人教版数学八年级上册 分式的基本性质(2)
第1讲 分式的概念及性质 讲义 (知识精讲+典题精练)2023-2024学年人教八年级数学上册
第1讲分式的概念及性质【中考考纲】【知识框架】考点课标要求知识与技能目标了解理解掌握灵活应用分式的概念分式的概念√分式有意义的条件√分式值为零的条件√分式值的符号讨论√分式的基本性质分式的基本性质√分式的概念分式的基本性质分式有意义的条件分式值为零的条件分式值的符号讨论分式分式的概念1【知识精讲】一、分式的概念1.一般地,用A ,B 表示两个整式,A B 就可以表示成BA的形式.如果B 中含有字母,式子AB就叫做分式.2.分式有意义的条件:分式的分母不为零;3.分式的值为零的条件:分式的分子为零且分母不为零;4.分式值为正的条件:分式的分子分母符号相同(两种情况);5.分式值为负的条件:分式的分子分母符号不同(两种情况).【经典例题】【例1】下列各代数式:1x ,2x ,5xy ,()12a b +,x π,211x -,22a b a b --,13a-,1x y -中,整式有_____________,分式有_____________.【例2】若分式21x -有意义,则x 的取值范围是_____________.【例3】要使式子3234x x x x ++÷--有意义,则x 的取值是_____________.【例4】使分式2211a a -+有意义的a 的取值是__________.【例5】当3x =-时,下列分式中有意义的是().A.33x x +- B.33x x -+ C.()()()()3232x x x x +++- D.()()()()3232x x x x -++-【例6】x ,y 满足关系_____________时,分式x yx y-+ 无意义.【例7】当x =_________时,分式33x x -+的值是零.【例8】当x =_________时,分式293x x --的值为零.【例9】若分式223-1244x x x ++的值为0,则x 的值为_________.【例10】x 为何值时,分式2||656x x x ---:(1)值为零;(2)分式无意义?【例11】若分式21-2x x a+无论x 取何值时,分式的值恒为正,则a 的取值范围是_________.【例12】若使分式1-1m 的值为整数,这样的m 有几个?若使分式1-1m m +的值为整数,这样的m 有几个?【例13】若分式1||x a+对任何数x 的都有意义,求a 的取值范围.【例14】要使分式11x x-有意义,则x 的取值范围是_________.【例15】当x 取何值时,分式226x x -+的值恒为负?【例16】当x 取什么值时,分式25xx -值为正?2【知识精讲】一、分式的基本性质1.分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变,用式子表示A A CB B C⋅=⋅,A A CB B C÷=÷(0C≠),其中A,B,C为整式.2.注意:(1)利用分式的基本性质进行分式变形是恒等变形,不改变分式值的大小,只改变形式;(2)应用基本性质时要注意0C≠,以及隐含的0B≠;(3)注意“都”,分子分母要同时乘以或除以.3.分式的通分和约分:关键是先分解因式.【经典例题】【例17】把分式yx中的x 和y 都扩大3倍,则分式的值______.【例18】如果把分式10xyx y+中的x ,y 都扩大十倍,则分式的值().A .扩大100倍B .扩大10倍C .不变D .缩小到原来的110【例19】对于分式11x -,恒成立的是().A.1212x x =--B .21111x x x +=--C .()21111x x x -=--D .1111x x -=-+【例20】下列各式中,正确的是().A .a m ab m b+=+B .0a ba b+=+C .1111ab b ac c +-=--D .221x y x y x y+=--【例21】与分式a ba b-+--相等的是().A .a b a b+-B .a b a b-+C .a b a b+--D .a b a b--+【例22】将分式253x yx y -+的分子和分母中的各项系数都化为整数,得().A .235x y x y -+B .1515610x y x y -+C .1530610x y x y -+D .253x y x y-+【例23】已知23a b =,求a bb+的值?【例24】化简:2323812a b cab c =________________.【例25】化简:22442y xy x x y-+=-________________.【例26】已知一列数1a ,2a ,3a ,4a ,5a ,6a ,7a ,且18a =,75832a =,356124234567a a a a a a a a a a a a =====,则5a 为().A .648B .832C .1168D .1944【例27】如果115x y +=,则2522x xy y x xy y-+=++____________.【例28】已知a b c d b c d a ===,则a b c da b c d-+-+-+的值是__________.【例29】化简:43211x x x x -+++.【例30】已知2215x x =+,求241x x +的值.【随堂练习】【习题1】若分式42121x x x --+的值为0,则x 的值是___________.【习题2】求证:无论x 取什么数,分式223458x x x x ---+一定有意义.【习题3】已知()1xf x x=+,求下列式子的值.111()()()(1)(0)(1)(2)(2011)(2012)201220112f f f f f f f f f ++++++++++ 【习题4】x 取______________值时,112122x +++有意义.【习题5】已知34y x =,求代数式2222352235x xy y x xy y -++-的值.