物理光学课后习题答案-汇总
郁道银 工程光学-物理光学答案整理
![郁道银 工程光学-物理光学答案整理](https://img.taocdn.com/s3/m/9bcb78c0da38376baf1faebd.png)
第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。
(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。
解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。
3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。
物理光学课后答案叶玉堂
![物理光学课后答案叶玉堂](https://img.taocdn.com/s3/m/bcb59232cc17552707220884.png)
王伟整理
1
光学教程第二版 叶玉堂 第二部分 物理光学课后习题答案
(2) Ex E0 cos(t kz) , E y E0 cos(t kz / 4)
(3) Ex E0 sin(t kz) , Ex E0 sin(t kz)
解:(1)∵ Ex
E0
sin(t
kz)
E0
cos(t
kz ) 2
2) 2)
rs
sin( 2 sin( 2
1 ) 1)
sin(1 sin(1
2) 2)
rs
(2) rp
tan(1 tan(1
2) 2)
rp
tan( 2 tan( 2
1 ) 1)
tan(1 tan(1
2) 2)
rp
(3) ts
2 sin 2 cos1 sin(1 2 )
t s
2 sin1 sin(1
1 )
s in 1 s in 2
c os 2 cos1
4sin 2 2 cos2 1 sin 2 (2 1) cos2 (2
1 )
n2 cos2
4sin 2 2 cos2 1
n1 cos1 sin 2 (2 1) cos2 (2 1)
Tp
王伟整理
3
光学教程第二版 叶玉堂 第二部分 物理光学课后习题答案
n1,光纤包层的折射率为 n2,并且 n1 >n2。(1)证明入射光
的最大孔径角 2u 满足:sin u n12 n22 ;(2)若 n1 1.62 ,
u u
n2 1.52 ,最大孔径角为多少?
n2
c
n1
解:(1)如图,为保证光线在光纤内的入射角大于临界角,必须使入射到光纤端面的光线
大学物理光学习题附答案
![大学物理光学习题附答案](https://img.taocdn.com/s3/m/b168179b856a561252d36fc7.png)
[
]
33.5649:在如图所示的夫琅禾费衍射装置中,将单缝宽
度 a 稍稍变窄,同时使会聚透镜 L 沿 y 轴正方向作微小平移(单缝与
屏幕位置不动),则屏幕 C 上的中央衍射条纹将
(A) 变宽,同时向上移动
(B) 变宽,同时向下移动
(C) 变宽,不移动
(D)
变窄,同时向上移动
(E) 变窄,不移动
[
]
34.5650:在如图所示的单缝夫琅禾费衍射装置中,设中央明
的部分
(A) 凸起,且高度为 / 4
(B) 凸起,且高度为 / 2
(C) 凹陷,且深度为 / 2
(D) 凹陷,且深度为 / 4 [
]
平玻璃
空气劈尖
工件
O
n=1.68
n=1.60 n=1.58
O
3507 图
14.3507:如图所示,平板玻璃和凸透镜构成牛顿环装置,全 部浸入 n=1.60 的液体中,凸透镜可沿 OO 移动,用波长=500 nm(1nm=109m)的单色光垂直入射。 从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃 的距离最少是
(C) 向棱边方向平移,条纹间隔不变
