三角形重心性质的向量表示及其推广

合集下载

三角形各心含义性质向量表示

三角形各心含义性质向量表示
重心含义:三条中线交点
性质:重心分中线所成比为2:1 (可作为判断方
法)
uuur uuur uuur GA GB GC
0
uuur PG

1
uuur (PA

uuur PB

uuur PC)
G为三角形重心
3
uuur uuur uuur uuur
OP OA ( AB AC)
P轨迹通过三角形重心
C
MP
A' B
G
A
B
A
C
O
三.“垂心”的向量表示 垂心含义:三条高的交点
PA PB PB PC PC PA
P为三角形垂心
uuur OP

uuur OA


uuur uuurAB
uuur uuurAC


AB
cos B
AC
cos
C

P轨迹通过三角形垂心
(0, )
C
A
E
C
B
P
M H P
A
F
B
O
四.“内心”的向量表示
内心含义:三角形内切圆的圆心
性质:(1)内心到三条边距离相等
(2)三个角的角平分线交点为内心
aGA bGB cGC 0
uuur OP
uuur
OA
uuur uAuBur

uuur uAuC外心”的向量表示
外心含义:三角形外接圆的圆心 性质:(1)三条中垂线交点
(2)外心到三角形三个顶点的距离相等
GA GB GC
2
2
2
GA GB GC

三角形重心、外心、垂心、内心地向量表示及其性质85474.docx

三角形重心、外心、垂心、内心地向量表示及其性质85474.docx

三角形“四心”向量形式的充要条件应用1 .O 是 ABC 的重心OAOB OC0 ;SB OCSAOCSAOB1 S AB COA OB OC 0 ;若 O 是 ABC的重心,则3故 u u uru u uru u ur u u urG 为 ABC 的重心 .PG1( PAPBPC )32 .O 是 ABC的垂心OA OB OB OC OCOA ;若 O 是ABC(非直角三角形 ) 的垂心,则SBOC :SAOC :SAOBtan A : :tan B tan C故 tan A OAtan BOBtan C OC 03 .O 是ABC的外心| OA | | OB | | OC | (或 OA222OBOC ):S:SAOBsin::AOBsin 2A : sin 2B : sin 2C若 O 是 ABC 的外心则 SBOCAOCBOC sinAOC sin故 sin 2A OAsin 2BOBsin 2C OC4 . O 是内心OA( AB AC ) OB( BABC) OC( CACB) 0ABC的充要条件是| AB | AC | BA | | BC | | CA|| CB |引进单位向量,使条件变得更简洁。

如果记 AB ,BC ,CA 的单位向量为 e 1,e 2, e3,则刚才 O 是ABC内心的充要条件可以写成OA (e 1 e 3 ) OB (e 1 e 2 )OC (e 2 e 3 ) 0, O 是ABC 内心 的充 要条 件也 可以是aOAbOBcOC。

若 O 是 ABC 的 内心 ,则S BOC : S AOC : SAOBa :b : c故aOA bOB cOC 0或 sin A OA sin BOB sin COC0;uuur uuur uuur uuur uuur uuur r P 是 ABC 的内心 ; e 1A| AB | PC | BC | PA |CA | PB 0e 2uuur uuur向量 ( AB AC)( 0) 所在直线过 ABC 的内心 ( 是BAC 的角平BCuuur uuur| AB | | AC |分线所在直线 ) ;P( 一) 将平面向量与三角形内心结合考查例 1 . O 是 平 面 上 的 一 定 点 , A,B,C 是 平面上 不 共 线的 三个 点 , 动 点 P满 足OP OA(ABAC) ,0, 则 P 点的轨迹一定通过 ABC 的( )(A )外心( B)内心( C)重心( D )垂心解析:因为AB uuur uuuruuure1和 e2,又是向量 AB 的单位向量设 AB 与 AC 方向上的单位向量分别为ABOP OA AP ,则原式可化为AP(e1e2 ) ,由菱形的基本性质知AP 平分BAC ,那么在ABC 中, AP 平分BAC ,则知选 B.(二 )将平面向量与三角形垂心结合考查“垂心定理”例 2 .H 是△ABC 所在平面内任一点,HA HB HB HC HC HA点H是△ABC的垂心.由 HA HB HB HC HB ( HC HA ) 0HB AC 0HB AC ,同理 HC AB , HA BC .故H是△ABC的垂心.(反之亦然(证略))例 3.( 湖南 )P是△ABC 所在平面上一点,若PA PB PB PC PC PA ,则P是△ABC的(D)A .外心B.内心C.重心 D .垂心解析 :由PA PB PB PC得 PA PB PB PC 0 .即PB (PA PC)0,即PB CA 0则 PB CA,同理 PA BC , PC AB所以 P 为 ABC 的垂心 . 故选 D.(三 )将平面向量与三角形重心结合考查“重心定理”例 4 .G 是△ABC 所在平面内一点,GA GB GC =0点G是△ABC的重心 .证明作图如右,图中 GB GC GE连结 BE 和 CE,则 CE=GB ,BE=GC BGCE 为平行四边形 D 是 BC 的中点, AD 为 BC 边上的中线 .将 GB GC GE 代入 GA GB GC =0,得 GA EG =0GA GE2GD ,故G是△ABC的重心.(反之亦然(证略))例 5 .P 是△ABC 所在平面内任一点.G 是△ABC 的重心PG1PC ) .(PA PB3证明PG PA AG PB BG PC CG3PG(AG BG CG ) ( PA PB PC )∵G 是△ABC 的重心∴GA GB GC =0AG BG CG =0,即 3PG PA PB PC由此可得 PG 1 (PA PB PC) .(反之亦然(证略))3uuur uuur uuur r例 6 若 O 为ABC 内一点,OA OB OC 0 ,则O是ABC的()A .内心B.外心C.垂心 D .重心uuur uuur uuur r uuur uuur uuur解析:由 OA OB OC0 得 OB OC OA ,如图以OB、OC为相邻两边构作平行四边形,则uuur uuur uuur uuur1 uuur2 OE ,同理可证其它两边上的这个性OB OC OD ,由平行四边形性质知OE OD , OA2质,所以是重心,选 D 。

三角形重心外心垂心内心的向量表示及其性质

三角形重心外心垂心内心的向量表示及其性质

三角形“四心”向量形式的充要条件应用知识点总结1.0是的重心;若0是的重心,则故;为的重心.2.0是的垂心;若0是(非直角三角形)的垂心,则故3.0是的外心(或)若0是的外心则故4. 0是内心的充要条件是引进单位向量,使条件变得更简洁。

如果记的单位向量为,则刚才0是内心的充要条件可以写成,0是内心的充要条件也可以是。

若0是的内心,则故;是的内心;向量所在直线过的内心(是的角平分线所在直线);xx 例(一)将平面向量与三角形内心结合考查例1. O是平面上的一定点,A,B,C是平面上不共线的三个点,动点P满足,则P 点的轨迹一定通过的()(A)外心(B)内心(C)重心(D)垂心解析:因为是向量的单位向量设与方向上的单位向量分别为,又,则原式可化为,由菱形的基本性质知AP平分,那么在xx,AP平分,贝卩知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H是厶ABC所在平面内任一点,点H是厶ABC的垂心.由,同理,.故H是厶ABC的垂心.(反之亦然(证略))例3.(xx)P 是厶ABC所在平面上一点,若,则P是厶ABCF(D )A.外心B.内心C.重心D.垂心解析: 由. 即贝S所以P为的垂心.故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G是厶ABC所在平面内一点,=0点G是厶ABC的重心.证明作图如右,图中连结BE和CE贝S CE=GB BE=GCBGCE平行四边形D是BC的中点,AD为BC边上的中线.将代入=0,得=0,故G是厶ABC的重心.(反之亦然(证略))例5. P是厶ABC所在平面内任一点.G是厶ABC的重心.证明••*是厶ABC的重心/• =0=0,即由此可得. (反之亦然(证略))例6 若为内一点, ,则是的()A.内心B.外心C.垂心D.重心解析:由得,如图以OB OC为相邻两边构作平行四边形,贝卩,由平行四边形性质知,,同理可证其它两边上的这个性质,所以是重心,选D。

三角形重心、外心、垂心、内心的向量表示及其性质

三角形重心、外心、垂心、内心的向量表示及其性质

向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。

重心:ABC ∆中、每条边上所对应的中线的交点; 垂心:ABC ∆中、每条边上所对应的垂线上的交点;内心:ABC ∆中、每个角的角平分线的交点(内切圆的圆心); 外心:ABC ∆中、每条边上所对应的中垂线的交点(外接圆的圆心)。

