四大触摸屏技术工作原理及特点分析

合集下载

触摸屏工作原理

触摸屏工作原理

触摸屏工作原理触摸屏是一种广泛应用于电子设备的输入设备,它能够实现通过手指、触控笔或其他物体来进行操作和交互。

触摸屏的工作原理基于多种技术,包括电阻式触摸、电容式触摸、表面声波触摸和光学触摸等。

本文将介绍这些不同类型的触摸屏工作原理。

一、电阻式触摸屏电阻式触摸屏是较早期采用的一种触摸技术。

它由两层导电膜构成,两层导电膜之间存在微小间隙,当手指或其他物体触摸屏幕时,两层导电膜会接触从而形成电流。

触摸屏控制器会检测在屏幕上形成的电流变化,通过计算电流变化的位置来确定触摸点的位置。

二、电容式触摸屏电容式触摸屏是目前最常见的触摸屏技术之一。

它由触摸面板和电容传感器组成。

电容传感器在触摸面板中分布,并能感测到触摸面板上的电容变化。

当手指接触触摸面板时,人体的电荷会导致电容变化,电容传感器会检测到这个变化并将其发送给控制器。

控制器通过分析电容变化的位置来确定触摸点的位置。

三、表面声波触摸屏表面声波触摸屏利用了声波的传播和反射原理。

触摸屏表面会发射一系列超声波,当手指或其他物体接触屏幕时,会产生声波的衰减。

位于触摸屏边缘的接收器会接收到这些衰减的声波,并将其转化为电信号。

通过分析接收到的信号,控制器可以确定触摸的位置。

四、光学触摸屏光学触摸屏通过光传感器和光源来实现触摸检测。

通常,光传感器位于触摸屏的一侧,光源位于另一侧。

当手指触摸屏幕时,触摸点会阻挡光在传感器上的投射,从而引发光传感器的接收信号强度变化。

控制器会通过分析这些变化来确定触摸点的位置。

综上所述,触摸屏工作原理可以分为电阻式触摸、电容式触摸、表面声波触摸和光学触摸等几种不同的技术。

每种技术都有其特点和应用场景。

了解不同类型触摸屏的工作原理,可以帮助我们更好地选择合适的触摸屏技术,并应用于各种电子设备中,提升用户的操作和交互体验。

触摸屏的原理和应用

触摸屏的原理和应用

触摸屏的原理和应用1. 前言触摸屏作为一种人机交互设备,现在已经被广泛应用于各种电子设备中,如智能手机、平板电脑、电子签名板等。

触摸屏是通过触摸手指或者专用笔等物理工具在屏幕表面做出相应的操作,从而实现与设备的交互。

本文将介绍触摸屏的原理及其应用。

2. 触摸屏的原理触摸屏的原理主要有电阻式触摸屏、电容式触摸屏、表面声波触摸屏和压力感应触摸屏等。

2.1 电阻式触摸屏电阻式触摸屏是通过两层透明导电层之间夹着一层微薄的隔离点的方式工作的。

当手指按在电阻屏上时,顶部的导电层与底部的导电层产生接触,通过测量电流的方式来确定触摸点的位置。

电阻式触摸屏所需的压力较大,且对光线的敏感度低,主要应用于工业设备等领域。

2.2 电容式触摸屏电容式触摸屏是利用物体的电容性来工作的,常见的电容式触摸屏有玻璃层电容式触摸屏和膜层电容式触摸屏。

玻璃层电容式触摸屏是将导电玻璃覆盖在显示器上,当手指触碰屏幕时,由于手指和导电玻璃之间的导电差异产生电流,通过测量电流的方式确定触摸点的位置。

膜层电容式触摸屏的工作原理类似,但是使用的是导电膜。

电容式触摸屏对压力的敏感度较低,且使用较为广泛。

2.3 表面声波触摸屏表面声波触摸屏是利用表面振荡器发射声波,当手指触摸屏幕时,会产生声波的散射,通过接收和分析散射的声波来确定触摸点的位置。

表面声波触摸屏对透光性和耐刮性的要求较高,主要应用于一些公共领域的信息互动设备。

2.4 压力感应触摸屏压力感应触摸屏是通过感应到手指的压力大小来确定触摸点的位置,是一种可以实现手写输入的触摸屏。

压力感应触摸屏常用于电子签名板等领域,对用户手写输入的敏感度较高。

3. 触摸屏的应用触摸屏的应用非常广泛,以下是几个常见的应用领域:3.1 智能手机和平板电脑随着智能手机和平板电脑的普及,触摸屏已经成为了这些设备的标配。

用户可以通过手指在屏幕上进行触摸、滑动、缩放等操作,方便快捷地与设备进行交互。

3.2 电子签名板电子签名板是一种可以实现电子签名和手写输入的设备,触摸屏是电子签名板的核心部件。

触摸屏的基本原理

触摸屏的基本原理

触摸屏的基本原理
触摸屏是一种人机交互设备,它能够感应和识别人体的触摸动作并将其转化为电信号。

触摸屏的基本原理主要分为四种类型,即电阻式触摸屏、表面声波触摸屏、电容式触摸屏和红外线触摸屏。

1. 电阻式触摸屏:
电阻式触摸屏由两层特殊材料分别作为导电面放置在一起。

当用户用手或者触笔触摸屏幕时,两层导电面之间的电流就会发生变化,触摸位置即可通过计算导电层间电流的变化情况来确定。

2. 表面声波触摸屏:
表面声波触摸屏由一个或多个传感器和一个边框组成。

传感
器将声波信号发送到屏幕上,当用户触摸屏幕时,声波就会被中断或者散射。

传感器能够检测到这些变化从而确定触摸位置。

3. 电容式触摸屏:
电容式触摸屏由一层覆盖整个屏幕的导电材料构成,通常为
透明的导电膜。

当用户触摸屏幕时,人体带有一定电荷,导致屏幕上的电荷分布发生改变,通过检测这些电量的变化,就可以确定触摸位置。

4. 红外线触摸屏:
红外线触摸屏由红外线发射器和接收器构成,位于屏幕的四
个边角。

发射器在屏幕表面形成一些红外线网状的光束,当用户触摸屏幕时,触摸位置会遮挡相应的红外线光束,接收器检
测到这些遮挡的光束,并通过计算确定触摸位置。

这些触摸屏的工作原理各有特点,可以根据具体应用场景和需求来选择合适的触摸屏技术。

触摸屏的分类及其原理

触摸屏的分类及其原理

触摸屏的分类及其原理通常,触摸屏系统由触摸检测传感部件和触摸屏控制器两部分器件组成。

前者采集用户的触摸信息并传送到控制器,后者通过对接收到的信息进行处理,得到用户的触摸位置,并将位置信息发送给上一层的主机,同时接收主机发送的控制命令并加以执行。

触摸屏的主要分类从技术原理上区分,触摸屏可以分成四个基本种类:红外技术触摸屏、表面声波触摸屏、电阻触摸屏、电容触摸屏。

下面将对以上四种触摸屏技术进行简单的介绍。

1、红外技术触摸屏该触摸屏由安装在触摸屏外框上的红外发射和接收器件构成。

发射器件在屏幕表面形成红外检测网,任何物体都可改变触点的红外线而实现触摸的检测。

红外触摸屏不受电流、电压和静电干扰,适合条件恶劣的工作环境,价格低,安装方便,响应速度快。

红外现在应用开始广泛化了,一般都是用于大型设备,比如电视上主持人的触摸大电视,寿命一般,准确率高,支持多点,透光率最好,最高100%。

2、表面声波触摸屏表面声波是沿介质表面传播的机械波。

此类触摸屏由触摸屏、声波发生器、反射器和声波接收器组成。

其中声波发生器产生一种高频声波跨越屏幕表面,在手指触摸时,触电上的声波被阻止,声波接收器由此确定坐标位置。

表面声波触摸屏不受温度、湿度等环境因素的影响,分辨率极高,有极好的防刮性,使用寿命长,透光率好,没有漂移,表面也不怕划,缺点是怕水和油污,脏了要维护。

3、电阻式触摸屏电阻触摸屏是一块与显示屏表面匹配的多层复合薄膜。

该结构以一层玻璃作为基层,表面涂一层透明的导电层(ITO,氧化铟),上层再覆盖一层防刮的塑料层,它的内表面也涂有一层ITO,四线和八线触摸屏由两层具有相同表面电阻的透明阻性材料组成,五线和七线触摸屏由一个阻性层和一个导电层组成,通常在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们分隔开。