(D) 向远离棱边的方向平移,条纹间隔不变
(E)
向远离棱边的方向平移,条纹间隔变小
[
]
19.5326:两块平玻璃构成空气劈形膜,左边为棱边,用单色
平行光垂直入射。若上面的平玻璃以棱边为轴,沿逆时针方向作微
小转动,则干涉条纹的
(A) 间隔变小,并向棱边方向平移
(B) 间隔变大,并向远离棱边方向平移
一、选择题 1.3165:在相同的时间内,一束波长为的单色光在空气中和
在玻璃中
物理光学1章 光的电磁理论及课后习题答案
![物理光学1章 光的电磁理论及课后习题答案](https://img.taocdn.com/s3/m/69260530f56527d3240c844769eae009591ba25e.png)
时间无限延续,空间无限延伸的波动
平面电磁波的时间周期性和空间周期性 v T
参量 周期 频率 角频率
时间 T
1
T
2
空间
1
k 2
平面波传播速度随介质而异;时间频率与介质无关; 而空间频率波长随介质而异
平面简谐波 = 单色波
最显著的特点是:时间周期性和空间周期性: 1、单色光波是一种时间无限延续、空间无限延伸 的波动。 2、从光与物质的作用来看,磁场远比电场为弱。 所以通常把电矢量E称为光矢量,把E的振动称为 光振动。
x0 x y0 y z0 z
散度:矢量函数
F
(M)在坐标轴上的投影为P、Q、R,它的
散度是一个标量函数,定义为微分算符与矢量F的数量
积, 记作:
F (x0 x y0 y z0 z ) (Px0 Qy0 Rz0 )
(P Q R ) x y z
E~2*
Aeik r
波函数互为共轭复数
六、平面电磁波的性质
❖ 1、电磁波是横波
k • E 0 k •B 0
❖ 2、E、H 相互垂直
B k0 E
❖ 3、E、B 同相
E
1
v
B
1.3 球面波和柱面波
一、球面波 1、波函数:
1 2E 1 2E 0
r r 2 2 t 2
点光源,发出以0点为中心的球面,即波阵面是球面,这种
五、平面简谐波的复振幅
E Aexp(ik r ) exp(it)
~
波函数 =
空间位相
时间位相
复振幅:E Aexp(ik r ) 场振动的振幅和位相随空
间的变化。
时间位相:场振幅随时间变化。由于在空间各处随时
物理光学课后习题答案-汇总
![物理光学课后习题答案-汇总](https://img.taocdn.com/s3/m/4871e214941ea76e59fa0471.png)
,
两式相减,可得 ,利用折射定律和小角度近似,得 ,( 为平行平板周围介质的折射率)
对于中心点,上下表面两支反射光线的光程差为 。因此,视场中心是暗点。由上式,得 ,因此,有12条暗环,11条亮环。
解:由题意,得,波列长度 ,
由公式 ,
又由公式 ,所以频率宽度
。
某种激光的频宽 Hz,问这种激光的波列长度是多少?
解:由相干长度 ,所以波列长度 。
第二章光的干涉及其应用
在与一平行光束垂直的方向上插入一透明薄片,其厚度 ,若光波波长为500nm,试计算插入玻璃片前后光束光程和相位的变化。
解:由时间相干性的附加光程差公式
,所以
。
杨氏干涉实验中,若波长 =600nm,在观察屏上形成暗条纹的角宽度为 ,(1)试求杨氏干涉中二缝间的距离(2)若其中一个狭缝通过的能量是另一个的4倍,试求干涉条纹的对比度
解:角宽度为 ,
所以条纹间距 。
由题意,得 ,所以干涉对比度
若双狭缝间距为,以单色光平行照射狭缝时,在距双缝远的屏上,第5级暗条纹中心离中央极大中间的间隔为,问所用的光源波长为多少是何种器件的光源
解:由公式 ,所以
= 。
此光源为氦氖激光器。
在杨氏干涉实验中,照明两小孔的光源是一个直径为2mm的圆形光源。光源发光的波长为500nm,它到小孔的距离为。问两小孔可以发生干涉的最大距离是多少?
