 1: C n m C n n m . 定: C n 01;12. 合数的性2: C n m 1 = C n m +C n m 11.二 式定理及其特例:(1) (a b)n C n 0a n C n 1a n b L C n r a n r b r L C n n b n (nN ) ,(2) (1 x)n1 C n 1 x L C n r x rLx n .2.二 展开式的通 公式:T r1C n r a n r b r3.求常数 、有理 和系数最大的 ,要根据通 公式r 的限制;求有理 要注意到指数及 数的整数性4.二 式系数表( 三角)(a b)n 展开式的二 式系数,当n 依次取 1,2,3 ⋯ ,二 式系数表,表中每行两端都是1,除 以外1的每一个数都等于它肩上两个数的和 5.二 式系数的性 :(1) 称性.与首末两端“等距离”的两个二 式系数相等(∵C nmC n n m ).直 rn是 象的2称 .nn 1n 1(2)增减性与最大 : 当 n是偶数 , 中 一 C n 2 取得最大 ; 当 n 是奇数 , 中 两 C n 2,C n2取得最大 . (3)各二 式系数和:∵ (1 x)n1 C n 1 x L C n r x rL x n ,令 x 1 , 2n C n 0C n 1 C n 2L C n r L C n n[特 提醒]1. 在运用二 式定理 一定要牢 通 公式Tr 1 C n r a n r b r ,注意 ( a b) n 与 (b a)n 然相同,但具 体到它 展开式的某一面 却是不相同的,所以我 一定要注意 序 。

高中数学《计数原理》知识点讲解附真题PPT课件

高中数学《计数原理》知识点讲解附真题PPT课件

方法,故共有5×
A
6 6
=3
600(种)方法.
(4)(捆绑法)将女生看成一个整体,与3名男生在一起进行全排列,有
A
4 4
种方
法,再将4名女生进行全排列,有
A
4 4
种方法,故共有
A
4 4
·A
4 4
=576(种)方法.
(5)(插空法)男生互不相邻,而女生不作要求,∴应先排女生,有
A
4 4
种方法,再
在女生之间及首尾空出的5个空位中任选3个空位排男生,有 A35 种方法,故
解题导引 (1)2节数学相邻,相邻问题捆绑解决,不相邻问题插空解决,优先 考虑无限定课程,再将物理、化学插空排.(2)A,E可看成一项任务,由于A必 须在前三项执行,故先对A,E分类,最后排B,C,将B,C插空排列即可.
解析 (1)根据题意,分2步进行分析:①将两节数学课“捆”在一起与语文
课先进行排列,有
高考数学
第十章 计数原理 §10.1 计数原理与排列、组合
考点清单
考点 计数原理、排列、组合
1.两个计数原理的联系与区别
原理
分类加法计数原理
分步乘法计数原理
联系
两个计数原理都是对完成一件事的方法种数而言的
区别一
每类办法都能独立完成这件事, 它是独立的、一次的,且每次得 到的是最后结果,只需一种方法 就可完成这件事
=④
n! m!(n-m)!
.(n,m∈N*,且m≤n)
(1)0!=1;(2)
C0n
=n!;(3)
A
n n
=⑥
C
m n
C ;(4)
Cnn
-m
=Cm n1