【课后作业】【作业1】已知,,0a b c ≠,且0a b c ++=,则111111a b c b c c a a b ⎛⎫⎛⎫⎛⎫+++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭的值是__________.【作业2】已知20y x -=,求代数式()()()()22222222xy x xy y xxy yxy+-+++-的值.【作业3】若实数x ,y 满足0xy ≠,则y xm x y=-的最大值是多少?【作业4】已知a ,b 为实数,且1ab =,设11a b P a b =---,1111Q a b =---,试比较P 和Q 的大小.【作业5】如果整数a (1a ≠)使得关于x 的一元一次方程:232ax a a x -=++的解是整数,则该方程所有整数解的和为__________.【作业6】已知分式()()811x x x -+-的值为零,则x 的值是__________.【作业7】要使分式241312a a a-++有意义,则a 的值满足__________.【作业8】已知210a a --=,且4232232932112a xa a xa a -+=-+-,求x 的值.。
八年级数学分式的基本性质2
( ) a2b
b(2a b) a2 b
2ab b2 a2b
x2 xy x2
(x
y
)
(x2 xy) x x2 x
x x
y
x x2 2x
( ) x2
xx (x2 2x) x
1 x2
; 宠物DR 宠物DR ;
不少于800字。不得抄袭。 [写作提示]“钥匙”是开锁的工具,它熟悉事物的机理,最了解锁的“心”,所以能够灵活机动,只轻轻一转,就“轻而易举”地打开了锁。对于一般的事物、问题而言,这里的“心”是指事物的关键之处、问题的症结所在;对于人的思想、情感而言,“心” 是指隐秘之处的思想和情感。“铁棒”天生不是开锁的料,只会砸“锁”、撬“锁”。我们可以把它理解为没有抓住事物的关键或问题的症结,不讲科学、不讲技巧的蛮干。它也想开锁,只是采用的方式不正确,可见解决问题应追求合理的途径。参考拟题:开锁的启示、科学方法与科学 精神。 ? 25.阅读下面的文字,根据要求作文。 非洲加纳的库马西有一所寄宿学校。一天早上,一位老师走进教室,举起手里的一张画有一个黑点的白纸问学生:“同学们,你们看到什么了?”学生们齐声回答:“一个黑点。” 老师说:“不对!你们再看看,难道你们谁也没看到这是 一张白纸吗?”接着,老师语重心长地说:“在今后的生活中,你们可不要这样看人看事物啊!” 老师关于这张“白纸”的教导,一直铭刻在一个当时年仅17岁的学生的脑海深处。当年的这位学生就是现在的联合国秘书长科菲?安南。 请以“白纸与黑点”为话题写一篇文章。题目自拟, 文体自选,立意自定,不少于800字。 ? [写作提示]在这个硝烟不断,危机纷起,恐怖分子无孔不入,时刻都有意想不到的灾难发生的世界里,身为联合国秘书长的安南先生时时体味当年老师关于“白纸与黑点”的谆谆教诲,仍然乐观地看到这张虽有许多“黑点”的“白纸”的美丽。其 实,我们也常常遇到这样被染上了“黑点”的“白纸”。比如患过错误的同志,比如有许多毛病的同事……我们应该认真品味这位非洲老师的“黑点与白纸”的故事,从中领悟这样的道理:看人应当首先看“一张白纸”,即看人的主流,看人的优点,对别人的身上的“黑点”应当懂得宽 容、包涵,求同存异,不要只注意别人的“黑点”而刻意挑剔甚至吹毛求疵。 ? 26.阅读下面的文字,根据要求作文。 ? 比,是人人皆有的心态,所不同的是比的内容和方法因人而异:有的比吃比穿、比车比房,有的比成就、比贡献。比,又是我们认识事物的常用方法,拿中国古代的 文明和其他国家比,我们会比出自豪和勇气。拿我们现在的科技与发达国家比,我们比出了落后和清醒。但是,并不是人人都会正确运用比的。 请以“比”为话题,写一篇文章,文体自定,文题自拟,不少于800字。 ? [写作提示]这是一种提示性的话题作文,提示语中列举了一些常见 的“比”的内容和“比”的方法,目的是为了打开同学们的思路。你完全可以从中选择你熟悉的内容来写,但是也不必拘泥于提示的方面,还可以在更广阔的领域寻觅“比”的新鲜内容。但是值得注意的是:选择可比的事物必须是同一范畴的事物,要通过现象或形式异同的比较,概括出 可比点来;罗列差异不是目的,目的是通过差异来说明问题,所以,重点要放在对问题的分析上。 ? 27.阅读下面的文字,根据要求作文。 ? 一天,上帝带着一个教士来到地狱,教士发现地狱中的人们围着一口盛满粥的大锅端坐着。虽然他们每人都有一把长柄勺子,但由于勺柄太长, 他们谁也无法将食物送到自己的嘴里去,只能挨饿。上帝又带着教士来到天堂,这里的人们看上去既快乐又满足,虽然他们也是围着一口大锅,每人手里也拿一把长柄勺子。上帝见教士迷惑不解,便对他说:“难道你没看出来这里的人都学会喂对方了吗?” 请以“合作”为话题,写一 篇作文,所写内容必须在这个话题范围之内。 立意自定,题目自拟,写一篇不少于800字的议。 [写作提示] “合作”即互相配合做某事或共同完成某项任务。随着科学技术的突飞猛进和信息社会的高度发展,合作显得越来越重要。因为科技越发达,分支科学越繁多,社会分工就越精细, 而个人的智力、知识面是有限的,因此,加强合作,取长补短,优势互补,已越来越成为时代的要求。论重点应放在“为什么要进行合作”上,用摆事实,讲道理的方法来明合作的必要,可以引用名言阐述合作的必要,也可以举例明合作带来的各种好处,还可以从反面明不合作带来的弊 端,要用辩的方法,分析要全面,理由要充足,最后还要指出解决问题的办法,即合作的途径。如写议,论角度有“合作是成功的土壤”“合作是人类生存的必需”“个人离不开集体”“团结互助才能由弱变强”“协作就是力量”“团队精神”“优势互补、共同发展”等。 ? 28.阅读下 面的文字,按要求作文。 水,滋润万物,是生命之源; 暴雨倾盆,江河泛滥,也会带来灾难。 水,看似柔弱,却能把坚石滴穿; 汇成洪流,更可穿峡破谷,一往无前。 水,演绎出多少可歌可泣的故事, 流淌着古往今来多少悲欢…… 请以“水的联想”为题,写一篇文章。除诗歌外, 文体自选,不少于800字。 [写作提示]本题主要考查学生的联想、想象能力。