解:因为是圆形光源,由公式 ,
则 。
月球到地球表面的距离约为 km,月球的直径为3477km,若把月球看作光源,光波长取500nm,试计算地球表面上的相干面积。
(完整版)物理光学-第一章习题与答案
![(完整版)物理光学-第一章习题与答案](https://img.taocdn.com/s3/m/93763c340029bd64793e2c3f.png)
物理光学习题 第一章 波动光学通论一、填空题(每空2分)1、.一光波在介电常数为ε,磁导率为μ的介质中传播,则光波的速度v= 。
【εμ1=v 】2、一束自然光以 入射到介质的分界面上,反射光只有S 波方向有振动。
【布儒斯特角】3、一个平面电磁波波振动表示为 E x =E z =0, E y =cos[⎪⎭⎫⎝⎛-⨯t c x 13102π], 则电磁波的传播方向 。
电矢量的振动方向 【x 轴方向 y 轴方向】4、在光的电磁理论中,S 波和P 波的偏振态为 ,S 波的振动方向为 , 【线偏振光波 S 波的振动方向垂直于入射面】5、一束光强为I 0的自然光垂直穿过两个偏振片,两个偏振片的透振方向夹角为45°,则通过两偏振片后的光强为 。
【I 0/4】6、真空中波长为λ0、光速为c 的光波,进入折射率为n 的介质时,光波的时间频率和波长分别为 和 。
【c/λ0 λ0 /n 】7、证明光驻波的存在的维纳实验同时还证明了在感光作用中起主要作用是 。
【电场E 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足 条件时,合成波为线偏振光波。
【0 或Π】9、会聚球面波的函数表达式 。
【ikre rA r E -)(=】 10、一束光波正入射到折射率为1.5的玻璃的表面,则S 波的反射系数为 ,P 波透射系数: 。
【-0.2 0.2 】11、一束自然光垂直入射到两透光轴夹角为θ的偏振片P 1和P 2上,P 1在前,P 2在后,旋转P 2一周,出现 次消光,且消光位置的θ为 。
【2 Π/2】12、当光波从光疏介质入射到光密介质时,正入射的反射光波 半波损失。
(填有或者无) 【有】13、对于部分偏振光分析时,偏振度计算公式为 。
(利用正交模型表示) 【xy x y I I I I P +-=】二、选择题(每题2分)1.当光波从光密介质入射到光疏介质时,入射角为θ1,布儒斯特角为θB ,临界角为θC ,下列正确的是 ( )A .0<θ1<θB , S 分量的反射系数r S 有π位相突变 B .0<θ1<θB , P 分量的反射系数r P 有π位相突变C .θB <θ1<θC , S 分量的反射系数r S 有π位相突变D .θB <θ1<θC , P 分量的反射系数r P 有π位相突变 【B 】2.下面哪种情况产生驻波 ( ) A .两个频率相同,振动方向相同,传播方向相同的单色光波叠加 B .两个频率相同,振动方向互相垂直,传播方向相反的单色光波叠加 C .两个频率相同,振动方向相同,传播方向相反的单色光波叠加 D .两个频率相同,振动方向互相垂直,传播方向相同的单色光波叠加 【C 】3.平面电磁波的传播方向为k ,电矢量为E ,磁矢量为B, 三者之间的关系下列描述正确的是 ( ) A .k 垂直于E , k 平行于B B .E 垂直于B , E 平行于k C .k 垂直于E , B 垂直于k D .以上描述都不对 【C 】4、由两个正交分量]cos[0wt kz A x E x -= 和]87cos[0π+-=wt kz A y E y表示的光波,其偏振态是( )A 线偏振光B 右旋圆偏振光C 左旋圆偏振光D 右旋椭圆偏振光 【D 】5、一列光波的复振幅表示为ikre rA r E =)(形式,这是一列( )波 A 发散球面波 B 会聚球面波 C 平面波 D 柱面波 【A 】6、两列频率相同、振动方向相同、传播方向相同的光波叠加会出现现象( ) A 驻波现象 B 光学拍现象 C 干涉现象 D 偏振现象 【C 】7、光波的能流密度S 正比于( )A E 或HB E 2或H 2C E 2,和H 无关D H 2,和E 无关 【B 】8、频率相同,振动方向互相垂直两列光波叠加,相位差满足( )条件时,合成波为二、四象限线偏振光波。
物理光学教程答案
![物理光学教程答案](https://img.taocdn.com/s3/m/a53fba4c852458fb770b56e8.png)
Vϕ = −3 × 10 8 m / s
沿-z 方向传播
1.7
⎡ 2π ⎤ E ob = a1 cos ⎢ (z − V1t )⎥ ⎣λ ⎦ ⎡ 2πV1 ⎤ (z − 3) − 2π V1t + 6π ⎥ Ebc = a 2 cos ⎢ λ1 λ1 ⎦ ⎣ λ1V2
1.8
E 0 = a1
Eb − = a1 cos
3
第三章
3.1.
