9第九章数字图像处理之图像分割解析

合集下载

图像数字处理图像分割

图像数字处理图像分割

图像数字处理图像分割图像分割是图像数字处理中的一项重要技术,它将图像中的像素点划分成多个区域,以便更好地理解和分析图像。

在本文中,我将介绍图像分割的原理、常用方法及其应用领域。

一、图像分割的原理图像分割的目标是将图像划分成一系列具有相似特征的区域,使得每个区域内的像素点具有相同或相似的属性。

它的基本原理是通过寻找像素点之间的差异来确定区域边界。

常用的图像分割方法包括阈值分割、边缘检测和区域生长等。

阈值分割是最简单的分割方法,它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。

边缘检测通过检测图像中的边缘信息来进行分割,常用的方法有Sobel算子和Canny算子。

区域生长是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。

二、常用的图像分割方法1. 基于阈值的分割方法:阈值分割是最简单且常用的分割方法之一。

它根据像素点的灰度值与预设的阈值进行比较,将像素点分为不同的区域。

常用的阈值分割方法有全局阈值分割和自适应阈值分割。

2. 基于边缘检测的分割方法:边缘检测是一种常用的图像分割方法,它通过检测图像中的边缘信息来进行分割。

常用的边缘检测方法有Sobel算子、Canny算子等。

3. 基于区域生长的分割方法:区域生长方法是利用像素之间的相似性来逐步迭代地合并像素点,直到形成连续的区域。

它常用于分割具有明显纹理特征的图像。

三、图像分割的应用领域图像分割在计算机视觉、医学影像处理、遥感图像分析等领域具有广泛的应用。

以下列举几个典型的应用领域:1. 目标检测与识别:图像分割可以帮助检测和识别图像中的目标物体,如人脸识别、车辆检测等。

2. 医学影像处理:在医学影像中,图像分割可以帮助医生准确地定位和分析病变区域,如肿瘤检测、血管分割等。

3. 遥感图像分析:遥感图像通常包含大量的地物信息,通过图像分割可以将不同类型的地物区分开来,如土地利用分类、城市区域划分等。

4. 视频分析:图像分割在视频分析中扮演重要角色,可以提取视频中的运动目标,如行人检测、行为分析等。

数字图像处理实验报告——图像分割实验

数字图像处理实验报告——图像分割实验

实验报告课程名称数字图像处理导论专业班级_______________姓名 _______________学号_______________电气与信息学院与谐勤奋求就是创新一.实验目得1.理解图像分割得基本概念;2.理解图像边缘提取得基本概念;3.掌握进行边缘提取得基本方法;4.掌握用阈值法进行图像分割得基本方法.二。

实验内容1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明。

3.任选一种阈值法进行图像分割、图1 图2三.实验具体实现1.分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

比较三种算子处理得不同之处;I=imread(’mri、tif');imshow(I)BW1=edge(I,’roberts’);figure ,imshow(BW1),title(’用Roberts算子’)BW2=edge(I,’sobel’);figure,imshow(BW2),title(’用Sobel算子 ')BW3=edge(I,’log’);figure,imshow(BW3),title(’用拉普拉斯高斯算子’)比较提取边缘得效果可以瞧出,sober算子就是一种微分算子,对边缘得定位较精确,但就是会漏去一些边缘细节.而Laplacian—Gaussian算子就是一种二阶边缘检测方法,它通过寻找图象灰度值中二阶过零点来检测边缘并将边缘提取出来,边缘得细节比较丰富。

通过比较可以瞧出Laplacian-Gaussian算子比sober算子边缘更完整,效果更好。

2.设计一个检测图1中边缘得程序,要求结果类似图2,并附原理说明.i=imread('m83、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图');thread=130/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’);3.任选一种阈值法进行图像分割、i=imread('trees、tif’);subplot(1,2,1);imhist(i);title('原始图像直方图’);thread=100/255;subplot(1,2,2);i3=im2bw(i,thread);imshow(i3);title('分割结果’)1、分别用Roberts,Sobel与拉普拉斯高斯算子对图像进行边缘检测。

数字图像处理图像分割课件

数字图像处理图像分割课件

基于Mumford-Shah模 …
该方法可以获得更准确、更平 滑的分割结果,并且可以更好 地处理噪声和细节。此外,它 还可以更好地处理形状约束和 边界条件。
基于Mumford-Shah模 …
该方法需要更多的计算资源和 时间来处理每个时间点的水平 集,并且可能难以处理大规模 的形状变化和复杂的形状约束 。
响。
图像分割还可以帮助缩小处理和 分析的规模,提高处理效率,并 为后续的图像分析提供可靠的预
处理结果。
图像分割的分类
01
02
03
04
按照处理方式
图像分割可以分为阈值法、区 域生长法、边缘检测法、图切
割法等。
按照应用领域
图像分割可以分为医学图像分 割、遥感图像分割、人脸识别
等。
按照分割对象
图像分割可以分为二维图像分 割和三维图像分割。
该方法具有能够处理复杂的图像内容和噪声等优点,但也可能需要更多的计算资源和时间。
07
实例展示与结果分析
基于阈值的图像分割实例
总结词
简单、快速、有效的图像分割方法
详细描述
基于阈值的图像分割是一种基本的图像分割方法,通过设置不同的阈值将图像分 割成不同的区域。其优点是简单、快速、有效,适用于简单背景和对比明显的图 像。但是,对于复杂背景和低对比度图像,分割效果较差。
些方法可以自动适应不同图像的特点,且能够根据图像内容的变化自适
应调整阈值。
03
自适应阈值
根据图像的局部特征自适应地设置阈值,例如基于区域生长的方法、基
于边缘检测的方法等。这些方法能够更好地适应图像的局部特征,提高
分割的精度和鲁棒性。
阈值法的优缺点
优点
阈值法简单易行,适用于简单背景和 对比度较高的图像;对于实时性要求 较高的应用场景,阈值法具有较快的 处理速度。