一、重心1、O 是ABC ∆的重心⇔0=++OC OB OA若O 是ABC ∆的重心,则ABC AOB AOC BOC ∆=∆=∆=∆31故=++,)(31PC PB PA PG ++=⇔G 为ABC ∆的重心.2、 P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31++=.证明:+=+=+=⇒)()(3+++++= ∵G 是△ABC 的重心∴0=++GC GB GA ⇒0=++CG BG AG ,即PC PB PA PG ++=3由此可得)(31++=.(反之亦然(证略))3、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足()OP OA AB AC λ=++,(0)λ∈+∞,,则P 的轨迹一定通过ABC △的重心.例1 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( )A .内心B .外心C .垂心D .重心1、O 是ABC ∆的垂心⇔∙=∙=∙若O 是ABC ∆(非直角三角形)的垂心,则 故tan tan tan =++C B A2、H 是面内任一点,⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(, 同理⊥,⊥.故H 是ABC ∆的垂心. (反之亦然(证略))3、P 是ABC △所在平面上一点,若PA PC PC PB PB PA ⋅=⋅=⋅,则P 是ABC △的垂心.由PA PB PB PC ⋅=⋅,得()0P B P A P C ⋅-=,即0P B C A ⋅=,所以PB CA ⊥.同理可证PC AB ⊥,PA BC ⊥. ∴P 是ABC △的垂心.如图1.4、已知O 是平面上一定点,A B C ,,是平面上不共线的三个点,动点P 满足cos cos AB AC OP OA AB B AC C λ⎛⎫ ⎪=++ ⎪⎝⎭,(0)λ∈+∞,,则动点P 的轨迹一定通过ABC △的垂心.例2 P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的() A .外心B .内心C .重心D .垂心图1A1、O是ABC∆的内心的充要条件是=⎫⎛∙=⎫⎛∙=⎫⎛∙OCOBOA引进单位向量,使条件变得更简洁。

高考专题之三角形四心的向量性质

高考专题之三角形四心的向量性质

高考专题之三角形“四心”的向量性质四心的概念(1)重心:中线的交点:重心将中线长度分成2:1; (2)垂心:高线的交点:高线与对应边垂直; (3)内心:角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等;(4)外心:中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。

一、三角形的重心的向量表示及应用命题一 已知A BC ,,是不共线的三点,G 是ABC △内一点,若G A G B G C ++=0.则G 是ABC △的重心.证明:如图1所示,因为GA GB GC ++=0,所以 ()GA GB GC =-+.以GB ,GC 为邻边作平行四边形BGCD , 则有GD GB GC =+,所以GD GA =-.又因为在平行四边形BGCD 中,BC 交GD 于点E , 所以BE EC =,GE ED =.所以AE 是ABC △的边BC 的中线.故G 是ABC △的重心.点评:①解此题要联系重心的定义和向量加法的意义;②把平面几何知识和向量知识结合起来解决问题是解此类问题的常用方法.例1 如图2所示,ABC △的重心为G O ,为坐标原点,OA =a ,=OB b ,=OC c ,试用a b c ,,表示OG .解:设AG 交BC 于点M ,则M 是BC 的中点,⎪⎩⎪⎨⎧=-=-=-GC OG c GB OG b GA OG a GC GB GA OG c b a ++=-++∴而03=-++∴OG c b a3cb a OG ++=∴ 点评:重心问题是三角形的一个重要知识点,充分利用重心性质及向量加、减运算的几何意义是解决此类题的关键.变式:已知D EF ,,分别为ABC △的边B C A C A ,,的中点.则AD BE CF ++=0.证明:如图的所示,⎪⎪⎪⎩⎪⎪⎪⎨⎧-=-=-=GC CF GBBE GA AD 232323 )(23GC GB GA CF BE AD ++-=++∴0=++GC GB GA AD BE CF ∴++=0..变式引申:如图4,平行四边形ABCD 的中心为O ,P 为该平面上任意一点, 则1()4PO PA PB PC PD =+++.证明:1()2PO PA PC =+,1()2PO PB PD =+, 1()4PO PA PB PC PD ∴=+++.点评:(1)证法运用了向量加法的三角形法则,证法2运用了向量加法的平行四边形法则.(2)若P图3图2与O 重合,则上式变为OA OB OC OD +++=0. 二、三角形的外心的向量表示及应用命题二:已知G 是ABC △==,则点M 为△ABC 的外心。

三角形的重心向量公式的证明

三角形的重心向量公式的证明

三角形的重心向量公式的证明三角形的重心向量公式是:$\overrightarrow{OG} =\frac{1}{3}(\overrightarrow{OA} + \overrightarrow{OB} +\overrightarrow{OC})$,其中$O$为任意选取的原点,$A,B,C$为三角形的三个顶点,$G$为三角形的重心。

证明:先求出三角形$\triangle ABC$上任意一点$P$到三角形三个顶点的距离平方和:$PA^2 + PB^2 + PC^2 = (\overrightarrow{OA} +\overrightarrow{OP})^2 + (\overrightarrow{OB} +\overrightarrow{OP})^2 + (\overrightarrow{OC} +\overrightarrow{OP})^2$展开得到:$PA^2 + PB^2 + PC^2 = (\overrightarrow{OP})^2 +\overrightarrow{OA}^2 + 2\overrightarrow{OA} \cdot\overrightarrow{OP} + \overrightarrow{OB}^2 +2\overrightarrow{OB} \cdot \overrightarrow{OP} +\overrightarrow{OC}^2 + 2\overrightarrow{OC} \cdot\overrightarrow{OP}$因为$\overrightarrow{OA} + \overrightarrow{OB} +\overrightarrow{OC} = \overrightarrow{0}$,将其代入上式得:$PA^2 + PB^2 + PC^2 = 3(\overrightarrow{OP})^2 +(\overrightarrow{OA} + \overrightarrow{OB} +\overrightarrow{OC})^2$化简并整理得:$PA^2 + PB^2 + PC^2 = 3(\overrightarrow{OP})^2 + a^2 + b^2 + c^2$其中,$a,b,c$分别为三角形的三边长。

三角形重心、垂心、内心、外心的向量性质及简单应用

三角形重心、垂心、内心、外心的向量性质及简单应用
2019 年第 3 期 (下)
中学数学研究
41
三角形重心、垂心、内心、外心的向量性质及简单应用
广东省珠海市斗门区第一中学 (519100) 陈水松
一、三角形四心的表述与性质
(一) 重心——三角形三条边上的中线的交点叫做三角
形的重心. 重心将中线长度分成 2: 1 的两部分. 1. −O→A + −O−→B + −O−→C = −→0 ⇔O 是 △ABC 的重心.
AC BC −→ + −−→
.
|AC| |BC|
|−B−B+−−→ →CCb| −B)−→C, 所
= 以
4.
−−→ PO
=
−→ aP A
−−→ + bP B + a+b+c
−−→ cP C

O

△ABC
的内心,
P 为平面上任意点.
(二) 垂心——三角形三条高线的交点叫做三角形的垂
证明
因为
O

△ABC
证 法 1 设 O(x, y), A(x1, y1), B(x2, y2), C(x3, y3),
−→ −−→ −−→ OA+OB+OC
=
−→0



x=
x1 + x2 + x3
(x1 − x) + (x2 − x) + (x3 − x) = 0 (y1 − y) + (y2 − y) + (y3 − y) = 0
=
−→0 ,
所以
−→ AO
=
2−O−→D,
所以
A、O、D
三点共线,