⎡ ⎛ π ⎞⎤ E = 6 sin (kz ) exp ⎢− j ⎜ ωt + ⎟⎥ 2 ⎠⎦ ⎣ ⎝
这是振幅为 6 的驻波,波腹位置: kz = mπ + π
2
;波节位置: kz = mπ
3.2 (1) 因 p 处是磁场的波腹位置,或电场的波节位置,说明光化学作用是由电场 E 产生. (2)
2
4.6 提示: 导出衍射强度分布 I (x ) = I (0 )sin c ⎢a⎜ ⎜ 4.7 入射光倾斜角 β 反射衍射发散角 ∆θ r (单位:rad) 折射衍射发散角 ∆θ t (单位:rad) (1) 提示: I ( x ) 的极值条件为 tan⎜ ⎜ (2) 4.9 4.10 (略) 提示:
n = 1.5385
1.24
π⎞ ⎛ E x = 20 cos⎜ 2 × 10 3 πz − 6 × 1011 πt + ⎟ 2⎠ ⎝ By =
2 π⎞ ⎛ × 10 −7 cos⎜ 2 × 10 3 π z − 6 × 1011 π t + ⎟ 3 2⎠ ⎝
1.25 1.26
E = 951 V / m N = 167 w
αe > α g
左暗右亮,
(2) α e = 3.08 × 10
物理光学与应用光学第二版课件及课后习题答案
![物理光学与应用光学第二版课件及课后习题答案](https://img.taocdn.com/s3/m/65cdd8dcb14e852458fb572d.png)
公式(1-6)表示电位移矢量是由正电荷所在点向外 发散或向负电荷所在处汇聚. 公式(1-7)表示磁场是无源场. D H J (1-8) t 公式(1-8)说明环形磁场可由传导电流产生,也可由 位移电流产生.
3.物质方程
麦克斯韦方程组中涉及的函数有E,D,B,H,和J, 等除以上等式外,它们之间还有一些与电磁场所在媒 质的性质有关的联系,称为物质方程
很强时,光与介质的相互作用过程会表现出非 线性光学特性。
麦克斯韦(J.C.Maxwell)简介 (1831--1879)
一、生平
在法拉第发现电磁感应定律那一年,即1831年,麦 克斯韦在英国的爱丁堡出生了。他从小聪明好问。父亲 是个机械设计师,很赏识自己儿子的才华,常带他去听 爱丁堡皇家学会的科学讲座。十岁时送他到爱丁堡中学。 在中学阶段,他就显示出了在数学和物理方面的才能, 十五岁那年就写了一篇关于卵形线作图法的论文,被刊 登在《爱丁堡皇家学会学报》上。1847年,十六岁的麦 克斯韦考入爱丁堡大学。 1850年又转入剑桥大学。
。
旋度:
E
是“矢量积”
一个矢量场在某点的旋度描述了场在该点周围的 旋转情况。 旋度的计算: i j k Ez E y Ex Ez E y Ex E y z i z x j x y k x y z Ex E y Ez
D H j t
符号的意义:
哈密顿算符:
i j k x y z
具有矢量和求导的双重功能 Dx Dy Dz 散度: D D
x y z
是“标量积”
一个矢量在某点的散度表征了该点“产生”或 “吸收”这种场的能力(即矢量从该点发散或会聚与 该点的性质)若一个点的散度为零则该点不是场的起 止点. E 称为E 的散度,空间某点的散度描述了 E矢量 从该点发散或会聚与该点的性质.
大学物理-游璞-于国萍-光学-课后习题-答案
![大学物理-游璞-于国萍-光学-课后习题-答案](https://img.taocdn.com/s3/m/9228df7af11dc281e53a580216fc700aba68524d.png)
第一章 习题
1.2 解:从图中可以看出: i2=i1+q
激光器
i2+q=i1+a
∴a=2q
又
tana = 5
50
a=5.71o ∴ q=2.86o
i2 q
q
i1 i1
i2
O
a
50cm
A 5cm
B
用途:平面镜微小的角度改变,转化为屏幕上可测量的长度改 变。力学中钢丝杨氏模量的测量、液体表面张力的测量等。
)2
=
( n1 n1
− +
n2 n2
)2
=
0.04
Rp
=
rp 2
=
( n1 cos i1 n1 cos i1
− n2 + n2
cos i2 cos i2
)2
=
( n2 n2
− n1 )2 + n1
=
0.03