具体的写作思路有:根据作文材料的提示,写水既可滋润万物、孕育生命,也会吞噬生灵、造成灾难;或者由水“能把坚石滴穿”“更可穿峡破谷”,阐发水的力量及水的精神;或者由人不能没有水,自然不能 没有水发挥开来,呼唤保护水资源。联想水的其他特点,比如,自己活动,并能推动别人的,是水;经常探求自己方向的,是水;以自己的清洁洗净他人的污浊,有容清纳浊的度量的,是水;能蒸发为云,变成雨、雪、雾,或凝结成晶莹如镜的冰,但不论变化如何,仍不失其本性的,还 是水……然后找到人与水的相似点,构思成篇。 ? 29.阅读下面一则材料,按要求作文。 林语堂先生说:中国人的脸,不但可以洗,可以刮,还可以争,可以留,有时好像争面子是人生的第一要义,甚至可以倾家荡产而为之。对此,你或许也有一些认识或经历。请以“面子”为话题, 写一篇文章,不少于800字,题目自拟,文体自选。 ? [写作提示]中国人爱争面子,在国人看来,面子是人们身份的标志,有面子是才干的表现。面子关系着人的尊严、荣誉。但是,为了面子而不顾实际,为了形象而不顾人的死活,却是当前某些人的一种通病。 面子关乎人们的尊严、 荣辱,当然要讲,特别是在大是大非面前,要面子就是讲尊严。但是,面子不等于虚荣心,不能“死要面子活受罪”,更不能为了所谓的政绩而劳民伤财、弄虚作假。有时候,勇于暴露自己的缺点,恰恰是给自己争来了面子。我们要的是表里如一、形式内容相统一的面子。 30.阅读下面 一则材料,按要求作文。 “美国宗教精神病学基金会”创始人之一的伯兰特医生曾录下他与几位患有不同程度心理疾病的病人的谈话,通过研究,他发现这些人总在不停地重复这类话:“如果当时那样多好”“只要我再如何如何,就不会如何如何”。他由此告诫人们说:“这些想法就 像毒药,它们会使你患上心理疾病。你必须学会说‘下次再来’。因为这句话指向未来,指向新的一天,它会让你受伤的心痊愈,会带给你健康的心灵。” 请以“着眼未来”为话题写一篇文章,自拟题目,自定文体,不少于800字。 [写作提示]“着眼未来”这个话题是要人们学会正确 对待现实生活中的各种困境、挫折等问题,学会摆脱不良情绪,拥有健康快乐的人生。它其实是在倡导一种积极乐观的人生态度。考生可据此展开联想:或儒或道,或穷或达、或成或败……人生其实不外乎积极有为和消极避世两种,在考虑选材时不必受“心理疾病”这个概念束缚,这样 难度就会减小。如果选取的视角新颖,对社会现象、现实人生的评判独特,自然会写出不一般的文章来。 ? 31.阅读下面材料,请以“人的价值”为话题写作文,立意自定,文体自选,题目自拟。不少于800字。 一个年轻人对智者说:“老师,我觉得自己什么事也干不好。没有人看重我, 我该怎么办呢?” 智者从手指上脱下一枚戒指交给年轻人说:“你到集市上把这枚戒指卖了,无论如何不能少于1个金币。” 年轻人到了集市上,到处兜售戒指,但没人肯出1个金币。 年轻人说:“老师,对不起,我没能达到你的要求。也许我可以卖到两个或3个银币,但我觉得那不应 该是这枚戒指的真正价值。” “年轻朋友,你说得太对了。”智者笑着说,“你再去一趟珠宝店,问他能出多少钱,但不要真卖戒指,问完价格你再带戒指回来。” 珠宝商仔细看了看戒指后说:“告诉你的老师,如果他想卖戒指,我最多可以给他58个金币。” “58个金币!”年轻人 惊呼。“对。”珠宝商说,“如果不着急的话,我可以出70个金币……” 年轻人兴奋地跑回去,将发生的一切告诉智者。智者说:“你就像这枚戒指,珍贵、独一无二,只有专家才能真正判定你的价值。你怎能期望生活中随便一个人就能发现你真正的价值呢。”智者说着将戒指套回手 上,“我们所有人都像这枚戒指,珍贵,独一无二;不过,我们进入生活的市场后却希望毫无经验的人肯定我们的价值。” [写作提示]人们都希望自己的价值被肯定,但几乎也都希望被别人肯定,特别是由此自己的感情就被别人左右了,直到自己终生一事无成,这是可悲的。人首先应 该有自知之明,清楚自己的能力和努力方向;然后排除干扰,一往无前。有掌声的人生是美丽的;没有掌声的人生,只要自觉无悔,也是美丽的。 32.阅读下面材料,根据要求作文。 那是上世纪70年代的一场比赛。 在比赛进行到第14个回合时,拳王阿里已经筋疲力尽,濒临崩溃,到了 如有一片羽毛落在他身上也能让他轰然倒地的地步。但阿里仍竭力保持坚毅的表情和势不低头的气势。这时,拳坛另一猛将弗雷泽支持不住,放弃了。裁判当即宣布阿里获胜,阿里再次获得“拳王”的美誉。 获胜的阿里还没走到台中央,便眼前一黑,双腿无力地跪倒在地。弗雷泽见此 后悔莫及。 这次比赛的结果告诉我们:很多人的失败,不是败在技术、智力和能力,而是败在意志力的丧失和最后一刻的自我放弃。 瞬间的放弃,导致了心中永恒的伤痛,生活中这类事例或教训难道还少吗?请以“瞬间与永恒”为话题写一篇作文。立意自定,文体自选,题目自拟,不
15.1.2分式的基本性质(2) 教案-2022-2023学年人教版八年级数学上册
15.1.2 分式的基本性质(2)教案一、教学目标1.理解分式的基本概念。
2.掌握分式的基本性质。
3.能够运用分式的基本性质解决实际问题。
二、教学重点1.分式的基本性质。
2.运用分式的基本性质解决问题。
三、教学内容1. 复习复习上一课的内容,回顾分式的基本定义和基本性质。
2. 引入分式是代表两个整数之间的关系的符号,它可以用来表示比例、百分数等概念。
在实际中,我们经常会遇到分式的运算和应用,因此了解分式的基本性质非常重要。
3. 分式的基本性质(1) 分式的倒数•若分式的分子和分母互换位置,所得的新分式称为原分式的倒数。
•若原分式的分子为a,分母为b,则其倒数为b/a。
•若一个分式的分子和分母同时乘以一个非零整数,所得的新分式与原分式相等。
•若一个分式的分子和分母同时除以一个非零整数,所得的新分式与原分式相等。
•若一个分式的分子和分母同时乘以一个相同的非零因子,所得的新分式与原分式相等。
(3) 分式的约分•若一个分式的分子和分母有公因子,可以约去这个公因子,得到一个与原分式相等的新分式。
•分子和分母都可以约分到最简形式时,这个分式就是最简分式。
(4) 分式的乘法•分式的乘法就是将两个分式的分子相乘,分母相乘,并将所得分子和分母组成新分式。
