3-4焊接残余变形
焊接残余变形名词解释
焊接残余变形名词解释
焊接残余变形是指在焊接过程中,由于被焊工件受到不均匀温度场的作用而产生的形状、尺寸变化。
这种变化在焊接过程中或焊接完成后,会残留在焊件上,导致其形状、尺寸与初始状态不一致,这种现象称为焊接残余变形。
焊接残余变形包括瞬时变形和残余变形。
瞬时变形是指在焊接过程中随温度变化而变化的变形,而残余变形则是指被焊工件完全冷却到初始温度时的改变。
焊接残余变形对结构安装精度有很大影响,过大的变形将显著降低结构的承载能力。
因此,在焊接过程中需要采取措施控制变形,如选择合适的焊接工艺、采用反变形法等。
同时,在焊接完成后,也可以采用矫形措施来减小变形。
焊接残余变形
1 180 K=6 2
6 180
3
6
150
K=6 150
4
6
题2图
PDF created with pdfFactory Pro trial version
题3图
4. 横向收缩引起的挠曲变形 横向焊缝的中心与构件中心不重合时,焊缝的横向收缩也会引 起结构的挠曲变形
F----构件截面积,L----构件长度 因此,△L取决于F、L、∫fp εp · dF、 fp的大小:方法、焊接参数 εp的大小:材料性质
影响纵向收缩的因素:
1)规范: q / v↑, ∫fp↑,→Pf↑, △L 2)焊接方法: 不同的焊接方法,热源集中度不同,则HAZ大小不同, 也即 Fp不同 3)材料性质: α,λ↑, → ∫fp ↑, △L↑ α不锈钢>α低碳钢 λ铝>λ低碳钢
2.角焊缝
丁字接头和搭接接头角焊缝的横向收缩,其实质与堆焊类似,其数值 取决于加热该构件的那部分热量及板厚 线能量应取输入到横板上的热量:
q 2δ H • v 2δ H + δ V
δH──横板厚度 δV──立板厚度
立板越厚,横板上的热量越小,横向变形也越小。
PDF created with pdfFactory Pro trial version
1 M2 = ρ E⋅I
ε =
E I---构件抗弯刚度
∆B2 l
f
δ2
h
L-△B2
则 :P =
= ∫ σ ⋅ dF
F2
∆ B2 ⋅ E ∆ B2 ⋅ E ⋅ F2 ⋅ dF = l l F2
∫
h δ M 2 = Pf ( − 1 ) 2 2 1 F ⋅ ∆ B2 h δ 1 ∆B2 ⋅ S 2 ( − )= 则: = 2 ρ I ⋅l 2 2 I ⋅l l ∆ B1 ⋅ S1 φ1 = = ρ I S1 = h1 ⋅ δ 1 ⋅ e 1 l f0 = ⋅ϕ ⋅ 2 2 f = 5 ⋅ φ ⋅ l + 4 ⋅ φ ⋅ l + 3φl + 2φ l + φl φ = φ1 + φ 2
焊接残余变形的基本形式
焊接残余变形的基本形式
(一)收缩变形
这种变形又可具体分为纵向缩短和横向缩短,如图8—1a所示的两块对接钢板,经焊接后。
长度和宽度方向的尺寸都比原来变短。
这种变形是由于焊缝
的纵向收缩和横向收缩引起的。
(二)角变形
这种变形是由于焊缝横截面形状不对称或施焊层次不合理,致使焊缝在板厚度方向上横向收缩量不一致所产生的。
如图8—1b所示V形坡口对接焊后发生了角变形,主要是由于焊缝截面上宽下窄使焊缝的横向收缩量上大下小而引起的。
(三)弯曲变形
这种变形是由于焊件上焊缝布置不对称或焊件断面形状不对称,焊缝的纵向收缩所引起的。
如图8—1c所示,T型梁的焊缝位置位于梁的中心线下方,
焊后由于焊缝纵向收缩,造成了弯曲变形。
(四)波浪变形
薄板气焊时最容易产生波浪变形,如图8—1d所示。
其产生的原因是焊缝的纵向收缩和横向收缩共同作用的结果。
一方面由于焊缝的纵向收缩,使薄板边缘产生压应力,当压应力超过一定数值时,便在薄板边缘出现了波浪形的变形;另一方面由于焊缝的横向收缩引起角变形,这些角变形连贯起来就形成了波浪变形。
(五)扭曲变形
如图8—1e所示,这种变形产生的原因主要是因装配质量不好、工件搁置不当,焊接顺序和焊接方向不合理,致使焊缝纵向收缩和横向收缩不一致所造成的。
一般这种变形在气焊件中很少碰到。
综上所述,焊后焊缝的纵向收缩和横向收缩是引起各种焊接残余变形和焊接残余应力的重要原因。
同时还说明,焊缝的收缩能否转变成各种形式的变形还和焊缝在结构上的位置、焊接顺序和焊接方向以及结构的刚性大小等因素有直接的关系。
34焊接残余变形
焊接残余变形的分类:分七类
㈠纵向收缩变形 ㈡横向收缩变形
㈢挠曲变形
㈣角变形 ㈤波浪变形:薄板易发生
㈥错边变形:长度方向和厚度方向 ㈦螺旋形变形
焊接变形影响结构尺寸的准确、美观 可能降低结构承载能力(附加弯曲应力)
焊接变形可能降低结构承载能力 举例二
二、纵向收缩变形以及它引起的挠曲变形
对接多层焊防止角变形方法