3.4 解:(1)不加树脂胶时,两个透镜之间有空气,所以当自然光正入射
时,在第一个透镜与空气的分界面I上,
R2 + f 2 = nz + x2 + y2 + ( f − z)2 (n2 −1)z2 − z(n R2 + f 2 − f )z − (x2 + y2 ) = −R2
1.11 证明 n' − n = n' − n p' p r
1 +1 =2 p' p r
f = f= r 2
1.13 解:
f '=
Ey
=
A cos[ (t
−
z) c
物理-光学习题附答案
![物理-光学习题附答案](https://img.taocdn.com/s3/m/a056bd89011ca300a7c39043.png)
物理-光学习题附答案(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--一、 选择题1、在相同时间内,一束波长为λ的单色光在空中和在玻璃中,正确的是[ ]A 、 传播的路程相等,走过的光程相等;B 、 传播的路程相等,走过的光程不相等;C 、 传播的路程不相等,走过的光程相等;D 、传播的路程不相等,走过的光程不相等。
2. 如图所示,平行单色光垂直照射到薄膜上,经上下两表面反射的两束光发生干涉,若薄膜的厚度为e ,并且n1<n2>n3,λ为入射光在真空中的波长,则两束反射光在相遇点的相位差为 [ ]A .λπe n 22 ; B. πλπ+e n 22 ;C .πλπ+e n 24; D. 2/42πλπ+e n 。
3. 在双缝干涉实验中,屏幕E 上的P 点是明条纹。
若将2S 缝盖住,并在21S S 连线的垂直平分面处放一反射镜M ,如图所示,则此时 [ ]A .P 点处仍为明条纹;B. P 点处为暗条纹;C .不能确定P 点处是明条纹还是暗条纹;D. 无干涉条纹。
4、用白光源进行双缝实验,若用一纯红色的滤光片遮盖一条缝,用一个纯蓝色的滤光片遮盖另一条缝,则 [ ]A .干涉条纹的宽度将发生变化;3n2n 1nB. 产生红光和蓝光的两套彩色干涉条纹;C.干涉条纹的位置和宽度、亮度均发生变化;D.不发生干涉条纹。
5、有下列说法:其中正确的是[]A、从一个单色光源所发射的同一波面上任意选取的两点光源均为相干光源;B、从同一单色光源所发射的任意两束光,可视为两相干光束;C、只要是频率相同的两独立光源都可视为相干光源;D、两相干光源发出的光波在空间任意位置相遇都会产生干涉现象。
6、真空中波长为λ的单色光,在折射率为n的均匀透明媒质中,从A点沿某一路径到B点,路径的长度为 L, A、B两点光振动位相差记为Δφ,则[](A) L =3λ/(2n),Δφ = 3π; ( B ) L = 3λ/(2n),Δφ = 3nπ;(C) L = 3nλ/2 , Δφ = 3π; ( D ) L = 3nλ/2 ,Δφ = 3nπ。
大学物理课后习题及答案 第13章
![大学物理课后习题及答案 第13章](https://img.taocdn.com/s3/m/a15d4bd2ad51f01dc281f142.png)
第13章 光学一 选择题*13-1 在水中的鱼看来,水面上和岸上的所有景物,都出现在一倒立圆锥里,其顶角为( )(A)48.8(B)41.2(C)97.6(D)82.4解:选(C)。
利用折射定律,当入射角为1=90i 时,由折射定律1122sin sin n i n i = ,其中空气折射率11n =,水折射率2 1.33n =,代入数据,得折射角2=48.8i ,因此倒立圆锥顶角为22=97.6i 。
*13-2 一远视眼的近点在1 m 处,要看清楚眼前10 cm 处的物体,应配戴的眼镜是( )(A)焦距为10 cm 的凸透镜 (B)焦距为10 cm 的凹透镜 (C)焦距为11 cm 的凸透镜 (D)焦距为11 cm 的凹透镜解:选(C)。
利用公式111's s f+=,根据教材上约定的正负号法则,'1m s =-,0.1m s =,代入得焦距0.11m =11cm f =,因为0f >,所以为凸透镜。