(5) 分式的除法•分式的除法就是将一个分式的分母乘以另一个分式的分子,再将所得分子和分母组成新分式。
(6) 分式的加法和减法•分式的加法就是将两个分式的分母取公倍数,然后将各分式的分子化为相同的分数单位,再将所得分子相加,并将所得分子和公倍数组成新分式。
•分式的减法就是将两个分式的分母取公倍数,然后将各分式的分子化为相同的分数单位,再将所得分子相减,并将所得分子和公倍数组成新分式。
实际生活中,我们会经常遇到涉及到分式的运算和应用问题,比如比例、百分数等。
通过分数的运算和应用,我们可以解决各种实际问题,比如商场打折、食谱比例、工资增长等。
四、教学过程1. 导入通过与学生互动交流,了解他们对分式基本性质的理解程度,激发学生对课堂的兴趣。
人教版数学八年级上册15.1.2:分式的基本性质应用:约分、通分教案
§15.1.2 分式的基本性质(2)——分式的约分和通分一、内容分析本节教学内容是人教版八年级上册《15.1.2分式的基本性质》第二课时,即分式的约分和通分。
本节是在学生有小学学习的分数的约分通分、初一学习了因式分解及上节课学习了分式的基本性质的知识基础上,进一步学习分式基本性质的应用。
学生通过类比分数的约分和通分来总结出分式的约分与通分的法则,从中体会数学的类比思想。
同时分式的约分和通分,是进行分式的加减乘除四则运算所必须掌握的分式变形,为后边分式的计算学习做铺垫,在本章中也有着非常重要的地位和作用。
二、教材分析(一)教学目标知识与技能:理解分式约分和通分的基本概念,认识到约分和通分其实是分式基本性质的应用和巩固,并会用分式的基本性质将分式进行正确的约分和通分。
过程与方法:应用分式的基本性质将分式变形,通过复习分数的约分、通分类比分式的约分、通分,从中渗透数学的类比思想方法,并在探究过程中掌握分式约分通分的关键。
情感态度与价值观:通过思考、探究等活动获得学习数学的成功体验,树立学习数学的信心,培养独立思考、合作交流的能力。
(二)教学重难点教学重点:分式的约分和通分教学难点:分式的约分和通分三、学情分析学生已经学过分数的约分和通分,已具备一定的知识基础,因而对于分式的约分和通分理解要相对容易一点。
但学生基础不是很好,无法灵活运用所学知识,在约分过程中先找分子和分母的公因式和在通分过程中先确定最简公分母这两个关键点不能很好地把握,尤其是当分子分母是多项式时要先进行因式分解,这样的变形过程对于学生来说更困难。
四、教学法分析本着以学生为主,教师为辅,充分发挥学生的主体地位,让学生积极主动地参与探索,互动交流学习,体现以“自主、探究、合作”为特征的教与学方式。
五、教学过程设计(一)温故知新分式的基本性质:_________________________________________________________用数学符号怎么表示:_________________________________________________________ 师生活动:学生回忆并举手发言,师展示答案。
八年级数学上册分式分式的基本性质教案新人教
15.1.2 分式的基本性质课题15.1.2 分式的基本性质(2)授课类型新授课标依据会运用分式的基本性质对分式进行通分。
教学目标知识与技能会用分式的基本性质将分式变形,正确进行分式通分。
过程与方法通过探索分式通分的方法的过程,在理解的基础上灵活的进行分式的通分变形。
情感态度与价值观体验运用分式的基本性质进行通分的分式变形的方法,突破难点,收获成功。
教学重点难点教学重点掌握分式的通分方法。
教学难点最简公分母的确定。
教学师生活动设计意图过程设计一、复习引入:1.计算:(1) + (2) +(分析时提问什么是分数的通分?如何进行分数的通分?)2.猜想如何计算:+ +二、探究新知:1、由练习第2题引发猜想,然后让学生自学131-132页的内容。
自学时应思考的问题:(1)分式通分的意义是什么?分式通分的根据是什么?分式通分时应特别注意什么?(2)分式通分的关键是什么?什么叫做最简公分母?如何确定几个分式的最简公分母?(3)通分与约分有何区别?(8分钟后小组讨论上述问题,教师提问)引导学生归纳:(1)分式通分的意义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
(2)通分的关键是确定几个分式的公分母。
(3)取各分母所有因式的最高次幂的积作公分母,这样的公分母,叫做最简公分母。
确定公分母时应注意:系数取各分母系数的最小公倍数,字母因式取最高次幂。
(4)约分是对一个分式而言,是将分式化简;通分是对几个分式而言,是将分式化繁。
2、讲例例2 通分:(1),;(2) ,分析:引导学生归纳出分式通分的过程和依据。
(1)先确定分母2a2b与ab2c 的最简公分母是2a2b2c。
然后乘以一个适当的整式。
(2)最简分母是(x+5)(x-5).(3)解题时分子与分引导学生回忆前面学段学过的分数通分,类比引出分式的通分,为新知识的生成做好铺垫。
通过自学和小组合作的形式,锻炼学生发现和解决问题的能力。
人教版数学八年级(上)分式的基本性质(二)-约分通分PPT-公开课
ab bc
bd 4b2
2x2 3x 4x3
解:(1)最简公分母是 a b c. x x c xc , ab ab c abc y y a ya. bc bc a bca
【名师示范课】人教版数学八年级上 册第十 五章15. 1.2分 式的基 本性质 (二) -----约分、通分课件-公开课课件 (推荐 )
分数的约分与通分
1.约分: 约去分子与分母的最大公约数,化为最简分数. 2.通分: 先找分子与分母的最简公分母,再使分子与分母 同乘最简公分母,计算即可.
1.将下列分数通分:
(1) 2 、 4 35
(2) 5 、 7 68
(1) 2 5 10 4 3 12 35 15 53 15
(2)
5 4 20 6 4 24
【名师示范课】人教版数学八年级上 册第十 五章15. 1.2分 式的基 本性质 (二) -----约分、通分课件-公开课课件 (推荐 )
作业: 课本133--134页第6、7、13题 .