先在一面少焊几层,然后翻转过来焊满另一面,使其产生的角 变形稍大于先焊的一面,最后再翻转过来焊满第一面,这样就 能以最少的翻转次数来获得最小的角变形。 或:应先焊焊接量少的一面,后焊焊接量多的一面,并且注意 每一层的焊接方向应相反。
图2-10 角变形与焊接顺序的关系
a)对称坡口非对称焊 b)对称坡口对称交替焊 c)对称坡口非对称焊 d)非对称坡口非对称焊
• 坡口角度越大,焊缝横向收缩沿板厚分布越不均匀, 角变形越大。
• 同样板厚和坡口形式下,多层焊比单层焊角变形大, 多层多道焊比多层焊角变形大。
• 另外,坡口截面对称,采用不同的焊接顺序,产生的 角变形大小也不相同,X形坡口对接接头,先焊完一 面后翻转再焊另一面,焊第二面时,焊件刚性增加, 焊接时所产生的角变形小于第一面产生的角变形,最 终产生一定的残余角变形。
沿焊缝纵向热变形对横向变形的影响
四、角变形
产生原因:横向收缩在厚度方向上的不均匀分布
(1)平板堆焊的角变形
平板堆焊时,在钢板厚度方向上的温度分布是不均匀的:温度高 的一面受热膨胀较大,另一面膨胀小甚至不膨胀。
由于焊接面膨胀受阻, 出现较大的压缩塑性 变形,这样,冷却时 在钢板厚度方向上产 生收缩不均匀的现象, 焊接一面收缩大,另 一面收缩小,所以产 生角变形。
焊接变形
焊接残余变形量的估算公式
(1)纵向收缩变形量:
有纵向长焊缝的钢构件,单道焊时,其长度方向的收缩量估算公式为:ΔL=k1·Aw·L/A
其中Aw为焊缝截面积,mm2
A为杆件长度,mm
K1为与焊接方法、材料热膨胀系数、和多层焊层数有关的系数,对于不同焊接方法,系数k1的数值不同:CO2焊,k1=0.043
埋弧焊: k1=0.071~0.07
手工电弧焊: k1=0.048~0.057
当焊缝在构件中的位置相对于中和轴不对称时,焊缝的纵向收缩变形还会使构件弯曲而产生挠度,钢结构单道焊时,由于纵向收缩引起的挠度可用以下公式估算:f=kf·Aw·e·L/(8I) (cm)
式中:e为焊缝到构件中和轴的距离,(cm)
L为杆件长度, cm
Aw为焊缝截面积,cm2
I为杆件截面惯性矩, cm4
Kf为系数(与纵向收缩量公式中k1的数值相同)
(2)横向收缩变形量。
由于影响横向收缩的因素很多,简单的公式不能表达所有因素的影响,因而不同文献提供估算公式各不相
同,可作参考的估算公式如下:
ΔB=0.2Aw/δ+0.05b mm
式中:ΔB对接接头横向收缩量,mm
Aw为焊缝横截面积,mm2
b为根部间隙,mm。
δ为板厚,mm。
对接焊缝垂直于长构件轴线,并与中和轴不对称时,该焊缝的横向收缩也会使长构件产生挠曲,其挠度量则与焊缝布置,焊缝面积以及构件截面形式、刚度有关,不能用单一公式表达。
(3)角变形量:
Δθ=0.07B·hf1.3/δ(rad)
式中B翼缘宽,mm
δ翼缘厚,mm
hf焊脚尺寸,mm。
如何预防和消除焊接残余变形-1
如何预防和消除焊接残余变形摘要:焊接残余变形的存在,会影响产品生产工艺流程的正常进行,降低产品的承载能力,使产品的尺寸精度和外形达不到设计和使用的要求。
因此,本文从焊接残余变形的种类、变形特点、如何控制及预防等方面,对焊接残余变形的相关知识点,进行了归纳总结。
帮助学生更好地理解和掌握相关知识,为今后的工作打下良好的理论基础。
关键词:焊接残余变形变形种类产生原因消除方法焊接变形和焊接应力同时存在于焊接结构中,焊接残余变形的存在,不仅会影响产品生产工艺流程的正常进行,使产品达不到设计和使用的质量要求,严重时还会使产品产生报废。
因此,理解和掌握生产过程中,产品的变形种类、变形特点、预防和消除的方法在保证产品质量方面,就显得尤为重要。
一、焊接残余变形的种类及影响因素:在焊接结构中,我们按焊接变形对整个结构产生的影响程度,可将焊接变形分为二大类,即整体变形和局部变形。
整体变形通常包括纵向收缩变形、横向收缩变形、弯曲变形和扭曲变形。
局部变形通常包括角变形和波浪变形。
焊接变形的基本形式主要有:收缩变形、角变形、波浪变形和扭曲变形。
其中,收缩变形是在焊接过程中最容易出现的。
1、收缩变形焊件尺寸在焊后缩短的现象称为收缩变形。
它分为纵向收缩变形和横向收缩变形。
1)、纵向收缩变形即沿着焊缝轴线方向上尺寸的收缩。
产生的主要原因是由于焊缝及其附近区域在焊接高温的作用下产生纵向的压缩塑性变形,待焊件冷却后,这些纵向的压缩塑性变形导致焊件沿焊缝长度方向尺寸缩短,即产生了纵向收缩变形。
影响纵向收缩变形的因素主要有构件的长度、截面积、焊接方向、焊接方法、焊接热输入及焊接工艺,其中,最重要的是焊接热输入。
2)、横向收缩变形沿垂直于焊缝轴线方向上尺寸的收缩现象称为横向收缩变形。
产生的主要原因是因为热源附近高温区金属的热膨胀受到约束,产生了塑性应变,熔池凝固后焊缝附近金属开始降温而收缩。