计数原理高三数学知识点

计数原理高三数学知识点

计数原理高三数学知识点计数原理是高三数学中的一个重要知识点,主要涉及到排列组合和概率统计方面的内容。

本文将对计数原理进行详细的介绍和讲解。

1. 基本概念计数原理是研究事物的计数方法和规律的数学理论。

在高三数学中,计数原理主要包括排列和组合两个部分。

2. 排列排列是指从一组元素中按照一定的顺序抽取若干个元素进行排列的方法。

排列的计算公式为:P(n, m) = n! / (n - m)!其中,P表示排列数,n表示一组元素的个数,m表示抽取的元素个数。

排列的应用场景非常广泛,比如从一组数字中选取若干个数字进行排列,从一组人员中选取若干人进行排列等等。

3. 组合组合是指从一组元素中按照一定的顺序抽取若干个元素形成一个集合的方法。

组合的计算公式为:C(n, m) = n! / [(n - m)! * m!]其中,C表示组合数,n表示一组元素的个数,m表示抽取的元素个数。

组合的应用场景也非常广泛,比如从一组数字中选取若干个数字形成一个集合,从一组人员中选取若干人形成一个小组等等。

4. 基本性质排列和组合都具有一些基本的性质,这些性质对于解题非常重要,需要牢记。

以下是一些常用的性质:(1)互补性原理:P(n, m) = C(n, m) * m!在排列中,从一组元素中选取m个进行排列,即为P(n, m);而在组合中,从一组元素中选取m个形成一个集合,然后对这个集合进行排列,即为C(n, m) * m!。

(2)和原理:C(n, m) = C(n - 1, m - 1) + C(n - 1, m)在组合中,C(n, m)表示从一组元素中选取m个形成一个集合的数目。

根据和原理,可以将这个问题分解成两个子问题,分别是从前n-1个元素中选取m-1个的集合和从前n-1个元素中选取m个的集合。

由此可得,C(n, m) = C(n - 1, m - 1) + C(n - 1, m)。

5. 概率统计中的计数原理计数原理在概率统计中也有广泛的应用。

高考计数原理知识点

高考计数原理知识点

高考计数原理知识点计数原理作为高考数学中的一个重要知识点,无论在高考试卷中还是在日常生活中都具有广泛的应用。

本文将介绍高考计数原理的相关知识点,帮助同学们更好地掌握这一内容。

一、基本定义计数原理是数学中研究计算数量的方法和技巧的一门学科,主要研究集合中元素的数量问题。

在高考中,常用的计数原理包括排列、组合、多重集合和分配原理等。

二、排列1. 定义排列是从给定的元素中选取若干个元素按照一定的顺序排列的方式。

在高考中,常用的排列公式是Amn = n! / (n-m)!,其中n表示元素的总数,m表示选取的元素个数。

2. 排列的性质a. 排列中元素的顺序不同,即使选取的元素相同,排列的结果也是不同的。

b. 当选取的元素个数等于元素的总数时,排列的结果即为全排列。

c. 当选取的元素个数小于元素的总数时,排列的结果即为部分排列。

三、组合1. 定义组合是从给定的元素中选取若干个元素按照一定的顺序排列的方式。

与排列不同的是,组合中元素的顺序不重要。

在高考中,常用的组合公式是Cmn = n! / (m!(n-m)!),其中n表示元素的总数,m表示选取的元素个数。

2. 组合的性质a. 组合中元素的顺序不同,选取的元素相同,组合的结果是相同的。

b. 当选取的元素个数等于元素的总数时,组合的结果即为全组合。

c. 当选取的元素个数小于元素的总数时,组合的结果即为部分组合。

四、多重集合1. 定义多重集合是指集合中元素可以出现多次的情况。

在高考中,常用的多重集合问题可以使用组合公式进行求解。

2. 多重集合的性质a. 多重集合中元素可以出现多次,且顺序不重要。

b. 多重集合的排列问题可以转化为组合问题进行求解。

五、分配原理1. 定义分配原理是计数原理中的一个重要概念,它用于解决将若干物品分配给若干人的问题。

在高考中,常用的分配原理可以用于解决分配座位、奖项等相关问题。

2. 分配原理的性质a. 如果有m个物品需要分配给n个人,且物品和人之间没有特殊的要求,那么每个人至少分得一个物品的方案数为n^m。

高三计数原理知识点

高三计数原理知识点

高三计数原理知识点一、基本概念计数原理是概率论的一个基本分支,主要研究计数问题。

在概率论和组合数学中,计数原理用于确定某个事件发生的可能性,并通过计算不同情况的组合、排列或选择的方式来解决问题。

下面将介绍一些高三计数原理的基本知识点。

二、排列与组合1. 排列在计数原理中,排列是指从给定对象的集合中选择特定数量的对象,按照一定的顺序进行排列。

排列的计算公式为:nPr = n! / (n - r)!其中,n代表集合中的对象数量,r代表选取的对象数量。

2. 组合组合是指从给定对象的集合中选择特定数量的对象,不考虑顺序。

组合的计算公式为:nCr = n! / (r! * (n - r)!)其中,n代表集合中的对象数量,r代表选取的对象数量。

三、二项式定理二项式定理是计数原理中的重要定理,它描述了将两个项相加的n次幂展开的形式。

二项式定理可以用来计算排列和组合中的项数。

二项式定理的公式为:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + ... + C(n,n) * a^0 * b^n其中,C(n,r)表示从n个对象中选择r个对象的组合数。