【名师示范课】人教版数学八年级上 册第十 五章15. 1.2分 式的基 本性质 (二) -----约分、通分课件-公开课课件 (推荐 )
x 4 x 3 1 ( x 4 x 3 1 ) ( ( 3 ) 3 ) ( 3 1 x 2 x 3 1 ) .
【名师示范课】人教版数学八年级上 册第十 五章15. 1.2分 式的基 本性质 (二) -----约分、通分课件-公开课课件 (推荐 )
达标测评
•
1、分式
b 2a
,
x 3b2
,
1 4ab
的最简公分母是(
).
(A)24a2b3 (B)24ab2 (C)12ab2 (D)12a2b3
人教版8年级数学上册15章分式知识点
第十五章 分式一、知识概念:一般地,如果A ,B 表示两个整数,并且B 中含有字母,那么式子B A叫做分式,A 为分子,B为分母。
1.分式:形如A B,A B 、是整式,B 中含有字母且B 不等于0的整式叫做分式.其中A 叫做分式的分子,B 叫做分式的分母.2.分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变.3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分.4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分.5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式,约分时,一般将一个分式化为最简分式.6.分式有意义:分母不为0(0B ≠)7.分式无意义:分母为0(0B =)8.分式值为0:分子为0且分母不为0(⎩⎨⎧≠=00B A ) 9.分式值为正或大于0:分子分母同号(⎩⎨⎧>>00B A 或⎩⎨⎧<<00B A )10.分式值为负或小于0:分子分母异号(⎩⎨⎧<>00B A 或⎩⎨⎧><00B A ) 11.分式值为1:分子分母值相等(A=B )12.分式值为-1:分子分母值互为相反数(A+B=0)二、分式的四则运算:⑴同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a b a b c c c±±= ⑵异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为: a c ad cb b d bd±±= ⑶分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a c ac b d bd⨯= ⑷分式的除法法则:两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.用字母表示为:a c a d ad b d b c bc÷=⨯=⑸分式的乘方法则:分子、分母分别乘方.用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭ 三、整数指数幂:⑴m n m n a a a +⨯=(m n 、是正整数)⑵()n m mn a a =(m n 、是正整数) ⑶()nn n ab a b =(n 是正整数)⑷m n m n a a a -÷=(0a ≠,m n 、是正整数,m n >) ⑸n n n a a b b⎛⎫= ⎪⎝⎭(n 是正整数) ⑹1n na a -=(0a ≠,n 是正整数) 四、分式方程的意义:分母中含有未知数的方程叫做分式方程.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程); ②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).。
人教版数学八年级上册导学案:第15章 分式2 课题:分式的基本性质
课题:分式的基本性质1.类比分数的基本性质,理解分式的基本性质.2.运用分式的基本性质进行分式的恒等变形.重点:理解分式的基本性质. 难点:灵活运用分式的基本性质将分式变形.一、情景导入,感受新知分数的基本性质:一个分数的分子、分母同乘以(或除以)一个不为0的数,分数的值不变.思考下列从左到右的变形成立吗?为什么?(1)1x =1×4x ·4; (2)1x =1·m x ·m ; (3)1x =x -1x (x -1). 二、自学互研,生成新知 【自主探究】阅读教材P 129~P 130例2,完成下面的填空:类比分数的性质可得以下归纳:归纳:分式的基本性质:分式的分子与分母乘(或除以)同一个不等于0的整式,分式的值不变.用式子表示为A B =A ·C B ·C ,A B =A ÷C B ÷C(C ≠0),其中A ,B ,C 是整式. 填空:(1)x x 2-2x =( 1)x -2;(2)a +b ab =(a 2+ab )a 2b . 【合作探究】不改变分式的值,使下列分式的分子和分母都不含“-”号.(1)-6b -5a ; (2)-x 3y .解:原式=6b 5a ; 解:原式=-x 3y =-x 3y . 归纳:分式的分子、分母和分式本身的符号,同时改变其中两个,分式的值不变. 用式子表示为:A B =-A -B =--A B =-A -B 或-A B =--A -B =-A B =A-B .师生活动①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌、小组交流.三、典例剖析,运用新知【合作探究】例1:不改变分式的值,使分子第一项系数为正,分式本身不带“-”号.(1)-2a -b-a +b ; (2)--x +2y3x -y .解:原式=2a +b a -b ; 解:原式=x -2y3x -y .例2:如果将分式x 2y 22x -y 中的x 与y 同时扩大到原来的2倍,那么分式的值(D ) A .不变 B .扩大到原来的2倍C .扩大到原来的4倍D .扩大到原来的8倍例3:把分式2aa -b 中的a 和b 都变为原来的n 倍,那么该分式的值( C )A .变为原来的n 倍B .变为原来的2n 倍C .不变D .变为原来的4n 倍师生活动①明了学情:学生自主学习,教师巡视全班.②差异指导:对于自学中遇到的问题适时点拨.③生生互助:先自学,对于困惑,同桌、小组交流.四、课堂小结,回顾新知1.分式的基本性质.2.分式基本性质的简单运用.五、检测反馈、落实新知1.下列式子,从左到右变形一定正确的是( C ) A .a b =a +m b +m B .a b =acbcC .bkak =ba D .ab =a 2b 22.把分式xx +y (x ≠0,y ≠0)中分子、分母的x 、y 同时扩大2倍,分式的值(D ) A .都扩大2倍 B .都缩小2倍C .变为原来的14 D .不改变3.不改变分式的值,把下列分式的分子与分母的最高次项的系数化为正数.(1)x +1-2x -1;(2)2-x -x 2+3;(3)-x -1x -1.解:(1)原式=x +1-(2x +1)=-x +12x +1;(2)原式=-(x -2)-(x 2-3)=x -2x 2-3;(3)原式=-(x +1)x -1=-x +1x -1.六、课后作业:巩固新知(见学生用书)。