当触摸屏表面受到的压力(如通过笔尖或手指进行按压)足够大时,顶层与底层之间会产生接触。

所有的电阻式触摸屏都采用分压器原理来产生代表X坐标和Y坐标的电压。

触摸屏工作原理

触摸屏工作原理

触摸屏工作原理触摸屏是一种常见的输入设备,广泛应用于智能手机、平板电脑、液晶电视等电子产品中。

它以其便捷的操作方式和用户友好的界面,成为了现代科技的重要组成部分。

本文将介绍触摸屏的工作原理,以及其中涉及的技术和原理。

1. 电阻式触摸屏电阻式触摸屏是一种最常见的触摸屏技术。

它由两层透明膜层组成,膜层之间涂有导电的透明物质。

当用户用手指或者触控笔触摸屏幕表面时,两层透明膜层之间的电阻值会发生变化,从而将触摸点定位到具体的坐标位置。

电阻式触摸屏的优点是准确度高,但对于多点触控支持较差。

2. 电容式触摸屏电容式触摸屏是目前较为主流的触摸屏技术。

它是利用电容的原理来检测触摸点的位置。

电容式触摸屏由玻璃或者塑料面板、氧化铟锡透明导电层以及背后的传感器组成。

当用户触摸屏幕时,电容屏会感知到人体的电荷变化,通过测量不同传感器之间的电容变化,确定触摸点的位置。

电容式触摸屏具有较好的灵敏度和支持多点触控的特性。

3. 表面声波触摸屏表面声波触摸屏是采用声学原理来感应触摸的一种触摸屏技术。

它通过在屏幕的四个角落放置声波发射器和接收器,由它们之间的声波传播来检测触摸位置。

当用户触摸屏幕时,触摸会干扰声波的传播,从而实现触摸位置的感应。

表面声波触摸屏可以支持大面积触摸,并具有一定的耐用性。

4. 表面电容式触摸屏表面电容式触摸屏是电容式触摸屏的一种改进型技术。

它在屏幕表面涂布一层带有纵横交错导电线的透明电极,通过感应用户的电荷变化来确定触摸点的位置。

表面电容式触摸屏具有较高的精度和灵敏度,适合于高清晰度和多点触控的应用场景。

5. 负压感应触摸屏负压感应触摸屏是一种可以实现触摸和压感的技术。

它在屏幕上覆盖了一个带有微小孔洞的透明膜,当用户用手指或者触控笔触摸屏幕时,通过对孔洞施加负压,感应到用户触摸的位置和按下的力度。

负压感应触摸屏适用于需要精确的触摸和力度控制的应用领域。

总结来说,触摸屏技术的不同工作原理和原理的应用场景不同。

触摸屏的技术原理

触摸屏的技术原理

触摸屏的技术原理触摸屏是一种在屏幕表面上能够感应触摸位置的设备。

它广泛应用于现代电子设备,如智能手机、平板电脑、工业控制设备、自动取款机等。

触摸屏的技术原理有几种不同的方法,包括电阻式触摸屏、电容式触摸屏、声波式触摸屏和红外线触摸屏。

电阻式触摸屏是最早也是最常见的触摸屏技术。

它由两层透明导电薄膜构成,中间有一小段间隙。

当用户触摸屏幕时,两层导电薄膜相互接触,形成一个电路。

屏幕四角处有四个传感器,用于确定用户的触摸位置。

传感器测量电流的变化,将其转换为坐标,以确定触摸位置。

电阻式触摸屏的优点是触摸灵敏度好、可在任意物体上触摸。

然而,它的缺点是需要外力压缩屏幕才能进行操作,使触摸体验不够顺滑。

电容式触摸屏是目前最常见的触摸屏技术,其原理基于电容传感器。

电容式触摸屏涂覆了一层导电层,通常是玻璃或薄膜。

当用户触摸屏幕时,人体带有电荷,与电容层产生电场。

传感器测量电场的变化,以确定用户的触摸位置。

电容式触摸屏的优点是触摸感应灵敏、高清晰度、不需要外力压力,触摸体验更加顺滑。

然而,它的缺点是不能使用手套或非导体物体触摸。

声波式触摸屏利用超声波传感器检测用户触摸位置。

触摸屏上方或周围放置了一组声波发射器和接收器。

通过发射器发出超声波,当用户触摸屏幕时,触摸点引发超声波的反射。

接收器接收到反射波后,计算触摸位置。

声波式触摸屏的优点是可以实现多点触摸和透明触摸屏。

但受到环境噪音和杂散声波的干扰,可能会影响精度和稳定性。

红外线触摸屏使用红外线传感器检测触摸位置。

触摸屏的周围装有一组红外线发射器和接收器,以形成一个无形的光栅网格。

当用户触摸屏幕时,被触摸的区域会阻挡红外线,使对应位置的红外线接收器接收到较少的红外线信号。

通过计算接收到的光强变化,确定用户的触摸位置。

红外线触摸屏的优点是透明度高、可使用任何物体触摸。

然而,它的缺点是易受到外界干扰,可能产生误触。

总结来说,触摸屏的技术原理主要有电阻式、电容式、声波式和红外线式。

触摸屏 工作原理

触摸屏 工作原理

触摸屏工作原理
触摸屏是一种通过手指触摸屏幕来实现操作的输入设备。

它适用于各种电子设备,如智能手机、平板电脑、电脑和ATM机等。

触摸屏的工作原理可以大致分为四种类型:电阻式触摸屏、电容式触摸屏、表面声波触摸屏和电磁式触摸屏。

电阻式触摸屏通过屏幕表面覆有一层特殊的电阻膜来实现触摸的检测。

当手指触摸屏幕时,电荷从一侧电极传递到另一侧电极,从而形成一个电路。

通过测量电流的变化,系统可以确定触摸的位置。

电容式触摸屏使用一层透明导电材料覆盖在屏幕表面,如铺有氧化铟锡薄膜的玻璃或PET薄膜。

当手指触摸屏幕时,手指和电容层之间会形成一个电容。

通过测量电容的变化,系统可以检测到触摸的位置。

表面声波触摸屏由发射器和接收器组成,它们位于屏幕的四个角落。

发射器会向上发射超声波,这些超声波会沿着屏幕表面反射。

