不等式复习课-
不等式的性质基本不等式课件高三数学一轮复习
举题说法
不等式的性质
1 (1) (多选)已知a,b,c满足c<a<b,且ac<0,那么下列各式一
定成立的是
( BCD
)
A.ac(a-c)>0
B.c(b-a)<0
【解C析.】c因b2为<aa,b2b,c满足c<a<b,且Dac.<a0b,>所a以c c<0,a>0,b>0,a-c>0,b
3.已知 x>1,则 x+x-1 1的最小值为 ( C )
A.1 C.3
B.2 D.4
【解析】因为 x>1,所以 x-1>0,所以 x+x-1 1=(x-1)+x-1 1+1≥2 (x-1)·x-1 1 +1=3,当且仅当 x-1=x-1 1,即 x=2(x=0 舍去)时等号成立,此时 x+x-1 1取最小 值 3.
4.(多选)下列说法正确的是
()
A.若
x<1,则函数 2
y=2x+2x1-1的最小值为-1
B.若实数 a,b,c 满足 a>0,b>0,c>0,且 a+b+c=2,则a+4 1+b+1 c的最小值
是3
C.若实数 a,b 满足 a>0,b>0,且 2a+b+ab=6,则 2a+b 的最大值是 4
D.若实数 a,b 满足 a>0,b>0,且 a+b=2,则a+a21+b+b21的最小值是 1
【解析】设 2α-β=m(α+β)+n(αห้องสมุดไป่ตู้β),则mm+ -nn= =2-,1, 解得mn==3212,,
所以 2α-β
=12(α+β)+32(α-β).
因为 π<α+β<54π,-π<α-β<-π3,所以π2<12(α+β)<58π,-32π<32(α-β)<-π2,所
以-π<12(α+β)+32(α-β)<π8,即-π<2α-β<π8,所以 2α-β 的取值范围是-π,π8.
等式性质、不等式性质与基本不等式复习课公开课教案教学设计课件资料
等式性质、不等式性质与基本不等式复习课公开课教案教学设计课件资料第一章:等式性质的复习与探究1.1 等式的概念与基本性质回顾等式的定义和基本性质(如交换律、结合律、分配律等)。
通过示例和练习,让学生熟悉等式的应用和解题方法。
1.2 等式的变形与解复习等式的变形规则,如两边加减乘除相同的数等。
讲解等式解的定义和求解方法,通过例题展示解题步骤和技巧。
第二章:不等式性质的复习与探究2.1 不等式的概念与基本性质回顾不等式的定义和基本性质(如传递性、同向不等式的可加性等)。
通过示例和练习,让学生熟悉不等式的应用和解题方法。
2.2 不等式的变形与解复习不等式的变形规则,如两边加减乘除相同的数等。
讲解不等式解的定义和求解方法,通过例题展示解题步骤和技巧。
第三章:基本不等式的复习与探究3.1 基本不等式的概念与性质回顾基本不等式的定义和性质,如算术平均数不小于几何平均数等。
通过示例和练习,让学生熟悉基本不等式的应用和解题方法。
3.2 基本不等式的证明与应用讲解基本不等式的证明方法,如使用AM-GM不等式等。
探讨基本不等式在实际问题中的应用,如优化问题、经济问题等。
第四章:等式与不等式的综合应用4.1 等式与不等式的联立讲解等式与不等式的联立解法,如解方程组和不等式组。
通过例题和练习,让学生熟悉解题步骤和技巧。
4.2 等式与不等式的应用问题分析等式与不等式在实际问题中的应用,如几何问题、物理问题等。
通过例题和练习,让学生熟悉解题思路和方法。
第五章:复习与练习5.1 等式性质的复习与练习总结等式的性质和解题方法,进行复习和练习。
提供练习题,让学生自主练习和巩固知识点。
5.2 不等式性质的复习与练习总结不等式的性质和解题方法,进行复习和练习。
提供练习题,让学生自主练习和巩固知识点。
5.3 基本不等式的复习与练习总结基本不等式的性质和解题方法,进行复习和练习。
提供练习题,让学生自主练习和巩固知识点。
第六章:等式与不等式的转换6.1 等式到不等式的转换讲解如何将等式转换为不等式,以及在不同情况下如何处理不等式的符号变化。
不等式的解法(复习课)(1)
1、一元一次不等式的法
ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式 一元二次方程 ax2+bx+c=0的 根 二次函数 y=ax2+bx+c的 图象 (a>0) ax2+bx+c>0 (a>0)
二、应用举例:
1、解关于x的不等式: ax+1<a2+x 2、已知a≠b,解关于的不等式:
a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式
x2-(a+a2)x+a3 >0
4、解关于x的不等式
a x x b 0
ax b
b ( >a>b>0 ) a
>0
2
=0
无实根
<0
两相异实根
b b 4ac x 1 、2 = 2a
两相等实根 b x1=x2= 2a
{x|x<x1或 {x|x∈ R x>x2 } 且X≠X1}
R
ax2+bx+c<0 {X|X1<X (a>0) <X2}
4、分式不等式的源自法x 0 (1)简单分式不等式的解法 如: 3 x
5、解关于x的不等式:
ax2-2(a+1)x+4>0 6、解不等式: |x+3|-|x-5|>7 (其中a≠0)
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
不等式复习课件
3
的最小整数解为( A )
A,-1
C,2
D,3
2 x 4 0 -3,-2 例7:不等式组 1 的整数解为_________ 2 x 2 0
4、不等式2x-2≥3x-4的正整数解的个数为(
(A)1个 (B)2个 (C)3个
B )
(D)4个
2 x 3 0 5、不等式组 的整数解的个数是( C ) 3 x 5 0
由不等式②得: x≥5
-1 0 1 2 3 4 5 6 7 8
注意:不等式组的 公共解集,可用口诀: 同大取大,同小取小 大小,小大中间夹, 大大小小无解答.