人教版八年级数学上册第十五章 分式知识点总结和题型归纳
人教版八年级数学上册第十五章分式知识点总结和题型归纳分式知识点总结和题型归纳第一部分分式的运算一)分式的定义及有关题型考查分式的定义:一般地,如果A,B表示两个整数,并且B中含有字母,那么式子A/B为分式。
例1:下列代数式中是分式的有:(x- y)/(2x+ y),π/(2x- y),(x+ y)/(a+ b)。
考查分式有意义的条件:分式有意义:分母不为0 (B≠0)分式无意义:分母为0 (B=0)例1:当x有何值时,下列分式有意义:1) (x-4)/(13x2-6x)2) 2/x3) 2/(x-4)4) (x+4|x|-3x+2)/(x-1)5) x/(x2-2x-3)考查分式的值为的条件:分式值为:分子为A且分母不为0 (A/B) 例1:当x取何值时,下列分式的值为0.1) (x-1)/(x+3)2) |x|-23) (x2-2x-3)/(x-5)(x+6)例2:当x为何值时,下列分式的值为零:1) 5-|x-1|/(x+4)2) (25-x2)/(x-6)(x+5)考查分式的值为正、负的条件:分式值为正或大于0:分子分母同号 (A/B>0) 分式值为负或小于0:分子分母异号 (A/B<0) 例1:(1) 当x为何值时,分式4/(8-x)为正;2) 当x为何值时,分式5-x/(5+x)为负;3) 当x为何值时,分式(x-2)/(x+3)为非负数.例2:解不等式|x|-2≤(x+1)/(x+5)考查分式的值为1,-1的条件:分式值为1:分子分母值相等 (A/B=1)分式值为-1:分子分母值互为相反数 (A+B=0)例1:若分式|x-2|/(x+2)的值为1,-1,则x的取值分别为3和-1.思维拓展练题:1、若a>b>0,a2+b2-6ab=0,则(a+b)/(a-b)=9/5.2、一组按规律排列的分式:-b/2.5/b。
-8/b。
11/b。
则第n 个分式为(3n-1)/b。
八年级数学分式的基本性质2
2
2
x (3) 2 与 4 2 x 4 x
解: (3)最简公分母是
1
2( x 2)(x 2)
1 2 2 2 2 ( x 2 )( x 2 ) 2 4 2 x 8 x 1
(1)
ab
32a b c 24a 2 b 3 d
3 2
约分的步骤
2
(2)
(3)
15a b 25a b
(1)约去系数的最 大公约数 (2)约去分子分母 的公因式。
分式约分的 依据是什么? 分式的基本性质
a 2bc ( 1 ) ab
32a 3b 2 c (2) 24a 2b 3d
15a b (3) 25a b
2
5xy 在化简分式 时,小颖和小明的做法 2 出现了分歧: 20 x y
5xy 5x 小颖: 2 2 20x y 20x
对于分数而 言,彻底约 分后的分数 叫什么?
5xy 5xy 1 小明: 2 20x y 4x 5xy 4x
2
(4)
49 x
x
2
7x
2
x 1 (1) 2 x 2x 1 2 m 3m ( 2) 2 9m
2
4x 3 x (3) x x6
2
2
x (4)
2
7x
2
49 x
( 1)
3a 3 a4
3 2
12a y x ( 2) 27ax y
x 2 y xy 2 ( 3) 2 xy
x 2 x x x x ( x 2) 2 4 2 x 2( x 2) 2( x 2)(x 2) 2 x 8
15.1.2 分式的基本性质 初中数学人教版八年级上册课件
(3)原式=
10m 3n
3a (2)原式= 7b
新知讲解 二 分式的约分
x2 xy x2
(x
y
)
x
(
)
x2 2x x 2
想一想:
(x2 xy) x x2 x
x x
y
(x2
xx 2x)
x
1 x2
联想分数的约分,由例1你能想出如何对分式进行约分?
与分数约分类似,关键是要找出分式的分子与分母的最简公分母.
A A C , A A C(C 0). B BC B BC
其中A,B,C是整式.
典例分析
例1 填空:看分母如何变化,想分子如何 变化.看分子如何变化,想分母如何变化.
想一想:(1)中 为什么不给出x ≠0, 而(2)中却给出 了b ≠0?
(1)x3 xy
(x2 ), y
3x2 3xy 6x2
知识要点 约分的定义
像这样,根据分式的基本性质,把一个分式的分子与分母的公 因式约去,叫做分式的约分.
经过约分后的分式 x y ,其分子与分母没有公因.像这 2x
样分子与分母没有公因式的式子,叫做最简分式.
分式的约分,一般要约去分子和分母所有的公因式,使所得的 结果成为最简分式或整式.
议一议
在化简分式 5xy 时,小颖和小明的做法出现了分歧:
x (
2
x) y(x
0);
(2) 1
(
a
), 2a b
(
2ab b2 ) (b
0).
ab
a 2b
a2
a 2b
想一想: 运用分式的基本性质应注意什么? (1)“都” (2) “同一个” (3) “不为0”
人教版八年级上册数学《分式的基本性质》分式培优说课教学复习课件
=
3x2 x2
-15 x - 25
探索新知
知识点3 分式的通分 约分和通分的联系与区别
联系:约分和通分都是根据分式的基本性质对分式进行恒等变形, 二者均不改变分式的值. 区别:约分是针对一个分式而言的,把分式的分子和分母的公因 式约去,将分式化为最简分式或整式;而通分是针对多个异分母 的分式而言的,将分式的分子和分母乘同一个适当的整式,使这 几个异分母的分式化为同分母的分式.
2.分式有意义和无意义的条件是什么?
分式有意义的条件:分式的分母不能为0,即当B≠0时,分式
A B
才有意义.
分式无意义的条件:分式的分母为0,即当B=0时,分式 A 无
B
意义.
复习导入
3.分式值为零的条件是什么? 要使分式 A 的值为零,则A=0,且B≠0.
B
探索新知
知识点1 分式的基本性质 下列两组分数相等吗? (1) 6 6 2 3 相等
分 约分 找公因式
式
的方法
的
(1)找系数的最大公约数; (2)找分子分母相同因式的最低次幂; (3)两者的乘积即为公因式.