精品文档-数字图像处理(第三版)(何东健)-第9章

精品文档-数字图像处理(第三版)(何东健)-第9章

第9章 图像编码
它将标量数据组织成一系列k维矢量, 根据一定的失真测 度(如均方误差、 lp范数、 极大范数等)在码书中搜索出 与输入矢量失真最小的码字的索引, 传输时仅传输相应码字 的索引,接收方根据码字索引在码书中查找对应码字, 再现 输入矢量。 矢量量化编码的核心是码书设计, 经典的码书设 计算法有LBG(Linde, Buzo和Gray三人的首字母) 算法(又称为K-means算法)。 码书设计过程就是寻求把M 个训练矢量分成N类(N<M)的一种最佳方案(如均方误差最 小), 并把各类的中心矢量作为码书中的码字。
第9章 图像编码 9.1.2
人们不断提出新的图像编码方法, 如基于人工神经网络 的编码、 子带编码(Sub band Coding)、 分形编码 (Fractal Coding)、 小波编码(Wavelet Coding)、 基 于模型的编码(Model based Coding)、 基于对象的编码 (Object based Coding)和基于语义的编码(Semantic Based Coding)等。
(2) 预测编码。 预测编码是基于图像数据的空间或时 间冗余特性, 它用相邻的已知像素(或像素块)来预测当 前像素(或像素块)的取值, 然后再对预测误差进行量化和 编码。 预测编码可分为帧内预测和帧间预测, 常用的预测编 码有差分脉码调制(DPCM, Differential Pulse Code Modulation)和运动补偿法。 图9-1和图9-2分别给出了无损 预测编码和有损预测编码系统的原理图,均包括编码器和解码 器, 其中符号编码器通常采用变长编码。
第9章 图像编码 信息熵是无损编码的理论极限, 当平均码长大于等于信 息熵时, 总可设计出一种无失真编码, 这是熵编码的理论基 础。 若使用相同长度的码字表示信源符号, 则称该编码方法 为等长编码, 否则称为变长编码。 变长编码的基本原理是给 出现概率较大的符号赋予短码字, 而给出现概率较小的符号 赋予长码字, 从而使得最终的平均码长很小。 哈夫曼编码和 香农-范诺编码就是两种变长编码方法。

图像分割

图像分割

Image Segmentation诸薇娜zhuweina@Image Segmentation•数字图像处理的目的之一是图像识别,图像分割与测量是图像识别工作的基础。

•图像分割将图像分为一些有意义的区域,然后可以对这些区域进行描述,相当于提取出某些目标区域图像的特征,判断图像中是否有感兴趣的目标。

图像分割举例•图像分割是把图像分解成构成的部件和对象的过程•把焦点放在增强感兴趣对象–汽车牌照•排除不相干图像成分:–非矩形区域图像分割的策略•图像分割的基本策略是基于灰度值的两个基本特性:–不连续性•是基于亮度的不连续变化分割图像,如图像的边缘–区域内部的相似性•通过选择阈值,找到灰度值相似的区域•区域的外轮廓就是对象的边Image Segmentation•间断检测• 点检测• 线检测• 边缘检测 寻找间断的一般方法:模板检测 点检测•使用如图所示的模板,如果|R| >=T,则在模板中心位置检测到一个点–其中,T是阈值,R是模板计算值•基本思想:如果一个孤立点与它周围的点不同,则可以使用上述模板进行检测。