三角形重心外心垂心内心的向量表示及其性质

三角形重心外心垂心内心的向量表示及其性质

向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。

重心:厶ABC中、每条边上所对应的中线的交点;垂心:ABC中、每条边上所对应的垂线上的交点;内心:UABC中、每个角的角平分线的交点(内切圆的圆心);外心:.IABC中、每条边上所对应的中垂线的交点(外接圆的圆心) 一、重心1、O 是. ABC 的重心= OA OB 0C = 0若0是ABC 的重心,贝「BOC = :AOC = :AOB =»:ABC 故OA OB 0C = 0,31 PG (PA PB PC) = G 为- ABC 的重心.32、P是厶ABC所在平面内任一点上是厶ABC的重心u PC).3证明:PG 二PA AG 二PB BG = PC CG 二3PG 二(AG BG CG) (PA PB PC)•/ 6是厶ABC的重心••• GA GB GC = 0 二AG BG CG = 0,即3PG 二PA PB PC1由此可得PG =-(PA PB PC).(反之亦然(证略))33、已知O是平面上一定点,A, B, C是平面上不共线的三个点,动点P满足OP =OA • ■ (AB AC),‘(0, *),则P的轨迹一定通过△ ABC的重心.例1若O为ABC内一点,OA • OB • OC = 0 ,则O是ABC的( )A.内心心B .外心D .重心C .垂1、O 是:ABC 的垂心=OA.OB =OB・OC =OA・OC若O是.:ABC (非直角三角形)的垂心,贝U故tan AOA tan BOB tanCOC = 02、H是面内任一点,HA HB二HB HC二HC HAu点H是厶ABC的垂心.由HA HB 二HB HC = HB (HC - HA)二0= HB AC 二0= HB _ AC,同理HC_AB , HA_BC.故H是厶ABC的垂心.(反之亦然(证略))3、P是厶ABC 所在平面上一点,若PA P^PB P^PC PA,贝U P是厶ABC的垂心.•»—-------------------------------------------------------------------- ・l ---------- ■]由PA PB 二PB PC,得PB (PA -PC 0,即FB CA = 0 ,所以PB 丄CA .同理可证PC丄AB,PA丄BC .••• P是厶ABC的垂心.如图1.B图14、已知O是平面上一定点,A, B, C是平面上不共线的三个点,动点P满足---------- —* —K . ——-OP=OA + h |一A--------- 十一,扎w(0,+血),则动点P的轨迹一定通过J AB|cos B |AC|COS C△ ABC的垂心.例2 P是厶ABC所在平面上一点,若PA卩B = PB卩PC PA,贝U P是厶ABC的()A.外心B.内心C.重心D.垂心1、O 是 ABC 的内心的充要条件是的内心的充要条件可以写成OA ・ e i e a = OB ・ e i e ? = OC ・ e ?巨=0 2、O 是 ABC 的内心的充要条件也可以是 a ・OA • b ・OB • c ・OC =0。

重心向量式的推广及应用

重心向量式的推广及应用

重心向量式的推广及应用作者:江镜戴宏照来源:《数学教学通讯·高中版》2022年第03期[摘要] P是△ABC的重心的充要条件是++=0,重心把△ABC分成面积相等的三个小三角形. 由此推广到三角形所在平面任意点P的“奔驰定理”:设点P是△ABC内(含边界)任意一点,记△PBC,△PCA,△PAB,△ABC的面积分别为S,S,S,S,则S·+S·+S·=0. 应用“奔驰定理”及其推论可以快速地求解有关三角形面积比值的问题. 根据类比推理,还提出了一个有关三棱锥的猜想.[关键词] 奔驰定理;重心向量式;面积;猜想我们都知道,点P是△ABC的重心的充要条件是++=0,重心把△ABC分成面积相等的三个小三角形,如果记△PBC,△PCA,△PAB,△ABC的面积分别为S,S,S,S,即S=S=S,可以看作S·+S·+S·=0. 那么,对于△ABC所在平面内任意一点P,以上结论是否成立呢?经过仔细研究,以上结论成立. 在圆的内接正三角形中,这个图形(如图1所示)很像奔驰汽车的商标,不妨形象地称为“奔驰定理”.奔驰定理:设点P是△ABC内(含边界)任意一点,记△PBC,△PCA,△PAB,△ABC 的面积分别为S,S,S,S,则S·+S·+S·=0.证明:如图2所示,延长AP交BC于D,根据平面向量的平行四边形法则和三角形面积公式,得=·+·,=·=··+·=··+·· =·(-)+·(-),所以(S-S-S)·+S·+S·=0,即S·+S·+S·=0.[1]显然,当点P在△ABC的边上时,命题仍然成立.当点P在△ABC外时,如图3所示(不妨设△PBC在△ABC外),以上推导只需变形为=·=··+·=··+··=·(-)+·(-),得(S-S-S)·+S·+S·=0,即-S·+S·+S·=0,于是就有:推论1:当点P在△ABC外时(不妨设△PBC在△ABC外),则-S·+S·+S·=0.应用“奔驰定理”或其推论,可以快速地解决有关三角形面积比值的问题. 在有关三角形面积比值的问题中,首先把相关向量都写成以交点P为起点的向量和的形式,对照定理的系数比即可得到相应的三角形面积比. 为了叙述方便,以下例题中均用a,b,c表示△ABC的三个内角A,B,C的对边,且用AB=c,BC=a,CA=b表示边长.例1 已知点M是△ABC所在平面内一点,满足6=+3,则△ABM与△BCM的面积比为_______,若△ABC的面积是12,则△MAC的面积是_______.解析:把已知条件化成起点是M的向量得-6=(-)+3(-),即2++3=0. 由“奔驰定理”得==;==,得S=2.例2 在平面四边形ABCD中,△ACD的面积是△ABC面积的2倍,数列{a}满足a=3,且(a-3)=+(a-2),则a=_______.解析:把已知条件变形为-(a-3)+(a-2)=0,把C看作△ABD外一点,由“推论1”可知S∶S=S∶S=(a-3)∶(a-2)=2,可得a=2a-1,即得a-1=2(a-1),所以a-1=(3-1)2n-1,即a=2n+1,因此a=257.若把“奔驰定理”看作是重心向量式的推广,则可把重心向量式看作是“奔驰定理”的“推论2”.推论2:若点G是△ABC的重心,则++=0,反之也成立.例3 已知G为△ABC所在平面内一点,点M,N分别在边AB,AC上,满足3++=+-,=x+y,其中x+y=1. 若=,则△ABC和△AMN的面积比为_______.解析:如图4所示,由3++=+-可得-3+-=2=2-2,即++=0,所以G是△ABC的重心. 设=λ,可得=(+)=+λ,所以x=,y=λ. 又x+y=1,所以λ=,所以=,则==·=.当点I是△ABC的内心时,记内切圆的半径为r,由此可得S=ar,S=br,S=cr,于是就有:推论3:若点I是△ABC的内心,则a+b+c=0.例4 已知△ABC的内切圆I,且++=,△ABC的周长是18,则△ABC的面积是_______,其内切圆的面积是_______.解析:把++=变形为3+2+4=0,根据推论3可设a+b+c=3k+2k+4k=18,所以k=2,即a=6,b=4,c=8.所以cosC==-,sinC=,所以S=×6×4×=3. 又S=×18r=3,得r=,所以S=πr2=.当点O是△ABC的外心时,记OA=OB=OC=R,根据圆周角与圆心角之间的关系可得S=R2sin2A,S=R2sin2B,S=R2sin2C,于是就有:推论4:若点O是△ABC的外心,则sin2A·+sin2B·+sin2C·=0.例5 已知△ABC的外接圆O的半径为1,且3+4+5=0,则△ABC的面积是_______.解析:因为O是外心,即OA=OB=OC=1,把3+4=-5平方后可得·=0,即<,>=2C=,于是有sin2A∶sin2B∶sin=3∶4∶5,则sin2A=,sin2B=,所以S=sin2A+sin2B+sin2C=.当点H是△ABC的垂心时,AH⊥BC于D,如图5所示,则 tanB=,tanC=,所以==,同理可得=. 因此S∶S∶S=tanA∶tanB∶tanC,于是就有:推论5:若点H是△ABC的垂心,则tanA·+tanB·+tanC·=0.例6 点H是△ABC的垂心,且满足+2+3=2,c=,则△ABC的面积S=_______.解析:由+2+3=2得+2+3=2-2,即3+2+=0.根据推论4可设tanA=3k,tanB=2k,tanC=k,k>0,由-tanA=tan(B+C)得= -3k,解得k=1. 所以tanA=3,tanB=2,tanC=1,进而得到sinA=,sinB=,sinC=. 由正弦定理知a=3,b=4,c=,因此S=×3×4×=6.需要注意的是,在应用“奔驰定理”或其推论时,首先要把已知条件转化为以特殊点P为起點的向量等式x+y+z=0的形式,,,的系数比是x∶y∶z=(±)S∶S∶S,不一定恰好是对应的面积S=x,S=y,S=z,推论中亦如同此理.按照从平面到空间的认知规律,猜测在三棱锥中应该有类似的结论,即在三棱锥A-BCD 内一点P,记三棱锥P-BCD,P-CDA,P-DAB,P-BAC的体积分别为V,V,V,V,应有V·+V·+V·+V·=0成立;当点P在三棱锥A-BCD外(不妨设点P与点A位于平面BCD异侧),应有-V·+V·+V·+V·=0成立.参考文献:[1] 裴珊珊,陈德富,李霞. “奔驰定理”的多种证法及其应用[J]. 中学数学研究,2018(12):48-49.。