另一方面是焊缝本身的收缩,但其较小,仅占横向收缩总量的10%左右。
防止和减少焊接残余变形与应力的措施
防止和减少焊接残余变形与应力的措施随着现代制造业的发展,焊接在各行各业中扮演着至关重要的角色。
无论是航空航天、汽车制造还是建筑工程,在这些领域中,焊接都是不可或缺的连接工艺。
然而,随之而来的焊接残余变形与应力问题也愈加引起人们的关注。
焊接过程中产生的残余变形与应力,不仅会影响工件的外观质量,还可能引发裂纹和变形等问题,严重影响其使用性能和寿命。
如何有效地预防和减少焊接残余变形与应力,成为了焊接工艺中的重要课题。
1.选材:材料的选择对于焊接残余变形和应力的控制至关重要。
在焊接过程中,通常会选择具有较高熔点和较小线膨胀系数的材料,以减少焊接时热影响区的热变形;还应根据实际情况选择合适的填充材料。
2.焊接方式:合理选择焊接方式是减少焊接残余变形和应力的关键。
一般来说,采用低热输入、低变形的焊接方式,例如脉冲焊、激光焊等,能够有效降低焊接工件的残余变形和应力。
3.焊接顺序:合理规划焊接顺序也是减少残余变形和应力的重要手段。
通常情况下,应该首先焊接边缘,然后逐渐向内焊接,以减少焊接区域的热输入,降低残余变形和应力。
4.预热和后热处理:在一些情况下,通过预热和后热处理也能有效减少焊接残余变形和应力。
预热能够降低材料的硬度,减少焊接残余应力;后热处理则能够通过回火或退火处理,消除残余应力,提高焊接接头的韧性和稳定性。
5.夹具和辅助装置:采用合理的夹具和辅助装置也能有效减少焊接残余变形和应力。
夹具的设计应在尽量避免约束工件的能够保证焊接接头的稳固性;而辅助装置则可以提供额外的支撑,减少工件在焊接过程中的变形。
总结回顾:在焊接工艺中,预防和减少焊接残余变形与应力是至关重要的。
通过合理选材、焊接方式、焊接顺序、预热和后热处理、夹具和辅助装置等措施,可以有效控制焊接过程中的残余变形和应力,保证焊接接头的质量和稳定性。
个人观点:作为焊接工艺的重要环节,防止和减少焊接残余变形与应力对于提高焊接接头的质量和稳定性至关重要。
中级电焊工考试试题考试题库【3套练习题】模拟训练含答案(第8次)
中级电焊工考试试题考试题库【3套练习题】模拟训练含答案答题时间:120分钟试卷总分:100分姓名:_______________ 成绩:______________第一套一.单选题(共20题)1.CO2气瓶使用时须()放置,严禁敲击、碰撞等。
A、平B、直立C、倒立D、倾斜2.弧焊整流器属于()电源。
A、逆变式B、交直流C、交流D、直流3.外观检验一般以肉眼为主,有时也可利用()的放大镜进行观察A3~5倍B5~10倍C8~15倍D10~20倍4.手工钨极氩弧焊设备中没有()。
A、控制系统B、行走机构C、气路系统D、水路系统5.铝及铝合金焊接时,熔池表面生成的氧化铝薄膜熔点高达()A1025℃B2850℃C2050℃D3000℃6.职业道德首先要从()的职业行为规范开始。
A、服务群众,奉献社会B、爱岗敬业,忠于职守C、诚实守信,办事公道D、遵纪守法,廉洁奉公7.电渣焊主要缺点是()A晶粒细小B晶粒均匀C晶粒粗大D晶粒畸变8.电光性眼炎的发病要经过一定的潜伏期,一般发病在受照后6—8h,故发作常在()。
A、中午或晚上B、早晨或下午C、下午或晚上D、夜间或清晨9.职业道德的意义很深远,但是不包含()。
A、有利于推动社会主义精神文明建设B、有利于企业建设和发展C、有利于企业体制改革D、有利于个人的提高和发展10.熔化极MAG焊,碳钢中厚板立位对接接头焊接时,选用实芯焊丝,可选择()熔滴过渡方式,焊接工作效率最高。
A、短路过渡B、半短路过渡C、粗滴过渡D、射流过渡11.()不是影响是否需要预热及预热温度的因素。
A、钢材化学成分B、结构刚度C、焊接方法D、接头型式12.下列()是减小焊接应力的措施。
A、采用合理的焊接顺序B、采用较大的焊接线能量C、火焰法D、热处理法13.动圈式弧焊变压器电流的粗调节是通过()。
A、通过改变一次线圈匝数来实现B、通过改变二次线圈匝数来实现C、通过改变一次线圈、二次线圈匝数来实现D、调节活动铁心与固定铁心的相对位置来实现的14.()不是CO2焊氮气孔的产生原因。
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施作者:李廷凯李玉振来源:《世界家苑》2018年第02期摘要:随着焊接技术也已经发展的越来越普及,但是焊接残余应力和焊接变形对钢结构的影响非常大,必须加强对焊接质量研究。
本文对焊接残余应力和焊接变形对钢结构的影响以及消除和调整进行了探讨分析。