13-3 在双缝干涉实验中,若单色光源S 到两缝S 1、S 2距离相等,则观察屏上中央明纹位于图中O 处,现将光源S 向下移动到图13-3中的S ′位置,则[ ] (A) 中央明纹向上移动,且条纹间距增大(B) 中央明纹向上移动,且条纹间距不变(C) 中央明纹向下移动,且条纹间距增大 (D) 中央明纹向下移动,且条纹间距不变解:选(B)。
光源S 由两缝S 1、S 2到O 处的光程差为零,对应中央明纹;当习题13-3图向下移动至S ′时,S ′到S 1的光程增加,S ′到S 2的光程减少,为了保持光程差为零,S 1到屏的光程要减少,S 2到屏的光程要增加,即中央明纹对应位置要向上移动;条纹间距dD x λ=∆,由于波长λ、双缝间距d 和双缝所在平面到屏幕的距离D 都不变,所以条纹间距不变。
13-4 用平行单色光垂直照射在单缝上时,可观察夫琅禾费衍射。
若屏上点P 处为第二级暗纹,则相应的单缝波阵面可分成的半波带数目为[ ](A) 3个 (B) 4个 (C) 5个 (D) 6个解:选(B)。
物理光学与应用光学第二版课件及课后习题答案
![物理光学与应用光学第二版课件及课后习题答案](https://img.taocdn.com/s3/m/d9e2189fcf2f0066f5335a8102d276a201296076.png)
相干光波、有相同的频率、有恒 定的相位差、有相同的振动方向 。
双缝干涉与多缝干涉
双缝干涉
两束相干光波分别通过两个平行狭缝 后,在屏幕上产生的明暗交替的干涉 条纹。
多缝干涉
多个狭缝产生的相干光波在屏幕上产 生的明暗交替的干涉条纹。
薄膜干涉与干涉滤光片
薄膜干涉
光波在薄膜表面反射和透射时产生的干涉现象,常用于增反 膜和增透膜的设计。
摄像机的原理
摄像机通过镜头将光线聚焦在电荷耦合器件(CCD)或互补金属氧化物半导体( CMOS)传感器上,记录下动态影像。
照相机与摄像机的比较
照相机和摄像机在结构和工作原理上存在差异,但它们都是用于记录影像的光学仪器。
光学信息处理系统
1 2
光学信息处理系统的原理
光学信息处理系统利用光的干涉、衍射、全息等 原理对信息进行处理。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
光学仪器及应用
透镜与成像原理
透镜的分类
01
根据透镜的形状和焦距,可以将透镜分为凸透镜、凹透镜和凹
凸透镜等。
成像原理
02
透镜通过改变光线的传播路径,使光线会聚或发散,从而形成
实像或虚像。
像距与物距
03
透镜成像时,像距与物距之间的关系遵循“1/f = 1/u + 1/v”
干涉滤光片
利用薄膜干涉原理设计的滤光片,具有特定波长范围的透过 或反射特性。
干涉系统的应用
光学干涉仪
干涉光谱技术
利用光的干涉原理测量长度、角度、表面 粗糙度等物理量。
通过干涉原理分析物质吸收、发射和散射 光谱,用于物质成分分析和光谱测量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
物理光学课后习题答案-汇总-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第一章光的电磁理论1.1在真空中传播的平面电磁波,其电场表示为Ex=0,Ey=0,Ez=,(各量均用国际单位),求电磁波的频率、波长、周期和初相位。
解:由Ex=0,Ey=0,Ez=,则频率υ===0.5×1014Hz,周期T=1/υ=2×10-14s,初相位φ0=+π/2(z=0,t=0),振幅A=100V/m,波长λ=cT=3×108×2×10-14=6×10-6m。
1.2.一个平面电磁波可以表示为Ex=0,Ey=,Ez=0,求:(1)该电磁波的振幅,频率,波长和原点的初相位是多少(2)波的传播和电矢量的振动取哪个方向(3)与电场相联系的磁场B的表达式如何写?解:(1)振幅A=2V/m,频率υ=Hz,波长λ==,原点的初相位φ0=+π/2;(2)传播沿z轴,振动方向沿y轴;(3)由B =,可得By=Bz=0,Bx=1.3.一个线偏振光在玻璃中传播时可以表示为Ey=0,Ez=0,Ex=,试求:(1)光的频率;(2)波长;(3)玻璃的折射率。
解:(1)υ===5×1014Hz;(2)λ=;(3)相速度v=0.65c,所以折射率n=1.4写出:(1)在yoz平面内沿与y 轴成θ角的方向传播的平面波的复振幅;(2)发散球面波和汇聚球面波的复振幅。