三角形各心的向量表示及证明

三角形各心的向量表示及证明

【一些结论】:以下皆是向量1 若P是△ABC的重心PA+PB+PC=02 若P是△ABC的垂心PA•PB=PB•PC=PA•PC(内积)3 若P是△ABC的内心aPA+bPB+cPC=0(abc是三边)4 若P是△ABC的外心|PA|²=|PB|²=|PC|²(AP就表示AP向量|AP|就是它的模)5 AP=λ(AB/|AB|+AC/|AC|),λ∈[0,+∞) 则直线AP经过△ABC内心6 AP=λ(AB/|AB|cosB+AC/|AC|cosC),λ∈[0,+∞) 经过垂心7 AP=λ(AB/|AB|sinB+AC/|AC|sinC),λ∈[0,+∞)或AP=λ(AB+AC),λ∈[0,+ ∞) 经过重心8.若aOA=bOB+cOC,则0为∠A的旁心,∠A及∠B,C的外角平分线的交点【以下是一些结论的有关证明】1.O是三角形内心的充要条件是aOA向量+bOB向量+cOC向量=0向量充分性:已知aOA向量+bOB向量+cOC向量=0向量,延长CO交AB于D,根据向量加法得:OA=OD+DA,OB=OD+DB,代入已知得:a(OD+DA)+b(OD+DB) +cOC=0,因为OD与OC共线,所以可设OD=kOC,上式可化为(ka+kb+c) OC+( aDA+bDB)=0向量,向量DA与DB共线,向量OC与向量DA、DB不共线,所以只能有:ka+kb+c=0,aDA+bDB=0向量,由aDA+bDB=0向量可知:DA与DB的长度之比为b/a,所以CD为∠ACB的平分线,同理可证其它的两条也是角平分线。

必要性:已知O是三角形内心,设BO与AC相交于E,CO与AB相交于F,∵O是内心∴b/a=AF/BF,c/a=AE/CE过A作CO的平行线,与BO的延长线相交于N,过A作BO的平行线,与CO的延长线相交于M,所以四边形OMAN是平行四边形根据平行四边形法则,得向量OA=向量OM+向量ON=(OM/CO)*向量CO+(ON/BO)*向量BO=(AE/CE)*向量CO+(AF/BF)*向量BO=(c/a)*向量CO+(b/a)*向量BO∴a*向量OA=b*向量BO+c*向量CO∴a*向量OA+b*向量OB+c*向量OC=向量02.已知△ABC 为斜三角形,且O是△ABC所在平面上的一个定点,动点P满足向量OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},求P点轨迹过三角形的垂心OP=OA+入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},OP-OA=入{(AB/|AB|^2*sin2B)+AC/(|AC|^2*sin2C)},AP=入{(AB /|AB|^2*sin2B)+AC /(|AC|^2*sin2C)},AP•BC=入{(AB•BC /|AB|^2*sin2B)+AC•BC /(|AC|^2*sin2C)}, AP•BC=入{|AB|•|BC|cos(180°-B) / (|AB|^2*sin2B) +|AC|•|BC| cosC/(|AC|^2*sin2C)},AP•BC=入{-|AB|•|BC| cos B/ (|AB|^2*2sinB cos B) +|AC|•|BC| cosC/(|AC|^2*2sinC cosC)},AP•BC=入{-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )},根据正弦定理得:|AB|/sinC=|AC|/ sinB,所以|AB|*sinB=|AC|*sinC∴-|BC|/ (|AB|*2sinB ) +|BC|/(|AC|*2sinC )=0,即AP•BC=0,P点轨迹过三角形的垂心3.OP=OA+λ(AB/(|AB|sinB)+AC/(|AC|sinC))OP-OA=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP=λ(AB/(|AB|sinB)+AC/(|AC|sinC))AP与AB/|AB|sinB+AC/|AC|sinC共线根据正弦定理:|AB|/sinC=|AC|/sinB,所以|AB|sinB=|AC|sinC,所以AP与AB+AC共线AB+AC过BC中点D,所以P点的轨迹也过中点D,∴点P过三角形重心。

三角形四心的向量性质及应用(详细答案版)

三角形四心的向量性质及应用(详细答案版)