关键词:焊接残余应力;焊接变形;钢结构;消除和调整1 焊接残余应力产生的原因1.1 塑性压缩造成的纵向残余应力在焊接的过程中,由于温度上的差距,焊缝及其周围都会受到因热膨胀和周围温度较低的金属的拘束,从而产生压缩塑性应变。
当焊接完成之后,温度骤减,母性材料就会制约着焊缝和近缝区域之间的收缩,这就在很大程度上导致了残余应力的存在。
并且残余应力的范围将会和高温环境下造成的塑性范围相一致,弹性拉伸区域和残余拉应力也是相对应的。
从这些都可以看出来,塑性压缩就是造成焊接过程中纵向残余应力的主要原因。
1.2 塑性压缩的应变导致的横向残余应力塑性压缩的应变,除了能够说成是造成纵向残余应力的主要原因,同时也能理解为造成横向残余应力的原因之一,但是造成横向残余应力的主要原因是母材的收缩。
当对母材进行焊接时,母材会出现膨胀现象,并且当焊接缝的金属材料逐渐形成固体时,膨胀中的母材必定会受到压缩,这种塑性压缩是横向收缩中的重要的一部分,焊缝自身那一小部分收缩仅仅只占到横向收缩的十分之一左右。
主要的横向收缩那部分存在于焊接缝沿着焊缝轴线进行切割后的中心区域,那才是拉应力中的横向应力。
2消除残余应力的方法2.1 热处理的方法这种方法对于焊件的性能有着至关重要的作用,它不仅可以消除残余应力,还能够改进焊接接头的性能。
热处理方法就是在焊件还处在高温条件下的时候,去降低屈服点和蠕变现象,从而实现去除残余应力的一种方法。
这种方法分为两个步骤,首先就是总体热处理,其次是局部热处理。
在总体热处理的过程中,加热的温度和保温时间和加热以及冷却速度都会影响到去除焊接残余应力的效果。
焊接残余变形量的影响因素
焊接残余变形量的影响因素
主要影响因素包括:
①焊缝截面积的影响:焊缝面积越大,冷却时引起的塑性变形量越大。
焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且起主要的影响。
②焊接热输入的影响:一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。
对纵向、横向及角变形都有变形增大的影响。
③工件的预热、层间温度影响:预热、层间温度越高,相当于热输入增大,使冷却速度慢,收缩变形增大。
④焊接方法的影响:各种焊接方法的热输入差别较大,在其他条件相同情况下,收缩变形值不同。
⑤接头形式的影响:焊接热输入、焊缝截面积、焊接方法等因素条件相同时,不同的接头形式对纵向、横向及角变形量有不同的影响。
⑥焊接层数的影响:横向收缩在对接接头多层焊时,第一道焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊时已与堆焊的条件和变形规律相似,因此收缩变形相对较小;纵向变形,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施
焊接残余应力和焊接变形对钢结构的影响以及消除和调整的措施摘要:焊接残余应力和焊接变形是钢结构产生变形和开裂的主要原因。
本文以焊接残余应力和焊接变形为对象,分别讨论了残余应力对钢结构刚度、静力强度、疲劳强度、应力腐蚀等的影响,促使结构发生脆性断裂、疲劳断裂、应力腐蚀开裂、低温变脆等以及造成的焊接变形的种类。
应采取措施对焊接残余应力和焊接变形加以消除和调整。
关键词:钢结构焊接残余应力焊接变形钢结构是钢材通过一定的设计方法做成构件,构件再通过一定的连接方式连接成的整体结构承力体系或传力体系。
连接方式及其质量优劣直接影响钢结构的工作性能。
焊接连接是目前钢结构最主要的连接方式。
但在焊接过程中,在焊缝附近的热影响区内,钢材的金相组织发生改变,导致局部材质变脆;焊接残余应力和残余变形使受压构件承载力降低;焊接结构对裂纹很敏感,局部的裂缝一旦发生,就容易扩展到整体。
一、焊接残余应力钢材的焊接是一个不均匀的加热和冷却的过程。
在施焊时,焊缝及其附近区域的温度很高,而临近区域温度则急剧的下降,导致不均匀的温度场。
不均匀的温度场产生不均匀的膨胀,温度低的区域膨胀量小限制了高温度区域钢材的膨胀。
当焊接温度场消失后,构件内部产生应力,这种应力称为焊接残余应力。
(一)焊接残余应力对钢结构的影响1.对钢结构刚度的影响焊接残余应力使构件的有效截面减小,丧失进一步承受外载的能力。
焊接残余应力的存在还会增大结构的变形,降低结构的刚度。
2.对静力强度的影响由于焊接应力的自相平衡,使受压区和受拉区的面积相等。
构件全截面达到屈服强度所承受的外力与无焊接应力的轴心受拉构件全截面达到屈服强度时的应力相等,因此不影响静力强度。
3.对疲劳强度的影响残余应力的存在使应力循环发生偏移。
这种偏移,只改变其平均值,不改变其幅值。
当应力循环的平均值增加时,其极限幅值就降低,反之则提高。
4.对应力腐蚀开裂的影响应力腐蚀开裂是拉伸残余应力和化学腐蚀作用下产生裂纹的现象,在一定材料和介质的组合下发生。