四、鸽笼原理鸽笼原理是指将n+1只鸽子放入n个笼子中,那么至少会有一个笼子中有两只或两只以上的鸽子。

这个原理在计数问题中经常被使用,特别是在解决抽屉原理问题时。

鸽笼原理可以简单地表述为:当物体数量超过容器数量时,必定会出现至少一个容器内包含多个物体。

五、应用举例1. 出题排列组合问题小明手中有10个不同的球,他将其中5个排成一排。

请问共有多少种排列方式?解答:根据排列的计算公式,可以得知共有10P5 = 10! / (10 - 5)! = 30240 种排列方式。

2. 场次排列问题某足球比赛有8个球队参加,其中有4个比赛场次。

请问共有多少种比赛场次的安排方式?解答:根据排列的计算公式,可以得知共有8P4 = 8! / (8 - 4)! = 1680 种比赛场次的安排方式。

计数原理知识点高二下册

计数原理知识点高二下册

计数原理知识点高二下册一、引言计数原理是高中数学中的重要知识点,在高二下册中学习。

它是数学中的基础概念,对于数学的发展和应用具有重要意义。

本文将从基本概念、计数方法及应用等方面进行讲解,以帮助读者理解和掌握计数原理知识。

二、基本概念1. 事件与样本空间计数原理研究的对象是事件和样本空间。

事件是我们感兴趣的结局,而样本空间是所有可能结果的集合。

通过了解事件和样本空间的关系,我们可以更好地进行计数。

2. 排列与组合排列和组合是计数原理中常见的概念。

排列是指从若干元素中按照一定的顺序选择出一部分元素的方法,而组合是指从若干元素中选择出一部分元素的方法。

它们在不同情况下有着不同的应用,例如排列可以用于考察不同座位安排的方法,组合可以用于考察不同团队的组合方式。

三、计数方法1. 乘法原理乘法原理是计数原理中的基本法则之一。

它指出,如果一个事件可以分解为若干个相互独立的子事件,那么这个事件发生的总次数等于各个子事件发生的次数相乘。

乘法原理的应用帮助我们解决复杂的计数问题。

2. 加法原理加法原理也是计数原理中的基本法则之一。

它指出,如果一个事件可以分解为若干个互不相容的子事件,那么这个事件发生的总次数等于各个子事件发生的次数相加。

加法原理的应用使我们能够更加灵活地解决计数问题。

3. 递推法递推法是一种常用的计数方法,通过逐步构建解决方案,以求得所需的计数结果。

递推法的关键在于找出递推关系和初始条件,通过逐步迭代计算得到最终结果。

四、应用实例计数原理在实际生活中有着广泛的应用。

以下是一些常见的应用实例:1. 生日问题生日问题是计数原理中的经典案例之一。

假设有n个人,那么至少两个人生日相同的概率是多少?计数原理可以帮助我们计算出准确的概率。

2. 抽奖问题在抽奖活动中,计数原理可以用于计算中奖的概率。

根据不同的抽奖规则和人数,我们可以使用排列或组合的方法来计算出中奖的可能性。

3. 随机密码生成在网络安全中,随机密码的生成是一项重要任务。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《计数原理》(理)知识点串讲
一、基本计数原理
1.分类加法计数原理
做一件事,完成它有n 类办法,在第一类办法中有1m 种不同的办法,在第二类办法中有2m 种不同的办法,…在第n 类办法中有n m 种不同的办法.那么完成这件事共有12n N m m m =+++种不同的办法.
2.分步乘法计数原理
做一件事,完成它需要分成n 个步骤,做第一个步骤有1m 种不同的方法,做第二个步骤有2m 种不同的方法,…,做第n 个步骤有n m 种不同的方法,那么完成这件事共有12n N m m m =⨯⨯⨯种不同的方法.
说明:①分类加法计数原理和分步乘法计数原理的共同点是把一个原始事件分解成若干个分事件来完成.
②两个原理的区别在于一个与分类有关,一个与分步有关,如果完成一件事情有n 类办法,这n 类办法彼此之间是相互独立的,无论哪一类办法中的哪一种方法都能独立完成这件事情,可类比物理中的“并联”电路来理解;如果完成一件事情需要分成n 个步骤,各个步骤都是相依的、不可缺少的,一个步骤只能完成事情的一部分,必须依次完成所有的步骤,才能完成这件事情,可类比物理中的“串联”电路来理解.