三角形“四心”的向量性质及其应用三角形“四心”的概念介绍(1)重心—三条中线的交点:重心将中线长度分成2:1;(2)外心—三边中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等;(3)垂心—三条高线的交点:高线与对应边垂直;(4)内心—三条内角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等.工具:O 为ABC △内一点,则有:0+⋅+⋅∆∆∆OC S OB S OA S O O CA O BC 证明:作:OA S OA OCB ⋅=∆',OB S OB OCA ⋅=∆',S OC OAB =∆'不难得知:AOB COA BOC OC B S S OC OC OB OB S S ∆∆∆∆⋅=⋅=''''即BO C AO B CO A O C B S S S S ∆∆∆∆⋅⋅='';同理==∆∆''''O B A O A C S S ''O C B BO C AO B CO A S S S S ∆∆∆∆=⋅⋅ 从而:O 为'''C B A ∆的重心,则+'OA +'OB 0'=OC , 得:0=⋅+⋅+⋅∆∆∆OC S OB S OA S O AB O CA O BC .一、三角形的重心的向量表示及应用知识:G 是ABC △的重心⇔)(31AC AB AG +=⇔0=++GC GB GA ⇔)(31OC OB OA OG ++= (O 为该平面上任意一点)变式:已知D E F ,,分别为ABC △的边BC AC AB ,,的中点.则0=++CF BE AD . 二、三角形的外心的向量表示及应用知识:O 是ABC △的外心⇔222||||||OC OB OA OC OB OA ==⇔== 02sin 2sin 2sin =⋅+⋅+⋅⇔OC C OB B OA A略证:C B A S S S O AB O CA O BC 2sin :2sin :2sin ::=∆∆∆,得:02sin 2sin 2sin =⋅+⋅+⋅OC C OB B OA A ;常用结论:O 是ABC △的外心⇒.2|| ;2||22AC AO AC AB AO AB =⋅=⋅ 三、三角形的垂心的向量表示及应用知识:H 是ABC △的垂心⇔HA HC HC HB HB HA ⋅=⋅=⋅⇔222222||||||||||||AB HC CA HB BC HA +=+=+0tan tan tan =⋅+⋅+⋅⇔HC C HB B HA A略证:C B A S S S H AB H CA H BC tan :tan :tan ::=∆∆∆,得:0tan tan tan =⋅+⋅+⋅HC C HB B HA A ; 扩展:若O 是ABC △的外心,点H 满足:OC OB OA OH ++=,则H 是ABC △的垂心. 证明:如图:BE 为直径,H 为垂心,O 为外心,D 为BC 中点;'有:为平行四边形AHCE EA CH AB EA AB CH EC AH BC EC BC AH ⇒⎪⎪⎭⎪⎪⎬⎫⇒⎭⎬⎫⊥⊥⇒⎭⎬⎫⊥⊥////进而得到:,//EC AH 且EC AH =,即:EC AH =; 又易知:OC OB OD EC +==2;故:OA OH OC OB AH -=+=,即:OC OB OA OH ++=又:OG OC OB OA ⋅=++3(G 为重心),故:OG OH ⋅=3;故:得到欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.证毕. 四、三角形的内心的向量表示及应用知识:I 是ABC △的内心⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅=⎭⎫⎝⎛-⋅0||||0||||0||||CB CB CA CA CI BC BC BA BA BI AC AC AB AB AI ⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅=⎭⎫⎝⎛+⋅0||||0||||0||||CA CA BC BC CI BA BA CB CB BI AC AC BA BA AI 0=⋅+⋅+⋅⇔IC c IB b IA a c b a OCc OB b OA a OI ++⋅+⋅+⋅=⇔cb a ACc AB b AI ++⋅+⋅=⇔ 0sin sin sin =⋅+⋅+⋅⇔IC C IB B IA A 注:式子中|||,||,|AB c CA b BC a ===,O 为任一点.略证:C B A c b a S S S IAB ICA IBC sin :sin :sin ::::==∆∆∆,得之. 五.欧拉线:ABC △的外心O ,重心G ,垂心H 三点共线(欧拉线),且GH OG 21=.(前已证) 测试题一.选择题1.O 是ABC ∆所在平面上一定点,动点P 满足)(AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:点P 的轨迹为BC 边的中线(射线),选C2.(03全国理4)O 是ABC ∆所在平面上一定点,动点P 满足AC AB OA OP ++=λ,[)+∞∈,0λ ,则点P 的轨迹一定通过ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:AC AB OA OP ++=λ⇔AC AB AP +=λAC AB +必平分BAC ∠,理由如下:ADACABACACABAB=+==1111,1==,故四边形11DCAB为菱形,对角线AD平分一组对角,ADACAB=+必定平分11ACB∠,即BAC∠,从而ACABAP+=λ也平分BAC∠.故知点P的轨迹为A∠的内角平分线(射线),选 B3.O是ABC∆所在平面上一定点,动点P满足ACABOAOP++=λ,R∈λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:ACABOAOP++=λ⇔ACABAP+=λ由BCACBCABBCACBCABBCAP+=+=⋅λλ得:0|)|||(=+-=⋅BCBCBCAPλ,得BCAP⊥点P的轨迹为BC边的高线所在直线. 选D4.O是ABC∆所在平面上一定点,动点P满足ACABOAOP+=λ,[)+∞∈,0λ,则点P的轨迹一定通过ABC∆的( )A.外心B.内心C.重心D.垂心解析:由于CACCbBcBAB sin||sinsinsin||=⋅=⋅=,知点P的轨迹为BC边的中线(射线),选C5.O是ABC∆所在平面上一定点,动点P满足2cos cosOB OC AB ACOPAB B AC Cλ⎛⎫+ ⎪=++⎪⎝⎭,R∈λ,则点P的轨迹一定通过ABC△的( ).A.外心B.内心C.重心D.垂心解析:0||||=+-=+=⋅+BCBCBCACBCABBCACAB知点P的轨迹为BC边的中垂线, 选A6.O是ABC∆所在平面上一定点,动点P满足])21()1()1[(31OCOBOAOPλλλ++-+-=,*R∈λ,则点P的轨迹一定通过ABC△的( ).A.内心B.垂心C.重心D.AB边的中点解析:])21()1()1[(31OCOBOAOPλλλ++-+-=OCOD3)21(3)22(λλ++-=(D为AB边的中点)知CDP,,三点共线(因1321322=++-λλ),故知点P 的轨迹为AB 边的中线所在直线,但是0≠λ,故除去重心. 选D 7.已知O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC △的( ) A .AB 边中线的中点 B .AB 边中线的三等分点(非重心)C .重心D .AB 边的中点解析:)22121(31OC OB OA OP ++=OC OD 3231+=(D 为AB 边的中点) 进而有:PC DP 2=,故为AB 边中线的三等分点(非重心), 选B8.在ABC △中,动点P 满足:CP AB CB CA ⋅-=222,则P 点轨迹一定通过△ABC 的( )A.外心 B.内心 C .重心 D .垂心解析:CP AB CB CA ⋅-=222⇔02))((222=⋅-+-=⋅--CP AB CA CB CA CB CP AB CA CB 进而有:02=⋅PD AB (D 为AB 边的中点),故知点P 的轨迹为AB 边的中垂线, 选A9.已知ABC ∆三个顶点C B A 、、及平面内一点P ,满足0=++PC PB PA ,若实数λ满足:AP AC AB λ=+,则λ的值为( )A .2B .23C .3D .6 解析:P 为重心,得)(31AC AB AP +=,故AP AC AB ⋅=+3,选C10.设点P 是ABC ∆内一点,用ABC S ∆表示ABC ∆的面积,令ABC PBC S S ∆∆=1λ,ABCPCA S S∆∆=2λ,ABC PAB S S ∆∆=3λ.定义),,()(321λλλ=P f ,若)61,31,21()(),31,31,31()(==Q f G f 则( )A .点Q 在ABG ∆内B .点Q 在BCG ∆内C .点Q 在CAG ∆内D .以上皆不对 解析:G 为重心,画图得知, 选A11.若ABC ∆的外接圆的圆心为O ,半径为1,0=++OC OB OA ,则=⋅OB OA ( )A .21 B .0 C .1 D .21- 解析:由OC OB OA -=+,平方得知, 选D12.O 是平面上一定点,C B A 、、是平面上不共线的三个点,若222OB BC OA =+222AB OC CA +=+,则O 是ABC ∆的( )A .外心B .内心C .重心D .垂心 解析:由2222CA OB BC OA +=+⇔2222BC CA OB OA -=-BA BC CA OB OA BA BC CA BC CA OB OA OB OA ⋅-=+⋅⇔+-=+-⇔)()())(())(( 0)2()(=⋅=-++⋅⇔OC BA CA BC OB OA BA ,得AB OC ⊥;同理得:AC OB ⊥,BC OA ⊥,故为垂心, 选D 13.(06陕西)已知非零向量AB 与AC 满足0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB 21||||=AC AC AB AB , 则ABC ∆为( ) A .三边均不相等的三角形 B .直角三角形 C .等腰非等边三角形 D .等边三角形解析:21||||=AC AC AB AB 0||||=⋅⎭⎫⎝⎛+BC AC AC AB AB :表明A ∠的内平分线也垂直于BC (三线合一), 知ABC ∆等腰;21||||=AC AC AB AB :得到︒=∠60A ;两者结合得到ABC ∆为等边三角形. 选D 14.已知ABC ∆三个顶点C B A 、、,若CA BC CB AB AC AB AB ⋅+⋅+⋅=2,则ABC ∆为( )A .等腰三角形B .等腰直角三角形C .直角三角形D .既非等腰又非直角三角形 解析:CA BC CB AB AC AB AB ⋅+⋅+⋅=2CA BC AB CA BC CB AC AB ⋅+=⋅++⋅=2)( 得到:0=⋅CA BC ,得:︒=∠90C ,选C 二.填空题15.ABC ∆的外接圆的圆心为O ,两条边上的高的交点为H ,)(OC OB OA m OH ++=,则实数m = 1 . 解析:直接用结论16.ABC ∆中,7,3,1===BC AC AB ,O 为重心,则=⋅AC AO27. 解析:)9(31)(31)(312+⋅=+⋅=+=⋅AC AB AC AC AB AC AC AB AC AO 利用:CB AC AB =-,两边平方得.23=⋅AC AB 故27)923(31=+=⋅AC AO17.点O 在ABC ∆内部且满足032=++OC OB OA ,则:ABC S ∆=∆AOC S 3 .解析:法1:利用工具结论易知:AOB COA BOC S S S ∆∆∆=::3:2:1,得:ABC S ∆=∆AOC S 32:6= 法2:0422232=+=+++=++OD OE OC OB OC OA OC OB OA (E 为AC 的中点,D 为BC 的中点)易得:D O E ,,三点共线,且OD EO 2=,从而得到:ABC ADC AOC S S S ∆∆∆==3132. 法3:作:OA OA =',OB OB 2'=,OC OC 3'=则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧======∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 236'''''' 从而得:331:13:)236(:==++=∆∆S S S S S S COA ABC . 18.点O 在ABC ∆内部且满足AC AB AO 5152+=,则:ABC S ∆=∆AOB S 5 . 解析:法1:AC AB AO 5152+=,用O 拆开得:022=+⋅+⋅OC OB OA , 'A 'B 'C O)(A BC利用工具结论易知:AO B CO A BO C S S S ∆∆∆=::1:2:2,则:ABC S ∆51:5==∆AO B S 法2:AC AD AC AB AO 51545152+=+=,(D 为AB 边的中点),得到:C O D ,,共线,且OD CO 4=, 则:ABC S ∆5:==∆OD CD S AO B . 法3:同上题中法3,此处略.19.已知ABC ∆中,6,5===BC AC AB ,I 为ABC ∆的内心,且BC AB AI μλ+=,则=+μλ1615. 解析:法1:由BC AB BC AB AB AC AB c b a AC c AB b AI ⋅+⋅=+⋅+⋅=++⋅+⋅=++⋅+⋅=165161016)(5555655法2:如图,线长易知,角平分线分线段成比例,得:3:5:=ID AI , 故)21(8585BC AB AD AI ⋅+⋅=⋅=AB +⋅=1658520.已知ABC ∆中,1,1,2-=⋅==AC AB AC AB ,O 为ABC ∆的外心,且BC y AB x AO +=,则=+y x 27. 解析:法1:由BC y AB x AO +=AC y AB y x +-=)(,由AC AB y AB y x ABBC y AB y x AB AO AB ⋅+-=⇒+-⋅=⋅22)(2))((,得:y y x --=)(42;同理22)(2))((AC y AC AB y x ACBC y AB y x AC AO AC +⋅-=⇒+-⋅=⋅,得:y y x +--=)(21;易得:34,613==y x ,得27=+y x . 法2:以},{AC AB 为基底,表示:CO BO AO ,,,利用222CO BO AO ==,得之BC y AB x AO +=AC y AB y x +-=)(,y y x y y x AO )(2)(4222--+-=; AC y AB y x AB AO BO +--=-=)1(,y y x y y x BO )1(2)1(4222---+--=; AC y AB y x AC AO CO )1()(-+-=-=,)1)((2)1()(4222----+-=y y x y y x CO ;由22BO AO =0254=--⇒⇒y x 移项做差; 由22CO AO =0142=+-⇒⇒y x 移项做差; 联立方程解得:34,613==y x ,得27=+y x .BCA MNG21.已知O 为锐角ABC ∆的外心,︒=∠30A ,若AO m B C AC C B AB 2sin cos sin cos =⋅+⋅,则=m 21. 解析:由AO m AB B CAC C B AB AB 2)sin cos sin cos (⋅=⋅+⋅⋅ 得:22||sin cos cos ||||sin cos ||AB m B CA AC ABC B AB =⋅⋅⋅+⋅得:C m C A B mc BCA b c CB c sin cos cos cos sin cos cos sin cos 22⋅=+⇒=⋅⋅⋅+⋅得到:C A C A C A C A B C m sin sin cos cos )cos(cos cos cos sin =++-=+=⋅ 得:.2130sin sin =︒==A m 22.在ABC∆中,1,==⊥AD BC AB AD ,则⋅AD AC解析:.33)(2===⋅=⋅+=⋅AD AD AD BC AD BC AB AD AC 三.解答题23. 如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且AM xAB = ,AN yAC = ,求证:113x y+=.解:由N G M ,,三点共线, 得:AN t AM t AG ⋅+⋅-=)1(AC ty AB x t ⋅+⋅-=)1(--------①又G 是ABC ∆的重心得:AC AB AG ⋅+⋅=3131 ---------② 由①②得:⎪⎪⎩⎪⎪⎨⎧==-3131)1(ty x t ,消去t 得:113x y +=.24.设O 在ABC ∆的内部,若有正实数321,,λλλ满足:0321=⋅+⋅+⋅OC OB OA λλλ, 求证:AO B CO A BO C S S S ∆∆∆=::::321λλλ.证明:作:OA OA ⋅=1'λ,OB OB ⋅=2'λ,OC OC ⋅=3'λ 则+'OA +'OB 0'=OC ,则O 为'''C B A ∆的重心,则:''''''O B A O A C O C B S S S ∆∆∆==.设为S又⎪⎩⎪⎨⎧=⋅==⋅==⋅=∆∆∆∆∆∆SS SS S S S S S AOB OB A COA OA C BOC OC B 2!''13''32''λλλλλλ 从而得:AOB COA BOC S S S SSS∆∆∆==::::::211332321λλλλλλλλλ25.已知向量1OP ,2OP ,3OP 满足条件1OP +2OP +3OP =0,|1OP |=|2OP |=|3OP |=1,求证:321P P P ∆为正三角形. 证明:由1OP +2OP +3OP =0⇒1OP +2OP =3OP -平方得:1212112121-=⋅⇒=⋅++OP OP OP OP'A 'B 'C OABC从而得:3||21====P P同理可得:3||||1332==P P P P ,即321P P P ∆为正三角形. 26.在ABC ∆中,︒===60,5,2A AC AB ,求从顶点B A ,出发的两条中线BE AD ,的夹角的余弦值.解:设b AB a AC ==,,则,560cos 25,4,2522=︒⨯⨯=⋅==b a b a且b a BE b a AD -=+=21),(21; 则,3)8525(41)2(41)21()(2122=--=-⋅-=-⋅+=⋅b b a a b a b a BE AD2394102521|)(|21||=++==+=b a AD22116202521|)2(|21||=+-==-=b a BE 故:.919149142212393||||,cos ==⋅=>=<BE AD BEAD BE AD27.已知H 是ABC △的垂心,且||||BC AH =,试求∠A 的度数.解:设ABC △的外接圆半径为R ,点O 是ABC △的外心。