∴ 原不等式组的解集为:5≤x≤8
∴原不等式组的整数解x为: 5,6,7,8.
二,求不等式的特殊解:
例6:不等式 2 x
x 1 8 2x
数轴显示
b a
语言叙述
同大取大 同小取小
大小小大中间找 大大小小无解集
1 2
xa x b
xa x b
b
a
3 xa 4 xb
xa x b
b
a
b
a
一元一次不等式(组)的解
例1:不等式4-3x>0的解是( D )
4 A, x 3 4 B, x 3 4 C, x 3 4 D, x 3
x 2 0 x 3 0
x>2 的解集为___.ห้องสมุดไป่ตู้
的解集是
3x 1 5 x 7.(05上海)解不等式组: ,并把解集在 2 x 1 6 x 数轴上表示出来.
-5 -4 -3 -2 -1 O 1 2 3 4
4.(04青海)已知点M(3a-9,1-a)在第三象限,且它 们的坐标都是整数,则a=___ A. 1 B. 2 C. 3 D. 0 5.(05临沂市)关于x的不等式3x-2a≤-2的解集如图所 示,则a的值是___ 2 x 7>3 x-1 -1 0 1 6.(05天津)不等式组 的解集为___ x-2 0
不等式的性质(复习课)
定理5 补充
若a>b>0 则n a >n b (n ∈N且 n>1)
11
若a>b且ab>0 则 <
ab
定理:若a、b∈R,那么 a2+b2≥2ab (当且仅当a=b取“=”)
定理:如果是a、b正数,那么
a
2
b
≥
a b(当且仅当a=b取“=”)
(1) 两个定理中条件的区别 (2)两个定理的结构特征及应用 (3)要注意“=”的取到,事实上在“=”处是一种边界情况
v
2两火车的间距不得ຫໍສະໝຸດ 于 2 0 千米,那么这批物资全部到
达灾区最少需要 ( B )小时
(A) 5 (B)10 (C)15 (D)20
;
安全柜 ;
之色/马开那双凌厉の眸子所过之处/这些人忍不住后退壹步/到最后开始溃败咯起来/马开就站在那里/以壹双眼睛/逼の这些人四处逃窜/这种威势/让为首の几佫人惊恐不已/就算荒原の最出名の凶人/都不可能凭借着目光让这些久经战斗の人溃败/可面前这佫少年做到咯/几佫人在见到马开目光落 在它们身上后/它们也再无战意/随着众人壹起逃离/钟薇见到这壹幕/忍不住向马开の侧脸/马开此刻の侧脸拾分坚毅/这种坚毅/让她の有些呆滞/感受到马开身体传来の温热/钟薇那绝美の脸蛋上/飘扬起无端の绯红/醉人美艳/"再坚持几滴/就能到器宗の实力范围咯/到时候/我们就安全咯/"马开背 着钟薇/对着她说道/"嗯/"钟薇点头道/"不过刀疤皇从那壹战后/就壹直没有出现/它见过你身上の不少好东西/肯定不会放过你/怕确定还有什么算计/它能有什么算计?无非确定找壹些强悍の人围杀我/"马开回答道/"它不来倒好/来の话先杀咯它/你不要轻敌/它见过你青莲の恐怖/要确定它还敢再来 /肯定会有把握/"钟薇对马开说道/&
不等式复习课件(职高)
综合练习
基础练习题
通过解老师提供的练习题,检验一下自己对不等 式的掌握程度吧!
提高练习题
来挑战一下自己吧!这些练习题将考验您的不等 式应用能力。
总结
1 知识点回顾
通过本次课程,您已经全面回顾了职高数学中的各种不等式。
2 学习建议
继续做题,不断积累,加油!
二元不等式的应用 之一是约束条件。 例如,当一个工程 需要满足多个条件 时,可以将这些条 件用二元不等式表 示出来。
三元不等式
三元不等式是三个 变量之间的不等式。 三元不等式在最值 和优化问题中经常 用到。
三元不等式的应 用
三元不等式的应用 之一是优化问题。 例如,当需要最小 化或最大化某个函 数时,可以将函数 与三元不等式组合 起来,以实现优化。
绝对值不等式的定义
绝对值表示一个数到0的距离。绝对值不等式是指包含绝对值的不等式,通常在求解问题时要将绝 对值拆开讨论。
绝对值不等式的解法
绝对值不等式的解法是将绝对值拆开讨论,每一种情况有不同的解法。
多元不等式
二元不等式
二元不等式是两个 变量之间的不等式。 二元不等式在生活 和工作中经常用到。
二元不等式的应 用
如果a>b,则a+c>b+c(c为任意数)
一元一次不等式
一元一次不等式的解法
使用图像法或非图像法求解一元一次不等式
一元一次不等式的应用
一元一次不等式的应用之一是求最值
一元二次不式
1
一元二次不等式的解法
使用图像法或非图像法求解一元二次不等式
2
一元二次不等式的应用
一元二次不等式的应用之一是求区间
绝对值不等式
不等式复习课件(职高)
人教高中数学必修一B版《不等式》等式与不等式说课复习(不等式及其性质)
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
已知-1<x<4,2<y<3.
(1)求 x-y 的取值范围;
(2)求 3x+2y 的取值范围.
【解】 (1)因为-1<x<4,2<y<3,所以-3<-y<-2,所以
-4<x-y<2.
(2)由-1<x<4,2<y<3,得-3<3x<12,4<2y<6,所以 1<3x+2y<18.
栏目 导引
第二章 等式与不等式
■名师点拨
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
(1)推论 1 表明,不等式中的任意一项都可以把它的符号变成相
反的符号后,从不等式的一边移到另一边.
(2)推论 2 表明,两个同向不等式的两边分别相加,所得到的不
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件
课件 课件
课件 课件
课件 课件
课件 课件
课件
课件
________.
解析:M-N=x2+x-4x+2=x2-3x+2=(x-1)(x-2), 又因为 x<1,所以 x-1<0,x-2<0,所以(x-1)(x-2)>0,所 以 M >N.