当手指触摸屏幕时,超声波的传播路径会发生变化。

接收器会检测这些变化,并通过计算来确定触摸的位置。

电磁式触摸屏使用电磁感应原理来检测触摸位置。

它会在屏幕表面放置一层电磁感应板,当手指触摸屏幕时,会造成感应板上感应线圈的电感变化。

通过测量电感的变化,系统可以确定触摸的位置。

每种触摸屏的工作原理不同,具有不同的特点和适用场景。

随着技术的进步,触摸屏正在不断地改进和创新,使得我们的操作更加直观、方便。

四大触摸屏重点技术工作原理及特点分析

四大触摸屏重点技术工作原理及特点分析

四大触摸屏技术工作原理及特点分析红外触摸屏是运用X、Y方向上密布旳红外线矩阵来检测并定位顾客旳触摸。

红外触摸屏在显示屏旳前面安装一种电路板外框,电路板在屏幕四边排布红外发射管和红外接受管,一一相应形成横竖交叉旳红外线矩阵。

顾客在触摸屏幕时,手指就会挡住通过该位置旳横竖两条红外线,因而可以判断出触摸点在屏幕旳位置。

任何触摸物体都可变化触点上旳红外线而实现触摸屏操作。

初期观念上,红外触摸屏存在辨别率低、触摸方式受限制和易受环境干扰而误动作等技术上旳局限,因而一度淡出过市场。

此后第二代红外屏部分解决了抗光干扰旳问题,第三代和第四代在提高辨别率和稳定性能上亦有所改善,但都没有在核心指标或综合性能上有质旳奔腾。

但是,理解触摸屏技术旳人都懂得,红外触摸屏不受电流、电压和静电干扰,合适恶劣旳环境条件,红外线技术是触摸屏产品最后旳发展趋势。

采用声学和其他材料学技术旳触屏均有其难以逾越旳屏障,如单一传感器旳受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。

红外线触摸屏只要真正实现了高稳定性能和高辨别率,必将替代其他技术产品而成为触摸屏市场主流。

过去旳红外触摸屏旳辨别率由框架中旳红外对管数目决定,因此辨别率较低,市场上重要国内产品为32x32、40X32,此外尚有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。

这些正是国外非红外触摸屏旳国内代理商销售宣传旳红外屏旳弱点。

而最新旳技术第五代红外屏旳辨别率取决于红外对管数目、扫描频率以及差值算法,辨别率已经达到了1000X720,至于说红外屏在光照条件下不稳定,从第二代红外触摸屏开始,就已经较好旳克服了抗光干扰这个弱点。

第五代红外线触摸屏是全新一代旳智能技术产品,它实现了1000*720高辨别率、多层次自调节和自恢复旳硬件适应能力和高度智能化旳鉴别辨认,可长时间在多种恶劣环境下任意使用。

并且可针对顾客定制扩大功能,如网络控制、声感应、人体接近感应、顾客软件加密保护、红外数据传播等。

触屏的原理和应用是什么

触屏的原理和应用是什么

触屏的原理和应用是什么前言触屏技术是指通过触摸屏幕来进行操作的一种技术。

它已经广泛应用在各个领域,如智能手机、平板电脑、自助终端等。

本文将介绍触屏的原理及其应用。

触屏的原理触屏技术基于物理和电子原理,主要分为以下几种类型:1.电阻式触摸屏:电阻式触摸屏是最早出现的触屏技术之一。

它使用的是两层薄的导电材料之间的电阻变化来实现触摸检测。

当触摸屏被按下时,上下两层的导电材料接触并形成电路,可以通过测量电阻来确定触摸点的位置。

2.电容式触摸屏:电容式触摸屏使用的是静电感应原理。

触摸屏上覆盖着一层导电材料,当人体触摸触摸屏时,触摸点和导电层之间产生微弱的电流。

通过测量电流的变化来确定触摸点的位置。

3.表面声波式触摸屏:表面声波式触摸屏采用声表面波的传播原理,将贴在触摸屏表面的传感器发射出的声波反射到触摸点,并由接收传感器接收反射回来的声波。

通过测量声波的传播时间来确定触摸点的位置。

4.投射式电容式触摸屏:投射式电容式触摸屏是一种较新的触摸技术,广泛应用于智能手机和平板电脑上。

它通过将电容传感器置于显示屏之上,可以通过测量电容的变化来确定触摸点的位置。

触屏的应用触屏技术在各个领域有广泛的应用,下面列举了几个主要的应用领域:1.智能手机和平板电脑:触屏技术是智能手机和平板电脑的关键技术之一。

通过触摸屏,用户可以直接通过手指来进行操作,例如点击、滑动等。

它极大地提高了人机交互的便利性和灵活性。

2.自助终端:触屏技术在自助终端上得到了广泛应用,如自助售货机、自助餐厅点餐系统等。

用户可以通过触摸屏来选择商品、输入信息等,简化了与机器的交互过程。

3.游戏设备:触屏技术在游戏设备上也有很大的应用。

例如,游戏机的触摸屏可以用于游戏操作,游戏手机上的触摸屏可以用于虚拟按钮的模拟。

4.汽车导航系统:触屏技术在汽车导航系统上的应用也非常普遍。

驾驶员可以通过触摸屏来进行导航、调整音量等操作,提高了驾驶的便利性和安全性。

5.工业控制设备:在工业控制设备中,触屏技术可以方便地进行参数设置和操作调整。

触摸屏的原理、分类、优缺点评价

触摸屏的原理、分类、优缺点评价

触摸屏的原理、分类、优缺点,58触屏寿命想必大家很关心的一个问题就是手机的触摸屏寿命是多少吧!还有就是到底是电阻式触摸屏(诺基亚的)好还是电容式触摸屏(iPhone等)好呢……本文从原理阐述讲解,希望对大家的认知有一些帮助!先说触摸屏的原理触摸屏系统一般包括两个部分:触摸检测装置和触摸屏控制器。