焊接变形的处理方法
焊接变形的处理方法摘要:在油田地面工程施工过程中,各种设备、管道焊接产生的应力变形是个比较突出的问题,采用合理焊接工艺方法可以较好减少变形。
关键词:工艺;焊接;变形;处理焊接在设备、管道安装过程中举足轻重,由于焊接过程中的变形与应力直接影响工艺质量、使用性能、配件装配,为提高质量,我们在施工中采取了相对的措施。
一、焊接应力与变形产生的原因焊接过程中,对焊件进行局部不均匀加热,会产生焊接应力和变形。
焊接时焊缝和附近的金属处于高温,焊缝和近缝区纵向受拉应力,远离焊缝区受压应力,整个焊件纵向及横向尺寸有一定的收缩。
如果在焊接过程中,焊件能够较自由的伸缩,则焊后焊件的变形较大而焊接应力较小;反之,如果焊件厚度或刚性较大不能自由伸缩,则焊后焊件的变形较小而焊接应力较大。
还有组装与施焊的顺序不当,焊接方向不正确,焊接参数不合理,引起局部过热,没有采用适当的辅助措施等。
二、减小焊接变形的工艺措施由于焊接变形在焊接生产中是不可避免的,因此应在生产中根据焊接结构的具体形式,选用一种或几种方法,以达到控制变形的目的。
1、加裕量法和反变形法:在下料时留一定量,补充焊后收缩。
预先确定焊后可能发生的变形大小和方向,将工件放在相反的方向位置上;或在焊前使工件反方向变形,抵消焊后所发生的变形。
2、刚性夹固法:主管路上常常出现分支,这是根据工艺流程来设计的,在制作汇管时产生很大的焊接变形,为了减少变形需把此工艺汇管固定起来,如制作Φ426×7汇管,可在其下放一Φ630×7的铜管,用Φ48×4短管固定。
因此焊前将工件固定夹紧,并设置拉杆提高焊接刚性,焊后即缩小变形。
3、选择合理的焊接次序:减少焊接变形的施焊顺序方式很多,基本原则是使焊接热比较均匀地加上去;或者使焊接变形相互抵消;或者用前道焊缝提高结构刚性以限制后焊焊缝的变形工序合理的次序可缩小变形。
4、选择合理的焊接工艺:(1)焊接速度高的焊接方法能减少焊件受热,减少焊件受热,减少焊缝冷却时的收缩区宽度,从而减少变形。
焊接残余应力和焊接残余变形
3 焊接残余变形 • 残余变形形式
图8 焊接变形的基本形式
4 减少焊接残余应力和焊接残余变形的方法 • 采取合理的施焊次 序 • 施焊前加相反的预 变形 • 焊前预热,焊后回 火
图9 合理的施焊次序
图10 反变形 及局部加热
5 合理的焊缝设计
• 焊接位置要合理,布置应尽量对称于截面重心 • 焊缝尺寸要适当,采用较小的焊脚尺寸
焊接残余应力和焊接残余变形
1 焊接残余应力的分类和产生的原因 • 纵向残余应力
图1 施焊时焊缝及附近的温度场和焊接残余应力
1 焊接残余应力的分类和产生的原因 • 横向残余应力
图2 横向残余应力产生的原因
1 焊接残余应力的分类和产生的原因 • 厚度方向的残余应力
• 约束状态下的焊接应力
图3 厚度方向的焊接应力
图4 约构静力强度的影响
图5 残余应力对静力强度的影响
2 焊接残余应力的影响 • 对结构刚度的影响
图6 有残余应力时的应力与应变
2 焊接残余应力的影响 • 对压杆稳定的影响 • 对低温冷脆的影响 • 对疲劳强度的影响
图7 三轴焊接残余应力
• 焊缝不宜过分集中
• 应尽量避免三向焊缝交叉 • 考虑钢板分层问题 • 焊条易达到 • 避免仰焊
5 合理的焊缝设计
图61 合理的焊缝设计
3.4焊接残余应力和焊接变形
三、焊接变形 焊接变形包括:纵向收缩、横向收缩、弯曲变形、 焊接变形包括:纵向收缩、横向收缩、弯曲变形、 角变形和扭曲变形等 通常是几种变形的组合。 角变形和扭曲变形等,通常是几种变形的组合。
自学) 四、减小焊接残余应力和焊接变形的措施(自学)
1、设计上的措施; 设计上的措施; (1)焊接位置的合理安排 (2)焊缝尺寸要适当 焊缝数量要少, (3)焊缝数量要少,且不宜过分集中 (4)应尽量避免两条以上的焊缝垂直交叉 (5)应尽量避免母材在厚度方向的收缩应力 2、加工工艺上的措施 (1)采用合理的施焊顺序 (2)采用反变形处理 小尺寸焊件, (3)小尺寸焊件,应焊前预热或焊后回火处理
当板件全截面达到f 当板件全截面达到 y,即N=Ny时:
N =N +(B b ⋅t⋅ fy =B t⋅ fy −) ⋅ y t
2、对结构刚度的影响
t fy B
N
f
f
N N
fy b
+
N
b
+
-
-
A、当焊接残余应力存在时,因截面的 部分拉应 、当焊接残余应力存在时,因截面的bt部分拉应 故该部分刚度为零(屈服), ),这时 力已经达到f 力已经达到 y ,故该部分刚度为零(屈服),这时 作用下应变增量为: 在N作用下应变增量为: 作用下应变增量为
6.为什么采用钢材的屈服点fy作为设计强度标 准值?无明显屈服点的钢材,其设计强度值 如何确定?
• 选择屈服点作为结构钢材设计强度标准值是因为:(1)它是 钢材开始塑性工作的特征点,钢材屈服后,塑性变形很大, 极易为人们察觉,可及时处理,避免发生破坏;(2)从屈服 到钢材破坏,整个塑性工作区域比弹性工作区域约大200 倍,且抗拉强度与屈服点之比(强屈比)较大,是钢结构的 极大后备强度,使钢材不会发生真正的塑性破坏,十分安 全可靠。对无明显屈服点的钢材,以卸载后试件的残余应 变为0.2%所对应的应力作为屈服点。
焊接残余变形
第三节焊接残余变形一、焊接残余变形的分类1.纵向和横向收缩变形a)纵向收缩:焊件在焊后沿焊缝长度方向上的收缩。
纵向收缩变形随焊缝长度、焊缝熔敷金属截面积的增加而增加。
b)横向收缩:焊件在焊后沿焊缝宽度方向上的收缩。
横向收缩变形随焊接热输入、焊缝宽度、焊脚尺寸的增加而增加。
2.角变形是焊接时,由于焊缝区沿厚度方向产生的横向收缩不均匀引起的弯曲变形。
角变形的大小与焊接方法、焊接道数及坡口形式有关。
3.弯曲变形是结构上焊缝分布不时称,焊缝收缩引起的变形,用挠度f 表示。
挠度是指焊件的中心轴线偏离原中心轴线的最大距离。
4.扭曲变形是焊件的施焊顺序不合理、组装不良或纵向有错边,焊接时角变形量长度方向不均匀,焊缝的纵向和横向收缩没有限一定的规律,引起的变形。
.5.波浪变形由于结构件的刚性较小,在焊缝的纵向和横向收缩共同作用下造成较大的压应力而引起波浪变形。
二、控制焊接残余变形的工艺措施1.设计方面在保证构件有足够承载能力的前提下,尽量减少焊缝尺寸,焊缝的数量,合理安排焊缝的位置,焊缝尽可能对称分布避免局部焊缝过分集中。
2.工艺方面选择合理的组装焊接顺序a)大型复杂的焊接结构,在条件允许的情况下,分成若干个分别焊接,然后将各单元总体拼装成整体后再进行整体焊接。
b)对称结构上的对称焊缝,这样可以使两侧产生的焊接变形相互抵消。
c)非对称布置的焊缝。
3.反变形法焊前使焊件具有一个与焊后变形方向相反、大小相当的变形,以便恰好能抵消焊接后产生的变形。
这种方法的关键在于反变形量大小的设置,反变形量的大小应依据在自由状态下施焊测得的焊接变形,并结合弹性变形作适当的调整。
.4.刚性固定法焊前对焊件要用外加刚性拘束,使其在不能自由变形的条件下焊接,强制焊接在焊接时不能自由变形,这样可减小焊接变形。
应指出,当外加刚性拘束去除后,由于残余应力的作用,焊件上会残留一定的变形,但比起自由变形来小得多,另外采用刚性固定法,使焊接接头中产生较大的残余应力,对于一些焊后容易裂的材料应慎用。
建筑钢结构工程技术 2.5 焊接残余应力和残余变形
焊接残余应力和残余变形一、焊接残余应力和残余变形的成因钢结构的焊接过程是一个不均匀加热和冷却的过程。
在施焊时,焊件上产生不均匀的温度场,焊缝及附近温度最高,达1600℃以上,其邻近区域则温度急剧下降。
不均匀的温度场要求产生不均匀的膨胀和收缩。
而高温处钢材的膨胀和收缩要受到两侧温度较低、胀缩较小的钢材的限制,从而使焊件内部产生残存应力并引起变形,此即通称的焊接残余应力和残余变形。
二、焊接残余应力和残余变形(一)焊接残余应力焊接残余应力按其方向可分为纵向残余应力、横向残余应力和厚度方向残余应力。
1. 纵向残余应力。
图2-38是焊接残余应力的示例。
图2-38(a)是两块钢板平接连接,焊接时钢板焊缝一边受热,将沿焊缝方向纵向伸长。
但伸长量会因钢板的整体性,受到钢板两侧未加热区域的限制,由于这时焊缝金属是熔化塑性状态,伸长虽受限,却不产生应力(相当于塑性受压)。
随后焊缝金属冷却恢复弹性,收缩受限将导致焊缝金属纵向受拉,两侧钢板则因焊缝收缩倾向牵制而受压,形成图2-38(b)所示的纵向焊接残余应力分布。
它是一组在外荷载作用之前就已产生的自相平衡的内应力。
2. 横向残余应力。
图2-38所示两块钢板平接除产生上述纵向残余应力外,还可能产生垂直于长度方向的残余应力。
由图中可以看到,焊缝纵向收缩将使两块钢板有相向弯曲变形的趋势(如图2-38a中虚线所示)。
但钢板已焊成一体,弯曲变形将受到一定的约束,因此在焊缝中段将产生横向拉应力,在焊缝两侧将产生横向压应力,如图2-38(c)所示。
此外,焊缝冷却时除了纵向收缩外,焊缝横向也将产生收缩。
由于施焊是按一定顺序进行,先焊好的部分冷却凝固恢复弹性较早,将阻碍后焊部分自由收缩,因此,先焊部分就会横向受压,而后焊部分横向受拉,形成如图2-38(d)所示的应力分布。
图2-38(e)是上述两项横向残余应力的叠加,它也是一组自相平衡的内应力。
3. 厚度方向残余应力对于厚度较大的焊缝,外层焊缝因散热较快先冷却,故内层焊缝的收缩将受其限制,从而可能沿厚度方向也产生残余应力,形成三相应力场。
焊接应力
内应力按产生原因分类: 温度应力及残余应力
• ㈠温度应力(热应力)
• 产生条件:受热不均匀 • 温度均匀结果:应力残留或消失
举例