•注意:如果模板响应为0,则表示在灰度级为常数的区域TRImage SegmentationImage Segmentation线检测: 通过比较典型模板的计算值,确定一个点是否在某个方向的线上4个线检测模板• 第一个模板对水平线有最大响应• 第二个模板对45方向线有最大响应• 第三个模板对垂直线有最大响应• 第四个模板对-45方向线有最大响应Image Segmentation用R1,R2,R3和R4分别代表水平、45、垂直和-45方向线的模板响应,在图像中心的点,如果|Ri| >|Rj| , j !=i则此点被认为与在模板i方向上的线更相关例:如果|R1| > |R j| , j = 2,3,4则该点与水平线有更大的关联•在灰度恒定的区域,上述4个模板的响应为零•可以设计其它模板:•模板系数之和为0•感兴趣的方向系数值较大Image Segmentation边缘检测边缘检测•一阶–在边缘斜面上,一阶导数为正,–其它区域为零•二阶–在边缘与黑色交界处,二阶导数为正–在边缘与亮色交界处,二阶导数为负–沿着斜坡和灰度为常数的区域为零Image Segmentation边缘检测•结论– 一阶导数可用于检测图像中的一个点是否在–边缘上– 二阶导数可以判断一个边缘像素是在边缘亮–的一边还是暗的一边– 一条连接二阶导数正值和负值的虚构直线将–在边缘中点附近穿过零点– 一阶导数使用梯度算子,二阶导数使用拉普–拉斯算子边缘检测•一阶导数:用梯度算子来计算Image Segmentation边缘检测边缘检测边缘检测边缘检测•结论–Prewitt和Sobel算子是计算数字梯度时最常–用的算子–Prewitt模板比Sobel模板简单,但Sobel模–板能够有效抑制噪声Image SegmentationImage SegmentationImage SegmentationImage Segmentation边缘检测•二阶导数:通过拉普拉斯来计算边缘检测•拉普拉斯算子总结– 缺点:• 拉普拉斯算子对噪声具有敏感性• 拉普拉斯算子的幅值产生双边缘• 拉普拉斯算子不能检测边缘的方向– 优点:• 可以利用零交叉的性质进行边缘定位• 可以确定一个像素是在边缘暗的一边还是亮的一边边缘检测Image Segmentation边缘检测•高斯型拉普拉斯算子总结–高斯型函数的目的是对图像进行平滑处理–拉普拉斯算子的目的是提供一幅用零–交叉确定边缘位置的图像平滑处理减少了噪声的影响Image Segmentation边缘检测•对比二阶拉普拉斯算子和一阶Sobel梯度算子– 缺点• 边缘由许多闭合环的零交叉点决定• 零交叉点的计算比较复杂– 优点• 零交叉点图像中的边缘比梯度边缘细• 抑制噪声的能力和反干扰性能• 结论:梯度算子具有更多的应用边缘连接和边界检测• 为什么需要边缘连接?• 局部处理• 整体处理之霍夫变换边缘连接和边界检测•为什么需要边缘连接?–由于噪声、照明等产生边缘间断,使得一组像素难以完整形成边缘–因此,在边缘检测算法后,使用连接过程将间断的边缘像素组合成完整边缘边缘连接和边界检测•局部处理– 分析图像中每个边缘点(x,y)的一个邻域内的像素,根据某种准则将相似点进行连接,由满足该准则的像素连接形成边缘– 如何确定边缘像素的相似性• 边缘像素梯度算子的响应强度• 边缘像素梯度算子的方向边缘连接和边界检测Image Segmentation边缘连接和边界检测•通过Hough变换进行整体处理•Hough变换– 问题的提出– Hough变换的基本思想– 算法实现– Hough变换的扩展•Hough变换问题的提出– 在找出边界点集之后,需要连接,形成完整的边界图形描述•Hough变换的基本思想–对于边界上的n个点的点集,找出共线的点集和直线方程。

遥感数字图像处理-第9章 感兴趣目标及对象提取

遥感数字图像处理-第9章 感兴趣目标及对象提取
算都是以组合的方式出现,所以可以对图像进行闭-开运 算或开-闭运算。
11
三、对象提取
遥感图像中的对象即遥感图像上具有相同特征(如光谱、纹 理和空间组合关系等特征)的“同质均一”单元,“同质均 一”不仅体现在光谱域上,也体现在空间域上。图像分割并 经二值图像处理之后,虽然提取出了“同质均一”的各目标 单元,但得到的结果仍然是二值图像,所有的目标单元像元 值均为1。
当存在多个连通域时还需将各个连通域分开来单独分析其属 性,因此需对各目标单元进行识别并赋以单独的编号(即贴 标签)。同时,为了方便对对象的形态特征进行分析,还需 将各目标单元进行矢量化,以提取各目标单元的封闭边界轮 廓。
12
第9章
感兴趣目标及对象提取
感兴趣目标及对象提取
一、图像分割 二、二值图像处理 三、对象提取 难点:形态学分水岭分割过程 重点:图像分割方法
2
一、图像分割
图像分割是指从图像中将某个特定区域与其它部分进行分 离并提取出来的处理,即把“前景目标”从“背景”中提 取出来,通常也称之为图像的二值化处理,主要包括:阈 值法、边界分割法、区域提取法、形态学分水岭分割。
同样,八连通是指当前目标像元在其八近邻中存在同类 像元。所以,四连通成立的时候,八连通一定成立;但 八连通成立,四连通不一定成立。
连通域 (a)四连通;(b)八连通
9
二、二值图像处理
3)内部点和边界点 在每个连通域中,与背景相邻接的点称为边界点,与背景
不邻接的点称为内部点。在四连通定义下,如果当前目标 像元的八近邻像元中没有背景像元,则该像元为内部点; 反之,为边界点。在八连通定义下,如果当前目标像元的 四近邻像元中没有背景像元,则该像元为内部点;反之, 为边界点。
分水岭分割示意图