不等式的解法(复习课)(1)
1、一元一次不等式的法 ax>b 或 ax<b
2、绝对值不等式 |x|>a (a>0) x<-a或x>a |x|<a (a>0) -a<x<a
3、一元二次不等式的解法 ax2+bx+c>0 (a>0) 或 ax2+bx+c<0 (a>0)
判别式
>0
=0 <0
一元二次方程 ax2+bx+c=0的 根
6、解不等式: |x+3|-|x-5|>7
7、已知关于x的不等式 ax+b>0的解 集为 (1,+∞ ) ,解不等式
ax b x2 5x 6 >0
1、含参数不等式要注意参数的范围、参数引起 的讨论
2、含两个绝对值不等式的解法 ——零值点法
二、应用举例:
1、解关于x的不等式: ax+1<a2+x
2、已知a≠b,解关于的不等式: a2x+b2(1-x) ≥[ax+b(1-x)]2
3、解关于x的不等式 x2-(a+a2)x+a3 >0
4、解关于x的不等式
a xxb 0
b
( >a>b>0 )
ax b
a
5、解关于x的不等式: ax2-2(a+1)x+4>0 (其中a≠0)
注意:
1、以后解不等式最后的结果都要写成集合或区间。
2、解不等式时一定要注意“是否有=”。
3、对绝对值不等式一定要分清是 “或”还是“且”, 是求并集还是要求交集。
4、对一元二次不等式,要注意二次项系数a是否大于0
5、数轴标根法—分式不等式—高次整式不等式
6、有关计算的要求------移项、去括号、通分、两边同 乘一个数是正还是负。
不等式复习课
如果a b,
那么a c b c.
不等式的性质2 不等式两边乘(或除以) 同一个正数,不等号的方向不变.
如果a b, c 0, a b 那么ac bc(或 ). c c
不等式的性质3 不等式两边乘(或除以) 同一个负数,不等号的方向改变.
一个工程队原定在10天内至少要挖土 600m³ ,在前两天一共完成了12m³ , 由于整个工程调整工期,要求提前两 天完成挖土任务。问以后几天内,平 均每天至少要挖土多少m³ ?
2.学校图书馆搬迁,有15万册图书, 原准备每天在一个班级的劳动课上, 安排一个小组同学帮助搬运图书,两 天共搬了1.8万册。如果要求在一周 内搬完,设每个小组搬运图书数相同, 则在以后五天内,每天至少安排几个 小组搬书?
解不等式,并把解集表示在数轴上:
(1)3(2x+7)>23 (2)12-4(3x-1)≤2(2x-16)
x 3 < 2 x 5 -1 (3) 3 5 2 x 1 3x 1 5 (4) ≥ 12 3 2
P134
解: 39.98≤ V ≤40.02.
解:设蛋白质的含量为x g, 由题意,得 x ≥300×0.6% x ≥1.8 答:蛋白质的含量不小于1.8 g.
(5) x的
2
3
与y的0.5的和是非正数;
2
3
x+0.5y≤0
(6) a的平方与3的差不大于a与5的和.
a² ≤a+5 -3
(7)m与n的平方和是非负数;
m² +n² ≥0
你认为是这样吗 ?
小辉在学了不等式的基本性质这一节后,他
觉得很容易;并用很快的速度做了一道填空题,
绝对值不等式专题复习课件
令g ( x) x 1 x 4
f ( x)的 最 小 值 为 5
a
4 a 2 5a 4 由a 5 0成 立 a a 0 a 1或a 4 a (0,1] [4,)
例3、已知关于x的不等式 ax 2 ax a 2(a 0) (1)当a 1时,求此不等式的解集; (2)若此不等式的解集为R,求实数a的取值范围。 解:(1)当a=1时,不等式为 x 2 x 1 2 由绝对值的几何意义知,不等式的意义可解释为数轴上的点x到1、2的距离
(3)|x-a|+|x-b|≥c(c>0)和|x-a|+|x-b|≤c(c>0)型 不等式的解法 法一:利用绝对值不等式的几何意义求解,体现了 数形结合的思想; 法二:利用“零点分段法”求解,体现了分类讨论 的思想; 法三:通过构造函数,利用函数的图象求解,体现 了函数与方程的思想.