三角形“四心”向量形式的结论及证明

三角形“四心”向量形式的结论及证明

三角形“四心”向量形式的结论及证明三角形的“四心”是指三角形的重心、外心、内心和垂心。

它们的位置可以用向量的形式来描述。

本文将分别介绍三角形“四心”的向量形式以及其证明。

1.重心:重心是指三角形三个顶点的中线交点所在的点,用G表示。

假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则重心G的坐标可以通过以下公式得到:G=(A+B+C)/3其向量形式为:OG=(OA+OB+OC)/3其中O为坐标原点。

证明:由定义可知,重心是三角形三个顶点的中线交点所在的点。

而中线的坐标可以通过两个顶点的坐标的平均值得到。

因此,重心的坐标是三个顶点坐标的平均值。

根据向量加法的性质,可以得到上述结论。

2.外心:外心是指可以通过三角形的三个顶点作为圆心,找到一个圆使得三条边都是这个圆的切线。

用O表示外心。

假设三角形的三个顶点分别为A(x1,y1)、B(x2,y2)和C(x3,y3),则外心O的坐标可以通过以下公式得到:O=(a^2*A+b^2*B+c^2*C)/(a^2+b^2+c^2)其中a、b、c分别表示三角形的边长BC、AC和AB的长度。

其向量形式为:OO=(a^2*OA+b^2*OB+c^2*OC)/(a^2+b^2+c^2)其中O为坐标原点。

证明:设外心为O,连接OA、OB、OC,并设AO的长度为R,BO的长度为R',CO的长度为R''。

根据定义可知,OA,OB,OC都是截圆半径,可以得到以下关系:OA⊥BC,OB⊥AC,OC⊥AB由于OA、OB、OC是向量,因此上述关系可以写为:OA·BC=0,OB·AC=0,OC·AB=0其中“·”表示点乘。

根据向量的点乘性质可知:OA·(B-C)=0,OB·(C-A)=0,OC·(A-B)=0将向量差展开得:OA·B-OA·C=0,OB·C-OB·A=0,OC·A-OC·B=0进一步展开可得:R^2-R'^2=0,R'^2-R''^2=0,R''^2-R^2=0整理得:R^2-R'^2=R''^2-R^2移项得:2R^2=R'^2+R''^2根据圆的定义可知,外心到三角形的每个顶点的距离都相等,因此R=R'=R''。

三角形重心、外心、垂心、内心的向量表示及其性质

三角形重心、外心、垂心、内心的向量表示及其性质

向量的重心、垂心、内心、外心、旁心三角形重心、内心、垂心、外心的概念及简单的三角形形状判断方法。

重心:ABC 中、每条边上所对应的中线的交点;垂心:ABC 中、每条边上所对应的垂线上的交点;内心:ABC 中、每个角的角平分线的交点(内切圆的圆心);外心:ABC 中、每条边上所对应的中垂线的交点(外接圆的圆心)。