过程:加热-承受压应力-屈服(250℃)-应力降低、 压应变继续增加;750 ℃开始冷却拉应力应变上升 -室温-残余应力和相变应力。
图3-1 加热和冷却产生内应力的实验及温度曲线
图3-8 板条一侧不对称受热时的应力和变形
b)和c)两种情况为不平衡力矩,不能发生
板条截面上应力及力矩平衡方程
内应力
ε ε σ = E·ε=E ( e - T)
图3-9板条单边加热到不同温度时的应力与变形
6.2.3焊接引起的应力与变形
• 焊接时发生焊接应力和变形的原因是焊件受 到不均匀加热,同时因加热引起的热变形和 组织变形(相变)受到焊件本身刚度的约束。
• (1)纵向收缩变形 • (2)横向收缩变形
图3-48 纵向和横向收缩变形
(3)挠曲变形 :
挠曲可以由纵向收缩、横向收缩、角变形引起
图3-49 挠曲变形 a)由纵向收缩引起的挠曲变形 b)由横向收缩引起的挠曲变形
(4)角变形 表现为焊后构件的平面围绕焊缝产生角位移
图3-50 角变形
(5)波浪变形 (6)错边变形
• 应力通常表示方法:
• 将沿焊缝方向上的残余应力称为纵向应力,以σx表示; • 将表示垂直;于焊缝方向上的残余应力称为横向应力,以σy • 对厚度方向上的残余应力以σz表示。
1、纵向残余应力的分布σx
图3-17 平板对接时焊缝上纵向应力沿焊缝长度方向上的分布 (***此图对于低碳钢适用,焊缝足够长)
**焊缝长度较短时, σx﹤σs焊缝越短纵向应力
σx的数值就越小。(对于低碳钢适用)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
横向收缩变形与线能量和板厚的关系
横向收缩在焊缝长度方向上的分布
㈡对接接头
留有间隙的平板对 接焊的横向变形
不留间隙的平板对 接焊的横向变形
对接接头的横向收缩量
• 对接接头的横向收缩量随焊缝金属量的增加而 增大; • 热输入、板厚和坡口角度增大,横向收缩量也 增加,但是板厚的增大会使接头的刚度增大, 可以限制焊缝的横向收缩,使横向收缩量减少。 • 多层焊时,先焊的焊道引起的横向收缩较明显, 后焊焊道引起的横向收缩量逐层减小。 • 焊接方法对横向收缩量也有影响:如相同尺寸 的构件,采用埋弧自动焊比采用焊条电弧焊时 横向收缩量小;气焊的横向收缩量比电弧焊的 大。
开坡口的好处: 减小变形 节省人力物力
减小焊接变形措施:坡口选取
设计措施之二 2.减少不必要的焊缝
设计措施之三 3.合理安排焊缝位置 焊缝尽量对称于中性轴或靠近中性轴
㈡工艺措施
1.反变形法
2.刚性固定法
3.合理选择焊接方法和焊接规范
4.选择合理的装配焊接次序
方案一
焊接次序3 1 2 挠度f1 f 2 f 3
• 纵向收缩变形量一般随长度的增加而增加; • 焊件的截面积越大,焊件的纵向收缩量越小; • 纵向收缩变形量还取决于材料的弹性模量、压缩塑 性变形区的面积和压缩塑性变形量等。 影响压缩塑性变形量的因素?
• 压缩塑性变形量与纵向收缩变形量成正比; • 其大小与焊接方法、焊接参数、焊接顺序以及母材的 热物理性质有关, • 其中以热输入影响最大。 • 一般情况下,压缩塑性变形量与热输入成正比。
方案二
焊接次序1 2 3 挠度f1 f 2 f 3'
方案三*
焊接次序2 1 3 挠度f1 f 2 f 3 f1 f 3
九、矫正焊接变形的方法
㈠机械矫正法
㈡火焰加热矫正法
焊接角变形的利用-火焰成型(水火弯板)
线能量对焊接纵向变形的影响:多层焊与单层焊
多层焊时每层焊 缝所产生的压缩 塑性变形区面积 比单层焊时小。 但多层焊所引起的 总变形量并不等于 各层焊缝之和,因 为各层所产生的塑 性变形区面积是相 互重叠的。
原始温度对焊件纵向收缩的影响
• 一般来说,焊件的原始温度提高,相当于热输 入增大,焊后纵向收缩量增大。 • 但是,当原始温度高到某一程度,可能会出现 相反的情况:因为随着原始温度的提高,焊件 上的温差减小,温度趋于均匀化,压缩塑性变 形率下降,可使压缩塑性变形量减小,从而使 纵向收缩量减小。
㈡对接接头的角变形
对接焊层数与角变形的关系
(2)对接接头的角变形
• 对接接头的角变形主要与坡口形式、坡口角度、焊接 层数、焊接顺序等有关。 • 坡口截面不对称的焊缝,其角变形大,因而用X形坡 口代替V形坡口,有利于减小角变形; • 坡口角度越大,焊缝横向收缩沿板厚分布越不均匀, 角变形越大。 • 同样板厚和坡口形式下,多层焊比单层焊角变形大, 多层多道焊比多层焊角变形大。 • 另外,坡口截面对称,采用不同的焊接顺序,产生的 角变形大小也不相同,X形坡口对接接头,先焊完一 面后翻转再焊另一面,焊第二面时,焊件刚性增加, 焊接时所产生的角变形小于第一面产生的角变形,最 终产生一定的残余角变形。
在热源附近的金属受热膨胀,受周围较冷金属的约束 而承受压应力,在板宽方向上产生压缩塑性变形,并使 其厚度增加,结果表现为横向收缩。 产生横向收缩变形的过程比较复杂,影响因素很多, 如热输入、接头形式、装配间隙、板厚、焊接方法以及 焊件的刚性等,其中以热输入、装配间隙、接头形式等 影响最为明显。