浅谈数字图像处理中的图像分割技术

浅谈数字图像处理中的图像分割技术
且亮 暗 分 明下才 会有较 好效果 。
() 性 阈值 2适应
在 不 同 的区 域有 不 同 的阈值 ,即 自适 性 阙
值。
22 区域法 实现 图像 分 割 .
区域法实现分割是以某种规则为约束 ( 如子 区域全部像素灰度相同、 子区域不重合且相连接
等) ,直接找 取区域 的方 式实现分割 。
摘 要 数字图像处理科学迅速发展并得到广泛应用.图 像分割是其中重要的中间 技术.它依托图
像数字处理底层技术 ,为模 式识别等 高层应用服务 .本文 简要介 绍了图像分割 的概念范畴和常见的分割 技术的方法描 述.掌握图像分割技术有助 于系统理解数字 图像处理技 术的层次.
关键词 数 字图像处理 图像分剖 阚值
阈值 1整体
就是对整幅图像选定一固定灰度值 , 以此去 1 图像分割的范畴
图像 分割 处 理 技 术属 于数 字 图像 处理 技术 中的 图像 分析 范畴 , 图像 分析 的中 间层处理技 是 术。 图像分 割 的 目的是把经过 底层 处 理的数字 图 像 空 间分 成 若干有 意义 的区域 , 后期 的一些高层 应 用 如模 式 识 别等 将 在这 些 分 割 的 区域基 础上 进 行 。 割 的依据建 立在这 些 由像 素组 成 的区域 分 做 图像 分类找 出图像 的物体 。 在物体与 背景 单纯
边 界 的损 害 。 () 3 拉式 边 界 检测法
参考文献。
【】 l章霄, 董艳雪, 赵文 娟等 . 数字图像 处理技 术. 北京: 冶金
工业 出版社 . 0 2 5 0
利 用拉 式 卷 积做 二阶导数搜 寻 边界 的方 法 。
2 . 4边缘法实现图像分割
利用一 阶导数的大小检测边缘所在并用一

数字图像处理之图像分割PPT课件

数字图像处理之图像分割PPT课件

第13页/共69页
直方图阈值法matlab实现
• 函数:im2bw,全局阈值函数 • BW=im2bw(I ,level); • BW=im2bw(I ,map ,level); • BW=im2bw(RGB ,level); • 分别将灰度图像、索引图像、彩色图像转化为二值图像, • level,为归一化阈值
型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多梯度算子roberts算子prewitt算子kirsch算子原始图像型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多laplacian算子曲面拟合法型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多梯度算子roberts算子prewitt算子sobel算子kirsch算子原始图像型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多laplacian算子marr算子曲面拟合法型钢截面只需少量加工即可用作构件省工省时成本低但型钢截面受型钢种类及型钢号限制难于完全与受力所需的面积相对应用料较多a原图h结果c正值为白负值为黑d过零点例3
图像灰度直方图
暗 Z1
Zi
Zt Zj Zk 亮
背景
目标
双峰法选取阈值的缺点:会受到噪音的干扰,最小值不是预期的阈值, 而偏离期望的值。 改进办法:1)取两个峰值之间某个固定位置,如中间位置上。由于峰 值代表的是区域内外的典型值,一般情况下,比选谷底更可靠,可排除 噪音的干扰;2)加强对噪音的处理。对直方图进行平滑处理,如最小 二乘法等补点插值。