一、重心1、 O 是 ABC 的重心OA OB OC 0若 O 是 ABC 的重心,则BOC AOC AOB 1 ABC 故 OA OB OC 0 ,1 (PA 3PG PB PC) G 为 ABC 的重心 .3、 P 是△ ABC所在平面内任一点. G是△ ABC的重心 1 (PA) .2 PG PB PC3证明:PG PA AG PB BG PC CG 3PG ( AG BG CG) (PA PB PC) ∵ G是△ ABC的重心∴ GA GB GC 0 AG BG CG 0,即 3PG PA PB PC由此可得 PG 1 (PA PB PC ) . (反之亦然(证略))33、已知 O 是平面上一定点, A, B, C 是平面上不共线的三个点,动点P 满足OP OA ( AB AC) ,(0,) ,则 P 的轨迹一定通过△ ABC 的重心 .例 1 若 O 为ABC 内一点, OA OB OC 0 ,则 O 是ABC 的()A.内心 B .外心 C .垂心 D .重心第 1 页共 10 页二、垂心1、 O 是 ABC 的垂心OA OB OB OC OA OC若 O 是 ABC ( 非直角三角形 ) 的垂心,则故 tan AOA tan BOB tanCOC 02、H是面内任一点,HA HB HB HC HC HA 点 H 是△ ABC的垂心 .由 HA HB HB HC HB ( HC HA) 0 HB AC 0 HB AC ,同理 HC AB , HA BC . 故 H 是 ABC 的垂心 . (反之亦然(证略))3、 P 是△ ABC 所在平面上一点,若 PA PB PB PC PC PA ,则 P 是△ ABC 的垂心.由 PA PB PB PC ,得 PB (PA PC ) 0 ,即 PB CA 0 ,所以 PB⊥ CA .同理可证 PC ⊥ AB , PA ⊥ BC .∴ P 是△ ABC 的垂心.如图 1.A CCB PEMHPA FB图 1 O 图⑷4、已知 O 是平面上一定点,A, B, C 是平面上不共线的三个点,动点P 满足AB AC,(0,) ,则动点 P 的轨迹一定通过OP OAAC cos CAB cos B△ ABC 的垂心.例 2 P 是△ ABC所在平面上一点,若PA PB PB PC PC PA ,则 P 是△ ABC 的()A.外心B.内心C.重心D.垂心第 2 页共 10 页三、内心1、 O 是ABC 的内心的充要条件是OA AB ACOBBA BC CA CBOCAB AC BA BC CA CB Ae1e2B引进单位向量,使条件变得更简洁。

三角形重心、外心、垂心、内心的向量表示及其性质

三角形重心、外心、垂心、内心的向量表示及其性质

三角形“四心”向量形式的充要条件应用1.O 是ABC ∆的重心⇔0OC OB OA =++; 若O 是ABC ∆的重心,则AB C AOB AOC B OC S 31S S S ∆∆∆∆===故=++;1()3PG PA PB PC =++⇔G 为ABC ∆的重心.2.O 是ABC ∆的垂心⇔OA OC OC OB OB OA ⋅=⋅=⋅;若O 是ABC ∆(非直角三角形)的垂心,则C tan B tan A tan S S S AOB AOC BOC ::::=∆∆∆ 故0OC C tan OB B tan OA A tan =++3.O 是ABC ∆的外心⇔|OC ||OB ||OA |==(或222OC OB OA ==)若O 是ABC ∆的外心则C 2sin :B 2sin :A 2sin AOB sin AOC sin BOC sin S S S AOB AOC BOC =∠∠∠=∆∆∆:::: 故0OC C 2sin OB B 2sin OA A 2sin =++ 4.O 是内心ABC ∆的充要条件是|CB ||CA |(|BC ||BA |(AC|AB |(=⋅=⋅=-⋅引进单位向量,使条件变得更简洁。

如果记CA ,BC ,AB 的单位向量为321e ,e ,e ,则刚才O 是ABC ∆内心的充要条件可以写成 0)e e ()e e ()e e (322131=+⋅=+⋅=+⋅ ,O 是ABC ∆内心的充要条件也可以是c b a =++ 。

若O 是ABC ∆的内心,则c b a S S S AOB AOC BOC ::::=∆∆∆故 0OC C sin OB B sin OA A sin 0OC c OB b OA a =++=++或;||||||0AB PC BC PA CA PB P ++=⇔是ABC ∆的内心;向量()(0)||||AC AB AB AC λλ+≠所在直线过ABC ∆的内心(是BAC ∠的角平分线所在直线);(一)将平面向量与三角形内心结合考查例1.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的()(A )外心(B )内心(C )重心(D )垂心 解析:因为是向量AB 的单位向量设AB 与AC 方向上的单位向量分别为21e e 和, 又=-,则原式可化为)(21e e +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.(二)将平面向量与三角形垂心结合考查“垂心定理”例2. H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心. 由⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理⊥,BC HA ⊥.故H 是△ABC 的垂心. (反之亦然(证略))例3.(湖南)P 是△ABC 所在平面上一点,若⋅=⋅=⋅,则P 是△ABC 的(D )A .外心B .内心C .重心D .垂心解析:由0=⋅-⋅⋅=⋅得.即0,0)(=⋅=-⋅即 则AB PC BC PA CA PB ⊥⊥⊥,,同理 所以P 为ABC ∆的垂心. 故选D.(三)将平面向量与三角形重心结合考查“重心定理”例4. G 是△ABC 所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明 作图如右,图中=+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略)) 例5. P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31++=. 证明 CG PC BG PB AG PA PG +=+=+=⇒)()(3PC PB PA CG BG AG PG +++++= ∵G 是△ABC 的重心 ∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB PA PG ++=3 由此可得)(31PC PB PA PG ++=.(反之亦然(证略))例6 若O 为ABC ∆内一点,0OA OB OC ++= ,则O 是ABC ∆ 的( ) A .内心 B .外心 C .垂心 D .重心解析:由0OA OB OC ++=得OB OC OA +=-,如图以OB 、OC 为相邻两边构作平行四边形,则OB OC OD +=,由平行四边形性质知12OE OD =,2OA OE =,同理可证其它两边上的这个性质,所以是重心,选D 。

三角形重心的向量公式推导

三角形重心的向量公式推导

三角形重心的向量公式推导假设三角形的顶点分别为A、B、C,对应的向量分别为→A、→B、→C。

我们需要推导重心G的向量公式,即→G。

首先,我们要找到三角形三边的中线。

三角形ABG的中线就是通过B 和中点D的线段,其中D是AC边(A和C的中点)。

我们可以使用向量中点公式来表示中点D的向量:→D=(→A+→C)/2同样地,三角形ACG的中线就是通过A和中点E的线段,其中E是BC边(B和C的中点)。

我们可以使用向量中点公式来表示中点E的向量:→E=(→B+→C)/2现在,让我们考虑重心G的位置。

我们知道重心G将中线BD划分成两段,其中一段的长度是另一段的两倍。

让重心G到点B的向量是→GB,那么重心G到点D的向量就是2倍的→GB,即2→GB。

根据重心的定义,重心G到点D的向量→GD和重心G到点E的向量→GE是相等的。

所以,我们可以得到以下的等式:→GD=→GE→GD=→D-→G(向量减法)→GE=→E-→G(向量减法)将向量→D和→E的表达式代入上述等式中,我们得到:→D-→G=→E-→G移项得到:→D-→E=→G-→G根据向量减法和合并同类项,我们得到:→D-→E=→0由于→D-→E=(→A+→C)/2-(→B+→C)/2,这个向量等于0向量,我们可以继续推导:(→A+→C)/2-(→B+→C)/2=→0对上式两边同时乘以2,得到:→A+→C-→B-→C=→0合并同类项,我们得到:→A-→B+→C-→C=→0简化表达式,我们得到:→A-→B=→0即:→A=→B这意味着顶点A和顶点B的向量相等,即两个向量的起点和终点都是相同的顶点。

这个结论意味着三角形的三个顶点A、B、C共线。

这与我们的假设矛盾,因为三角形的定义要求三个顶点不共线。

因此,我们可以得出结论,在一个非共线三角形中,重心的向量公式是:→G=(→A+→B+→C)/3这个公式表示重心的位置是三角形三个顶点向量的和的1/3、例子:点A(1,2),点B(3,5),点C(-2,7)根据公式,我们可以计算重心G的向量:→G=(→A+→B+→C)/3=(1,2)+(3,5)+(-2,7)/3=(2,14)/3=(2/3,14/3)所以,根据我们的计算,给定三角形ABC的顶点坐标为A(1,2),B (3,5),C(-2,7),重心的向量是→G=(2/3,14/3)。