约 分
内容
把几个异分母的分式分别化成与原来的分
与
式相等的同分母的分式
通 通分 确定最简公 分
分母的方法
从系数、相同因式、不同因式三个方 面确定,注意多项式要先分解因式
课堂练习
1.下列分式中,最简分式是( D )
(1
m(m m)(1
( a b+ b 2 ) ab2
(2)
×100
(3) 0.01x- 5 (x-500) (4)0.3x 0.04 30x 4
×100
÷x3
x3 x3y 1 y
人教版八年级数学上第册15章15.1.2分式的基本性质(教案)
3.培养学生的数学建模意识:学会运用分式知识解决实际问题,培养学生的数学建模能力。
4.培养学生的抽象概括能力:通过对分式基本性质的探究,让学生学会从具体实例中抽象出一般性规律,提升抽象概括能力。
5.培养学生的合作交流意识:在小组讨论和课堂互动中,培养学生的团队协作能力和沟通表达能力。
今天的学习,我们了解了分式的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对分式的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
在今天的教学中,我发现学生们对分式的基本性质的理解程度有所不同。有的学生能够迅速掌握分式的定义和基本性质,但也有一些学生在分式的约分和乘除法运算上遇到了困难。这让我意识到,在接下来的教学中,我需要更加关注学生的个别差异,提供更有针对性的指导。
在导入新课的部分,通过日常生活中的例子引入分式的概念,大多数学生都能积极参与,这表明生活化的教学情境能够激发学生的学习兴趣。然而,我也注意到,这种方法对于一些抽象思维能力较弱的学生来说,可能还不够直观。因此,我考虑在以后的课堂中加入更多的直观教具或动画,帮助他们更好地理解分式的意义。
新课讲授时,我尽量用简洁明了的语言解释分式的基本概念和性质,并通过案例分析和具体运算来强化理解。从学生的反馈来看,这种方法对于大多数学生是有效的。但我也观察到,对于那些在课堂上不太发言的学生,我可能需要更多地鼓励他们参与进来,比如通过提问或小组讨论的方式。
2.教学难点
a.分式基本性质的灵活应用:学生需要能够将基本性质应用到不同的分式运算中,包括在复杂的表达式中识别和运用这些性质。
最新人教版初中数学八年级上册《15.1.2 分式的基本性质》精品教学课件
通分:
2c 3ac
(1) 与 2
bd 4b
8bc
4b 2 d
2 xy
x
(2)
与 2
2
( x y)
x y2
2 x 2 y 2 xy 2
( x y)2( x y)
3acd
2
4b d
x 2 xy
( x y)2( x y)
巩固练习
(3)
x 1
4
,
3x
2 x 2
,
x 1
4 x3
解:(3)最简公分母是 12x 3 .
x 1 (x 1) 6 x
6 x(x 1)
,
2
2
3
2 x
2 x 6 x
12 x
4
4 ( 4 x 2) 16 x 2
,
2
3
3x
3 x ( 4 x ) 12 x
x 1 (x 1)( 3) (
3 x 1)
分式的分子与分母乘(或除以)同一个不等于0的整
式,分式的值不变.
探究新知
追问1 如何用式子表示分式的基本性质?
A
A C A
A C
,
(C 0)
.
B
B C B
B C
其中A,B,C 是整式.
探究新知
追问2 应用分式的基本性质时需要注意什么?
(1)分子、分母应同时做乘、除法中的同一种运算;
;(3)
; (4)
.
2
y
2b
3n
5y
a
4m
x
(
1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
通分的概念 把分式
化成分母相同的分式
像这样,根据分式的基本性质,把几个异分母的分式分别化成 与原来分式相等的同分母的分式,叫做分式的通分.
依据: 分式的基本性质 基本方法: 先确定公分母,再分别变形 目标: 把异分母的分式化为同分母的分式
最简公分母
要通分,就得先确定公分母 对于公分母,有什么特殊要求吗? 一般取各分母的所有因式的最高次幂的积作公分母 ,它叫做最简公分母.
综合运用
11.有四块小场地:第一块是边长为 a m 的正方形,第二块 是边长为 b m 的正方形,其余两块都是长为 a m,宽为 b m 的长方形,另有一块大的长方形场地,它的面积等于上面 四块场地面积的和,它的长为2(a+b)m,用最简单的式 子表示出大长方形的宽。
拓广探索 12.下列各式对不对?如果不对,写出正确答案
A
A.扩大3倍 C.扩大4倍
B.扩大9倍 D.不变
提示:把原式中的x换成3x,y换成3y,然后化简对比
扩倍问题 C
A.不变
提示:把原式中的x换成10x,y换成10y,然后化简对比
二元变形 D
提示:看到分式,就可以试着把分式化为整式.
二元变形
提示:看到分式,就可以试着把分式化为整式. 答案:
二元分式的变形技巧 二元分式有些什么变形技巧? 变形的基本思想是什么?
练习 填空:
x
2a-1 1
练习 填空:
2x(x+y) y-2
练习 下列等式的右边是怎样从左边得到的?
,分子分母都 除以(a+b) ,分子分母都 乘以(y+1)
练习 判断下列变形是否正确.
练习 下列各式中,正确的是( A )
补充题 不改变分式的值把分子、分母的系数都化为整数:
例题 不改变分式的值,使下列分式的分子和分母都不含“-”号:
练习 通分:
练习 通分: 答案:
练习 1.约分
练习 2.通分
扩倍问题
B
A.扩大两倍 C.缩小两倍
B.不变 D.缩小四倍
提示:把原式中的x换成2x,y换成2y,然后化简对比
扩倍问题
C
A.扩大3倍 C.不变
B.扩大5倍 D.扩大15倍
提示:把原式中的x换成3x,y换成3y,然后化简对比
扩倍问题
把一个分式的分子和分母的公因式约去,不改变分式的值 ,这种变形叫做分式的约分.
2.约分的步骤: (1).先分解因式 (2).约去分子和分母的所有公因式 (3).写出化简后的最简分式或整式
总结 这节课我们还学会了什么? 1.通分:
像这样,根据分式的基本性质,把几个异分母的分式分别 化成与原来分式相等的同分母的分式,叫做分式的通分.