数字图像处理---图像分割

数字图像处理---图像分割

数字图像处理---图像分割图像分割概述图像分析概念:对图像中感兴趣的⽬标进⾏检测和测量,以获得它们的客观信息,从⽽建⽴对图像的描述步骤:1. 图像分割2. 特征识别3. 对象分类4. 建⽴联系概述图像分割概念:将图像划分为互不重叠的区域并提取感兴趣⽬标的技术基本策略:基于灰度值的两个基本特性:不连续性和相似性通过检测不连续性先找边,后确定区域通过检测相似性,在⼀定阈值下找到灰度值相似区域,区域外轮廓即为对象边界⽅法基于边缘的分割⽅法:先提取区域边界,再确定边界限定区域区域分割:确定每个像素归属区域,从⽽形成区域图区域⽣长:将属性接近的连通像素聚集成区域分裂-合并分割:即存在图像划分,也存在图像合并边缘检测算⼦---边缘分割法边缘定义:图像中像素灰度有阶跃变化或屋顶变化的像素的集合分类:阶跃状屋顶状特点:属于⾼频信号区域往往为闭合连线边缘检测流程滤波⇒增强⇒检测⇒定位边缘检测算⼦基本思想:计算局部微分算⼦⼀阶微分:⽤梯度算⼦进⾏运算特点:对于阶跃状变化会出现极⼤值(两侧都是正值,中间最⼤)对于屋顶状变化会过零点(两侧符号相反)不变部分为0⽤途:检测图像中边的存在注意事项:由于结果图中存在负值,因此需要处理后使⽤处理⽅法:取绝对值加最⼩值阈值法⼆阶微分:通过拉普拉斯算⼦计算特点:对于阶跃状变化会过零点(两侧符号相反)对于屋顶状变化会出现负极⼤值(两侧都是正值,中间最⼩)不变部分为0⽤途:检测图像中边的存在常⽤边缘检测算⼦Roberts 算⼦Prewitt 算⼦Sobel 算⼦Kirsch 算⼦Laplacian 算⼦Marr 算⼦交叉⽅向⼀阶锐化问题:锐化处理结果对具有矩形特征的物体的边缘提取较为有效,但是对于不规则形状的边缘提取,则存在信息上的缺损解决思想:利⽤⽆⽅向的锐化算法交叉微分算⼦交叉Roberts 算⼦公式:f ′x =|f (x +1,y +1)−f (x ,y )|f ′y =|f (x +1,y )−f (x ,y +1)|模板:f ′x =−1001,f ′y =01−1特点:算法简单,对噪声敏感,效果较梯度算⼦较好交叉Prewitt 算⼦模板:d ′x =011−101−1−10,d ′y =−1−10−101011特点:与Sobel 相⽐有⼀定抗⼲扰性,图像效果较⼲净交叉Sobel 算⼦模板:d ′x =012−101−2−10,d ′y =−2−10−101012特点:锐化的边缘信息较强kirsch 算⼦(⽅向算⼦)模板:特点在计算边缘强度的同时可以得到边缘⽅向各⽅向间的夹⾓为45°分析取其中最⼤的值作为边缘强度,与之对应的⽅向作为边缘⽅向若取最⼤值绝对值,则仅需要前四个模板即可Nevitia 算⼦[][][][][][]特点:各⽅向间的夹⾓为30°Laplacian算⼦同图像增强中的Laplacian算⼦优点:各向同性、线性和位移不变对细线和孤⽴点检测效果较好缺点对噪声敏感,有双倍加强作⽤不能检测出边缘⽅向常产⽣双像素边缘使⽤之前需要对图像进⾏平滑Marr算⼦在Laplacian算⼦基础上发展⽽来平滑函数采⽤⾼斯正态分布函数h(x,y)=e−x2+y2 2σ2σ为⽅差⽤h(x,y)对图像f(x,y)平滑克表⽰为g(x,y)=h(x,y)∗f(x,y) *代表卷积令r表⽰从原点出发的径向距离,即r2=x2+y2利⽤⾼斯-拉普拉斯滤波器(LOG滤波器)▽2h=(r2−2σ2σ4)e−r22σ2即可利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置在该算⼦中σ越⼩边缘位置精度越⾼,边缘细节变化越多;σ越⼤平滑作⽤越⼤,但是细节损失越⼤,边缘点定位精度越低过程1. 通过⼆维⾼斯函数对图像进⾏卷积降噪2. ⽤⼆阶导数差分算⼦计算图像强度的⼆阶导数3. 利⽤⼆阶导数算⼦过零点的性质,确定图像中阶跃边缘的位置优点:能快速得到⼀个闭合的轮廓缺点:对噪声敏感Canny边缘检测算⼦最优边缘检测算⼦应有的指标低误判率⾼定位精度抑制虚假边缘过程:1. 计算图像梯度2. 梯度⾮极⼤值抑制3. 双阈值提取边缘点计算图像梯度⾼斯函数的⼀阶导数模板:−11−11,−1−111⾮极⼤值抑制 NMS思想:梯度幅值图像M(x,y),仅保留梯度⽅向上的极⼤值点过程初始化N(x,y)=M(x,y)对每⼀点在梯度⽅向和反梯度⽅向各找n 个点,若M(x,y)⾮最⼤值,则置零,否则保持不变对NMS 结果⼆值化(双阈值提取边缘点)使⽤两个阈值T 1,T 2:T 2>>T 1由T 1得到E 1(x ,y ),低阈值边缘图:更⼤的误检率由T 2得到E 2(x ,y ),⾼阈值边缘图:更可靠边缘连接初始化E (x ,y )=E 2(x ,y )对E (x ,y )中的每个点在E 1(x ,y )中寻找延长部分进⾏连接输出E (x ,y )Canny 边缘检测算⼦步骤1. ⾼斯滤波器平滑2. ⼀阶偏导计算梯度幅值与⽅向3. 对梯度幅值进⾏⾮极⼤值抑制4. 双阈值算法检测连接边缘Canny 边缘检测算⼦优点参数较⼩计算效率⾼得到边缘连续完整双阈值选择T Low =T HIGH ∗0.4曲⾯拟合法出发点:基于差分检测图像边缘的算⼦往往对噪声敏感四点拟合灰度表⾯法⽤⼀平⾯p (x ,y )=ax +by +c 来拟合四邻域像素灰度值定义均⽅差为ε=∑[p (x ,y )−f (x ,y )]2模板a =12−1−111,b =12−11−11特点:先平均后求差分,对噪声由抑制作⽤边缘跟踪出发点:噪声边检测需要归整边缘像素概念:将检测的边缘点连接成线过程:边缘提取连接成线⽅法光栅扫描跟踪法全向跟踪法光栅扫描跟踪法概念:采⽤电视光栅⾏扫描顺序,结合门限检测,对遇到的像素进⾏分析并确定其是否是边缘的跟踪⽅法具体步骤:[][][][]确定检测阈值d(较⾼)超过d的点作为对象点确定跟踪阈值t(较低)确定跟踪邻域扫描下⼀⾏,跟踪邻域内灰度差⼩于t的,接受为对象点若没有对象点,则该曲线跟踪结束重新从下⼀⾏开始利⽤d寻找对象点并进⾏跟踪扫描结束后跟踪结束特征可以不是灰度级跟踪准则根据具体问题灵活运⽤最好再进⾏⼀次其他⽅向的跟踪全向跟踪Hough变化检测法问题:如何连接边界点集基本思想利⽤xoy直⾓坐标系直线y=ax+b,待求极坐标系内点(ρ,θ),已知求点到线的变化ρ=xcosθ+ysinθ原理:过每个点的直线系分别对应极坐标系上的⼀条正弦曲线,如正弦曲线存在共同交点(ρ′,θ′),则必定在平⾯上共线实现:使⽤交点累积器或直⽅图,寻找相交线段最多的参数空间的点,再寻找对应的直线线段特点:对ρ、θ量化过粗会导致直线参数不精确,过细会导致计算量增加获得直线抗噪能⼒强可以⽤来检测直线阈值分割法基本思想:通过阈值T⽣成⼆值图,在四邻域中有背景的像素就是边界像素特点:适⽤于物体与背景有强对⽐的情况下,且物体或背景的灰度较单⼀可以先求背景再求物体可以得到封闭且连通区域的边界通过交互获得阈值通过直⽅图得到阈值基本思想:边界上的点灰度值出现次数较少⽅法:选取直⽅图⾕底的最⼩灰度值作为阈值缺点:会受到噪声⼲扰改进:取两个峰值之间的某个固定位置降噪简单图像的阈值分割判断分析法最佳熵⾃动阈值法复杂图像的阈值分割步骤⾃动平滑直⽅图确定区域类数⾃动搜索多个阈值特征空间聚类k均值聚类步骤任意选取K个初始聚类中⼼值使⽤最⼩距离判别,将新读⼊的像素分⾄K类重新计算中⼼值,等于⼀类元素的平均值重新聚类直⾄新旧差异不⼤区域增长通过像素集合的区域增长实现:根据应⽤选取种⼦选择描述符种⼦根据描述符扩张直⾄没有新的节点加⼊集合简单区域扩张法以未划分点与起点灰度差⼩于阈值T作为描述符优缺点:1. 不好确定阈值2. ⽆法分割缓慢变化边界质⼼区域增长法以未划分点与区域平均灰度值差⼩于阈值T作为描述符分裂合并法实现:1. 对于灰度级不同的区域划分为四个⼦区域2. 若相邻⼦区域所有像素灰度级相同,则合并3. 反复进⾏直⾄不再进⾏新的分裂合并操作Processing math: 100%。