触摸检测装置安装在显示器屏幕前面,用于检测用户触摸位置,接收后送触摸屏控制器;触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。

触摸屏技术也经历了从低档向高档逐步升级和发展的过程。

根据其工作原理,其目前一般被分为四大类:电阻式触摸屏、电容式触摸屏、红外线式触摸屏和表面声波触摸屏。

1、电阻式触摸屏电阻触摸屏的屏体部分是一块多层复合薄膜,由一层玻璃或有机玻璃作为基层,表面涂有一层透明的导电层(ITO膜),上面再盖有一层外表面经过硬化处理、光滑防刮的塑料层。

它的内表面也涂有一层ITO,在两层导电层之间有许多细小(小于千分之一英寸)的透明隔离点把它们隔开。

当手指接触屏幕时,两层ITO发生接触,电阻发生变化,控制器根据检测到的电阻变化来计算接触点的坐标,再依照这个坐标来进行相应的操作。

电阻屏根据引出线数多少,分为四线、五线等类型。

五线电阻触摸屏的外表面是导电玻璃而不是导电涂覆层,这种导电玻璃的寿命较长,透光率也较高。

电阻式触摸屏的ITO涂层若太薄则容易脆断,涂层太厚又会降低透光且形成内反射降低清晰度。

由于经常被触动,表层ITO使用一定时间后会出现细小裂纹,甚至变型,因此其寿命并不长久。

电阻式触摸屏价格便宜且易于生产,因而仍是人们较为普遍的选择。

四线式、五线式以及七线、八线式触摸屏的出现使其性能更加可靠,同时也改善了它的光学特性。

2、电容式触摸屏电容式触摸屏的四边均镀上了狭长的电极,其内部形成一个低电压交流电场。

触摸屏上贴有一层透明的薄膜层,它是一种特殊的金属导电物质。

触屏用的是什么按键原理

触屏用的是什么按键原理

触屏用的是什么按键原理触屏的工作原理可以概括为以下几点:
一、电容式触屏
1. 屏幕表面覆盖一层玻璃或塑料薄膜,涂覆透明电极。

2. 指尖触碰屏幕表面会形成微小电容变化。

3. 根据电容变化位置,计算出触控坐标。

二、电阻式触屏
1. 屏幕表面覆盖电阻膜,底部贴片电极。

2. 指尖压碰触点,上下电极接触,在该点形成电流。

3. 根据电流分布计算触碰位置。

三、红外触屏
1. 屏幕边缘放置红外发射管和接收管。

2. 指尖触碰遮断部分红外线路。

3. 根据接收量变化判断触碰位置。

四、声波触屏
1. 屏幕边缘放置发送接收声波的转换器。

2. 指尖触屏会吸收部分声波,引起声反射变化。

3. 根据声反射变化判断触点位置。

五、注意事项
1. 确保触屏表面清洁,避免误操作。

2. 不要过力触碰,可能损坏触屏组件。

3. 部分触屏支持多点触控,可同时检测多个手指。

4. 支持手写笔或触控笔的触屏也很常见。

综上所述,不同原理的触屏技术都可以通过指尖接触点的位置变化来检测手势操作。

但需要注意正确和适度的接触力度。

触摸屏原理是什么

触摸屏原理是什么

触摸屏原理是什么
触摸屏是一种常见的人机交互设备,它的原理是通过人体的触摸来实现对设备的操作。

触摸屏的原理可以分为电阻式触摸屏、电容式触摸屏和表面声波触摸屏等多种类型,它们各自有着不同的工作原理和特点。

电阻式触摸屏是最早出现的触摸屏技术之一,它由两层导电层构成,一层为X轴方向的导电层,另一层为Y轴方向的导电层。

当手指触摸屏幕时,会在触摸点形成一个电阻,这样就可以通过测量电流的方式确定触摸点的位置。

电阻式触摸屏的优点是价格相对较低,但是对触摸的灵敏度较低,且易受污染和划伤影响。

电容式触摸屏则是目前较为流行的触摸屏技术,它利用了电容的原理。

电容式触摸屏由一层感应电极层和一层玻璃基板构成,当手指触摸屏幕时,会产生电荷变化,从而可以通过测量电荷的方式确定触摸点的位置。

电容式触摸屏具有较高的灵敏度和准确度,且具备多点触控的功能,能够实现更加丰富的操作方式。

除了电阻式和电容式触摸屏外,还有表面声波触摸屏等其他类型的触摸屏技术。

表面声波触摸屏利用超声波在玻璃表面传播的原
理来实现对触摸的检测,具有较高的透光性和耐划伤性,但价格较高。

总的来说,触摸屏的原理是利用不同的技术手段来检测人体触摸的位置和操作,从而实现对设备的控制。

随着科技的不断进步,触摸屏技术也在不断创新和发展,未来触摸屏将会更加智能化、灵活化,为人机交互带来更加便利和舒适的体验。

触摸屏的工作原理

触摸屏的工作原理

触摸屏的工作原理【触摸屏的工作原理】一、介绍触摸屏作为一种常见的输入设备,广泛应用于智能手机、平板电脑、电脑显示器等电子产品中。

它不仅方便用户进行交互和操作,而且在设计上也更加简洁美观。

本文将介绍触摸屏的工作原理及其分类。

二、电阻式触摸屏电阻式触摸屏是最早的一种触摸屏技术。

它由两层导电玻璃构成,两层导电玻璃之间夹着微小的隔离层。

当用户用手指或触控笔触摸屏幕时,两层导电玻璃之间的电流发生变化,从而计算出触摸的位置坐标。

电阻式触摸屏具有较高的灵敏度和准确性,但由于受到压力限制,容易产生刮痕和压痕。

三、电容式触摸屏电容式触摸屏是目前应用较为广泛的触摸屏技术。

它由一层导电玻璃和一层感应电极组成。

当用户触摸屏幕时,感应电极感知到该位置的电容变化,并计算出触摸的位置坐标。

电容式触摸屏具有较高的透明度和耐用性,支持多点触控,并且不受压力限制,成为主流的触摸屏技术。

四、表面声波触摸屏表面声波触摸屏利用声波传播的原理进行触控。

触摸屏表面布满发射器和接收器,发射器发出声波信号,接收器接收到由用户触摸产生的声波反射信号,并计算出触摸的位置坐标。

表面声波触摸屏具有高的灵敏度和精准度,但对环境中的杂音和尘埃比较敏感。

五、电磁式触摸屏电磁式触摸屏通过电磁感应的原理实现触控。

用户使用专用的电磁感应笔在屏幕上进行操作,电磁感应屏幕感知电磁笔的位置并计算出触摸的坐标。

电磁式触摸屏具有较高的精准度和速度,适用于绘图和设计等专业领域。

六、总结触摸屏通过不同的工作原理实现用户的交互和操作。

电阻式触摸屏、电容式触摸屏、表面声波触摸屏和电磁式触摸屏是最常见的触摸屏技术。

它们各自具有不同的特点和适用范围,为我们提供了更加便捷和直观的操作方式。

随着技术的不断进步,触摸屏也将在更多领域得到应用并不断演进。

触摸屏工作原理

触摸屏工作原理

触摸屏工作原理触摸屏是一种人机交互设备,用于接收用户通过手指或特定工具在屏幕上的触摸动作,并将之转化为电信号进行处理。

触摸屏的工作原理可以分为四种主要类型:电阻式触摸屏、电容式触摸屏、表面声波触摸屏和红外线触摸屏。

1. 电阻式触摸屏:电阻式触摸屏是最早出现的触摸屏类型之一。

它由两层导电薄膜组成,两层膜之间有微小的间隙,且每一层膜只在一个方向上导电。

当用户触摸屏幕时,上下两层膜之间的电阻值会发生变化,从而检测到触摸位置。

电阻式触摸屏需要施加一定的压力才能够触发,且易受到外界环境的干扰。

2. 电容式触摸屏:电容式触摸屏利用人体的电容特性进行工作。

触摸屏表面覆盖有一层导电的玻璃或透明导电膜,当用户触摸屏幕时,人体与触摸面板之间形成电容。

通过检测电容变化的方式,可以确定触摸点的位置。

电容式触摸屏对于触摸的灵敏度高,操作流畅,但对于非导电物体的触摸无法识别。

3. 表面声波触摸屏:表面声波触摸屏由位于屏幕四角的发射器和接收器组成,它们可以发射超声波震动,并沿触摸屏表面传播。

当用户触摸屏幕时,触摸点的位置会引起声波的散射,接收器检测到散射波后,通过计算声波传播的时间差,可以确定触摸点的位置。

表面声波触摸屏具有高的透光性,且可以支持多点触控。

4. 红外线触摸屏:红外线触摸屏利用红外线传感器或编码器的原理进行工作。

触摸屏的周边会放置红外线发射器和接收器,形成一个网状的红外线阵列。

当用户触摸屏幕时,会阻挡红外线的传播,接收器检测到阻挡的位置后,通过计算红外线的位置,确定触摸点的位置。

红外线触摸屏对于透光性没有特殊要求,但需要定期清洁以保持良好的触控效果。

以上是四种主要的触摸屏工作原理,各有优劣。

不同的触摸屏类型适用于不同的应用场景和用户需求。

触摸屏的工作原理

触摸屏的工作原理

触摸屏的工作原理
触摸屏是一种可以通过手指或触控笔的触摸来输入信息的设备。

它是由透明的触摸感应层和显示屏组成的复合结构。

触摸屏的工作原理主要有四种类型:电阻式、表面声波式、电容式和电磁式。

1. 电阻式触摸屏:电阻式触摸屏是由两层透明的导电层组成,层与层之间有微小的间隙。

当手指或者触控笔触碰到屏幕的表面时,导电层之间形成一个电流。

触摸点的坐标是通过测量电流的强度和电压的分配来确定的。

2. 表面声波式触摸屏:表面声波式触摸屏是由一组位于屏幕四角的发射器和接收器组成。

当触摸屏上有物体接触时,发射器会产生超声波,并通过传感器接收回来。

通过测量超声波在屏幕上的传播时间来确定触摸点的位置。

3. 电容式触摸屏:电容式触摸屏是由一层导电玻璃覆盖在显示屏上,并电流通过涂有导电材料的玻璃表面。

当手指触摸屏幕时,人体的电荷会改变涂层上的电流分布,导致触摸点产生电流。

通过测量电流变化来确定触摸点的位置。

4. 电磁式触摸屏:电磁式触摸屏使用一支电磁笔或触控笔,其中带有一个可以生成电磁场的线圈。

当笔在触摸屏上移动时,触摸屏的传感器会检测到电磁场的变化,并通过计算来确定触摸点的位置。

这些触摸屏的工作原理各有优势和适应场景,根据具体的需求选择不同类型的触摸屏来实现各种交互操作。

触摸屏技术原理和特性

触摸屏技术原理和特性

触摸屏技术原理和特性触摸屏技术原理和特性触摸屏具有坚固耐用、反应速度快、节省空间、易于交流等许多优点。

利用这种技术,我们用户只要用手指轻轻地碰计算机显示屏上的图符或文字就能实现对主机操作,从而使人机交互更为直截了当,这种技术大大方便了那些不懂电脑操作的用户. 触摸屏作为一种最新的电脑输入设备,它是目前最简单、方便、自然的一种人机交互方式。

它赋予了多媒体以崭新的面貌,是极富吸引力的全新多媒体交互设备。

触摸屏在我国的应用范围非常广阔,主要是公共信息的查询;如电信局、税务局、银行、电力等部门的业务查询;城市街头的信息查询;此外应用于领导办公、工业控制、军事指挥、电子游戏、点歌点菜、多媒体教学、房地产预售等。

将来,触摸屏还要走入家庭。

一、触摸屏的工作原理触摸屏的基本原理是,用手指或其他物体触摸安装在显示器前端的触控屏时,所触摸的位置(以坐标形式)由触摸屏控制器检测,并通过接口(如RS-232串行口)送到CPU,从而确定输入的信息。

触摸屏系统一般包括触摸屏控制器(卡)和触摸检测装置两个部分。

其中,触控屏控制器(卡)的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行:触摸检测装置一般安装在显示器的前端,主要作用是检测用户的触摸位置,并传送给触控屏控制卡。

二、触摸屏的主要类型从技术原理来区别触摸屏,可分为五个基本种类:矢量压力传感技术触摸屏、电阻技术触摸屏、电容技术触摸屏、红外线技术触摸屏、表面声波技术触摸屏。

其中矢量压力传感技术触摸屏已退出历史舞台。

触摸屏红外屏价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;电容屏设计理论好,但其图象失真问题很难得到根本解决;电阻屏的定位准确,但其价格颇高,且怕刮易损。

表面声波触摸屏解决了以往触摸屏的各种缺陷,清晰抗暴,适于各种场合,缺憾是屏表面的水滴、尘土会使触摸屏变的迟钝,甚至不工作。

按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、红外线式、电容感应式以及表面声波式,下面笔者就对上述的各种类型的触摸屏进行简要介绍。

触摸屏的类型与工作原理

触摸屏的类型与工作原理

触摸屏的类型与工作原理触摸屏作为一种常见的人机交互设备,已经被广泛应用于手机、平板电脑、电子书和个人电脑等设备中,并逐渐成为了主流的输入方式之一。

触摸屏的工作原理是通过感应用户手指或者其他物体的电容变化,将用户的触摸操作转化为电信号,再经过处理后传递给设备,实现与设备的交互。

目前市面上常见的触摸屏类型包括电阻屏、电容屏和压力感应屏。

下面将分别介绍这些触摸屏的工作原理和特点。

1. 电阻屏电阻屏是最早应用的触摸屏技术之一。

它由两层透明的导电膜构成,膜上对应着一些导电网格。

两层导电膜之间被一层微细绝缘点隔开。

当用户用手指或者触摸笔点击屏幕时,两层导电膜某个位置的接触点就会发生电流变化。

通过测量这个电流变化,系统可以确定用户的点击位置。

电阻屏的工作原理是通过屏幕上两层导电膜之间的电流变化来感应用户的触摸位置,因此它对触摸工具不敏感,可以使用手指、手套、触摸笔等各种触摸工具。

而且,电阻屏可以实现多点触控,但是相比于其他触摸屏,它的触摸精度较低,且易受到划伤和损坏。

因此,电阻屏在现代设备中的应用逐渐减少。

2. 电容屏电容屏是目前广泛应用于手机、平板电脑等设备中的触摸屏技术。

它由玻璃基板和电容层构成。

电容层一般由导电材料制成,可以分为电容感应和电阻分压两种工作方式。

电容感应型电容屏通过感应用户手指或者其他物体的电容变化来确定触摸位置。

当用户的手指靠近电容屏时,电容屏与手指之间会产生电容变化,系统可以通过测量电容变化的大小和位置来确定用户的触摸位置。

电容感应型电容屏对触摸工具有一定要求,一般需要使用触摸笔或者手指进行操作。

电阻分压型电容屏是通过电阻分压原理来感应用户触摸位置的。

电容屏上的每个触摸点都连接到不同的电阻,当用户触摸屏幕时,会导致电流通过触摸点和对应电阻,根据电流大小和位置的分布,系统可以确定用户的触摸位置。

电容屏具有高灵敏度、高分辨率的特点,可以实现多点触控,且触摸响应速度快、稳定性好。

但是,电容屏对触摸工具的灵敏度要求较高,不能使用手套或者其他绝缘物体进行触摸。

触摸屏的原理与应用

触摸屏的原理与应用

触摸屏的原理与应用1. 概述触摸屏作为一种常见的人机交互设备,广泛应用于智能手机、平板电脑、电子书、个人导航设备等各类电子产品中。

本文将介绍触摸屏的工作原理和应用领域。

2. 工作原理触摸屏的工作原理分为电阻式触摸屏、电容式触摸屏和表面声波触摸屏等多种类型,下面将对每种类型进行详细介绍。

2.1 电阻式触摸屏电阻式触摸屏是最早被广泛应用的触摸技术之一。

它通过在触摸屏表面放置两层导电膜,当用户用手或者触摸笔触摸屏幕时,两层导电膜之间会发生电阻变化,从而检测到触摸位置。

电阻式触摸屏的优点是耐划伤、抗污染,并且可以使用手指、触摸笔等多种工具进行操作。

2.2 电容式触摸屏电容式触摸屏通过在触摸屏表面布置一层导电玻璃和一层感应电极,触摸时电容发生变化,通过感应电极检测到电容的变化从而确定触摸位置。

电容式触摸屏的特点是精准度高、触摸灵敏,并且可以支持多点触控。

目前,电容式触摸屏已经成为主流的触摸技术。

2.3 表面声波触摸屏表面声波触摸屏是通过在触摸屏表面安装发射器和接收器,通过表面声波的传播来检测触摸位置。

当用户触摸屏幕时,触摸位置会引起声波的传播变化,接收器会检测到这种变化,并计算出触摸位置。

表面声波触摸屏具有高透明度、耐划伤、高灵敏度等优点。

3. 应用领域触摸屏技术的应用范围非常广泛,涉及到多个领域。

3.1 消费电子产品消费电子产品是触摸屏技术主要应用领域之一。

智能手机、平板电脑、电子书阅读器等设备都广泛采用了触摸屏技术,使得用户可以通过触摸屏进行各种操作,如点击、滑动、缩放等。

3.2 工业控制触摸屏技术也被广泛应用于工业控制领域。

工业控制设备使用触摸屏可以实现操作简便、快速响应的特点,提高了生产效率和操作便利性。

3.3 信息展示触摸屏技术在信息展示领域有着重要的应用。

例如,触摸屏幕可用于公共场所的自助查询终端、电子导游设备等,方便用户获取相关信息。

3.4 医疗设备医疗设备也是触摸屏技术的应用领域之一。

例如,手术室中的手术导航、电子病历系统等都可以采用触摸屏技术,使得医护人员可以直接在屏幕上操作和查看相关信息。

触摸屏是什么原理

触摸屏是什么原理

触摸屏是什么原理
触摸屏是一种人机交互设备,通过对屏幕表面的触摸操作实现与设备的交互。

触摸屏的工作原理主要分为电阻式触摸屏、电容式触摸屏、表面声波触摸屏和光学触摸屏等几种。

1. 电阻式触摸屏:电阻式触摸屏由上下两层导电玻璃或导电膜组成。

当触摸屏被按压时,上下导电层接触,形成电阻。

通过对触摸点的坐标测量,确定用户的操作位置。

2. 电容式触摸屏:电容式触摸屏由一层玻璃表面涂有一层导电膜构成。

当手指触摸屏幕时,人体成为传感器的电容负载,改变了电压信号分布,从而确定触摸位置。

3. 表面声波触摸屏:表面声波触摸屏通过在玻璃表面添加超声波发射器和接收器来实现触摸的检测。

当触摸屏被触摸时,超声波信号被干扰,从而确定触摸位置。

4. 光学触摸屏:光学触摸屏使用红外线和光栅等技术。

红外线红点光源和相应的接收器组成一个网格,在触摸点上方建立一个红外线网。

当触摸点接触到屏幕时,红外线将被阻挡,通过计算阻挡的位置,确定触摸位置。

以上是几种常见的触摸屏工作原理。

它们都通过检测触摸位置的变化来实现用户与设备之间的交互,并广泛应用于智能手机、平板电脑、电脑显示器等设备上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四大触摸屏技术工作原理及特点分析为了操作上的方便,人们用触摸屏来代替鼠标或键盘。

