生理学课件神经递质和受体

合集下载

神经递质和受体(课堂PPT)

神经递质和受体(课堂PPT)
IN
++++++ +++++++++ +++++ -------- ------------ -a---b---
g
IONOTROPIC .
METABOTROPIC 14
Ionotropic Receptor
Channel
NT neurotransmitter
.
15
Ionotropic Receptor
A
R
C
G
ATP
GTP
cAMP
PK
.
24
G protein: Protein Phosphorylation
A
R
C
G
ATP
GTP
P
cAMP
PK
.
Pore
25
周围神经系统的递质和受体
-胆碱能纤维 -肾上腺素能纤维
.
26
乙酰胆碱及其受体
Acetylcholine is the first discovery neurotransmitter
NT
Pore
.
16
G protein: direct control
R
G
GDP
.
20
G protein: direct control
R
G
GTP
Pore
.
21
G protein: Protein Phosphorylation
A
R
C
G
GDP
PK
.
23

生理学课件神经递质和受体

生理学课件神经递质和受体
毒蕈碱样作用(M样作用)
腺体分泌增加:消化腺,汗腺 平滑肌收缩:支气管,胃肠平滑肌,膀胱逼尿肌 抑制心血管活动的、血管舒张,血压下降 瞳孔缩小等。
② M受体亚型
M1、M2、M3、M4、M5等。 M1在脑内含量丰富; M2主要在心脏 M3和 M4存在于平滑肌 M4还存在于胰腺腺泡和胰岛组织,
介导胰酶和胰岛素分泌;
超极化抑制
⑵ 突触后抑制的分类及意义: 依抑制性中间神经元的功能与联系 方式不同,分
传入侧枝性抑制 回返性抑制
① 传入侧枝性抑制
又称交互性抑制
传入冲动进入中枢后兴奋某
一中枢神经元的同时,经侧支 +
兴奋一个抑制性中间神经元, 通过后者的活动抑制另一中枢 神经元。
意义:
使不同中枢之间的 活动协调起来。
肌肉型烟碱受体的阻断剂: 十烃季铵(Decamethonium)
重症肌无力: 体内产生一种对抗和破坏骨骼肌终板
膜上N2受体的抗体,使骨骼肌不能接受运 动神经元释放的ACh的调控而产生肌无力 。
自身免疫性疾病。
2)毒蕈碱受体 (Muscarinic Receptor,M受体)
G蛋白耦联受体 ① ACh与其结合所产生的效应称为
骨骼肌舒血管
⑵ 胆碱能受体 cholinergic receptor
根据药理特性分类: N 受体:烟碱受体 (nicotinic receptor) M受体: 毒蕈碱受体 (muscarinic receptor)
1)烟碱受体(Nicotinic receptor,N受体) 配体化学门控通道
① ACh与其结合所产生的效应称为烟碱样 作用(N样作用)。如: 兴奋自主神经节节后神经元、 引起骨骼肌收缩等。
神经节C之间的联系。

第十章-神经递质和受体

第十章-神经递质和受体

神经递质与受体神经递质(Neurotransmitter)由神经元合成;突触前末梢释放;特异性作用于突触后膜受体;产生突触后电位的信息传递物质。

神经调质(Neuromodulator)在神经元间不直接起信息传递作用,而是增强或削弱递质的信息传递效应。

递质的共存(coexistence of transmitters):定义:两种或两种以上的神经递质共同存在于一个神经元内的现象。

生理意义:协调某些生理过程。

经典神经递质的生命历程前体物质合成储存Precursor重摄取酶解释放代谢胆碱能系统Cholinergic system1.胆碱能系统的递质是乙酰胆碱。

2.胆碱+乙酰辅酶A→乙酰胆碱(储存于突触小泡内)3. 胆碱能神经元以乙酰胆碱为递质的神经元。

胆碱能纤维以乙酰胆碱为递质的神经纤维。

中枢的胆碱能系统分布1.丘脑特异投射系统2.脑干网状结构3.基底神经节4.与学习记忆有关区域Sensation, movement, learning and memory外周的胆碱能纤维有哪些????**外周的胆碱能纤维:支配骨骼肌的运动神经纤维;所有自主神经节前纤维;大多数副交感节后纤维;少数交感节后纤维(交感舒血管纤维,支配小汗腺的交感胆碱能纤维)*胆碱能系统的生理效应之一◆M uscarine-like action (毒蕈碱样作用)心脏活动的抑制; 支气管平滑肌和胃肠道平滑肌的收缩;血管平滑肌的舒张;消化腺的分泌Muscarine is an agonist for cholinergic M-receptor Atropine is an antagonist for M-receptor (非选择性)毛果芸香碱和溴化泰乌托品:M3激动剂和拮抗剂◆N icotine-like action (烟碱样作用)兴奋节后神经元; 骨骼肌的收缩;N 受体的激动剂:烟碱N 受体的拮抗剂:筒箭毒碱神经型烟碱受体的拮抗剂:六烃季胺,美加明肌肉型烟碱受体的拮抗剂:十烃季胺,戈拉碘胺*胆碱能系统的生理效应之二⏹毒蕈碱受体(muscarinic receptor, M receptor)M1-5All are metabotropic receptorsM1:脑;M2:心脏;M3,4:平滑肌;M4:胰腺腺泡和胰岛组织;M5⏹烟碱受体(nicotinic receptor, N receptor)N1-2Both types are ionotropic receptorsN1:CNS和自主神经节节后神经元N2:骨骼肌神经-肌接头处的终板膜上**乙酰胆碱受体乙酰胆碱的受体及作用机制受体第二信使离子效应N1、N2---↑Na+、K+ M1、M3、M5↑IP3,DG ↑Ca2+ M2、M4↓cAMP↑K+相关案例分析:主诉:35岁男性患者。

生理学课件神经系统2神经递质和受体

生理学课件神经系统2神经递质和受体

② N受体亚型 神经元型、肌肉型两个亚型。
神经元型烟碱受体(N1型烟碱受体) 分布于中枢神经系统和自主神经节 节后神经元的细胞膜上;
肌肉型烟碱受体(N2型烟碱受体) 分布于骨骼肌终板膜
③ N受体的阻断剂是筒箭毒碱 (Tubocurarine);
神经元型烟碱受体的阻断剂: 六烃季铵 (Hexamethnium);
⑷肽类Peptides:
① 下丘脑调节肽,7种 ② 阿片肽 ③ 脑-肠肽 ④ 其他:血管紧张素Ⅱ
血管升压素(VP) 缩宫素(OXT), 心房钠尿肽等
⑸ 嘌呤类(Purine):
腺苷(adenosine)、 ATP
⑹ 脂类(Lipid):
花生四烯酸及其衍生物:前列腺素(PG) 神经活性类固醇
⑺ 气体类:
NO; CO;
5.神经递质的共存 ⑴ 戴尔原则(Dale principle):
一个神经元的全部神经末梢均释放 同一种神经递质。
⑵ 递质共存现象:
一个神经元内可以存在两种或两种以上 的神经递质或调质,末梢可同时释放两种或 两种以上的递质 。
递质共存的意义:
① 协调某些生理过程: 如:支配猫唾液腺的副交感神经 ACh:分泌唾液 VIP: 增加唾液腺血供, 增强受体对ACh的亲和力
毒蕈碱样作用(M样作用)
腺体分泌增加:消化腺,汗腺 平滑肌收缩:支气管,胃肠平滑肌,膀胱逼尿肌 抑制心血管活动的、血管舒张,血压下降 瞳孔缩小等。
② M受体亚型
M1、M2、M3、M4、M5等。 M1在脑内含量丰富; M2主要在心脏 M3和 M4存在于平滑肌 M4还存在于胰腺腺泡和胰岛组织,
介导胰酶和胰岛素分泌;
胆碱能神经元:中枢神经系统中能合成Ach 的神经元。

动物生理学第三章-神经生理ppt课件

动物生理学第三章-神经生理ppt课件
1.胆碱能受体
凡是能与乙酰胆碱结合的受体叫做胆碱能受体。
①毒蕈碱型受体(muscarinic receptor)或M受体,它与 乙酰胆碱结合时产生与毒蕈碱相似的作用。
②烟碱型受体(nicotinic receptor)或N受体,它与乙酰 胆碱结合时产生与烟碱相似的作用。
①M型受体存在于副交感神经节后纤维支配的效应细 胞上以及交感神经支配的小汗腺、骨骼肌血管壁上。当它 与乙酰胆碱结合时,则产生毒蕈碱样作用,也就是使心脏 活动受抑制、支气管平滑肌收缩、胃肠运动加强、膀胱壁 收缩、瞳孔括约肌收缩、消化腺及小汗腺分泌增加等。阿 托品可与M受体结合,阻断乙酰胆碱的毒蕈碱样作用,故 阿托品是M受体的阻断剂。(农药中毒)
3.突触前受体 4.中枢内递质的受体
②N受体又可分为神经肌肉接头和神经节两种亚型,它 们分别存在于神经肌肉接头的后膜(终板膜)和交感神经、 副交感神经节的突触后膜上,前者为N2,后者为N1受体类型。 当它们与乙酰胆碱结合时,则产生烟碱样作用,即可引起 骨骼肌和节后神经元兴奋。箭毒可与神经肌肉接头处的N2受 体结合而起阻断剂的作用;六烃季胺可与交感、副交感神 经节突触后膜上的N1受体结合而起阻断剂的作用。
通过弥散作用到效应器细胞 效应细胞发生反应
非突触性化学传递的特点
①不存在突触前膜与突触后膜的特化结构。
②不存在一对一的支配关系,即一个曲张体能支配 较多的效应细胞。 ③曲张体与效应细胞间的距离至少在200Å以上,距 离大的可达几个μm。
④递质的弥散距离大,因此传递花费的时间可大于1s。 ⑤递质弥散到效应细胞时,能否发生传递效应取决于 效应细胞膜上有无相应的受体存在。
③电紧张扩布。局部电位不能像动作电位向远处传播,只 能以电紧张的方式,影响附近膜的电位。电紧张扩布随扩 布距离增加而衰减。

高级生理学神经递质和受体

高级生理学神经递质和受体
➢ 外周组织:3-甲氧基-4-羟基苯乙醇酸(VMA或杏仁酸)
肾上腺素受体
与NE和Ad结合的受体的总称 分类
➢ 受体
▪ 1:1A、1B和1D ▪ 2:2A、2B、2C
➢ 受体
▪ 1、2和3
1经磷脂酰肌醇水解介导发挥作用
2使cAMP减少,受体使cAMP增加
肾上腺素受体
NE受体亚型mRNA中枢分布 ➢ 1受体亚型
重摄取:占释出总量的3/4
➢ 突触前膜摄取(U1)
▪ 高亲和力摄取 ▪ 逆梯度,特异性较高 ▪ 一般神经末稍的CAs以U1为主
➢ 突触后膜和非神经组织摄取(U2)
▪ 亲和力较低 ▪ 高浓度时摄取,选择性较小 ▪ 血液中的CAs以U2为主
单胺类神经递质终止其生理作用的主要方式
神经经组织对CAs的摄取步骤
快速传递
➢ 氨基酸、乙酰胆碱等小分子递质
缓慢传递
➢ 神经肽介导缓慢传递,以调质方式发挥作用
单胺类及生物胺(如5-羟色胺)兼有快速和缓慢传递的特点
第一节 乙酰胆碱
(acetylcholine,ACh)
ACh的分布
外周
➢ 神经肌接头 ➢ 植物性神经节 ➢ 副交感末稍、汗腺、骨骼肌血管交感末稍
中枢
➢ 大脑皮层 ➢ 纹状体 ➢ 脊髓腹角 (胆碱乙酰转移酶单克隆抗体免疫组织化学定位研究)
▪ +膜Gp(+)PLC DAG+IP3 ▪ +膜Gs (+) AC (+)PKA ▪ 膜K+传导,Ca2+传导 ,神经元兴奋,平滑肌收缩,腺体分泌
➢ M2受体:主要心脏,少量在神经与平滑肌
▪ +Gi (-)AC 心肌胞膜Ca2+传导,膜超极化,或平滑肌细胞膜 K+传导 ,平滑肌胞膜去极化

高级生理学-神经递质与受体(下)课件

高级生理学-神经递质与受体(下)课件
• 介导的突触反应缓慢
• NMDA受体-通道的单位电导值为40-50pS,开放时间约2ms,但 呈簇状开放,时程达70-90ms,利于突触后神经元进行时间整合
• 产生复杂的生理反应
• NMDA受体-通道对Ca2+有较大通透性,Ca2+是重要的胞内第二信 使,能激活多种酶,通过不同的信号转导系统产生各种复杂的生 理反应
• 神经系统的发育、突触形成、突触传递效能变化等
• NMDA受体与神经系统的发育和突触形成密切有关
• 发育过程中视觉刺激对于视皮层突触连接的调整是由NMDA 受体介导的
• 小脑发育中,颗粒细胞的迁移、浦肯野细胞和多根爬行纤维 突触连接的消失、以及小脑内突触连接的稳定过程都依赖于 NMDA受体
• 参与学习记忆过程:诱导LTP和LTD
He discovered exclusive inhibitory action of outputs from the cerebellum and long-term depression as a major learning mechanism of the cerebellum.
Intracellular recording:
LTP的突触后和突触前机制:
*突触后机制:促进引起LTP的机制有:
(1)谷氨酸: (2)Ca2+与Ca2+依赖的第二信使:
Ca2+通过NMDA受体通道进入细胞内是LTP产生的关键。 Ca2+/CaM激酶和蛋白激酶C:导致突触结构上的改变。
(3)即刻早期基因:
• 分类
• 五型:NMDA受体、AMPA (使君子氨酸)受体、海 人藻酸(KA)受体、ACPD受体和L-AP4受体
• 离子型受体(ionotropic receptors )

神经递质及其受体 ppt课件

神经递质及其受体 ppt课件
• 胆碱能神经元(cholinergic neuron):在中枢神经系统中,释放 ACh作为递质的神经元。 分布:脊髓前角、脑干网状结构、丘脑后侧腹核、边缘系统 等。
• 胆碱能纤维(cholinergic fiber) :凡释放Ach作为递质的神经纤 维. 包括:全部自主神经节前纤维;绝大部分副交感神经节后纤 维;少数交感神经节后纤维;躯体运动神经纤维均属于此类。
通过与G蛋白耦联,调节相关酶活性,在细胞内产生第二信使如cAMP、肌醇磷 脂等,从而将胞外信号跨膜传递到胞内。
G蛋白偶联受体的信息传递可归纳为: 激素 受体
G蛋白 酶 第二信使
蛋白激酶
酶 或 功 能 蛋 白 磷 酸 化
生 物 学 效 应
• 第二信使(second messenger) 一般将细胞外信号分子称为“第一信使”,第一信
两种共存的递质或调质在神经化学传递中可能五种作用模式:
同一细胞相同受体 同一细胞不同受体 一种作用于突触后细胞,一种作用于突触前自身受体 (反馈调节) 一种作用于突触后细胞,一种作用于其他神经末梢上的 突触前受体(突触前调节) 作用于不同类细胞
膜受体membrane receptors
概念 定位:细胞膜上 本质:跨膜糖蛋白
胆碱能投射神经元
主要分布在基底前脑和脑干,向其他脑区发出纤维投射:
大脑皮质和边缘系统:胞体位于隔内侧核、斜角带和苍白 球腹侧Meynert基底核。投射纤维形成下述五条通路, 隔区—海马通路、斜角带—杏仁核通路、隔区、视前 区—缰核、脚间核通路、基底核—大脑皮质通路。(基 底前脑胆碱能系统) 其中感觉皮质和边缘皮质接受了来自基底核以及斜 角带的投射,被认为参与了情绪状态的影响和感觉输入 的皮质整合。而接受来自隔内侧核以及斜角带胆碱能神 经投射的海马则与学习记忆功能密切相关。

神经系统生理学ppt课件

神经系统生理学ppt课件

1.兴奋性突触后电位 (excitatory postsynaptic potential, EPSP)
*概念:突触前膜释放兴奋性递质,该递质与突触后
膜上受体结合后,引起突触后膜产生局部去极化, 使突触后神经元的兴奋性升高,这种电位变化称为 兴奋性突触后电位(EPSP) 。
产生机制
突触前膜释放兴奋性递质 递质经突触间隙与突触后膜受体结合 后膜对Na+、K+(尤其是对Na+)通透性提高 后膜出现局部去极化电位变化 产生EPSP
(一)突触的分类
按接触部位 • 轴—体突触 • 轴—树突触 • 轴—轴突触
按功能 • 兴奋性突触 • 抑制性突触
按信息传递 媒介物
• 化学性突触 • 电突触
(甲.轴-体突触;乙.轴-树突触;丙.轴-轴突触)
(二)突触的结构
①突触前膜: 突触小泡
②突触间隙: 水解酶
③突触后膜: 受体、离子通道
(三)突触传递的过程
操作式条件反射
斯金纳(B.F.Skinner)
特点:动物必须通过自己完成某种运动 或操作后才能得到强化。
2.条件反射的消退和分化
条件反射建立后,给予和条件刺激相似的刺激,也可引起 同样的效应,称泛化(generalization) ;对原刺激多次反 复加强后,近似刺激则不再引起同样反应,称分化 (differentiation) ;分化是相似刺激得不到强化,使皮层产生 了分化抑制(differential inhibition) ;如果只是反复使用条件 刺激,不再用非条件刺激强化,一段时间后条件反射会逐渐减 弱甚至消失,称反射的消退(vanish) 。
5-羟色胺递质系统主要与痛觉、睡眠、情绪、性行为、内 分泌等活动有关。

神经递质与受体69页PPT

神经递质与受体69页PPT
ห้องสมุดไป่ตู้
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
神经递质与受体
1、纪律是管理关系的形式。——阿法 纳西耶 夫 2、改革如果不讲纪律,就难以成功。
3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴

《生理学神经系统》PPT课件

《生理学神经系统》PPT课件

CHAPTER包括大脑、小脑、脑干和脊髓,负责整合和处理各种信息,控制机体的运动和感觉功能。

中枢神经系统周围神经系统自主神经系统由脑神经和脊神经组成,连接中枢神经系统与身体各部分,传递感觉和运动信息。

调节内脏器官的活动,包括交感神经和副交感神经。

030201神经系统的组成与功能包括细胞体、树突、轴突和突触,是神经系统的基本功能单位。

神经元的基本结构根据功能可分为感觉神经元、运动神经元和中间神经元。

神经元的分类包括突触前膜释放神经递质、神经递质与突触后膜受体结合以及突触后膜产生相应的生理效应。

突触传递的过程神经元与突触传递1 2 3包括乙酰胆碱、去甲肾上腺素、多巴胺、5-羟色胺等,它们在突触传递中起关键作用。

神经递质的种类根据与神经递质结合的特性可分为离子通道型受体、G蛋白偶联型受体和酶联型受体。

受体的类型神经递质与相应受体结合后,可改变受体的构象或激活相关酶,从而引发一系列生理效应。

神经递质与受体的相互作用神经递质与受体CHAPTER感觉器官与感受器感觉器官眼、耳、鼻、舌、皮肤等感受器类型光感受器、机械感受器、温度感受器、化学感受器等感受器的生理特性适应、换能、编码等听觉传导通路耳蜗→ 听神经→ 脑干听觉传导通路→ 大脑皮层视网膜→ 视神经→ 视交叉→ 视束→ 外侧膝状体→ 视放射→ 大脑皮层触压觉传导通路外周触压觉感受器→ 传入神经→ 脊髓→ 丘脑→ 大脑皮层痛觉传导通路外周痛觉感受器→ 传入神经→ 脊髓→ 丘脑→ 大脑皮层温觉传导通路外周温觉感受器→ 传入神经→ 脊髓→ 丘脑→ 大脑皮层感觉传导通路感觉中枢及感觉整合感觉中枢大脑皮层的感觉区,包括躯体感觉中枢、视觉中枢、听觉中枢等感觉整合多种感觉信息在大脑皮层的整合,形成对外部世界的整体感知感觉剥夺与感觉过敏感觉剥夺指长时间缺乏某种感觉刺激,导致相应感觉能力下降;感觉过敏指对某种感觉刺激过于敏感,产生不适或疼痛等异常感觉。

CHAPTER03运动单位与肌纤维类型关系不同运动单位包含的肌纤维类型不同,影响肌肉收缩特性。

神经递质和受体

神经递质和受体
神经递质和受体
汇报人:XX
contents
目录
• 神经递质概述 • 受体概述 • 神经递质与受体相互作用 • 常见神经递质和受体举例 • 神经递质和受体在神经系统中的作用 • 神经递质和受体相关疾病与治疗策略
01
神经递质概述
定义与分类
定义
神经递质是指由突触前神经元合 成并在突触传递中是担当“信使 ”的特定化学物质。
制下游效应器,如腺苷酸环化酶或磷脂酶C。
02
离子通道型受体途径
一些神经递质直接作用于离子通道型受体,改变其构象并开放或关闭离
子通道。例如,乙酰胆碱激活乙酰胆碱受体,导致钠离子内流和钾离子
外流,从而产生兴奋性突触后电位。
03
酶联型受体途径
某些神经递质通过激活酶联型受体来转导信号。这些受体通常具有内源
性酶活性,当神经递质与受体结合时,酶活性被激活并催化下游信号分
受体在细胞信号转导中作用
01
02
03
识别配体
受体能够特异性地识别并 结合配体,如神经递质多 巴胺、血清素等。
触发信号转导
配体与受体结合后,会触 发受体的构象变化,进而 激活或抑制细胞内的信号 转导通路。
调节细胞功能
通过信号转导通路,受体 可以调节细胞的多种生理 功能,如代谢、增殖、分 化、凋亡等。
治疗效果与副作用
乙酰胆碱酯酶抑制剂能够改善 阿尔茨海默病患者的认知功能 、日常生活能力和行为症状。 然而,长期使用可能会出现恶 心、呕吐、腹泻等副作用。
帕金森病与多巴胺能药物治疗
• 帕金森病概述:帕金森病是一种慢性进行性神经系统变性疾病,以静止性震颤 、运动迟缓、肌强直和姿势平衡障碍为主要特征。其发病机制与黑质多巴胺能 神经元显著变性丢失有关。

神经生物学神经递质和受体ppt课件

神经生物学神经递质和受体ppt课件
第5章 受体 第6章 神经递质
1 receptor 配体(ligand)
特定生物学效应
外源性 内源性
激动剂 拮抗剂 angonist antoganist
特点
1 特异性结合特点 2 具有可逆性 3 一般具有内源性配体 4饱和性
孤儿受体
分类 1药理学效应
激动剂
2解剖学定位
膜受体 核受体
3 跨膜信号转导机制 受体门控离子通道
突触前受体的功能 反馈调节递质的释放 不同神经元递质释放的突触调节
交感神经 副交感神经
NA 神经肽Y
ACh 血管活性肠肽
猫唾液腺
递质的代谢
合成,储存,释放,降解, 重摄取,再合成
ACh及其受体 NA、A及其受体 多巴胺及其受体 5-羟色胺及其受体 组胺及其受体 氨基酸类递质及其受体 神经肽及其受体 嘌呤类递质及其受体 NO、CO及其受体
胆碱能纤维 (cholinergic fiber)
胆碱能受体 (cholinergic receptor)
毒蕈碱受体 (M受体) (muscarinic receptor)
M 1- 5
阿托品
烟碱受体 (N受体) (nicotinic receptor)
N1,
N2
六烃季胺 十烃季胺
(4)胆碱能神经元、胆碱能纤维及其受体的分布
肾上腺素能受体 (adrenergic receptor)

少大部分

大部分
副交感神经
骨骼肌 效应器 效应器
中枢神经系统
脊髓前角,丘脑后腹核,脑 干网状结构上行激动系统
外周神经系统
中 躯体运动神经纤维

交感神经
骨骼肌 N2受体
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
NO; CO;
5.神经递质的共存 ⑴ 戴尔原则(Dale principle):
一个神经元的全部神经末梢均释放 同一种神经递质。
⑵ 递质共存现象:
一个神经元内可以存在两种或两种以上 的神经递质或调质,末梢可同时释放两种或 两种以上的递质 。
递质共存的意义:
① 协调某些生理过程: 如:支配猫唾液腺的副交感神经 ACh:分泌唾液 VIP: 增加唾液腺血供, 增强受体对ACh的亲和力
NO、CO不完全符合,但也是递质
3.神经调质 Neuromodulator ⑴ 神经调质:由神经元产生,但不在 神经元间直接起信息传递作用,而能增 强或削弱递质的信息传递效应,对递质 的信息传递起调节作用的化学物质。
⑵ 调制作用(Modulation): 调质所发挥的作用称为调制作用。 例:阿片肽的调制作用: 作用于δ受体,促进末梢释放NE 作用于κ受体,抑制末梢释放NE
⑷肽类Peptides:
① 下丘脑调节肽,7种 ② 阿片肽 ③ 脑-肠肽 ④ 其他:血管紧张素Ⅱ
血管升压素(VP) 缩宫素(OXT), 心房钠尿肽等
⑸ 嘌呤类(Purine):
腺苷(adenosine)、 ATP
⑹ 脂类(Lipid):
花生四烯酸及其衍生物:前列腺素(PG) 神经活性类固醇
⑺ 气体类:
递质、调质两者无明确界限
4.神经递质和神经调质的分类 (依其化学结构) ⑴ 胆碱类 Cholines:ACh ⑵ 单胺类 Monoamines: NE、E、DA、5-HT、His
⑶ 氨基酸类 Amino acides
兴奋性氨基酸:谷氨酸 (Glu) 门冬氨酸 (Asp)
抑制性氨基酸:γ-氨基丁酸(GABA) 甘氨酸(Gly)
肌肉型烟碱受体的阻断剂: 十烃季铵(Decamethonium)
重症肌无力: 体内产生一种对抗和破坏骨骼肌终板
膜上N2受体的抗体,使骨骼肌不能接受运 动神经元释放的ACh的调控而产生肌无力 。
自身免疫性疾病。
2)毒蕈碱受体 (Muscarinic Receptor,M受体)
G蛋白耦联受体 ① ACh与其结合所产生的效应称为
生理学课件神经递质和受体
2.确定神经递质的条件(5条)
⑴ 突触前神经元内具有合成神经递质的前体和酶 系统,并能够合成该递质。 ⑵ 递质贮存于突触小泡,冲动到达时释放入突触 间隙。 ⑶ 能与突触后膜受体结合发挥特定的生理作用。 ⑷ 存在能使该递质失活的酶或其它方式(如重摄 取)。 ⑸ 有特异的受体激动剂和拮抗剂,能加强或阻断 递质的作用。
胆碱能神经元:中枢神经系统中能合成Ach 的神经元。
胆碱能纤维:在外周神经系统,以ACh为 递质的神经纤维。(释放ACh)
胆碱能受体:能与ACh特异结合的受体。 分布:胆碱能纤维所对应的突触后膜上。
⑴ 胆碱能纤维的分布:
所有自主神经的节前纤维; 大多数副交感神经的节后纤维; 运动神经纤维; 少数交感节后纤维 汗腺
M5亚型作用不清。
M受体分布
大多数副交感神经节后纤维所支配 的效应器上
汗腺、 骨骼肌血管平滑肌细胞膜。
③ M受体的阻断剂:阿托品 Atropine
2.Norepinephrine 及其受体: 在外周神经系统,末梢释放去甲 肾上腺素的神经纤维称为肾上腺 素能纤维(Adrenergic fiber)。
②可能与信息的化学编码有关。
(二)受体 (Receptor) 1.受体的概念
位于细胞膜或细胞内能与某些化学 物质发生特异性结合并诱发生物学 效应的特殊生物分子。
膜受体 核受体 胞浆内受体
2.受体的激动剂和拮抗剂
Agonist and Antagonist
(1)激动剂(Agonist) : 能与受体发生特异性结合并 产生生物学效应的化学物质。
⑵ 按受体存在部位:突触后受体 ⑶ 按受体激活机制分类突:触前受体
离子通道型受体 G蛋白耦联受体
A.离子通道型受体: 又称促离子型受体、化学门控通道,
由配体结合部位和离子通道两部分组成。
如:终板膜上的N型ACh门控离子通道受体
B. G蛋白耦联受体 又称促代谢型受体
大多数神经 递质受体为此 类受体。
毒蕈碱样作用(M样作用)
腺体分泌增加:消化腺,汗腺 平滑肌收缩:支气管,胃肠平滑肌,膀胱逼尿肌 抑制心血管活动的、血管舒张,血压下降 瞳孔缩小等。
② M受体亚型
M1、M2、M3、M4、M5等。 M1在脑内含量丰富; M2主要在心脏 M3和 M4存在于平滑肌 M4还存在于胰腺腺泡和胰岛组织,
介导胰酶和胰岛素分泌;
5. 受体的调节regulation of receptor
上调 (增量调节) :递质分泌不足时, 受体数量增加,亲和力升高。
下调 (减量调节) :
意义: 受体数量与亲和力的变化与递质 量相适应, 从而调节突触后神经元 对递质的敏感性与反应强度.
(三)外周神经递质及其受体 P348 1.乙酰胆碱(Acetylcholine,ACh)及其受体
(2)拮抗剂(Antagonist) : 能与受体发生特异性结合, 但不能产生生物学效应的化学物质。
配体
3.Receptor与Ligand结合的特性 ⑴ 相对特异性; ⑵ 饱和性; ⑶ 可逆性; ⑷ 竞争性;
4.Receptor的分类 ⑴ 按天然配体(体内存在的化学物质)
: 胆碱能受体、肾上腺能受体等;
骨骼肌舒血管
⑵ 胆碱能受体 cholinergic receptor
根据药理特性分类: N 受体:烟碱受体 (nicotinic receptor) M受体: 毒蕈碱受体 (muscarinic receptor)
1)烟碱受体(Nicotinic receptor,N受体) 配体化学门控通道
① ACh与其结合所产生的效应称为烟碱样 作用(N样作用)。如: 兴奋自主神经节节后神经元、 引起骨骼肌收缩等。
② N受体亚型 神经元型、肌肉型两个亚型。
神经元型烟碱受体(N1型烟碱受体) 分布于中枢神经系统和自主神经节 节后神经元的细胞膜上;
肌肉型烟碱受体(N2型烟碱受体) 分布于骨Tubocurarine);
神经元型烟碱受体的阻断剂: 六烃季铵 (Hexamethnium);
相关文档
最新文档