数字图像处理-图像分割课件

数字图像处理-图像分割课件
差分定义:
xfi,jfi,jfi1,j yfi,jfi,jfi,j1
梯度算子 梯度是图像处理中最为常用的一次微分方法。
图像函数 fx,y在点 x, y 的梯度幅值为
f 2 x
fy2
其方向为 arctgf y
f x
图像经过梯度运算能灵敏地检测出边界, 但是梯度运算 比较复杂。
对于数字图像,可用一阶差分替代一阶微分:
非连续性分割: 首先检测局部不连续性,然后将它们 连接起来形成边界,这些边界把图像分以不同的区域。 这种基于不连续性原理检出物体边缘的方法称为基于 点相关的分割技术
两种方法是互补的。有时将它们地结合起来,以求 得到更好的分割效果。
人眼图像示例
分类—连续性与处理策略 连续性: 不连续性: 边界 相似性: 区域 处理策略: 早期处理结果是否影响后面的处理 并行: 不 串行: 结果被其后的处理利用 四种方法 并行边界;串行边界;并行区域;串行区域
n
(1) Ri
i1
(2)对所有的 i和j, i j, 有Ri R j
(3)对i 1,2,..., n, 有P ( Ri ) true (4)对i j, 有P ( Ri R j ) false (5)对i 1,2,..., n, Ri 是连通的区域
分类—分割依据
相似性分割: 将相似灰度级的像素聚集在一起。形成 图像中的不同区域。这种基于相似性原理的方法也称 为基于区域相关的分割技术
高斯拉普拉斯(LOG)
高斯拉普拉斯(Laplacian of Gaussian, LOG, 或 Mexican hat, 墨西哥草帽)滤波器使用了Gaussian 来进行噪声去除并使用 Laplacian来进行边缘检测
高斯拉普拉斯举例