向量证明重心

向量证明重心

向量证明重心三角形ABC中,重心为O,AD是BC边上的中线,用向量法证明AO=2OD (1).AB=12b,AC=12c。

AD是中线则AB+AC=2AD即12b+12c=2AD,AD=6b+6c;BD=6c-6b。

OD=xAD=6xb+6xx。

(2).E是AC中点。

作DF//BE则EF=EC/2=AC/4=3c。

平行线分线段成比OD/AD=EF/AF即(6xb+6xc)/(6b+6c)=3c/9c,x(6b+6c)/(6b+6c)=1/3,3x=1。

(3).OD=2b+2c,AO=AD-OD=4b+4c=2(2b+2c)=2OD。

2设BC中点为M∵PA+PB+PC=0∴PA+2PM=0∴PA=2MP∴P为三角形ABC的重心。

上来步步可逆、∴P是三角形ABC重心的充要条件是PA+PB+PC=03如何用向量证明三角形的重心将中线分为2:1设三角形ABC的三条中线分别为AD、BE、CF,求证AD、BE、CF交于一点O,且AO:OD=BO:OE=CO:OF=2:1证明:用归一法不妨设AD与BE交于点O,向量BA=a,BC=b,则CA=BA-BC=a-b因为BE是中线,所以BE=(a+b)/2,向量BO与向量BE共线,故设BO=xBE=(x/2)(a+b)同理设AO=yAD=(y/2)(AB+AC)=y/2(-a+b-a)=-ya+(y/2)b在三角形ABO中,AO=BO-BA所以-ya+(y/2)b=(x/2)(a+b)-a=(x/2-1)a+(x/2)b因为向量a和b线性无关,所以-y=x/2-1y/2=x/2解得x=y=2/3所以A0:AD=BO:BE=2:3故AO:OD=BO:OE=2:1设AD与CF交于O',同理有AO’:O'D=CO':O'F=2:1所以有AO:OD=AO':O'D=2:1,注意到O和O’都在AD上,因此O=O’因此有AO:OD=BO:OE=CO:OF=2:1证毕!4设三角形ABC的顶点A,B,C的坐标分别为(X1,Y1),(X2,Y2),(X3,Y3)证明:三角形ABC的重心(即三条中线的交点)M的坐标(X,Y)满足:X=X1+X2+X3/3 Y=Y1+Y2+Y3/3\设:AB的中点为 D.∴Dx=(x1+x2)/2,又M为三角形的重心,∴CD=3MD,∴x3-(x1+x2)/2=3[x-(x1+x2)/2]===&gt;x=(x1+x2+x3)/3同理: y=(y1+y2+y3)/35如图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角形重心的性质的向量表示与推广及其应用
吴家华(四川省遂宁中学校 629000)
摘 要 本文给出了三角形重心性质的一个向量表示并进行了推广,同时介绍了它们的简单应用.
关键词 三角形、重心、向量、推广
我们知道,三角形的三条中线相交于一点,这点叫做三角形的重心,重心到顶点的距离与到对边中点的距离的比为1:2,即重心到顶点的距离等于该中线长的三分之二. 重心的这一性质如果我们用向量来表示的话,则有下列结论:
定理1 设G 为ABC ∆的重心,则)(3
1
AC AB AG +=;反之也成立. 证明:设BC 的中点为D ,则)(2
1
AC AB AD +=. ∵G 为ABC ∆的重心,∴AD AG 3
2
=
. ∴)(31
)(213232AC AB AC AB AD AG +=+⋅==.
故)(3
1
AC AB AG +=.
反之,若)(3
1
AC AB AG +=,则AC AB AG +=3,即
0)()(=-+-+AC AG AB AG AG ,0=++CG BG AG ,
∴0=++GC GB GA ,故G 为ABC ∆的重心.
定理1 得证.
笔者在解题研究中,尝试把重心G 改为ABC ∆所在平面内的任意一点,发现定理1可以推广为下列一般形式:
定理 2 设分别过ABC ∆的两个顶点C B ,的直线相交于一点P ,且分别交对边所在直线于点M N ,. 若AB AM λ=,AC AN μ=,则
AC AB AP λμ
λμλμμλ--+--=
1)
1(1)1(.
证明:如图1所示,设MC t MP =,NB s NP =,则
M
p N
B
C
A
AC
t AM t AM AC t AM MC t AM MP AM AP +-=-+=+=+=)1()(AC t AB t +-=)1(λ.
AB
s AN s AN AB s AN NB s AN NP AN AP +-=-+=+=+=)1()(AB s AC s +-=)1(μ.
∵AB 与AC 不共线,
∴⎩⎨⎧=-=-t s s t )1()1(μλ⎪⎪⎩

⎪⎨
⎧--=--=⇒λμμλλμλμ1)1(1)1(s t . 故AC AB AP λμ
λμλμμλ--+--=
1)1(1)1(.
定理2得证.
显然,定理2的结论是建立在ABC ∆的基础上的,那么,我们在应用定理2解决问题 时就需要一个三角形作依托,也就是说,我们解决问题的关键在于这个三角形的选择. 因此,我们不妨把定理中的这个ABC ∆叫做基底三角形(注意,顶点C B A ,,按逆时针顺序),简称为“基三角”.
笔者在教学和解题实践中发现,上述三角形重心性质的向量表示及其推广在解决平面 向量和平面几何问题中具有较广泛的应用.下面举例说明之.
例1.如图2所示,在ABC ∆中,E D ,分别为AC AB ,的中点,CD 与BE 交于点F , 设a AB =,b AC =,b n a m AF +=,若向量),(n m s =,则=||s ( )
.
A 32 .
B 32 .
C 65 .
D 3
4
图2
解:由已知可知,F 为ABC ∆的重心, 则由定理1可得:b a b a AF 3
131)(31+=+=
.
∵b n a m AF +=,且a ,b 不共线, ∴31=
=n m ,则)3
1,31(=s . ∴3
2)31()31(||22=+=
s ,故选B . 例2.P 是ABC ∆内一点,)(3
1
AC AB AP +=,则ABC ∆的面积与ABP ∆的面积的比 值为( )
.A 2 .B 3 .
C 2
3
.D 6 解:∵)(3
1
AC AB AP +=,∴由定理1知,P 是ABC ∆的重心. ∴
3
1
=∆∆ABC ABP S S ,即ABC ∆的面积与ABP ∆的面积的比值为3. 故选B .
例3.如图3所示,在OAB ∆中,a OA =,b OB =,N M ,分别是边OB OA ,上的点, 且a OM 31=
,b ON 2
1
=.设AN 与BM 交于点P ,用向量a ,b 表示OP .
图3
解:取OAB ∆为基底三角形,因为N M ,分别是边OB OA ,上的点,且a OM 3
1
=
,b ON 2
1=.
∴31=λ,2
1
=μ,则由定理2,得:
b a b a OP 5
2
511)1(1)1(+=--+--=
λμλμλμμλ,

b a OP 5
251+=. 例4.如图4所示,在OAB ∆中,a OA =,b OB =,设点M 分AB 所成的比为1:2,点N 分OA 所成的比为1:3,而OM 和BN 交于点P ,试用a 和b 表示OP .
解:取ABO ∆为基底三角形,连接AP ,因为点M 分AB 所成的比为1:2,点N 分OA
所成的比为1:3,
∴AB AM 32=
,AO AN 41=,则32=λ,4
1=μ. 由定理2得:AO AB AO AB AP 10
1
531)1(1)1(+=--+--=
λμλμλμμλ.
图4
∴OA OA OB OA AO AB OA AP OA OP 10
1
)(5310153--+=++
=+= b a OB OA 53
10353103+=+=,
即b a OP 5
3
103+=.
例5.如图5所示,在ABC ∆中,点M 是BC 的中点,点N 在边AC 上,且NC AN 2=,
AM 与BN 相交于点P ,求PM AP :的值.
图5
解:取CAB ∆为基底三角形,连接PC ,则由已知得:CA CN 31=,CB CM 2
1
=, ∴31=
λ,2
1
=μ. 由定理2得:CB CA CB CA CP 52
511)1(1)1(+=--+--=
λμλμλμμλ,
∴)(5251AC AB AC AC AP -+-
=-,即AB AC AP 5
2
52+=.
∵点M 是BC 的中点,∴)(2
1
AC AB AM +=. ∴AM AP 5
4
=
,即1:4:=PM AP .∴1:4:=PM AP . 例6.(2014年武汉高三调研)如图6所示,在ABC ∆中,AC AN 3
1
=,P 是BN 上的一点,若AC AB m AP 11
2
+
=,则实数m 的值为( )
.
A 119 .
B 115 .
C 113 .
D 11
2
解:取CAB ∆为基底三角形,延长AP 交BC 于点M ,连接PC . ∵AC AN 31=
,∴CA CN 32=,即3
2=λ. 设CB CM μ=,则由定理2,得:
CB CA CB CA CP μ
μ
μμλμλμλμμλ2323)1(21)1(1)1(-+--=--+--=
.
则CB CA CA CP AP μ
μ
μ23231-+--
=-=.
又∵CB m CA m CA CA CB m AC AB m AP ++-=--=+
=)11
2
(112)(112,且CA , CB 不共线,∴⎪⎪⎩⎪⎪⎨⎧=-+=-m m μ
μμ23112231⎪⎪⎩⎪⎪⎨⎧==⇒1157
5m μ.
故应选.B
P
M
N
C
B
A。

相关文档
最新文档