函数的零点高三一轮复习公开课
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.(-1,0) C.(1,2) B.(0,1) D.(2,3)
c)
链接高考
例2
问题二:判断函数零点的个数
x2+2x-3,x≤0 函数 f(x)= -2+ln x,x>0 B.1
的零点个数为( )
A.0
C.2
D.3
1、(2012·北京高考)函数 f(x)=x
AHale Waihona Puke Baidu0 C.2
1 2
1 x - 的零点的个数为( 2
函数的零点 高三一轮专项复习
请完成下表,并思考二次函数y=ax2+bx+c (a>0) 的图象与x轴的交点和零点的关系
Δ>0 Δ=0 Δ<0
二次函数
y=ax2+bx
+c (a>0)的 图象 与x轴的交点 (x1,0),(x2,0) 零点 (x1,0) 无交点 无
x1 , x2
x1
结论:函数的零点就是方程f(x)=0的实数根,也 就是函数y=f(x)的图象与x轴的交点的横坐标。
若函数y=f(x)在区间(a,b)内有零点,则y=
f(x)在区间[a,b]上的图象是否一定是连续不断
的一条曲线?是否一定满足f(a)·f(b)<0?
【提示】 不一定.如图所示,函数都有零点,但不连续
或不满足f(a)·f(b)<0.
链接高考
问题一:确定函数零点所在的区间
例1、设f(x)=ex+x-4,则函数f(x)的零点位于区间(
B
)
B.1 D.3
链接高考
问题三:函数零点的综合应用
• 例3 若函数f(x)= 2x-a x≤0 • ln x x>0 • 有两个不同的零点,则实数a的取值范围是 ________.
c)
链接高考
例2
问题二:判断函数零点的个数
x2+2x-3,x≤0 函数 f(x)= -2+ln x,x>0 B.1
的零点个数为( )
A.0
C.2
D.3
1、(2012·北京高考)函数 f(x)=x
AHale Waihona Puke Baidu0 C.2
1 2
1 x - 的零点的个数为( 2
函数的零点 高三一轮专项复习
请完成下表,并思考二次函数y=ax2+bx+c (a>0) 的图象与x轴的交点和零点的关系
Δ>0 Δ=0 Δ<0
二次函数
y=ax2+bx
+c (a>0)的 图象 与x轴的交点 (x1,0),(x2,0) 零点 (x1,0) 无交点 无
x1 , x2
x1
结论:函数的零点就是方程f(x)=0的实数根,也 就是函数y=f(x)的图象与x轴的交点的横坐标。
若函数y=f(x)在区间(a,b)内有零点,则y=
f(x)在区间[a,b]上的图象是否一定是连续不断
的一条曲线?是否一定满足f(a)·f(b)<0?
【提示】 不一定.如图所示,函数都有零点,但不连续
或不满足f(a)·f(b)<0.
链接高考
问题一:确定函数零点所在的区间
例1、设f(x)=ex+x-4,则函数f(x)的零点位于区间(
B
)
B.1 D.3
链接高考
问题三:函数零点的综合应用
• 例3 若函数f(x)= 2x-a x≤0 • ln x x>0 • 有两个不同的零点,则实数a的取值范围是 ________.