数字图像处理-图像分割-讲义PPT

数字图像处理-图像分割-讲义PPT
数字图像处理
图像分割
图像分割概论
图像分割的目的是理解图像的内容,提取出我们感兴趣的对象。 图像分割按照具体应用的要求和具体图像的内容将图像分割成一块块区域。 图像分割是模式识别和图像分析的预处理阶段。 通常图像分割采用聚类方法,假设图像中组成我们所感兴趣对象的像素具有一些相 似的特征,如相同的灰度值、相同的颜色等。 传统的图像分割技术: 基于像素灰度值的分割技术 基于区域的分割技术 基于边界的分割技术 图像的描述,包括边界和区域的描述
在标注一个像素点的纹理特征时很可能是多维数据,如距离、方向、灰度变化等等。
纹理分析的自相关函数方法
自相关函数的定义 若有一幅图像f(i, j), i, j=0, 1, …, N-1, 它的自相关函数为:
f (i, j ) f (i x, j y ) i 0 j 0 f 2 (i, j ) i 0 j 0
对图像区域的操作―数学形态学
灰度阈值分割法
灰度阈值分割法是最古老的分割技术 只能应用于图像中组成感兴趣对象的灰度值是均匀的,并且和背景的灰度值不一样。 事先决定一个阈值,当一个像素的灰度值超过这个阈值,我们就说这个像素属于我们 所感兴趣的对象;反之则属于背景部分。 这种方法的关键是怎样选择阈值,一种简便的方法是检查图像的直方图,然后选择一 个合适的阈值。 如果图像适合这种分割法,那么图像的直方图在表示对象和背景的小范围灰度值附近 出现一个高峰值。适合这种分割法的图像的直方图应是双极模式,我们可以在两个峰 值之间的低谷处找到一个合适的阈值。 单一阈值方法也不适合于由许多不同纹理组成一块块区域的图像。
灰度共生矩阵表示空间灰度值依赖性的概率,这个灰度共生矩阵是对称的; 不仅仅和两个像素之间的距离有关,还跟两个像素之间的空间角度有关。

数字图像处理第九章图像分割(共94张精选PPT)

数字图像处理第九章图像分割(共94张精选PPT)
如果选择使用二阶导数,则边缘点定义为它的二阶
导数的零交叉点。
分割的关键问题是如何将边缘线段组合成更长的
边缘。
应该注意到,这些定义并不能保证在一幅图像中成功地找
到边缘。它们只是给了一个寻找边缘的形式体系。
边缘检测基本步骤
滤波:改善与噪声有关的边缘检测器的性能;一般滤波
器降噪导致了边缘的损失;增强边缘和降低噪声之间
转换为黑白二值图像,
0
f (x, y) T

g(x, y) =

255 f (x, y) T
以上原理用MATLAB实现很简单,其实是将图像中所有的灰
阶值与T相比较,大于T的返回1,小于T的返回0,我们得到一
个只有0和1的矩阵,将其显示为图像,就是一幅二值图像。
可以用函数im2bw来实现上述操作。
, 具有最大
的k即是最佳阈值.
用h(x,y)对图像f(x,y)的平滑可表示为:
一阶
二阶
边缘和导数
阶跃边缘、脉冲边缘、屋顶边缘的灰度剖面
线及其一阶、二阶导数。
边缘点的判定
判断一个点是否为边缘点的条件:该点的灰度变
化(一阶导数)必须比指定的门限大。
一组这样的依据事先定好的连接准则相连的边缘
点就定义为一条边缘。
希望得到的特点)
(2)一条连接极值点的虚构直线将在边缘中点附近穿过,
该性质对于确定粗边线的中心非常有用。
图象
剖面
1.在ρ、θ的极值范围内对其分别进行m,n等分,设一个二维数组的下标与ρi、θj的取值对应;
边缘检测判据是二阶导数零交叉点并对应一阶导数的峰值.
tr=uint8(r.
(3) 边缘的“宽度”取决于斜坡的长度.
L 1
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10/15/2018
边缘检测
3、边缘检测的基本步骤
锐化滤波 平滑图像 锐化图像
平 滑 滤 波
边 缘 判 定
原始图像
二值图像
边缘图像
10/15/2018
边缘检测
4、边缘检测方法的分类 可将其算法分为:基于查找的算法和基于零穿 越的算法。除此还有Canny边缘检测算法、统计判 别方法等。 查找方法:通过寻找图像一阶导数中的最大和最 小值检测边界。 零穿越方法:通过寻找图像二阶导数零穿越来寻 找边界。
-1 -1 1 1
10/15/2018
边缘检测
为了检测边缘点,选取适当的阈值T,对梯度图像 进行二值化,则有:
这样形成了一幅边缘二值图像g(x,y).
特点:仅计算相邻像素的灰度差,对噪声比较敏感,无
法抑止噪声的影响。
10/15/2018
边缘检测
图片演示:
-1 1
10/15/2018
2)Roberts算子
函数f(x,y)在(x,y)处的梯度为一个向量:f = [f / x , f / y] 计算这个向量的大小为: G = [(f / x)2 +(f / y)2]1/2 近似为: G |fx| + |fy| 或 G max(|fx|, |fy|)
梯度的方向角为: φ(x,y) = tan-1(fy / fx) 可用下图所示的模板表示:
剖面: 阶跃状
10/15/2018
屋顶状
边缘检测
各种边缘其一阶、二阶导数特点
图像:
剖面:
一阶 导 数 :
二阶
导 数 :
10/15/2018
边缘检测
说明:对阶跃边缘,其一阶导数在图像由暗变明的位置处有1个向上的阶 跃,而其它位置都为0,这表明可用一阶导数的幅度值来检测边缘的存在, 幅度峰值一般对应边缘位置。 其二阶导数在一阶导数的阶跃上升区有1个向上的脉冲,而在一阶导数的 阶跃下降区有1个向下的脉冲,在这两个脉冲之间有1个过0点,它的位置 正对应原图像中边缘的位置,所以可用二阶导数的过0点检测边缘位置, 而用二阶导数在过0点附近的符号确定边缘象素在图像边缘的暗区或明区。 对(c)而言,脉冲状的剖面边缘与(a)的一阶导数形状相同,所以(c)的 一阶导数形状与(a)的二阶导数形状相同,而它的2个二阶导数过0点正好分 别对应脉冲的上升沿和下降沿,通过检测脉冲剖面的2个二阶导数过0点就 可确定脉冲的范围。 对(d)而言,屋顶状边缘的剖面可看作是将脉冲边缘底部展开得到, 所以它的一阶导数是将(c)脉冲剖面的一阶导数的上升沿和下降沿展开得到 的,而它的二阶导数是将脉冲剖面二阶导数的上升沿和下降沿拉开得到的, 通过检测屋顶状边缘剖面的一阶导数过0点,可以确定屋顶位置。
• 公式:
f x f ( x 1, y 1) f ( x 1, y 1) f y f ( x 1, y 1) f ( x 1, y 1)
• 模板:
-1
1 1
fx