㈠堆焊及角焊缝
焊件材料的线膨胀系数的影响
• 线膨胀系数大的材料,焊后纵向收缩量大, 如不锈钢和铝比碳钢焊件的收缩量大等。
细长构件纵向收缩量的经验公式估算:
单层焊的纵向收缩量
k1 FH L L F 其中k1取值见表2- 1 ,FH 为焊缝截面积
多层焊的纵向收缩量
k1 FH L L k 2 F 其中k 2 1 85 s n, n为多层焊层数
薄板焊接时,正反面的温差小,且薄板的刚度小,焊接过程 中,在压应力作用下易产生失稳,使角变形方向不定,没有 明显规律性。
(3)T形接头角变形
• T形接头的角变形: • 可以看成是由立板相对于水平板的回转, • 与水平板本身的角变形两部分组成,
• T形接头不开坡口焊接时,其立板相对于水 平板的回转相当于坡口角度为90º 的对接接 头角变形β′,如图2-11 b所示; • 水平板本身的角变形相当于水平板上堆焊 引起的角变形β″,如图2-11 c所示。 • 这两种角变形综合的结果,使T形接头两板 间的角度发生如图2-11 d所示的变化。
两面角焊缝丁字接头 再乘度估算
单道焊缝引起的挠度:
k1 FH e L2 f (cm) 8I k1见表2 - 1, e为焊缝到构件中性轴的 距离
多层焊和双面角焊缝引起的挠度:
k1 FH e L f k2 (cm) 8I
2
三、横向收缩变形及其产生的挠曲变形
对接多层焊防止角变形方法
先在一面少焊几层,然后翻转过来焊满另一面,使其产生的角 变形稍大于先焊的一面,最后再翻转过来焊满第一面,这样就 能以最少的翻转次数来获得最小的角变形。 或:应先焊焊接量少的一面,后焊焊接量多的一面,并且注意 每一层的焊接方向应相反。
图2-10 角变形与焊接顺序的关系
a)对称坡口非对称焊 b)对称坡口对称交替焊 c)对称坡口非对称焊 d)非对称坡口非对称焊
如何减小T形接头角变形
• 为了减小T形接头角变形: • 一方面可以通过开坡口来减小立板与水 平板间的焊缝夹角,减小β′值; • 另一方面还可以通过减小焊脚尺寸来减 少焊缝金属量,降低β″值。
丁字接头的角变形
五、波浪变形
产生原因:受压部位失稳
螺旋形变形
八、预防焊接变形的措施
㈠设计措施 1.合理选择焊缝尺寸和形式
角焊缝的横向收缩
角焊缝的横向收缩要比对接焊缝的横向收缩小得多。 同样的焊缝尺寸,板越厚,横向收缩变形越小。
横向收缩变形的影响因素
• 不管何种接头形式,其横向收缩变形量总是随焊接热输 入增大而增加。 • 装配间隙对横向收缩变形量的影响也比较大,且情况复 杂:一般来说,随着装配间隙的增大,横向收缩也增加。 • 另外,横向收缩量沿焊缝长度方向分布是不均匀的:因 为先焊的焊缝冷却收缩对后焊的焊缝有一定挤压作用, 使后焊的焊缝横向收缩量更大——一般来说,焊缝的横 向收缩沿焊接方向是由小到大,逐渐增大到一定长度后 便趋于稳定;由于这个原因,生产中常将一条焊缝的两 端头间隙取不同值,后半部分比前半部分要大1~3mm。 • 横向收缩的大小还与装配后定位焊和装夹情况有关:定 位焊焊缝越长,装夹的拘束程度越大,横向收缩变形量 就越小。
沿焊缝纵向热变形对横向变形的影响
四、角变形
产生原因:横向收缩在厚度方向上的不均匀分布 (1)平板堆焊的角变形
平板堆焊时,在钢板厚度方向上的温度分布是不均匀的:温度高 的一面受热膨胀较大,另一面膨胀小甚至不膨胀。
由于焊接面膨胀受阻, 出现较大的压缩塑性 变形,这样,冷却时 在钢板厚度方向上产 生收缩不均匀的现象, 焊接一面收缩大,另 一面收缩小,所以产 生角变形。
产生原因:焊缝及 其附近区域在焊接 高温的作用下产生 纵向的压缩塑性变 形,焊件冷却后这 个区域要收缩,于 是引起纵向收缩变 形。
假想力Pf p dF
Fp
纵向收缩量 L Pf L EF L p dF
Fp
F
假想力作用在塑性变形区上
焊件纵向收缩的影响因素
(1)平板堆焊的角变形
(1)平板堆焊的角变形的影响因素
• 角变形的大小与焊接热输入、板厚等因素有关, 当然也与焊件的刚性有关。 • 当热输入一定,板厚越大,厚度方向上的温差越 大,角变形增加; • 但当板厚增大到一定程度,此时构件的刚性增大, 抵抗变形的能力增强,角变形反而减小。 • 板厚一定时,热输入增大,压缩塑性变形量增加, 角变形增加; • 但热输入增大到一定程度,堆焊面与背面的温差 减小,角变形反而减小。
3.4 焊接残余变形
焊接残余变形的分类:分七类
㈠纵向收缩变形 ㈡横向收缩变形
㈢挠曲变形
㈣角变形 ㈤波浪变形:薄板易发生
㈥错边变形:长度方向和厚度方向 ㈦螺旋形变形
焊接变形影响结构尺寸的准确、美观 可能降低结构承载能力(附加弯曲应力)
焊接变形可能降低结构承载能力 举例二
二、纵向收缩变形以及它引起的挠曲变形