工作时,我们必须首先用手指或其它物体触摸安装在显示器前端的触摸屏,然后系统根据手指触摸的图标或菜单位置来定位选择信息输入。

触摸屏由触摸检测部件和触摸屏控制器组成;触摸检测部件安装在显示器屏幕前面,用于检测用户触摸位置,接受后送触摸屏控制器;而触摸屏控制器的主要作用是从触摸点检测装置上接收触摸信息,并将它转换成触点坐标,再送给CPU,它同时能接收CPU发来的命令并加以执行。

触摸屏的主要类型按照触摸屏的工作原理和传输信息的介质,我们把触摸屏分为四种,它们分别为电阻式、电容感应式、红外线式以及表面声波式。

每一类触摸屏都有其各自的优缺点,要了解那种触摸屏适用于那种场合,关键就在于要懂得每一类触摸屏技术的工作原理和特点。

下面对上述的各种类型的触摸屏进行简要介绍一下:1.电阻式触摸屏电阻式触摸屏的工作原理这种触摸屏利用压力感应进行控制。

电阻触摸屏的主要部分是一块与显示器表面非常配合的电阻薄膜屏,这是一种多层的复合薄膜,它以一层玻璃或硬塑料平板作为基层,表面涂有一层透明氧化金属(透明的导电电阻)导电层,上面再盖有一层外表面硬化处理、光滑防擦的塑料层、它的表面也涂有一层涂层、在他们之间有许多细小的(小于1/1000英寸)的透明隔离点把两层导电层隔开绝缘。

当手指触摸屏幕时,两层导电层在触摸点位置就有了接触,电阻发生变化,在X 和Y两个方向上产生信号,然后送触摸屏控制器。

控制器侦测到这一接触并计算出(X,Y)的位置,再根据模拟鼠标的方式运作。

这就是电阻技术触摸屏的最基本的原理。

电阻类触摸屏的关键在于材料科技,常用的透明导电涂层材料有:(1)ITO,氧化铟,弱导电体,特性是当厚度降到1800个埃(埃=10-10米)以下时会突然变得透明,透光率为80%,再薄下去透光率反而下降,到300埃厚度时又上升到80%。

ITO是所有电阻技术触摸屏及电容技术触摸屏都用到的主要材料,实际上电阻和电容技术触摸屏的工作面就是ITO涂层。

(2)镍金涂层,五线电阻触摸屏的外层导电层使用的是延展性好的镍金涂层材料,外导电层由于频繁触摸,使用延展性好的镍金材料目的是为了延长使用寿命,但是工艺成本较为高昂。

镍金导电层虽然延展性好,但是只能作透明导体,不适合作为电阻触摸屏的工作面,因为它导电率高,而且金属不易做到厚度非常均匀,不宜作电压分布层,只能作为探层。

1.1 四线电阻屏四线电阻模拟量技术的两层透明金属层工作时每层均增加5V恒定电压:一个竖直方向,一个水平方向。

总共需四根电缆。

特点:高解析度,高速传输反应。

表面硬度处理,减少擦伤、刮伤及防化学处理。

具有光面及雾面处理。

一次校正,稳定性高,永不漂移。

四线式电阻屏结构示意图1.2 五线电阻屏五线电阻技术触摸屏的基层把两个方向的电压场通过精密电阻网络都加在玻璃的导电工作面上,我们可以简单的理解为两个方向的电压场分时工作加在同一工作面上,而外层镍金导电层只仅仅用来当作纯导体,有触摸后分时检测层ITO接触点X轴和Y轴电压值的方法测得触摸点的位置。

五线电阻触摸屏层ITO 需四条引线,外层只作导体仅仅一条,触摸屏得引出线共有5条。

特点:解析度高,高速传输反应。

表面硬度高,减少擦伤、刮伤及防化学处理。

同点接触3000万次尚可使用。

导电玻璃为基材的介质。

一次校正,稳定性高,永不漂移。

五线电阻触摸屏有高价位和对环境要求高的缺点。

1.3 电阻屏的局限不管是四线电阻触摸屏还是五线电阻触摸屏,它们都是一种对外界完全隔离的工作环境,不怕灰尘和水汽,它可以用任何物体来触摸,可以用来写字画画,比较适合工业控制领域及办公室有限人的使用。

电阻触摸屏共同的缺点是因为复合薄膜的外层采用塑胶材料,不知道的人太用力或使用锐器触摸可能划伤整个触摸屏而导致报废。

不过,在限度之,划伤只会伤及外导电层,外导电层的划伤对于五线电阻触摸屏来说没有关系,而对四线电阻触摸屏来说是致命的。

2.电容式触摸屏电容式触摸屏工作原理2.1 电容技术触摸屏是利用人体的电流感应进行工作的。

电容式触摸屏是是一块四层复合玻璃屏,玻璃屏的表面和夹层各涂有一层ITO,最外层是一薄层矽土玻璃保护层,夹层ITO涂层作为工作面,四个角上引出四个电极,层ITO为屏蔽层以保证良好的工作环境。

当手指触摸在金属层上时,由于人体电场,用户和触摸屏表面形成以一个耦合电容,对于高频电流来说,电容是直接导体,于是手指从接触点吸走一个很小的电流。

这个电流分从触摸屏的四角上的电极中流出,并且流经这四个电极的电流与手指到四角的距离成正比,控制器通过对这四个电流比例的精确计算,得出触摸点的位置。

2.2 电容触摸屏的缺陷电容触摸屏的透光率和清晰度优于四线电阻屏,当然还不能和表面声波屏和五线电阻屏相比。

电容屏反光严重,而且,电容技术的四层复合触摸屏对各波长光的透光率不均匀,存在色彩失真的问题,由于光线在各层间的反射,还造成图像字符的模糊。

电容屏在原理上把人体当作一个电容器元件的一个电极使用,当有导体靠近与夹层ITO工作面之间耦合出足够量容值的电容时,流走的电流就足够引起电容屏的误动作。

我们知道,电容值虽然与极间距离成反比,却与相对面积成正比,并且还与介质的的绝缘系数有关。

因此,当较大面积的手掌或手持的导体物靠近电容屏而不是触摸时就能引起电容屏的误动作,在潮湿的天气,这种情况尤为严重,手扶住显示器、手掌靠近显示器7厘米以或身体靠近显示器15厘米以就能引起电容屏的误动作。