fy’
-1
• 特点:与梯度算子检测边缘的方法类似,对噪声敏感,但效果较梯度 算子略好。
图像分割是图像分析过程中最重要的步骤之一, 分割出的区域可以作为后续特性提取的目标对象。
10/15/2018
图像分割概述
图像分析系统的基本构成如下图:
分割
表示与描述
中级处理
预处理 问题
图像获取
知识库
低级处理
识别 与 解释
结果
高级处理
10/15/2018
图像分割概述
图像分割方法和种类
基于图像灰度值的不连续性或相似性,图像分割方法可 以划分为以下种类。
10/15/2018
边缘检测
5、边缘检测算子 可用一阶、二阶局部微分算子来检测图像中 的边缘。下面是几种常用的微分算子。 –梯度算子
Roberts算子 Prewitt算子 Sobel算子
–高斯-拉普拉斯算子 –Carry边缘检测算子
10/15/2018
9.2.2 常用的边缘检测算子
• 二维图像的一阶导数:梯度算子
串行区域技术(LR) ♦ 区域生长 ♦ 区域分裂与合并
图像分割概述
10/15/2018
图像分割概述
图像分割的目的
•把图像分解成构成它的部件和对象; •有选择性地定位感兴趣对象在图像中的位置和范围像分割的基本思路
从简到难,逐级分割
• 控制背景环境,降低分割难度
• 注意力集中在感兴趣的对象,缩小不相干图像成分的干 扰。
提取轮廓 车牌定位
车牌识别
10/15/2018
图像分割概述
图像分割的几何定义
令集合R代表整个图像区域,对R的分割可看作将R分成N 个满足以下五个条件的非空子集(子区域)R1,R2,…, RN.
i 1
Ri R
N
对所有的i和j,i≠j,有Ri∩Rj =φ; 对i = 1,2,…,N,有P(Ri) = TRUE; 对i≠j,有P(Ri∪Rj) = FALSE; 对i =1,2,…,N,Ri是连通的区域。 其中P(Ri)是对所有在集合Ri中元素的逻辑谓词,φ代表空集。
10/15/2018
并行策略(Global) 不连续性 (Discontinuity) 并行边界技术(GB) ♦ 霍夫变换 串行策略(Local) 串行边界技术(LB) ♦ 边缘跟踪 ♦ 图论法
边界 (Boundary)
相似性 (Similarity)
10/15/2018
区域 (Region)
并行区域技术(GR) ♦ 全局阈值法 ♦ 局部阈值法
10/15/2018
9.2 边缘检测
• • • •
9.2.1 9.2.2
边缘检测概述 常见的边缘检测算子
9.2.3 Matlab实现 9.2.4 Visual C++实现
10/15/2018
边缘检测
9.2.1 边缘检测概述
1.边缘的定义:
图像中周围像素灰度有阶跃变化或屋顶变化的那些像素的集合。
2.边缘的分类 – 阶跃状 – 屋顶状 图像:
第9章 图像分割
主讲人:王珊
10/15/2018
主要内容
• • • • • •
10/15/2018
9.1 9.2 9.3 9.4 9.5 9.6
图像分割概述 边缘检测 霍夫变换 阈值分割 区域分割 小结
9.1 图像分割概述
概念:图像分割是指将图像中具有特殊意义的不 同区域划分开来,这些区域互不相交,每个区域 满足灰度、纹理、彩色等特性的某种相似性准则。
相关文档
最新文档