例题
通分:
与
解:
例题
通分:
与
解:
例题
通分:
与
如何确定最简公分母呢? 得把分母因式分解 最简公分母 通分
归纳 通分的步骤:
先把分母因式分解 得到最简公分母 把分式的分母都化成最简公分母
练习——最简公分母 C
练习——最简公分母 A
练习——最简公分母
x(x-1)(x+1)
练习 下列说法中,错误的是( D )
解
你能发现什么
规律吗?
归纳
分式的符号法则
分式的分子、分母与分式本身 的符号改变其中任何两个,分 式的值不变
口诀:一个负号走到前去, 两个负号统统枪毙, 三个负号留个小弟.
练习
下列变形不正确的是( D )
练习
练习
下列各式从左向右的变形正确的是( D )
练习
下列各式成立的是( D )
练习
不改变分式的值,使下列分式的分子与分母的最高次项的系数都 化为正数:
综合运用
9.小李要打一份12000字的文件,第一天打字2h,打字速度 为w字/min,第二天她打字速度比第一天快了10字/min, 两天打完全部文件,第二天她打字用了多长时间?
综合运用
10.某村种植了 m hm²玉米,总产量为 n kg;水稻的种植面 积比玉米的种植面积多 p hm²,水稻的总产量比玉米的总产 量的二倍多 q kg,写出表示玉米和水稻的单位面积产量(单 位:kg/hm²)的式子
一辆匀速行驶的汽车, 如果t h行驶 s km,那么汽车的速度为
km/h.
如果2t h行驶2s km,那么汽车的速度为
km/h.
如果3t h行驶3s km,那么汽车的速度为
km/h.
如果nt h行驶 ns km,那么汽车的速度为
km/h.
这些分式的值相等吗?
类比:由此你发现了什么?
分式的基本性质 分式的分子与分母同乘(或除以)一个不等于 0的整式,分式 的值不变. 用式子表示为:
分式的基本性质
知识回顾 判断下列从左到右的变形是否正确,说明理由.
分数的基本性质 分数的分子与分母同时乘以(或除以)同一个不等于零的数 ,分数的值不变.
思考 分数的基本性质 分数的分子与分母同时乘以(或除以)同一个不等于零的数 ,分数的值不变. 即,对于任意一个分数 ,有
类比分数的基本性质,你能猜想分式有什么性质吗?
技巧:(1)看分母如何变化,想分子如何变化. (2)看分子如何变化,想分母如何变化.
例题 填空:
x
a
2x 2a²-ab
练习 下列等式的右边是怎样从左边得到的?
, 分子分母都 乘以c , 分子分母都 除以ax
, 分子分母都除以(x-y)
练习 下列分式的右边是怎样从左边得到的?
(1)分子分母同时乘以c; (2)分子分母同时除以x.
拓广探索 13.在什么条件下,下列分式的值为0?
2.通分的步骤:
(1).先把分母因式分解 (2).得到最简公分母 (3).把分式的分母都化成最简公分母
约分与通分 什么是约分和最简分式? 约分的步骤是什么? 什么是通分和最简公分母? 通分的步骤是什么?
复习巩固
1.填空并判断所填式子是否为分式
(1)一位作家先用 m 天写完了一部小说的上集,又用 n 天写完下 集,这部小说(上下两集)共120万字,这位作家平均每天的写 作量为 (2)走一段长10km的路,步行用2x h,骑自行车所用时间比步行 所用时间的一半少0.2h,骑自行车的平均速度为 (3)甲完成一项工作需要t h,乙完成同样工作比甲少用1 h,设工 作总量为1,则乙的工作效率为
练习——最简分式 下列分式中,表示最简分式的是:( C ).
练习——最简分式 下列分式中,表示最简分式的是:( C ).
练习 化简下列分式:ຫໍສະໝຸດ 练习 约分:练习 约分:
练习 约分:
练习 约分:
练习 约分:
答案:
分数的通分 请将下列分数通分
解: 你能类比分数的通分,
把分式
化成分母相同的分式吗?
例题 约分: 分析:为约分要先找出分子和分母的公因式. 解:
例题
约分:
=2(x-y)
反思:如果分子或分母是多项式,先分解因式对约分有什么作用 ?
先分解因式,才能发现分子分母的公因式,为约分作准备.
归纳 约分的步骤:
先分解因式 约去分子和分母的所有公因式 写出化简后的最简分式或整式
练习——最简分式 下列分式中,是最简分式的是:_(_2_)_(_4_)__(填序号).
补充题
不改变分式的值,使下列分式的分子与分母的最高次项的系数 都化为正数:
思考 填空:
像这样,分子与分母没有公因式的式子, 叫做最简分式
x²
2x
上述过程其实是分式的约分,你能给约分下一个定义吗?
把一个分式的分子和分母的公因式约去,不改变分式的值 ,这种变形叫做分式的约分. 依据: 分式的基本性质 基本方法:先找出分式的分子、分母公因式,再约去公因式 结果: 整式或最简分式
其中A,B,C是整式.
例题 下列等式的右边是怎样从左边得到的?
乘以y
除以x
乘以y
除以x
思考:为什么(1)中给出了y≠0, 而(2)中没有给出x≠0?
左边的式子是已知条件, 本身就隐藏着x≠0的条件.
例题 下列各组分式,能否由左边变形为右边?
反思: 运用分式的基本性质应注意什么? ①“都” ②“同一个” ③ “不为0”
复习巩固 2.下列各式中,哪些是整式?哪些是分式?
复习巩固 3. x 满足什么条件时下列分式有意义?
复习巩固 4. 下列各组中的两个分式是否相等?为什么?
复习巩固 5. 不改变分式的值,使下列分式的分子和分母都不含“-”号
复习巩固 6. 约分
复习巩固 7. 通分
综合运用 8.x 满足什么条件时下列分式有意义?
总结
这节课我们学会了什么? 1.分式的基本性质: 分式的分子与分母同乘(或除以)一个不等于 0的整式,分式的值不变.
2.分式的符号规律:
一个负号走到前去 两个负号统统枪毙 三个负号留个小弟
分式的基本性质 分式有哪些基本性质? 如何利用分式的基本性质解决扩倍问题?
总结 这节课我们还学会了什么? 1.约分: