电路的基本分析方法 练习题及答案第2章
电路分析试题及答案(第二章)
节点、回路、支路分析法:1、如下图所示,应用节点电压法计算。
已知U s 1=60V ,U s 2=40V ,R 1=6Ω,23456Ω,求I 1,I 2,I 3,I 4,I 5,I 6的值。
解:114432111111R U U R U R R R R s b a =-⎪⎪⎭⎫⎝⎛+++ 6246541111R U U R U R R R s a b =-⎪⎪⎭⎫ ⎝⎛++ U a =U b =24V ;I 1=6A ;I 2=2A ;I 3=4A ;I 4=0A ;I 5=4A ;I 6=-4A ;2、求下图电路的电压U.解:利用戴维南等效做,先求ab 两端开路电压:只有24V 的电压源工作时: U ‘ab =24/(6+3)=8V ; 只有4A 的电流源工作时: U ‘‘ab =4×4=16V ; U ab = U ‘ab +U ‘‘ab =24V ; 等效电阻R 0=6Ω;U= U ab /(6+2)×2=6V3、计算下图电路中的电压U 1与U 2.解:U 1=8×[4+(6//3)]/[18+4+(6//3)] ×18=36V; U 2=8×18/[18×4+(6//3)] ×3=12V .4、已知下图电路的回路方程为2I 1+I 2=4V 和4I 2=8V ,式中各电流的单位为安培。
求:(1) 各元件的参数;(2) 各电压源供出的功率;(3) 改变U s1和U s2的值,使各电阻的功率增加一倍。
解:(1)1+ R 3)I 1+R 3I 2+k U 1=Us 1 1+ R 3-k R 1)I 1+R 3I 2 =Us 1-k Us 1R 3I 1 + (R 2+ R 3)I 2+k U 1=Us 2U 1=Us 1- R 1I 1 3-k R 1) I 1+ (R 2+ R 3)I 2+k U 1=Us 2-k Us 1R 1=2Ω, R 2=3Ω, R 3=1Ω, Us 1=8V , Us 1=12V , k =0.5 (2)求解方程式,得到:I 1=1A, I 2=2A ,计算各电源功率:Us 1:P 1= Us 1 I 1=8W ; (发出) Us 2:P 2= Us 2 I 2=24W ; (发出) Ucs :Pcs= Ucs (I 1+I 2)=9W ;(吸收) (3)各电源增加2倍,则各电阻上的电流相应增加2倍,即可实现目的。
《电路分析基础》习题参考答案
《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) SOW; (2) 300 V、25V,200V、75V; (3) R=12.50, R3=1000, R4=37.5021-2 V =8.S V, V =8.S V, V =0.S V, V =-12V, V =-19V, V =21.S V U =8V, U =12.5,A mB D 'AB B CU =-27.S VDA1-3 Li=204 V, E=205 V1-4 (1) V A=lOO V ,V=99V ,V c=97V ,V0=7V ,V E=S V ,V F=l V ,U A F=99V ,U c E=92V ,U8E=94V,8U BF=98V, u cA=-3 V; (2) V c=90V, V B=92V, V A=93V, V E=-2V, V F=-6V, V G=-7V, U A F=99V, u c E=92V, U B E=94V, U BF=98V, U C A =-3 V1-5 R=806.70, 1=0.27A1-6 1=4A ,11 =llA ,l2=19A1-7 (a) U=6V, (b) U=24 V, (c) R=SO, (d) 1=23.SA1-8 (1) i6=-1A; (2) u4=10V ,u6=3 V; (3) Pl =-2W发出,P2=6W吸收,P3=16W吸收,P4=-lOW发出,PS=-7W发出,PG=-3W发出1-9 l=lA, U5=134V, R=7.801-10 S断开:UAB=-4.SV, UA0=-12V, UB0=-7.2V; S闭合:12 V, 12 V, 0 V1-12 UAB=llV / 12=0.SA / 13=4.SA / R3=2.401-13 R1 =19.88k0, R2=20 kO1-14 RPl=11.110, RP2=1000第2章习题参考答案2-1 2.40, SA2-2 (1) 4V ,2V ,1 V; (2) 40mA ,20mA ,lOmA 2-3 1.50 ,2A ,1/3A2-4 60 I 3602-5 2A, lA2-6 lA2-7 2A2-8 lOA2-9 l1=1.4A, l2=1.6A, l3=0.2A2-10 11=OA I l2=-3A I p l =OW I P2=-l8W2-11 11 =-lA, l2=-2A I E3=10V2-12 11=6A, l2=-3A I l3=3A2-13 11 =2A, l2=1A ,l3=1A ,14 =2A, l5=1A2-14 URL =30V I 11=2.SA I l2=-35A I I L =7.SA2-15 U ab=6V, 11=1.SA, 12=-lA, 13=0.SA2-16 11 =6A, l2=-3A I l3=3A2-17 1=4/SA, l2=-3/4A ,l3=2A ,14=31/20A ,l5=-11/4A12-18 1=0.SA I l2=-0.25A12-19 l=1A32-20 1=-lA52-21 (1) l=0A, U ab=O V; (2) l5=1A, U ab=llV。
电路的基本分析方法 练习题及答案第2章
第2章 电路的基本分析方法习题答案2-1 在8个灯泡串联的电路中,除4号灯不亮外其它7个灯都亮。
当把4号灯从灯座上取下后,剩下7个灯仍亮,问电路中有何故障?为什么?解:4号灯灯座短路。
如开路则所有灯泡都不亮。
2-2 额定电压相同、额定功率不等的两个白炽灯能否串联使用,那并联呢? 解:不能串联使用,因其电阻值不同,串联后分压不同,导致白炽灯无法正常工作。
在给定的电压等于额定电压的前提下,可以并联使用。
2-3 如图2-34所示,R 1=1Ω,R 2=5Ω,U =6V ,试求总电流强度I 以及电阻R 1、R 2上的电压。
图2-34 习题2-3图解:A 151621=++=R R U I=,V 551= V 111=2211=⨯==⨯=IR U IR U2-4 如图2-35所示,R 1=3Ω,R 2=6Ω,U =6V ,试求总电流I ;以及电阻R 1,R 2上的电流。
图2-35 习题2-4图解:总电阻为:Ω263632121=+⨯+=R R R R R=A 326=∴=R U I=由分流公式得:A 13633A 2363621122121=⨯++=⨯++I=R R R =I I=R R R =I2-5 电路如图2-36(a)~(f)所示,求各电路中a 、b 间的等效电阻R ab 。
(a) (b) (c)(d) (e) (f)2-36 习题2-5图解:(a) Ω4.3)6//4()2//2(ab =+=R(b) Ω2)33//()66//4ab =++(=R (c)Ω2)]6//3()6//3//[(13ab =++)(=R(d) Ω2)6//1)6//3(ab =+)(=R (e) Ω7)10//10(}6//6//]2)8//8{[(ab =++=R (f) Ω6}6//]64)4//4{[()4//4(ab =+++=R2-6 求图2-37所示电路中的电流I 和电压U 。
图2-37 习题2-6电路图解:图2-37等效变换可得:由上图可得;Ω8)816//)]}99//(6[5.7{=+++(总=RA 5.1812==总I 则根据并联电路分流作用可得:A 5.05.1)816()]99//(6[5.7)]99//(6[5.7=1=⨯++++++I则A 15.05.1=13=-=-I I I 总 I 3再次分流可得:A 75.0169999=4=⨯+++IA 25.016996=2=⨯++I所以I =0.75A ,U = U +-U - =9×I 2-8×I 1 = 9×0.25-8×0. 5=-1.75V2-7 电路如图2-38(a)~(g)所示,请用电源等效变换的方法进行化简。
《电路分析基础》第2版-习题参考答案
《电路分析基础》各章习题参考答案第1章习题参考答案1-1 (1) 50W;(2) 300 V、25V,200V、75 V;(3) R2=12.5Ω,R3=100Ω,R4=37.5Ω1-2 V A=8.5V,V m=6.5V,V B=0.5V,V C=−12V,V D=−19V,V p=−21.5V,U AB=8V,U BC=12.5,U DA=−27.5V1-3 电源(产生功率):A、B元件;负载(吸收功率):C、D元件;电路满足功率平衡条件。
1-4 (1) V A=100V,V B=99V,V C=97V,V D=7V,V E=5V,V F=1V,U AF=99V,U CE=92V,U BE=94V,U BF=98V,U CA=−3 V;(2) V C=90V,V B=92V,V A=93V,V E=−2V,V F=−6V,V G=−7V,U AF=99V,U CE=92V,U BE=94V,U BF=98V,U CA=−3 V1-5 I≈0.18A ,6度,2.7元1-6 I=4A,I1=11A,I2=19A1-7 (a) U=6V,(b) U=24 V,(c) R=5Ω,(d) I=23.5A1-8 (1) i6=−1A;(2) u4=10V,u6=3 V;(3) P1=−2W发出,P2 =6W吸收,P3 =16W吸收,P4=−10W发出,P5=−7W发出,P6=−3W发出1-9 I=1A,U S=134V,R≈7.8Ω1-10 S断开:U AB=−4.8V,U AO=−12V,U BO=−7.2V;S闭合:U AB=−12V,U AO=−12V,U BO=0V 1-11 支路3,节点2,网孔2,回路31-12 节点电流方程:(A) I1 +I3−I6=0,(B)I6−I5−I7=0,(C)I5 +I4−I3=0回路电压方程:①I6 R6+ U S5 +I5 R5−U S3 +I3 R3=0,②−I5 R5−U S5+ I7R7−U S4=0,③−I3 R3+ U S3 + U S4 + I1 R2+ I1 R1=01-13 U AB=11V,I2=0.5A,I3=4.5A,R3≈2.4Ω1-14 V A=60V,V C=140V,V D=90V,U AC=−80V,U AD=−30V,U CD=50V1-15I1=−2A,I2=3A,I3=−5A,I4=7A,I5=2A第2章习题参考答案2-1 2.4 Ω,5 A2-2 (1) 4 V,2 V,1 V;(2) 40 mA,20 mA,10 mA2-3 1.5 Ω,2 A,1/3 A2-4 6 Ω,36 Ω2-5 2 A,1 A2-6 1 A2-7 2 A2-8 1 A2-9 I1 = −1.4 A,I2 = 1.6 A,I3 = 0.2 A2-10 I1 = 0 A,I2 = −3 A,P1 = 0 W,P2 = −18 W2-11 I1 = −1 mA,I2 = −2 mA,E3 = 10 V2-12 I1 = 6 A,I2 = −3 A,I3 = 3 A2-13 I1 =2 A,I2 = 1A,I3 = 1 A,I4 =2 A,I5 = 1 A2-14 V a = 12 V ,I1 = −1 A,I2 = 2 A2-15 V a = 6 V,I1 = 1.5 A,I2 = −1 A,I3 = 0.5 A2-16 V a = 15 V,I1 = −1 A,I2 = 2 A,I3 = 3 A2-17 I1 = −1 A,I2 = 2 A2-18 I1 = 1.5 A,I2 = −1 A,I3 = 0.5 A2-19 I1 = 0.8 A,I2 = −0.75 A,I3 = 2 A,I4 = −2.75 A,I5 = 1.55 A2-20 I3 = 0.5 A2-21 U0 = 2 V,R0 = 4 Ω,I0 = 0.1 A2-22 I5 = −1 A2-23 (1) I5 = 0 A,U ab = 0 V;(2) I5 = 1 A,U ab = 11 V2-24 I L = 2 A2-25 I S =11 A,R0 = 2 Ω2-26 18 Ω,−2 Ω,12 Ω2-27 U=5 V2-28 I =1 A2-29 U=5 V2-30 I =1 A2-31 10 V,180 Ω2-32 U0 = 9 V,R0 = 6 Ω,U=15 V第3章习题参考答案3-1 50Hz,314rad/s,0.02s,141V,100V,120°3-2 200V,141.4V3-3 u=14.1sin (314t−60°) V3-4 (1) ψu1−ψu=120°;(2) ψ1=−90°,ψ2=−210°,ψu1−ψu2=120°(不变)3-5 (1)150290VU=∠︒,25020VU=︒;(2) u3ωt+45°)V,u4ωt+135°)V3-6 (1) i1=14.1 sin (ωt+72°)A;(2) u2=300 sin (ωt-60°)V3-7 错误:(1) ,(3),(4),(5)3-8 (1) R;(2) L;(3) C;(4) R3-9 i=2.82 sin (10t−30°) A,Q≈40 var3-10 u=44.9sin (314t−135°) V,Q=3.18 var3-11 (1) I=20A;(2) P=4.4kW3-12 (1)I≈1.4A, 1.430AI≈∠-︒;(3)Q≈308 var,P=0W;(4) i≈0.98 sin (628t−30°) A3-13 (1)I=9.67A,9.67150AI=∠︒,i=13.7 sin (314t+150°) A;(3)Q=2127.4 var,P=0W;(4)I C=0A3-14 (1)C =20.3μF ;(2) I L =0.25A ,I C =16A第4章 习题参考答案4-1 (a) 536.87Z =∠︒Ω,0.236.87S Y =∠-︒;(b) 45Z =-︒Ω,45S Y =︒ 4-2 Y =(0.06-j0.08) S ,R ≈16.67 Ω,X L =12.5 Ω,L ≈0.04 H 4-3 R 600V U =∠︒,L 8090V U =∠︒,S 10053.13V U =∠︒ 4-4 2036.87I =∠-︒4-545Z =︒Ω,10A I =∠︒,R 1000V U =∠︒,L 12590V U =∠︒,C 2590V U =∠-︒ 4-645S Y =︒,420V U =∠︒,R 20A I =∠︒,L 0.2290A I =∠-︒,C 1.2290A I =∠︒4-7 10245A I =∠︒,S 10090V U =∠︒ 4-8 (a) 30 V ;(b) 2.24 A 4-9 (a) 10 V ;(b) 10 A 4-10 (a) 10 V ;(b) 10 V 4-11 U =14.1 V4-12 U L1 =15 V ,U C2 =8 V ,U S =15.65 V4-13 U X1 =100 V ,U 2 =600 V ,X 1=10 Ω,X 2=20 Ω,X 3=30 Ω4-14 45Z =︒Ω,245A I =∠-︒,120A I =∠︒,2290A I =∠-︒,ab 0V U =4-15 (1)A I =,RC Z =,Z =Ω;(2)10R =Ω,C 10X =Ω 4-16 P = 774.4 W ,Q = 580.8 var ,S = 968 V·A 4-17 I 1 = 5 A ,I 2 = 4 A4-18 I 1 = 1 A ,I 2 = 2 A ,526.565A I =∠︒,26.565V A 44.72S =∠-︒⋅4-19 10Z =Ω,190A I =∠︒,R252135V U =∠︒,10W P = 4-20 ω0 =5×106 rad/s ,ρ = 1000 Ω,Q = 100,I = 2 mA ,U R =20 mV ,U L = U C = 2 V 4-21 ω0 =104 rad/s ,ρ = 100 Ω,Q = 100,U = 10 V ,I R = 1 mA ,I L = I C = 100 mA 4-22 L 1 = 1 H ,L 2 ≈ 0.33 H第5章 习题参考答案5-3 M = 35.5 mH5-4 ω01 =1000 rad/s ,ω02 =2236 rad/s 5-5 Z 1 = j31.4 Ω,Z 2 = j6.28 Ω 5-6 Z r = 3+7.5 Ω 5-7 M = 130 mH 5-8 2245A I =∠︒ 5-9 U 1 = 44.8 V5-10 M 12 = 20 mH ,I 1 = 4 A 5-11 U 2 = 220 V ,I 1 = 4 A 5-12 n = 1.95-13 N 2 = 254匝,N 3 = 72匝 5-14 n = 10,P 2 = 31.25 mW第6章 习题参考答案6-1 (1) A 相灯泡电压为零,B 、C 相各位为220V6-3 I L = I p = 4.4 A ,U p = 220 V ,U L = 380 V ,P = 2.3 kW 6-4 (2) I p = 7.62 A ,I L = 13.2 A6-5 A 、C 相各为2.2A ,B 相为3.8A 6-6 U L = 404 V6-7 A N 20247U ''=∠-︒V6-8 cos φ = 0.961,Q = 5.75 kvar 6-9 33.428.4Z =∠︒Ω6-10 (1) I p = 11.26 A ,Z = 19.53∠42.3° Ω; (2) I p = I l = 11.26 A ,P = 5.5 kW 6-11 U l = 391 V6-12 A t 53.13)A i ω=-︒B t 173.13)A i ω=-︒C t 66.87)A i ω=+︒6-13 U V = 160 V6-14 (1) 负载以三角形方式接入三相电源(2) AB 3.8215A I =-︒,BC 3.82135A I =-︒,CA 3.82105A I =︒A 3.8645A I =∠-︒,B 3.86165A I =∠-︒,C 3.8675A I =∠︒6-15 L = 110 mH ,C = 91.9 mF第7章 习题参考答案7-1 P = 240 W ,Q = 360 var 7-2 P = 10.84 W7-3 (1)() 4.7sin(100)3sin3A i t t t ωω=+︒+ (2) I ≈3.94 A ,U ≈58.84 V ,P ≈93.02 W7-4 m12π()sin(arctan )V 2MU L u t t zRωωω=+-,z =7-5 直流电源中有交流,交流电源中无直流7-6 U 1=54.3 V ,R = 1 Ω,L = 11.4 mH ;约为8%,(L ’ = 12.33 mH )7-7 使总阻抗或总导纳为实数(虚部为0)的条件为12X R R R ==7-8 19.39μF C =,275.13μF C = 7-9 L 1 = 1 H ,L 2 = 66.7 mH 7-10 C 1 = 10 μF ,C 2 = 1.25 μF第8章 习题参考答案8-6 i L (0+)=1.5mA ,u L (0+)=−15V8-7 i 1(0+)=4A ,i 2(0+)=1A ,u L (0+)=2V ,i 1(∞)=3A ,i 2(∞)=0,u L (∞)=0 8-8 i 1(0+)=75mA ,i 2(0+)=75mA ,i 3(0+)=0,u L1(0+)=0,u L2(0+)=2.25V8-9 6110C ()2e Ati t -⨯= 8-10 4L ()6e V t u t -=8-11 6110C ()10(1e )V t u t -⨯=-,6110C ()5e A t i t -⨯= *8-12 500C ()115e sin(86660)V t u t -=+︒ 8-13 10L ()12e V t u t -=,10L ()2(1e )A t i t -=- 8-14 21R S ()eV t R Cu t U -=-,3R S (3)e V u U τ-=-8-15 (1) τ=0.1s ,(2) 10C ()10e V t u t -=,(3) t =0.1s 8-16 510C ()109e V t u t -=-8-17 10L ()5e A t i t -=8-18 (a)00()1()1(2)f t t t t t =---;(b)00000()1()1()[1()1(2)]1()21()1(2)f t t t t t t t t t t t t t =------=-⨯-+- 8-19 0.50.5(1)C ()[5(1e )1()5(1e )1(-1)]V t t u t t t ---=--- 8-20 u o 为三角波,峰值为±0.05V*8-21 临界阻尼R ,欠阻尼R ,过阻尼R *8-22 12666L ()[(1e )1()(1e)1(1)2(1e)1(2)]t t ti t t t t -----=-+-----。
电路分析第二章练习题答案
电路分析第二章练习题答案电路分析是电气工程专业的一门基础课程,通过学习电路分析,可以帮助我们理解和解决电路中的各种问题。
在电路分析的学习过程中,练习题是非常重要的一环,通过解答练习题,可以巩固所学的知识,提高解决问题的能力。
本文将给出电路分析第二章练习题的答案,希望对大家的学习有所帮助。
第一题:根据题目给出的电路图,我们可以看到有一个电阻R1和一个电源V1。
根据欧姆定律,电流I1等于电压V1除以电阻R1,即I1=V1/R1。
第二题:根据题目给出的电路图,我们可以看到有一个电阻R2和一个电源V2。
根据欧姆定律,电流I2等于电压V2除以电阻R2,即I2=V2/R2。
第三题:根据题目给出的电路图,我们可以看到有一个电源V3和两个电阻R3和R4。
根据欧姆定律,电流I3等于电压V3除以电阻R3,即I3=V3/R3。
同样地,电流I4等于电压V3除以电阻R4,即I4=V3/R4。
第四题:根据题目给出的电路图,我们可以看到有一个电源V4和两个电阻R5和R6。
根据欧姆定律,电流I5等于电压V4除以电阻R5,即I5=V4/R5。
同样地,电流I6等于电压V4除以电阻R6,即I6=V4/R6。
第五题:根据题目给出的电路图,我们可以看到有一个电源V5和三个电阻R7、R8和R9。
根据欧姆定律,电流I7等于电压V5除以电阻R7,即I7=V5/R7。
同样地,电流I8等于电压V5除以电阻R8,即I8=V5/R8。
还有电流I9等于电压V5除以电阻R9,即I9=V5/R9。
通过以上的练习题,我们可以看到电路分析中的一些基本概念和计算方法。
在解答这些练习题的过程中,我们需要熟练掌握欧姆定律和串并联电路的计算方法。
同时,我们也需要注意电流的方向和电压的极性,以确保计算的准确性。
电路分析是一门需要理论和实践相结合的学科,通过解答练习题,我们可以将理论知识与实际问题相结合,提高解决问题的能力。
在学习电路分析的过程中,我们还可以借助电路模拟软件进行实验,以加深对电路的理解。
电路分析基础第二章答案.docx
2-2 (1)・求图示电路在开关K 断开和闭合两种状态下的等 效电阻R 曲解:先求开关K 断开后的等效电阻:R ah =(6 + 12)//(12 + 6)= 9Q再求开关K 闭合后的等效电阻:R lh =(6//12)+ (12//6)= 8Q2-2 (2)・求图示电路在开关K 断开和闭合两种状态下的等 效电阻R 曲解:先求开关K 断开后的等效电阻:心=4//(4 + 8)= 30再求开关K 闭合后的等效电阻:心严 4//4-2Q2-3-试求题图2—3所示电路的等效电阻解:bo180Q 300Q 1000 4000^=^1—1300Q 200Q 600Q160Q_______ ~~71300Q_____ I-----------------80Qa150Q160Qaobo_____ l -e-l ____ he-l ____ 卜3000I200011• ----------- r=J1000题图2-2(1)4Q题图2-2 (2)题图2-3 (a)(b)》a300Q_____—450Q9240QI80Qtit -------------360Q240Q心二2400〃3600 = 1440ahbo67 0bo题图2-3 (b)解:60Q20060Qbo180Q180Q240Qt ------- X24()0 360020040Q20040QE—<_Z]_I60Q200200 20Q60Q10Q600bo6003()0心=40Q2-25 (1)・求图示电路a、b两点间的等效电阻R ahO解:在图中画一条垂线,使左右两边对称,参见图中虚线所示。
显然虚线为等位线,没有电流流过,故图中电阻可去掉,其等效电阻为:R ah =[(8 + 8)//(8 + 8)]//8 = 4Q2-25 (2)・求图示电路a、b两点间的等效电阻R ah o题图2-25 (1) 解:此题与上题相同,只是其中电阻的阻值不同,但仍保持其对称性。
第2章 电路的基本分析方法
第2章 电路的基本分析方法
2.1 支路电流法 2.2 回路电流法 2.3 节点电位法 习题二
第2章 电路的基本分析方法
2.1 支路电流法
为了完成一定的电路功能,在一个实际电路中,们总 是将元件组合连接成一定的结构形式,于是就出现了上一 章所讲的支路、节点、回路和网孔。当组成电路的元件不 是很多,但又不能用串联和并联方法计算等效电阻时,这 种电路称为复杂电路。图2-1-1是一个具体的例子,该电路 有三条支路、两个节点、两个网孔,若以该电路各支路电 流为未知量计算电路时,最少要列三个方程。本节所讨论 的分析方法就是以支路电流为计算对象的分析方法,称做 支路电流法(branch current method)。
i1+1.5i3=6 3i1 - 12i2+1.5i3=0 解方程组得
i1 = 3 A,i2 = 1 A,i3 = 2 A 应用支路电流法分析电路,列方程时特别要注意电 阻上的电压与电流的参考方向认为是关联的。另外强调 一点:解方程的过程最容易出错,但这是数学问题,应 加强训练,这一点也可以利用现代化的计算工具——计 算机,应用Matlab工具软件计算非常简便。
第2章 电路的基本分析方法
解 n = 2,m = 2, b = 3,各支路电流参考方向如图所 示。根据KCL,对节点A有
i1 - i2 - i3 = 0 假定网孔回路绕行方向如图所示, 根据KVL 网孔①
us1 - i1R1 - i3R3 = 0 网孔②
μu1 - i2R2+i3R3 = 0
第2章 电路的基本分析方法 代入数据,且考虑到u1= i1R1,整理方程式,得 i1 - i2 - i3=0
第2章 电路的基本分析方法
1 0 1 1 0 0 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1
《电路分析基础》第二章电阻电路的基本分析方法练习题
第二章电阻电路的基本分析方法一、填空题学号:姓名:1、对外只有两个端纽的网络称为,其内部电路若不包含电源的称为网络。
2、若两个单口网络N1和N2具有完全相同的,则称N1和N2相互等效。
单口网络的等效是对外特性而言,并不等效。
3、串联电阻电路可起作用,并联电阻电路可起作用。
4、电阻串联电路的特点是各电阻流过的相同,电阻并联电路的特点是各电阻两端的相同。
5、串联电阻电路中,电阻值越大,电阻两端的端电压就;并联电阻电路中,电阻值越大,流过电阻的分电流就。
6、若某网络有b 条支路,n 个节点,则可以列个KCL 独立方程、个KVL 独立方程。
7、电压源u s与电阻R 的串联组合可等效变换成电流源i s与电阻R 的并联组合。
其中,变换后的电流源i s其方向为从u s的极指向极。
8、网孔分析法的待求变量是,节点分析法的待求变量是。
9、网孔方程本质上是网孔的方程,节点方程本质上是节点的方程。
10、用网孔分析法或节点分析法分析含有受控源的电路,在列写方程时,可先把受控源当做看待来列方程,最后再增加用网孔电流或节点电压表示的辅助方程即可。
二、选择题1、电路如图所示,电流i 等于()。
A 、1AB 、2AC 、3AD 、4A2、电路如图所示,电压u 等于()。
A、-2VB、2VC、-4V D 、4V3、电路如图所示,电流I 等于()。
A、1AB、2AC、3A D 、4A4、电路如图所示,电流i 等于()。
A、1AB、2AC、3A D 、4A5、电路如图所示,a、b 端的等效电阻R ab等于()。
A、4ΩB、6ΩC、8Ω D 、9Ω6、电路如图所示,a、b 端的等效电阻R ab等于()。
A、1ΩB、2ΩC、3Ω D 、4Ω7、电路如图所示,a、b 端的等效电阻R ab等于()。
A、3ΩB、4ΩC、5Ω D 、6Ω8、电路如图所示,a、b 端的等效电阻R ab等于()。
A、6ΩB、7ΩC、8Ω D 、9Ω9、电路如图所示,当开关S 打开和闭合时其单口网络的等效电阻R ab分别为()。
电工技术第二章 电路的分析方法习题解答
第二章电路的分析方法本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。
1.线性电路的基本分析方法包括支路电流法和结点电压法等。
(1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。
适用于支路较少的电路计算。
(2)结点电压法:在电路中任选一个结点作参考结点,其它结点与参考结点之间的电压称为结点电压。
以结点电压作为未知量,列写结点电压的方程,求解结点电压,然后用欧姆定理求出支路电流。
本章只讨论电路中仅有两个结点的情况,此时的结点电压法称为弥尔曼定理。
2 .线性电路的基本定理包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。
(1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。
①“除源”方法(a)电压源不作用:电压源短路即可。
(b)电流源不作用:电流源开路即可。
②叠加定理只适用于电压、电流的叠加,对功率不满足。
(2)等效电源定理包括戴维宁定理和诺顿定理。
它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。
在分析复杂电路某一支路时有重要意义。
①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。
②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。
此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。
3 .含受控源电路的分析对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。
第2章 电路的基本分析方法
第2章电路的基本分析方法一、填空题:1.有两个电阻,当它们串联起来的总电阻为10Ω,当他们并联起来的总电阻为2.4Ω。
这两个电阻的阻值分别为_4Ω____和__6Ω____。
= 1Ω。
2.下图所示的电路,A、B之间的等效电阻RAB=3Ω。
3.下图所示的电路,A、B之间的等效电阻RABA2ΩB4.下图所示电路,每个电阻的阻值均为30Ω,电路的等效电阻R=60Ω。
AB5.下图所示电路中的A、B两点间的等效电阻为 ___12KΩ________.若图中所示的电流I=6mA,则流经6K电阻的电流为__2mA_____;图中所示方向的电压U为____12V____.此6K电阻消耗的功率为__24mW_________。
AU6. 下图所示电路中,ab 两端的等效电阻为12Ω,cd 两端的等效电阻为 4Ω 。
abcd6Ω5Ω15Ω5Ω7.下图所示电路a 、b 间的等效电阻Rab 为4Ω。
8.下图所示电路中,ab 两点间的电压abU 为 10V 。
+_++_10V4V 24V a b9. 下图所示电路中,已知 U S =3V , I S = 3 A 时,支路电流I 才等于2A 。
_+Ω1ΩsI 3I10. 某二端网络为理想电压源和理想电流源并联电路,则其等效电路为理想电压源。
11.已知一个有源二端网络的开路电压为20V ,其短路电流为5A ,则该有源二端网络外接 4 Ω电阻时,负载得到的功率最大,最大功率为 25W 。
12.应用叠加定理分析线性电路时,对暂不起作用的电源的处理,电流源应看作开路,电压源应看作短路。
13.用叠加定理分析下图电路时,当电流源单独作用时的I 1= 1A ,当电压源单独作用时的I 1=1A ,当电压源、电流源共同时的I 1= 2A 。
14.下图所示的电路中,当9V 的电压源单独作用时I= 1A ,当6A 的电流源单独作用时I= -2A ,当电压源和电流源共同作用时I= -1A 。
15.如下图所示的一有源线性二端网络N ,在端口a 、b 接入电压表时读数为10V ,接入电流表时读数为5A ,则其戴维宁等效电路的参数:开路电压oc U=10 V ,等效电阻eq R =2Ω。
电工学-第二章 电路的分析方法
第二章 电路的分析方法(B 基本题)2.1.8在图2.15所示电路中,试求等效电阻R ab 及和电流I 。
已知U ab 为16V 。
解:R ab =2ΩA R U I ab ab 1212162133=×=×=2.1.12图1.19所示的是直流电动机的一种调速电阻,它由四个固定电阻串联而成。
利用几个开关的闭合或断开,可以得到多种电阻值。
设四个电阻都是1Ω,试求在下列三种情况下a ,b 两点间的电阻值:⑴S 1和S 5闭合,其他断开;⑵S 2,S 3和S 5闭合,其他断开;⑶S 1,S 3和S 4闭合,其他断开。
abR 1R 2R 3R 4S 4S 2S 3S 1S 5解:⑴R ab =3Ω⑵R ab =4/3Ω⑶R ab =1/2Ω2.3.5 在图2.26所示的电路中,求各理想电流源的端电压、功率及各电阻上消耗的功率。
I 2解: I 3 = I 2 - I 1 = 2-1=1 AU 1 = I 3 R 1 =1×20=20 VU 2 = U 1 +I 2 R 2 =20+2×10=40 VP 1 = U 1 I 1 =201×=20 WP 2 = -U 2 I 2 = 40×2 = - 80 W (发出)P R1 =202012123=×=R I WP R2 = 401022222=×=R I W2.3.7 计算图2.28中的电流I 3 。
解:把图左等效成右图R 23 = R 2 // R 3 =1 // 1 = 0.5 Ω, U S =R 4I S =1×2=2 VA 2.115.01214231S 11=+++=+++=R R R U U IA6.02.111113223=×+=+=I R R R I 2.3.8 计算图2.29中的电压U 5 。
解:把图左等效成右图R S1=R 1+R 2//R 3=0.6+6 // 4 = 3 ΩA 53151S 1S1===R U I , A 102.0244S2===R U IU 5 =(I S1+I S2)(R S1//R 5//R 4 )=(5+10)(3 // 1 // 0.2 )=V37.21945≈2.3.9 试用电压源与电流源等效变换的方法计算图2.30中2Ω电阻中的电流I 。
电路分析基础第四版课后习题第一章第二章第三章第四章答案
+ 42V
−
i1
18Ω
i2 3Ω
i3
gu
2−5
解
设网孔电流为 i1, i2 , i3 ,则 i3 = −guA = −0.1uA ,所以只要列出两个网孔方程
27i1 −18i2 = 42 −18i1 + 21i2 − 3(−0.1uA ) = 20
因 uA = 9i1 ,代入上式整理得
−15.3i1 + 21i2 = 20
⎪⎩i3 = 4A
第二章部分习题及解答
2-1 试用网孔电流法求图题所示电路中的电流 i 和电压 uab 。
4Ω
1Ω
i2
+
7V
−
i1
2Ω
i3 i
+ 3V
−
解
设网孔电流为 i1, i2 ,i3 ,列网孔方程
⎪⎨⎧3−ii11
− i2 − 2i3 = 7 + 8i2 − 3i3 = 9
⎪⎩−2i1 − 3i2 + 5i3 = −12
解得
i1 = 4.26A uA = (9× 4.26)V = 38.34V i3 = −0.1uA = −3.83A
2-8 含 CCVS 电路如图题 2-6 所示,试求受控源功率。
1Ω i3
5Ω
+
i 4Ω
+
50V i1 −
20Ω i2
15i −
2−6
解
标出网孔电流及方向,
⎧⎪⎨2−52i01i−1 +202i42i−2 −5i43 i=3
50 = −15i
⎪⎩−5i1 − 4i2 +10i3 = 0
又受控源控制量 i 与网孔电流的关系为 i = i1 − i2
电工技术(第四版高教版)思考题及习题解答:第二章 电路分析方法 席时达 编.doc
第二章电路分析方法2-1-1 图2-1中两个电路N1、N2,一个是1V的电压源,一个是1A的电流源,当接入1Ω电阻时,显然,两个电路输出的电压都是1V,电流都是1A,功率当然也是1W。
那么,能不能说这两个电路是等效的呢?[答] 只能说这两个电路对1Ω的负载等效,但它们的外特性并不相同,故不能说这两个电路是等效的。
2-1-2一只220V、40W的白炽灯与一只220V、100W的白炽灯并联接于220V的电源上,哪个亮?若串联接于220V的电源上,哪个亮?为什么?[答]一只220V、40W的白炽灯与一只220V、100W的白炽灯并联接于220V的电源上,两个灯所接的电压都符合额定电压,故都能正常工作,这时100W的灯较亮;若串联接于220V的电源上,两个灯分到的电压之和等于220V,每个都低于额定电压,故不能正常工作,这时40W的灯相对较亮,因为串联的电流相等,而40W白炽灯的电阻较大,故取用的功率也相对较大。
2-1-3通常电灯开得越多,总负载电阻越大还是越小?总负载越大还是越小?为什么?[答]通常电灯开得越多,总负载电阻越小,总负载越大。
因为通常电灯都是并联的,并联的电阻越多,其等效电阻(即总负载电阻)越小,总电流越大,消耗的总功率也越大,即总负载越大。
2-1-4 求图2-2 (a)、(b)两个电路中A、B间的等效电阻R AB。
思考题解答图2-1[答] 将图2-2重新画成如图2-3所示,即可得(a) R AB =4444+⨯Ω+8888⨯⨯Ω=2Ω+4Ω=6Ω (b) R AB =36Ω+6=8Ω2-1-5 图2-4所示各电路中的电压U或电流I是多少?[答] (a)多个相同理想电压源并联,其等效电压源的电压等于每一个理想电压源的电压。
故U=10V 。
(b) 理想电压源与非理想电压源支路并联,其等效电路就是原来的理想电压源。
故U=10V 。
(c) 多个相同理想电流源串联,其等效理想电流源的电流等于每一个理想电流源的电流。
习题02章 放大电路的基本原理和分析方法
ɺ RL=∞时, Au = 时 rbe + (1 + β ) Re
ɺ Ui
-
+ɺ Uo -
(1 + β ) Re
≈ 0.99 ≈ 0.97
ɺ RL=1.2k 时, Au =
rbe + (1 + β ) Re // RL
(1 + β ) Re // RL
26 26 = 200 + 101× ≈ 1.5k Ω ② rbe = rbb′ + (1 + β ) I EQ 2 β ( Rc // RL ) = −100 ③ Au = − 是截止失真,应减少R ④是截止失真,应减少 b rbe
习题2-14 在图 在图P2-14的电路中,设β=50,UBEQ=0.6V。 的电路中, 习题 的电路中 , 。 求静态工作点; 画出放大电路的微变等效电路; ①求静态工作点;②画出放大电路的微变等效电路; 求电压放大倍数、输入电阻和输出电阻。 ③求电压放大倍数、输入电阻和输出电阻。 +VCC 解:① VCC = I BQ Rb + U BEQ + (1 + β ) I BQ Re +12V Rb
②微变等效电路
ɺ Ui
Re 2k
+ ɺ Uo _
26 ≈ 1.63k Ω ③ rbe = 300 + (1 + β ) I EQ β ( Rc // RL ) Au = − ≈ −0.94 rbe + (1 + β ) Re
ɺ Ui
rbe
Rb
β Iɺb RL
《电路分析基础》第2章指导与解答
第2章电路的基本分析方法电路的基本分析方法贯穿了整个教材,只是在激励和响应的形式不同时,电路基本分析方法的应用形式也不同而已。
本章以欧姆定律和基尔霍夫定律为基础,寻求不同的电路分析方法,其中支路电流法是最基本的、直接应用基尔霍夫定律求解电路的方法;回路电流法和结点电压法是建立在欧姆定律和基尔霍夫定律之上的、根据电路结构特点总结出来的以减少方程式数目为目的的电路基本分析方法;叠加定理则阐明了线性电路的叠加性;戴维南定理在求解复杂网络中某一支路的电压或电流时则显得十分方便。
这些都是求解复杂电路问题的系统化方法。
本章的学习重点:●求解复杂电路的基本方法:支路电流法;●为减少方程式数目而寻求的回路电流法和结点电压法;●叠加定理及戴维南定理的理解和应用。
2.1 支路电流法1、学习指导支路电流法是以客观存在的支路电流为未知量,应用基尔霍夫定律列出与未知量个数相同的方程式,再联立求解的方法,是应用基尔霍夫定律的一种最直接的求解电路响应的方法。
学习支路电流法的关键是:要在理解独立结点和独立回路的基础上,在电路图中标示出各支路电流的参考方向及独立回路的绕行方向,正确应用KCL、KVL列写方程式联立求解。
支路电流法适用于支路数目不多的复杂电路。
2、学习检验结果解析(1)说说你对独立结点和独立回路的看法,你应用支路电流法求解电路时,根据什么原则选取独立结点和独立回路?解析:不能由其它结点电流方程(或回路电压方程)导出的结点(或回路)就是所谓的独立结点(或独立回路)。
应用支路电流法求解电路时,对于具有m条支路、n个结点的电路,独立结点较好选取,只需少取一个结点、即独立结点数是n-1个;独立回路选取的原则是其中至少有一条新的支路,独立回路数为m-n+1个,对平面电路图而言,其网孔数即等于独立回路数。
2.图2.2所示电路,有几个结点?几条支路?几个回路?几个网孔?若对该电路应用支路电流法进行求解,最少要列出几个独立的方程式?应用支路电流法,列出相应的方程式。
《电路分析教程(第三版》第二章习题与答案解析
解按等效概念,图(a)、(b)的等效电压源如题2-26解图所示。
题2-26解图
2-27(略)
2-28(略)
第3章习题解析
3-1如图示电路,试用网孔法求电压u1。
题3-1图
解在各网孔中设网孔电流i1,i2,i3,可列各网孔方程如下:
2i1–i3= 10 – 5
2i2–i3= 5
2i3–i1–i2= –2u1
(2)全电路消耗功率为多少?说明什么规律?
题2-2图
解(1)根据所标示的电流、电压的参考方向,有
P1=u1i1=9 × 1W= 9W
P2=u2(i1)=5 × (1 )W=5W
P3=u3i2=(4 ) × 2W=8W
P4=u4i3=6 × (1 )W=6W
P5=u5(i3)=10 × 1W= 10W
(2)全电路消耗的功率为
P=P1+P2+P3+P4+P5= 0
该结果表明,在电路中有的元件产生功率,有的元件消耗功率,但整个电路的功率守恒。
2-3如图示电路,(1)求图(a)中电压uAB;(2)在图(b)中,若uAB=6V,求电流i。
题2-3图
解对于图(a),由KVL,得
uAB=(8 +3 × 16 + 2 × 1)V= 7V
I5= = 0.5mA
由KCL,得
I2=I4+I5= 1.5mA
设流过2k电阻的电流为I,得
I=I1+I5= 3.5mA
由KVL,有
US2I= 3I3
解得
US= 13V
2-15对图示电路,试求uAB。
题2-15图
解由KVL,可得
uAB=( × 12 + 56)V= 5V
电路分析第二章习题答案
K解:)(6A=闭合时: 总电阻Ω=+⨯+=463632R)(5.7430301ARI===此时电流表的读数为:)(55.7326361AII=⨯=+=2-2 题2-2图示电路,当电阻R2=∞时,电压表12V;当R2=10Ω时,解:当∞=2R时可知电压表读数即是电源电压SU..12VUS=∴当Ω=102R时,电压表读数:41210101212=⨯+=+=RURRRuS(V)Ω=∴201R2-3 题2-3图示电路。
求开关K打开和闭合情况下的输入电阻R i。
解:K )(18.60//(10Ω+=∴i RK)(8//30//(10Ω==∴i R2-4 求题2-3图示电路的等效电阻R ab 、R cd 。
解:电路图可变为:)(154882.214882.2148//82.21)4040//10//(80//30)(08.1782.294082.294082.29//40)80//3040//10//(40)(4020800)(8010800)(402080020201020202010123123Ω=+⨯==+=Ω=+⨯==+=Ω==Ω==Ω==⨯+⨯+⨯=cdab R R R R R 2-5 求题2-5图示电路的等效电阻 R ab 。
题2-59ΩΩΩ解:(a)图等效为:)(73.35687)25//(8Ω==⨯=+=∴ab R (b))(96325150Ω=+=+=∴ab R(c)图等效为:ΩΩ注意到10电阻可断去)(67.127147148)25//()410(8Ω=+⨯+=+++=∴ab R(d)图等效为:181818912+⨯=R)(2272//)36//1436//54()(722)(3612311223Ω=+=Ω==Ω==ab R R R R R2-6 题2-6图示电路中各电阻的阻值相等,均为R ,求等效R ab .(b)(a)解:e 、f 、g 电位点,所以 (a)图等效为:)]//()(//[)(R R R R R R R R R R R ab +++++++=R R R R R R R 45310//2]4//22//[2==+=(b)图等效为:])//()(//[)//()(R R R R R R R R R R R ab ++++++=RRR R R R R R R R 75.0433//)2//22//(2//22===+=2-7 化简题2-7图示各电路.245V 1028-836-解: (注:与电流源串联的元件略去,与电压源并联的元件略去)(a)图等效为:234-(b)图等效为:15-(d)图等效为:76-(e)图等效为:872- (f)图等效为:226V-2-8 用电源等效变换法求题2-8图示电路中负载R L 上的电压U .+ -14-2解:电路等效为:+ -7U+ -55-U+ -15-U+ -5+ -13+ -U+ -2.5)(3105.725.22V U =⨯+=2-9 题2-9图示电路.用电源等效变换法求电流i .3解:31A1A 55-)(412051055105A i -=-=++-=∴2-10 若题2-10图示电路中电流i 为1.5A,问电阻R 的值是多少?6-题2-10图解:流过R 的电流为i R =i -2=1.5-2= -0.5(A ),再利用电源等效变换,原电路等效为:21R其中3Ω//4Ω=Ω712,i ’=-1+0.5= -0.5(A ),)(712Ω=∴R 2-11 化简题2-11图示电路.12-u S-图解:(a)图等效为:4ba48-2a8-4ba2ba224-iab2 ab-11 ab(b)图:设端口电流为i ,则01=++i gu R u x x i gR R u x 111+-=∴ 原电路变为:aa1112111)1(gR R gR gR R +=+-+2-12 求题2-12图示电路中电流源和电压源提供的功率分别是多少?2Ω解:电流源发出功率为)(20102w P =⨯=原图可变为:ΩΩ2A2.21Ω2A)(21.221.11)9141142//(9141)2//76//221//(7//21)(7),(221),(73323233231312Ω=+=++=++=∴Ω=Ω=Ω=⨯+⨯+⨯=总R R R R)(32.452w R U P ==∴总总∴电压源发出的功率P =45.32-20=25.32(w ) 2-13 求题2-13图示电路a 、b 端的等效电阻R ab .Ω解:原电路等效为:1ΩΩ0.5ΩΩ)(35.22047)67//21(2Ω==+=∴ab R。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章 电路的基本分析方法
习题答案
2-1 在8个灯泡串联的电路中,除4号灯不亮外其它7个灯都亮。
当把4号灯从灯座上取下后,剩下7个灯仍亮,问电路中有何故障?为什么?
解:4号灯灯座短路。
如开路则所有灯泡都不亮。
2-2 额定电压相同、额定功率不等的两个白炽灯能否串联使用,那并联呢? 解:不能串联使用,因其电阻值不同,串联后分压不同,导致白炽灯无法正常工作。
在给定的电压等于额定电压的前提下,可以并联使用。
2-3 如图2-34所示,R 1=1Ω,R 2=5Ω,U =6V ,试求总电流强度I 以及电阻R 1、R 2上的电压。
图2-34 习题2-3图
解:A 15
16
21=++=R R U I=,
V 551= V 111=2211=⨯==⨯=IR U IR U
2-4 如图2-35所示,R 1=3Ω,R 2=6Ω,U =6V ,试求总电流I ;以及电阻R 1,R 2上的电流。
图2-35 习题2-4图
解:总电阻为:Ω263632121=+⨯+=R R R R R=
A 32
6
=∴=R U I=
由分流公式得:A 136
33
A 2363621122121=⨯++=⨯++I=R R R =I I=R R R =
I
2-5 电路如图2-36(a)~(f)所示,求各电路中a 、b 间的等效电阻R ab 。
(a) (b) (c)
(d) (e) (f)
2-36 习题2-5图
解:(a) Ω4.3)6//4()2//2(ab =+=R
(b) Ω2)33//()66//
4ab =++(=R (c)
Ω2)]6//3()6//3//[(13ab =++)(=R
(d) Ω2)6//1
)6//3(ab =+)(=R (e) Ω7)10//10(}6//6//]2)8//8{[(ab =++=R (f) Ω6}6//]64)4//4{[()4//4(ab =+++=R
2-6 求图2-37所示电路中的电流I 和电压U 。
图2-37 习题2-6电路图
解:图2-37等效变换可得:
由上图可得;
Ω8)816//)]}99//(6[5.7{=+++(总=R
A 5.18
12
=
=
总I 则根据并联电路分流作用可得:
A 5.05.1)
816(
)]99//(6[5.7)]
99//(6[5.7=
1=⨯++++++I
则A 15.05.1=13=-=-I I I 总 I 3再次分流可得:
A 75.016
999
9=
4=⨯++
+I
A 25.016
996
=
2=⨯
++I
所以I =0.75A ,U = U +-U - =9×I 2-8×I 1 = 9×0.25-8×0. 5=-1.75V
2-7 电路如图2-38(a)~(g)所示,请用电源等效变换的方法进行化简。
解:(a)图
Ω431= V 275=0S =+-=-R U (b )图:
与理想电流源串联的元器件,对外等效时都可以忽略不计。
(c )图:
Ω26//3= A 224=0S ==-R I
A
(d)图:
(e)图:
(f)图:
(g)图:
2-8 图2-39所示电路中U1=27V,U2=13.5V,R1=1Ω,R2=3Ω,R3=6Ω,请用支路电流法求解各支路电流。
图2-39 习题2-8图
解:选定各支路的电流I1、I2和I3的参考方向如图2-39所示;有两个结点A、B,任选其中一个结点,由KCL定律列出结点电流方程(选A结点)
I1 + I2+ I3 = 0 (1)
根据KVL定律,列出网孔电压方程,各个回路的绕行方向如图所示:
对于回路①I1R1 - I3R3 ‒U1 = 0
代入数据得I1 - 6I3 ‒ 27 = 0 (2)
对于回路②I2R2 ‒I3R3 ‒U2 = 0
代入数据3I2 ‒ 6I3 ‒13.5= 0 (3)
将(1)、(2)、(3)式联立解得
I1=6A,I2= ‒2.5A,I3= ‒3.5A
2-9 如图2-40所示,U S=10V,I S=3A,R1=R2=2Ω,R3=4Ω,根据图示电流、电压的参考方向,回路(回路电流)绕行方向,计算支路的电流I1、I2及R1、R3电阻上的电压U1、U3。
图2-40 习题2-9图
解:由KCL 定律列出结点电流方程
I 1 ‒ I 2‒ I S = 0 (1)
因网孔Ⅱ含有电流源支路,故只需对网孔Ⅰ列出网孔电压方程: 对于网孔Ⅰ: I 1R 1 + I 2R 2 ‒U S = 0 代入数据得 2I 1 + 2I 2 ‒ 10 = 0 (2) 将(1)、(2)式联立解得
I 1=4A , I 2= 1A
由欧姆定律可得:
2V 1-43--= V 824=3S 3111=⨯==⨯=R I U R I U
2-10 根据图2-41中所给的电路参数计算I 1、I 2的大小,并指出电流的实际方向,说明U S
与I S 发出或吸收功率的情况。
图2-41 习题2-10图
解:对于上边结点得 I 1 - I 2+ I s = 0
代入数据得 I 1 - I 2+ 2= 0 (1)
由于2个网孔共用的支路中含有电流源,则另选大回路③列回路电压方程,选择顺时针绕行方向,得:I 1R 1+I 2R 3‒U s = 0
代入数据得 10I 1+5I 2‒6=0 (2) 将(1)、(2)式联立解得:I 1= ‒4/15A ,I 2= 26/15A 。
W 3
1
-492)5152628-()-(=W 5
8
)154-
(6--=S 32S 21S S S =⨯⨯+
⨯=+=⨯=I R I I R P I U P I U
2-11 用网孔电流法求图2-42所示电路中的电流I x。
图2-42 习题2-11图
解:根据上图所示,可列网孔电流方程如下:
(8+4)I1-4I2-100=0
(4+2+3)I2-4I1-3I3=0
(3+15)I3-3I2+80=0
联立方程求解可得:I X = I2 = 2.79A
2-12 用网孔电流法求图2-43所示电路中的电流I1、I2。
图2-43 习题2-12图
解:由上图所示,两网孔公共支路含电流源,故针对大回路和右边网孔列回路电流方程如下:
I B =-6A
(4+9+6+1)I A+(6+9)I B -90-20=0
联立方程求解可得:I A= 10A
则:I1=-I A=-10A,I2= I A+I B=10+(-6)=4A
2-13 用节点电位法求图2-44所示电路中各支路电流和理想电流源上的端电压。
图2-44 习题2-13图
解:根据节点a 列些结点电位方程如下:
20
40
2)301201(
a +=+V 可得:V a = 48V 则:I 1= -(48-40)/20= -0.4A ,I 2= I s = 2A ,I 1= 48/30= 1.6A
U = 48+50×2=148V
2-14 根据图2-45所示电路及电路参数,用节点电位法计算支路电流I 1、I 2的大小及U S1提供的功率。
图2-45 习题2-14图
解:针对图2-45上面节点a 列写结点电位方程:
20
5510)10120151(+=++a V 可得: A 745=a
V 则:,,A 14
9
10/745A 755/)10745(
21===--=I I P U S1=-U S1I 1=-10×5/7=-50/7W
2-15 用节点电压法求如图2-46所示电路中的电压U o 。
图2-46 习题2-15图
解:由图2-46可得:
V a =40V
对结点b 、c 列节点电位方程可得:
108
40
10)40181101(05
40
10)10150151(b c c =--++=--++V V V V b
联立方程求解可得:V b =250/7V
则:U o =V b – V a =150/7-40=-30/7V 。