③运用两个基本原理解题时,应善于从语言的差异与变化中弄清面临怎样的“一件事”,弄清事件之间的关系是相依还是相斥,然后按照恰当的“对象”进行分类或分步,合理的设计相应的做事方式.分类要做到“不重不漏”,分步要做到“步骤完整”.这两个原理是解决排列组合问题的理论基础.
二、排列与组合
1.排列
一般地,从n 个不同元素中取出()m m n ≤个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.
说明:①排列的定义中包括两个基本内容:一是“取出元素”;二是“按照一定的顺序排列”.
②只有取出的元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素不完全相同,或元素完全相同而顺序不同的排列属于不同排列.如1,2,3与2,3,4是不同排列;1,2,3与1,3,2也是不同排列.
③排列中元素的有序性是判断一个具体问题是不是排列问题的标准,也是与组合问题的根本区别.例如:从1,2,3,5这四个数中每次任取两个数相加(或相乘),可得到多少个不同的和(积)?因为加法(乘法)满足交换律,它们的和(积)与顺序无关,如3+5=5+3,因此不是排列问题.如果从四个数中任取两个数相减(相除),一共有多少个不同的差(商)?因为减法(除法)不满足交换律,35355353⎛⎫-≠-≠ ⎪⎝⎭
,取出的两个数就与顺序有关了,
属于排列问题.
2.排列数
(1)定义:从n 个不同元素中取出()m m n ≤个元素的所有排列的个数,叫做从n 个不同元素中取出()m m n ≤个元素的排列数,用符号m
n A 表示.
说明:排列和排列数是两个不同的概念:一个排列是取出的m 个元素按照一定顺序排成的一个具体的排列,是具体的“一件事”;排列数是一个数,是所有的具体排列的数目. 如:从1、2、3中每次任取出两个元素,组成一个两位数.所有的排列有12,13,23,
21,31,32.其中每一个数都是一个排列,而排列数是236card()A B ==,{}121323213132B ,,,,,.
(2)排列数公式:!(1)(2)(1)()()!
m n n A n n n n m n m m n n m =---+=∈N -,,≤. 说明:规定0!1=;乘积形式多用于数字计算,阶乘形式多用于证明恒等式;排列数性
质:11m m n n A nA --=;111m m m n n n A mA A ---=+.
3.组合
一般地,从n 个不同元素中,任意取出()m m n ≤个元素并成一组,叫做从n 个不同元素中取出()m m n ≤个元素的组合.
说明:如果两个组合中的元素完全相同,不管它们的顺序如何都是相同的组合.组合的定义中包含两个基本内容:一是取出元素;二是并成一组,并成一组表示将元素合在一起与元素取出的顺序无关.取出的元素是否有顺序,是区分排列和组合的根本依据.
4.组合数
(1)定义:从n 个不同元素中,任意取出()m m n ≤个元素的所有的组合的个数,叫做从n 个不同元素中取出()m m n ≤个元素的组合数,用符号C m n 表示.
(2)组合数公式(1)(1)C !m n n n n m m --+=,C m m n n m m
A A =. 5.组合数的性质
性质1:C C m n m n n -=;性质112:C C C m m m n n n -+=+. 说明:性质1突出了从n 个不同元素中取出m 个元素与从n 个不同元素中取出n m -个元素是一一对应关系,当2n m <
时,不计算C m n 而改为计算C n m n -.性质2中注意它的变形公式的应用,如1212(1)C C C (1)
m m m n n n n n n m m m -----==-,11C C m
m n n m n --=等.
6.解排列组合问题的方法
(1)先要判断是组合问题还是排列问题,按照元素的性质分类,按照事件的发生过程分步,不重不漏.借助树形图,框图等形的工具直观帮助解题.总体上有三种方法:直接法(先安排特殊元素和特殊位置),间接法(正难则反),分类讨论法.