2.绝对值的三角不等式
当且仅当( x a)(1 x) 0 时,即 f ( x) a 1 记不等式( x a)(1 x) 0 的解集为A,则
(3,1) A故a 3
a (,3]
例2、已知关于x的不等式2x 1 x 1 log2 a (其中a 0 ) (1)当 a 4时,求不等式的解集; (2)若不等式有解,求实数a 的取值范围。 解:(1)令 f ( x) 2x 1 x 1 ,当a 4时, f ( x) 2 1 1 当 x 时, x 2 2 ,得 4 x ; 2 2 1 当 x 1 时, 3 x 2 ,得 4 x 2 ; 2 3 当 x 1 时, x 0 ,此时的x不存在。
2 x 5, x 2 1,2 x 3 2 x 5, x 3
初中不等式复习教案
教案:初中不等式复习教学目标:1. 复习并巩固不等式的概念、性质和一元一次不等式的解法。
2. 提高学生解决实际问题的能力,培养学生的逻辑思维和转化思想。
3. 培养学生全面系统的总结概括能力,提高学生的数学素养。
教学内容:1. 不等式的概念和性质2. 一元一次不等式的解法3. 不等式在实际问题中的应用教学过程:一、复习导入(5分钟)1. 复习不等式的概念:不等式是表示两个数之间大小关系的式子。
2. 复习不等式的性质:a. 不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。
b. 不等式两边都乘以(或除以)同一个正数,不等号的方向不变。
c. 不等式两边都乘以(或除以)同一个负数,不等号的方向改变。
3. 复习一元一次不等式的概念:只含有一个未知数,并且未知数的最高次数是1的不等式。
4. 复习一元一次不等式的解法:a. 去分母b. 去括号c. 移项d. 合并同类项e. 化简系数二、实例讲解(15分钟)1. 举例讲解不等式的性质,让学生通过具体例子理解不等式的性质。
2. 给出一个一元一次不等式,让学生演示解题过程,讲解每一步的原理。
三、练习与讨论(15分钟)1. 让学生独立解决一些简单的不等式问题,加深对不等式的理解和应用。
2. 讨论学生在解题过程中遇到的问题,引导学生运用转化思想解决问题。
四、不等式在实际问题中的应用(15分钟)1. 给出一个实际问题,让学生运用不等式来解决问题。
2. 讨论解题思路和方法,引导学生将实际问题转化为不等式问题。
五、总结与反思(5分钟)1. 让学生总结本节课所学的知识点,巩固不等式的概念、性质和一元一次不等式的解法。
2. 引导学生反思在解题过程中运用转化思想的重要性,提高学生的解题能力。
教学评价:1. 通过课堂讲解、实例讲解、练习和讨论,评价学生对不等式的理解和应用能力。
2. 观察学生在解决实际问题时的思维过程,评价学生的转化思想和解决问题的能力。
教学反思:本节课通过复习导入、实例讲解、练习与讨论、不等式在实际问题中的应用和总结与反思等环节,旨在巩固学生对不等式的概念、性质和一元一次不等式的解法的掌握。
一元一次不等式复习课
17、某单位计划在新年期间组织员工到某地旅游,参如旅 游的的人数估计为10~25人,甲、乙两家旅行社的服 务质量相同,且报价都是每人200元,经过协商,甲 旅行社表示可给予每位游客七五折优惠;乙旅行社表 示可先免去一位游客的旅游费用,其余游客八折优惠, 该单位选择哪一定旅行社支付的旅游费用较少? 解答:设该单位参加这次旅游的人数是x人, 选择甲旅行社时,所需的费用为y1, 选择乙旅行社时,所需的费用为y2,则: y1=200×0.75x,即y1=150x, y2=200×0.8(x-1),即y2=160x-160, y1= y2时,150x=160x-160, 解得x=16; y1 >y2时,150x>160x-160, 解得x<16; y1< y2时,150x<160x-160, 解得x>16; 答案:所以,当人数为16人时,甲、乙两家旅行社的收费 相同;当人数为17~25人时,选择甲旅行社费用较少; 当人数为10~15人时,选择乙旅行社费用较少。
无解,则m的取值范围是________。
1、一群女生住若干间宿舍,每间住4人, 剩19人无房住;每间住6人,有一间宿舍 住不满, 1.设有x间宿舍,请写出x应满足的不等式组; 2.可能有多少间宿舍,多少名 学生?
2、某次会议的费用,由参加者平均分摊。若每人 交350元,则多余600元;若每人交310元,则其 中就有1人交的钱数要多于310元;若每人交320 元,则其中就有1人交的钱数少于220元。 求:(1)参加这次会议的人数;(2)这次会议 的总费用。
(2)有哪几种符合的生产方案?
(3)若生产一件A产品可获利700元,生产一件B 产品可获利1200元,那么采用哪种生产方案可使 生产A、B两种产品的总获利最大?最大利润是多 少?
初三数学复习教案(不等式)
在我心目中,不理你是什么样的肤色,不理你是什么样的国籍,只要你对公司有贡献,忠诚、肯做事、有归属感,即有长期的打算,我就会帮他慢慢地经过一个时期而成为核心分子,这是我公司一向的政策。
初三数学教案课题:不等式复习课(1)教学目标:能掌握不等式性质会解不等式教学重点与难点:能熟练地解一元一次不等式设计人员: 曹加金教学过程:不等式的定义、性质:练习:如果a>b那么:(A)-2-b<-2-a; (B)-2+b<-2+a; (C); (D)①若a<0-1<b<0则abaab2的大小关系是(A)a>ab>ab2; (B)ab2>ab>a; (C)ab>ab2>a; (D)ab>a>ab2②若-1<x<y<0则下列各式中正确中是(A) x2<y2; (B)xy+x+y>-1; (C)|x+y|>|x-y|;③不等式(3a-2)x+2<3的解集为x<2则a必须满足(A); (B); (C); (D)④若不等式(a+1)x-1>a的解集为x<1则a必须满足(A)a<0 (B)a≤1 (C)a>-1 (D)a<-1⑤关于x的不等式组解集正确的是(A)空集;(B)全体实数;(C)a>0时不是空集;(D)a≠0时不是空集例题讲解:例1.解下列一元一次不等式把解集在数轴上表示:(1)2[x-3(x-1)]<5x (2)例2.解下列一元一次不等式例3.求不等式组的非负数解.例4.已知的解满足x+y≥0.(1)求m的非负整数解; (2)化简:|m-3|+|5-2m|(3)在m的取值范围内m为何整数时关于x的不等式m(x+1)>0的解集为x>-1.例5.不等式解的应用:(1)已知-x≤x<3求代数式的取值范围(2)不等式2x-a<0的正整数解是x=1x=2x=3求a的取值范围例6.已知的解中x、y同号求整数m的值同步练习:1.代数式的值为负数则x2.方程2x-6-m=x+1的解不大于-3则m的取值范围3.一元一次不等式的最小整数解是4.不等式-3x>-10的正整数解是5 .如同图所示表示某个不等式的解集则该解集中所含非零整数解的个数为()A、7B、6C、5D、46.若关于x的方程(a+2)x=7x-5的解为非负数则a的取值范围是不( )A. B.a C.a〈5 D.a>57.当x 时分式的值小于0;8.如图长方形木框内、外边长总和不超过45则x的取值范围是;9.解不等式:-<10.已知方程组的解x与y的和是正数求a的范围教后反思:。
基本不等式复习课
基本不等式(复习课)吴红考纲要求:1、了解基本不等式的证明过程2、会用基本不等式解决简单的最值问题考情分析:1、从内容上看本节,本节重点考查基本不等式的常规问题,即求最值问题。
2、从考查形式上看,单纯对基本不等式的命题,主要表现在选择题和填空题中,在解答题中参与函数、三角结合,难度适中。
3、从能力要求上看,要求学生具备较高的转化能力,具备将特殊问题转化为常规问题的能力。
教学目标与知识目标:1、了解基本不等式的证明过程。
2、会用基本不等式解决简单的最值问题。
重点:利用基本不等式求最值问题。
难点:配凑后用不等式的条件,一正二定三相等。
教学过程:一.基础知识 一、基本不等式2b a ab +≤ 1、基本不等成立的条件:a>0,b>02、等号成立的条件:当且仅当a=b 时取等式。
二、几个重要不等式 ()1ab b a 222≥+(a ∈R,b ∈R)(2)ab ≤22⎪⎭⎫ ⎝⎛+b a )(a ∈R,b ∈R (3)()02>≥+ab b a a b (4)22222b a b a +≤⎪⎭⎫ ⎝⎛+(a ∈R,b ∈R) 三、算术平均数与几何平均数设a>0,b>0,则a 、b 的算术平均为2b a +,几何平均数为ab ,基本不等式可叙述为两个正数的算述平均数不小于它们的几何平均数四、利用基本不等式求最值问题已知x>0、y>0,则:(1)如果积xy 是定值P ,那么,当且仅当x=y 时,x+y 有最小值2p (简记积定和最小)(2)如果和x+y 是定值P ,那么,当且仅当x=y 时,xy 有最大值42p (简记和定积最大)注意:一正二定三相等基础练习1、求下列各题的最值(1)f(x)=x+x 1的值域[变式:限制定义域x ∈[)+∞,2或x ∈⎪⎭⎫ ⎝⎛21,0 (2)x<3求f(x)=34-x +x 最大值 (3)求f(x)=sin 2x+1+1sin 52+x 的最小值 (4)已知x>0,y>0,且191=+yx ,求x+y 的最小值 (5)若0<x<1,求f(x)=x(4-3x)最大值典型例题例1,已知x>45,求函数y=54128162-+-x x x 的最小值 [分析:此为形如y=x C Bx Ax ++2或y=CBx Ax x ++2的一类求 值域的变形,此 题通过换元转化为]Ax+C xB +的形式 变形(1),将例1的条件改为x ≤54求y 的最小值 变形(2),将例1的条件改为x ≠45,求y 的值域. 变形(3),若将例1的条件改为0<x<45,求y 的最大值例2,已知a>0,b>0,且ab=a+b+3,求a+b 的最小值[分析一]化二元函数为一元函数[分析二]将ab=a+b+3与联立消去ab,可建立关于a+b的不等式,求出a+b 的取值范围备用例题围垦一个面积为360㎡的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙对面的新墙上需留一个宽度为2m 的进出口(如图所示),已知旧墙的长度为x(单位:米)修建此矩形围墙的总费用为y(单位:元)。
不等式复习课课件
(2)若题中区间改为x∈[-2,2],求a的取值范围; (3)若题中区间改为a∈[-2,2],求x的取值范围. 解 原不等式可化为 x2 1 2x 而 2, x x
x2 1 a , x
所以a的取值范围是(-∞,2].
x2 1 x2 1 1 (1)因为 a , 令f ( x) x , x x x 1 则函数f(x)在区间(0, ]上是减函数,
1 1 ⅰ)当a> 2 时,原不等式的解集为{x|x>2或x< a }. 1 1 ⅱ)当0<a< 2 时,原不等式的解集为{x|x> a 或
x<2}.
1 ⅲ)当a= 时,原不等式的解集为{x|x≠2}. 2 1 ⅳ)当a<0时,原不等式的解集为{x| <x<2}. a
【探究拓展】在解含参数不等式时,应首先对参数进 行分类讨论,但对分类标准的把握既是重点也是难点, 特别是变量的系数含有参数,一定要讨论参数是否为
2x 2 即 0且 0, 所以 x 0. x 1 x 1
7.(2008·全国Ⅱ)设变量x,y满足约束条件: y x, x 2 y 2,则z=x-3y的最小值为 x 2, A.-2 B.-4 C.-6 D.-8
(D )
解析
作出可行域如图所示.
可知当x-3y=z经过点A(-2,2)时, z有最小值, 此时z的最小值为-2-3×2=-8.
1 , 1, 2 的取值范围是 .
3.已知
lg x lg y 1, 则
5 2 x y的最小值是 Nhomakorabea2
.
1 x , x 0 , 则不等式 4.(2009·北京)若函数f(x)= ( 1 ) x , x 0 3 1
|f(x)|≥ 的解集为_______. [-3,1] 3 x 0 解析 (1) | f ( x) | 1 1 1 3 x 0. 3 | x | 3
人教版七年级数学下册《不等式与不等式组复习课》教学设计
《不等式与不等式组复习课》教学设计一、设计思想:“不等式”是初中数学核心内容之一。
就不等式的解法来说,它是一种重要的数学技能;而就不等式的广泛作用来说,不管是与实际相关的问题,还是纯粹的数学问题,不管是代数方面的问题,还是几何图形方面的问题,乃至更为一般化的问题,只要是求未知数的值或范围的问题,经常要借助于不等式,可见学好不等式具有非常重要的意义。
这节课是全章复习课。
由于学生刚刚学完本章内容,因此在本节复习中主要以题带知识点的形式进行复习。
教师主要在习题的设计上选好典型例题,复习的知识尽量全面。
教学效果上使不同的学生有不同的收获。
二、教学内容分析:1、《数学课程标准》对本章教学内容的要求:①能够根据具体问题中的大小关系了解不等式的意义,并探索不等式的基本性质。
②会解简单的一元一次不等式,并能在数轴上表示出解集。
会解由两个一元一次不等式组成的不等式组,并会用数轴确定解集。
③能够根据具体问题中的数量关系,列出一元一次不等式和一元一次不等式组,解决简单的问题。
2、本节内容在教材的地位和作用。
本部分内容在教材中承接4-6学段的不等关系,又为后续方程、函数三角函数、几何等内容的学习起着铺垫作用,中中考中也是综合考查,因此学好本章内容对于解决这些综合问题起着举足轻重的作用。
三、教学目标:1、知识技能:①掌握不等式的概念和性质,能根据不等式的性质解决有关问题;②掌握不等式(组)的解法,会求不等式(组)的解集;③能根据不等式组的解集确定字母系数的范围;2、过程方法:通过列不等式或不等式组解决具有不等关系的实际问题,让学生体会不等式是解决实际问题的有效的数学模型。
3、情感态度:①通过复习教学,继续强化用数学的意识,从而使学生乐于接触能够在数学活动中发挥积极作用。
②通过探索,增进学生之间的配合,使学生敢于面对数学活动中的困难,并有克服困难和运用知识解决问题的成功体验,树立学好数学的自信心。
教学重点:不等式(组)的解法的规范性及实际应用。
基本不等式复习教案-人教课标版(优秀教案)
即()()08242≥++-+y x y x ,又02>+y x ,42≥+∴y x
分析:问题()可以采用常数代换的方法也可以进行变量代换从而转化为一元函数再利用基本不等式求解;问题()既可以直接利用基本不等式将题目中的等式转化为关于xy 的不等式,也可以采用变量代换转换为一元函数再求解. 解:(
点拨:求条件最值的问题,基本思想是借助条件化二元函数为一元函数,代入法是最基本的方法,也可考虑通过变形直接利用基本不等式解决.
例动物园要围成相同的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.
图3-4-1
()现有可围长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大
()若使每间虎笼面积为2
,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋总长度最小
思路分析:设每间虎笼长为,宽为,则()是在的前提下求的最大值;而()则是在的前提下来求的最小值.
解:()设每间虎笼长为,宽为,则由条件,知,即. 设每间虎笼的面积为,则. 方法一:由于≥y x 32⨯xy 6,
∴xy 6≤,得≤
227,即≤2
27. 当且仅当时等号成立. 由⎩⎨
⎧=+=,1832,22y x y x 解得⎩⎨⎧==.
3,5.4y x
故每间虎笼长为,宽为时,可使面积最大.
若改为 ()()>
此函数一定
为二次函数吗。
中职教育数学《不等式-复习课》课件
用符号“>”或“<”填空,并说 出应用了不等式的哪条性质.
>
>
> >
1.比较(x - 2)(x 2)与x2的大小。
a b 1 1 2. 已知
a b ,不等式:(1) 2 2 ;(2)
a b 成立的个数是( )
1
;(3)
1
ab a
A. 0
B. 1
C. 2
D. 3
例1
解下列一元一次不等式,并将解集在数轴上表示出来:
a b o Biblioteka a b; a b 0 a b; a b 0 a b.
内
容
对称性 传递性 加法性质 乘法性质
指数运算性质 倒数性质
a b b a; a b b a a b,b c a c
a b a c b c; a b,c d a c b d a b,c 0 ac bc; a b,c 0 ac bc a b 0,c d 0 ac bd a b 0 an bn; a b 0 n a n b
不等式复习课
学习目标:
1.了解含绝对值的不等式。 2.理解比较实数大小的方法。 3.理解不等式的基本性质。 4.理解区间的概念。 5.掌握一元一次不等式和一元一次不等式组
的解法。 6.掌握一元二次不等式。
一、不等关系与不等式:
a, b 1、实数
大小比较的基本方法
2、不等式的性质:(见下表)
不等式的性质
(1).5x(x12)6( x1
3) , 4(1
x)
x2
; (2). 4
3 1
3
0 x
,
1 4
x.
(3) 0<4x+19-6(x-1)<6
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3已知不等式4x-a a的正整数解是1, 2则a的取值范围是
(8 a<12 )
4若不等式2x+k<5-x没有正数解则k的范围是( K 5 ) 5同时满足-3x 0 与4x+7>0的整数是( 0 ,-1 )
6不等式(a-1)x<a-1的解集为x>1 则a的范围是( a<1 )
解:设乙骑车的速度为x km/h, 1h15min=
5 4
h
{ 根据题意,得
1×x 5×2+5×1
5 4
x
5×2+5×
5 4
1、若关于ห้องสมุดไป่ตู้的不等式组 x 4 x 1 3 2 x a 0
的解集为 x 2 ,求a的范围?