电容屏的另一个缺点用戴手套的手或手持不导电的物体触摸时没有反应,这是因为增加了更为绝缘的介质。

电容屏更主要的缺点是漂移:当环境温度、湿度改变时,环境电场发生改变时,都会引起电容屏的漂移,造成不准确。

例如:开机后显示器温度上升会造成漂移:用户触摸屏幕的同时另一只手或身体一侧靠近显示器会漂移;电容触摸屏附近较大的物体搬移后回漂移,你触摸时如果有人围过来观看也会引起漂移;电容屏的漂移原因属于技术上的先天不足,环境电势面(包括用户的身体)虽然与电容触摸屏离得较远,却比手指头面积大的多,他们直接影响了触摸位置的测定。

此外,理论上许多应该线性的关系实际上却是非线性,如:体重不同或者手指湿润程度不同的人吸走的总电流量是不同的,而总电流量的变化和四个分电流量的变化是非线性的关系,电容触摸屏采用的这种四个角的自定义极坐标系还没有坐标上的原点,漂移后控制器不能察觉和恢复,而且,4个A/D完成后,由四个分流量的值到触摸点在直角坐标系上的X、Y坐标值的计算过程复杂。

由于没有原点,电容屏的漂移是累积的,在工作现场也经常需要校准。

电容触摸屏最外面的矽土保护玻璃防刮擦性很好,但是怕指甲或硬物的敲击,敲出一个小洞就会伤及夹层ITO,不管是伤及夹层ITO还是安装运输过程中伤及表面ITO层,电容屏就不能正常工作了。

3.红外线式触摸屏红外线触摸屏原理红外触摸屏是利用X、Y方向上密布的红外线矩阵来检测并定位用户的触摸。

红外触摸屏在显示器的前面安装一个电路板外框,电路板在屏幕四边排布红外发射管和红外接收管,一一对应形成横竖交叉的红外线矩阵。

用户在触摸屏幕时,手指就会挡住经过该位置的横竖两条红外线,因而可以判断出触摸点在屏幕的位置。

任何触摸物体都可改变触点上的红外线而实现触摸屏操作。

早期观念上,红外触摸屏存在分辨率低、触摸方式受限制和易受环境干扰而误动作等技术上的局限,因而一度淡出过市场。

此后第二代红外屏部分解决了抗光干扰的问题,第三代和第四代在提升分辨率和稳定性能上亦有所改进,但都没有在关键指标或综合性能上有质的飞跃。

但是,了解触摸屏技术的人都知道,红外触摸屏不受电流、电压和静电干扰,适宜恶劣的环境条件,红外线技术是触摸屏产品最终的发展趋势。

采用声学和其它材料学技术的触屏都有其难以逾越的屏障,如单一传感器的受损、老化,触摸界面怕受污染、破坏性使用,维护繁杂等等问题。

红外线触摸屏只要真正实现了高稳定性能和高分辨率,必将替代其它技术产品而成为触摸屏市场主流。

过去的红外触摸屏的分辨率由框架中的红外对管数目决定,因此分辨率较低,市场上主要国产品为32x32、40X32,另外还有说红外屏对光照环境因素比较敏感,在光照变化较大时会误判甚至死机。

这些正是国外非红外触摸屏的国代理商销售宣传的红外屏的弱点。

而最新的技术第五代红外屏的分辨率取决于红外对管数目、扫描频率以及差值算法,分辨率已经达到了1000X720,至于说红外屏在光照条件下不稳定,从第二代红外触摸屏开始,就已经较好的克服了抗光干扰这个弱点。

第五代红外线触摸屏是全新一代的智能技术产品,它实现了1000*720高分辨率、多层次自调节和自恢复的硬件适应能力和高度智能化的判别识别,可长时间在各种恶劣环境下任意使用。

并且可针对用户定制扩充功能,如网络控制、声感应、人体接近感应、用户软件加密保护、红外数据传输等。

原来媒体宣传的红外触摸屏另外一个主要缺点是抗暴性差,其实红外屏完全可以选用任何客户认为满意的防暴玻璃而不会增加太多的成本和影响使用性能,这是其他的触摸屏所无法效仿的。

4.表面声波触摸屏4.1 表面声波表面声波,超声波的一种,在介质(例如玻璃或金属等刚性材料)表面浅层传播的机械能量波。

通过楔形三角基座(根据表面波的波长严格设计),可以做到定向、小角度的表面声波能量发射。

表面声波性能稳定、易于分析,并且在横波传递过程中具有非常尖锐的频率特性,近年来在无损探伤、造影和退波器方向上应用发展很快,表面声波相关的理论研究、半导体材料、声导材料、检测技术等技术都已经相当成熟。

表面声波触摸屏的触摸屏部分可以是一块平面、球面或是柱面的玻璃平板,安装在CRT、LED、LCD或是等离子显示器屏幕的前面。

玻璃屏的左上角和右下角各固定了竖直和水平方向的超声波发射换能器,右上角则固定了两个相应的超声波接收换能器。

玻璃屏的四个周边则刻有45°角由疏到密间隔非常精密的反射条纹。

4.2 表面声波触摸屏工作原理以右下角的X-轴发射换能器为例:发射换能器把控制器通过触摸屏电缆送来的电信号转化为声波能量向左方表面传递,然后由玻璃板下边的一组精密反射条纹把声波能量反射成向上的均匀面传递,声波能量经过屏体表面,再由上边的反射条纹聚成向右的线传播给X-轴的接收换能器,接收换能器将返回的表面声波能量变为电信号。

当发射换能器发射一个窄脉冲后,声波能量历经不同途径到达接收换能器,走最右边的最早到达,走最左边的最晚到达,早到达的和晚到达的这些声波能量叠加成一个较宽的波形信号,不难看出,接收信号集合了所有在X轴方向历经长短不同路径回归的声波能量,它们在Y轴走过的路程是相同的,但在X轴上,最远的比最近的多走了两倍X轴最大距离。

因此这个波形信号的时间轴反映各原始波形叠加前的位置,也就是X轴坐标。

相关文档
最新文档