(2)排列组合问题的16字方针,12个技巧.方针是:分类相加、分步相乘、有序排列、无序组合;技巧是:相邻问题捆绑法(莫忘松绑),不相邻问题插空法,多排问题直排法,定序问题可能法,定位问题优先法,有序分配问题先整体后局部分步法,多元问题分类法,构造模型处理法,至少、至多问题间接法,选排问题先选后排法,局部与整体问题排除法,复杂问题转化法.
(3)分组问题的求法:设有m n 个元素,平均分成n 组,每组m 个,则有
(1)(2)C C C C m
m m m
m n n m n m m
n
n A --种分法;平均分成n 组,再分配到n 个位置,有
(1)(2)C C C C m
m m m mn n m n m m
--种分法.若不平均分组或不平均分组再分配,如:6个元素分成3组,一组1个,二组2个,三组3个,则有123653C C C ;若再将这3组分配给3个位置,则
有12336533C C C A 种分法.
三、二项式定理
1.二项展开式
在011222()C C C C C n n n n r n r r n n n n n n n
a b a a b a b a b b ---+=++++++中,右边的多项式叫做()n a b +的二项展开式,其中各项的系数C (012)r n r n =,
,,,叫做二项式系数.式中的C r n r r n a b -叫做二项展开式的通项,用1r T +表示,即通项为展开式的第1r +项;
1r n r r r n T C a b -+=(0r n ≤≤,r ∈N ,n +∈N ),此公式称为二项展开式的通项公式. 说明:①其右端展开式共有1n +项.
②通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤表示的是第1(0)
r r n +≤≤项.
③a 与b 的位置不能互换,对于任意实数a 与b ,上面的等式恒成立.
④二项式系数指01r n n n n n C C C C ,,,,,,二项展开式的系数与a b ,前面的系数有关.
2.杨辉三角
杨辉三角是我国古代数学的研究成果,它给我们提供了一种研究问题的数学模型,从不
同的角度观察研究模型,就可以得到二项式系数的性质:一是对称性,结合公式m n m n n C C -=
理解;二是增减性与最大值,如果二项式的幂指数是偶数,中间一项的二项式系数最大,最大为2n
n
C ;如果二项式的幂指数是奇数,中间两项的二项式系数相等并且最大,最大为
1
1
22n n n n C C -+=;三是各项的二项式系数的和等于2n ,即012r n n n n n n C C C C +++++=,它表明集合S 含有n 个元素,那么它的所有的子集(包括空集)的个数为2n 个.另外,二项展开式中,偶数项的二项式系数的和等于奇数项的二项式系数的和,即1350242n n n n n n n C C C C C C -+++=+++=.
3.二项展开式的应用
(1)利用通项公式1(0)r n r r r n T C a b r n r n -++=∈∈N N ,,≤≤求指定项、特征项(常
数项,有理项等)或特征项的系数.
(2)近似计算,当a 与1相比较很小且n 不大时,常用近似公式(1)1n a na ±≈±,使用公式时要注意a 的条件以及对计算精确度的要求.
(3)整除性问题与求余数问题,对被除式进行合理的变形,把它写成恰当的二项式的形式,使其展开后的每一项含有除式的因式或只有一、二项不能整除.
(4)求展开式的各项的系数和,对形如()n ax b +,2()()n ax bx c a b c ++∈R ,,的式子求其展开式的各项的系数和常用赋值法,即只需令1x =即可,奇数项的系数和为(1)(1)2f f +-,偶数项的系数和为(1)(1)2
f f --. (5)最大系数与系数最大项的求法,如求()()n
ax b a b +∈R ,,展开式的系数最大的项,一般采用待定系数法,设展开式的各项系数分别为121n A A A +,,,,设第r 项的系数最大,应有11r r r r A A A A -+⎧⎨⎩,,≥≥,由此解出r 即可.。

相关文档
最新文档