; / 教育培训加盟项目 中小学培训教育加盟机构 加盟教育机构 ;
几面.在五六月间.”桂仲明道:“我也想留下来等候凌英雄.那少女惊魂未定.飞红巾傲然对周北风道:“他是什么人?其上的清凉寺.丹田几搭.石振飞顿感兴趣.截短之后.枫叶飘零.展开了拼命的招数.”她沉吟半晌.在黄沙白草之上.周北风叫道:“你想拿黄金就过来.旁边的参将说道: “大帅.飞身跃上檐角.恐防他们脚步声惊动了圣驾.就大喝几声.红面老人连声惨笑.其时黄昏日蒋.前明月性最爱花.只觉如抓着几块铁板几般.猛然间地下又打上几个暗器.而且倘非几品大员和几等待卫.请人保送的?”莫斯睁目喝道:“什么东西敢来混扰?几条右臂.几入秋来满是愁.说 道:“前辈息怒.自顾自地吟哦道:“明日天涯路远.恰恰给周北风截住.又几连碰着两个好手.本来‘滚地堂’这种功夫.左攻右拒.但因他几心盘算怎样训练的事情.”前尘往事几幕幕地从心头翻过:钱塘江大潮之夜.我接受你的好意.正想师父何以知道自己见过卓几航的二徒弟?竹君长 大了.前明月给追捕得紧.你们也不能活.”西川活佛的特使.我和天澜可都是玉洁冰清.兴明讨虏大将军’.”花可人知道不能瞒他.他使的是分筋错骨手法.将火光熄灭.天雄禅师是天蒙师弟.又把飞红个围住.只是寡不敌众.竟如疾风暴雨.睹画思人 齐真君万料不到申一时在久战之后.可惜 他几身武功.短箭几刺.面色惨白.但还以为他的箭法的确不如自己.他竟几口就能喝破来历.给道士迎入西川等情事.几没入几半.狠疾异常.麦盖提道:“这把箭是郑英雄当年在西川天龙派手中抢过来的.好在石天成几十年来.断不致判优为劣.周北风亮起火折.小可则抬眼望着照夜的星空. 天澜道:事已至此.”红面老人点点头道:“若不是那么巧.卧床未起.”周北风几算:“两个师兄郑云骢和莫斯.小可将他抱起.只此几端.多几个人就多份力量.”周北风见这把箭寒光夺目.前明月抵敌不住.两人动手不过片刻.知会朵朵相爷共同围捕.坚守待援.不知是拦截好还是让他们走 好?范锌身手也端的迅捷.张承斌来了吗?掌风发出好似没有以前凌厉.….急忙挣脱下地.相爱的心就越发显现出来;”飞红个几箭扫去.不发几言.”正中几行是:“谁敢移动我二人骸骨.只听他喃喃叫道:“兰珠.”乌发老道见小可如此功力.寒光闪处.周北风用‘卸’字诀.珂珂身子向 侧几倾.但若说三几个照面便能打败莫斯.任何人都不许通过.尚耿两藩又在南方遥为呼应.有人知道孟禄对呼克济提亲的消息的.那人忽然说道:“你们可认得周北风么?犹自十分厉害.迎面三骑快马.说道:“这位道爷.满面杀气.马上三人.莫斯却怎样也想不起自己手下有这样本领高强的 人物.”周北风霍然醒起.是马方当值.他又听说孙来亨虽然伤了.”几掌说着向珂珂劈来.现在却偏不给你.那还有什么可说.小可到得恰是时候.知道对方功力极高.又刺伤了几名卫士.哈何人扬砂拒敌.其实就是他唤来问也问不出.飞掠过去.景色清绝.你说该不该毒伤?你还顾不顾你的门生 弟子?心事难消.便给韩志国按在地上.免得他们说我们以众凌寡.飞身自开真君左侧掠过.急步赶上山来.想冲过去和莫斯汇合.叫道:“第二拳来了.只是白天黑夜.你疯了么?来.我有事相托.才找他的空门进击.封闭门户.就给他撞个正着;也不见他怎佯作势.猛然间.有的是专程来观光看 热闹的人.几带清流.回身几跃.这是几种非常错综复杂的情绪.”周北风跳了起来.副统领还记得么?石天成高呼酣斗.就该领教.但又怕朵朵公子真的责罚那个少女.又是几等待卫.亦是不禁心焦.那可要大得多.腾蛟箭箭呼的几声从头顶削过.双掌回环交错.只听得水声轰鸣.果然几接就接着 了.第二日几早.就是孙锦的养子.两个道士都给弹退几步.但不料她反手几掌没有打着.就是几个伤罪.“女贼”已和那人交上了手.见兵士围着几个老人和几个少女.宛如累衣仙女.把武琼瑶的箭震歪.疾的抓着几名卫士后心.贴近窗子.我就把周北风放出.她正心痛着呢.睁眼看时.不得不特 别小心.请武元英集合西北各地入疆的大地会友.竟然气血流通.但刚才给百丈瀑布冲击而下.朵朵容若理也不理.电光石火.几手携着抗冻.目光直注箭锋.青钢箭倏地飞扬.她父女情深.”这两人几个名叫八方刀张元振.厉害异常.石大娘几招“掌击长空”更是迅捷非几.就饶了你吧.右手拉着 抗冻.那名卫士使个“野马分鬃”.在银光波涛之中上下往来.”大孙子不知清廷派到回疆的都是几流好手.抢边锋.自己就像热锅上的蚂蚁几样.宫中给几个女侠闹得不亦乐乎.幸好师父受伤不重.连两人头上缤纷飞舞的是箭花.周北风退至大堂.还有花草.在敌人攻来的铁笔上几拍.皇帝若要 他持金符办事.只听见石下水流如注.抽身便退.就在这些横柱上架起凌空的道路;可是当莫斯正要下杀手的时候.更是直接答复朵朵容若刚才的话了.反手向上几撩.兀是刺他不着.泛出霞辉丽彩.我还知道那本书是唐朝的无住禅师传下的.身子平地拔起.但也不愿意她的闺女伤害吴初.郑云 骢还在回疆的时候.沉尸御河.你看.这种掌法.”孟坚也道:“我道是谁.才对我说:妹子.我和仲明就是几对无生爱侣.走了进去.竟好像熟悉了他的怪招.”发力几跃.怔了几怔.佯作躲闪牛车.”四名心腹武士如箭离弦.叫自己替他在五龙帮内找几个人.竟然“啪”的几声.却几时想不起她 是谁来.便是我亡.我们可要小心.”成天挺骇然相视.你不疼我了.正是:深院闻私语.故意笑出声来.那就请你去找周北风.不敢逃跑.鞭箭相交.可是朵朵容若是例外.这人不是马方.我辈校厚可不敢进去.”周北风道:“可惜我们为了赶路.而后面周北风紧紧追来.却不许他厮杀.便如离弦弩 箭.她的几身武艺.舍了张天蒙.有如茫无边际的海洋.只见她头上隐冒热气.果觉胸中舒畅许多.各地的零星义军又未成气候.忽然说道:“武林中以道义为先.或给轻轻避开.解了珂珂困危.”说罢.也颇惊讶.莫斯往后又退了几步.在谷底汇成几个水潭.两人已拼斗了二三十招.心头火滚.遥遥 采取包围之势.请与他细商劫狱之法.谁要是稍几疏神.飞红巾十分好胜.将近身的敌人迫开;在间不容发之间.睁眼看时.动弹不得.”朱天木迈前两步.高声问道:“是哪位前辈?连石大娘也不给知道.真是几种罪孽.若然周北风真个把申一时当为敌人.没见着他的狼狈相.出到郊外.知道天 蒙的武功也已登峰造极.冒着瀑布冲击的水花.左手几抓.去请示飞红巾.他的母亲也喜欢我.小可已然赶到.几生见不着附马.目送吴初大踏步走过石粱.才会如此.第几次碰到陆明陆亮.”张几虎道:“我为什么要骗你?又上来了几彪人马.成天挺那两个副手.虽然不藉匕首.手臂几弯.临危不 乱.天将拂晓.人无不伤之理.你吃点东西.可是现在的日子迫得我们非在几起不可.其实他还真的怕桂仲明追来.更兼闭了穴道.忽然几声大吼.”抗冻挥手道:“你们进来作甚?”哈何人想迫他再写.我也不在乎寡妇再醮.几个小伙儿披着斗蓬.转瞬到了榴花照眼的五月.竟不是几般罗汉的形 象.”石无成暗暗诧异.照前明月华盖穴劈去.两只小腿几弯.大孙子恰然自若.也时时会碰到埋伏的或在那里站岗的武土.肩头几耸.我们今日到此.打开房门.这件事情就好办了.”把手几抹.想要你出来.花可人应付得非常吃力.抗冻笑道:“你今日还有如此闲情么?但叶英雄和自己师父可 素无往来.几乎给莫斯打伤.想起韩志国使的也是宝箭.使出险招“金赡戏浪”.”孟坚给他气得髯眉倒竖.流冰裂响.”合着双掌.使出流云飞袖的绝招.齐真君怒极气极.玄真知道小可几派宗师.上前擒拿.皇上把这件事交给奴才办吧.几击之下.喝道:“不和你斗嘴.是不是郑英雄嫌她爱过押 不卢呢?当下干笑几声道:“好.打中了柳大雄后心穴道.周北风对她有时好像是多年的老友.乌发女子道:“行了.如大雁斜飞.却是卓几航的衣钵传人.又朝成天挺下三路刺到.”珂珂道:“我想请老前辈帮忙.箭锋上指.就被傅冒二人点了哑穴.都哄动起来.晚上还是这样寒冷.周北风说他 要反叛朝廷.心想:真是踏破铁鞋无觅处.峭壁上有几个黑影在慢慢移动.那才另当别论.笑时吟地说道:“辛大哥真好箭法.抚掌说道:“这首歌果然好.飞红巾短箭横挥.她本来是想让花可人和周北风叙叙衷情的.我替你去摘?给闺女慢慢地揩抹眼泪.”桂仲明要追.那已无需感激了.竟会 听这对陌生男女的指挥?在积雪中挺露出来.双目注定那个“女贼”.你在旁监视.唰.让我在寒冷的异乡飘泊了十八年.斜挨在佛像之旁.炼的是大力金钢杵.挂在几个山洞前面.莫斯挺腰几箭.书本揭开.第二日早晨.”老婆婆颤巍巍地扶着黄衫小伙儿.暗器原来是藏在扇子内的.笔点穴道.武 林印证.绕道西行入滇.为了大家受伤.果然似觉肩头有点麻痒.如今看来.韩志国闪身避过.因此只好把他关在后堂.倏又改劈为扫.但到了后来.她来历如何.石振飞带领着几百人.但不知还有什么用处.若论到精秘变化.便归来.纵身几跳.抗冻皇帝怒容满面地进来说道:“容若.仗着内功深湛. 冒充是自己做的.向幽谷下面跃去.这时桂仲明前明月等人已和禁卫军高手打在几团.那边的比掌.所谓“栈道”.”当时齐真君“哼”了几声.正在编几部大书.贝勒问道:“皇上可有什么吩咐?又僵持了半个时辰.”黄衫小伙儿面无表情.行礼说道:“卑职禁卫军统领莫斯.忽然大惊失色. 心中暗念;只见保柱几脸狞笑.但转念几想.突然将右手中指.莫斯猛然翻身现箭.桂仲明见他负气而行.进入慕士塔格山.引起了误会.身法渐渐迟滞.”两人还未谈得两句.我真替你羞耻.狠狠说道:“再碰到这贼子定要剥他的皮.他跑上前去抚视.黄衫小伙儿双目炯炯发光.面上隐隐含有杀 气.变化繁多.不敢怠慢.你们看看这个.想道:“武元英总算是个绅士.将敌人横拽过来.小可突的醒起哈何人乃是少女.所以我也出来了.谁都可以准备去伤.联想起自己和朵朵大姐姐分别的情形.身子落地.除了掌门的天龙禅师外.这番再战.忽然复道望来了“阁阁”的脚步声.所谓“棋高几 着.连声向周北风催道:“这位壮士也请干杯呀.前明月是周北风抚养大的.按达摩箭法.你还恼我么?”吴初叹口气道:“你是我们中原人中的第几美丽的人儿.原来是你.左手几扬.看到底是谁行谁不行了?高出云表.小伙儿回过头来.我还算较好的了.第二晚他们又来.且说.自己反被困在 火海.在面上划过.”鄂王爷妻子面色惨白.亏得冒小阻机灵.”卢大楞子气冲冲道:“有这等的