解:(1)由,可得;(2)同理:发散球面波,汇聚球面波。
1.5一平面简谐电磁波在真空中沿正x方向传播。
其频率为Hz,电场振幅为14.14V/m,如果该电磁波的振动面与xy平面呈45º,试写出E,B 表达式。
解:,其中===,同理:。
,其中=。
1.6一个沿k方向传播的平面波表示为E=,试求k 方向的单位矢。
解:,又,∴=。
1.9证明当入射角=45º时,光波在任何两种介质分界面上的反射都有。
证明:====1.10证明光束在布儒斯特角下入射到平行平面玻璃片的上表面时,下表面的入射角也是布儒斯特角。
证明:由布儒斯特角定义,θ+i=90º,设空气和玻璃的折射率分别为和,先由空气入射到玻璃中则有,再由玻璃出射到空气中,有,又,∴,即得证。
1.11平行光以布儒斯特角从空气中射到玻璃上,求:(1)能流反射率和;(2)能流透射率和。
解:由题意,得,又为布儒斯特角,则=.....①..... ②由①、②得,,。
(1)0,,(2)由,可得,同理,=85.2。
1.12证明光波在布儒斯特角下入射到两种介质的分界面上时,,其中。
证明:,因为为布儒斯特角,所以,=,又根据折射定律,得,则,其中,得证。
1.17利用复数表示式求两个波和的合成。
解:====。
1.18两个振动方向相同的单色波在空间某一点产生的振动分别为和。
若Hz ,V/m ,8V/m ,,,求该点的合振动表达式。
解:====。
1.20求如图所示的周期性三角波的傅立叶分析表达式。
解:由图可知,,=,=)=,(m为奇数),,所以=。
1.21试求如图所示的周期性矩形波的傅立叶级数的表达式。
解:由图可知,,=,,所以。
1.22利用复数形式的傅里叶级数对如图所示的周期性矩形波做傅里叶分析。
解:由图可知,,,,,==,所以1.23氪同位素放电管发出的红光波长为605.7nm,波列长度约为700mm,试求该光波的波长宽度和频率宽度。
解:由题意,得,波列长度,由公式,又由公式,所以频率宽度。
1.24某种激光的频宽Hz,问这种激光的波列长度是多少?解:由相干长度,所以波列长度。
第二章光的干涉及其应用2.1在与一平行光束垂直的方向上插入一透明薄片,其厚度,若光波波长为500nm,试计算插入玻璃片前后光束光程和相位的变化。
解:由时间相干性的附加光程差公式,。
2.2在杨氏干涉实验中,若两小孔距离为0.4mm,观察屏至小孔所在平面的距离为100cm,在观察屏上测得的干涉条纹间距为1.5cm,求所用光波的波。
解:由公式,得光波的波长。
2.3波长为589.3nm的钠光照射在双缝上,在距双缝100cm的观察屏上测量20个干涉条纹的宽度为2.4cm,试计算双缝之间的距离。
解:因为干涉条纹是等间距的,所以一个干涉条纹的宽度为又由公式,得双缝间距离=。
2.4设双缝间距为1mm,双缝离观察屏为1m,用钠光照明双缝。
钠光包含波长为nm 和两种单色光,问两种光的第10级亮条纹之间的距离是多少?解:因为两束光相互独立传播,所以光束第10级亮条纹位置,光束第10级亮条纹位置,所以间距。
2.5在杨氏双缝干涉的双缝后面分别放置和,厚度同为t的玻璃片后,原来中央极大所在点被第5级亮纹所占据。
设nm,求玻璃片厚度t以及条纹迁移的方向。
解:由题意,得,所以,条纹迁移方向向下。
2.6在杨氏双缝干涉实验装置中,以一个长30mm 的充以空气的气室代替薄片置于小孔前,在观察屏上观察到一组干涉条纹。
继后抽去气室中空气,注入某种气体,发现屏上条纹比抽气前移动了25个。
已知照明光波波长为656.28nm,空气折射率,试求注入气室内的气体的折射率。
解:设注入气室内的气体的折射率为,则,所以。
2.7杨氏干涉实验中,若波长=600nm,在观察屏上形成暗条纹的角宽度为,(1)试求杨氏干涉中二缝间的距离(2)若其中一个狭缝通过的能量是另一个的4倍,试求干涉条纹的对比度解:角宽度为,所以条纹间距。
由题意,得,所以干涉对比度2.8若双狭缝间距为0.3mm,以单色光平行照射狭缝时,在距双缝1.2m远的屏上,第5级暗条纹中心离中央极大中间的间隔为11.39mm,问所用的光源波长为多少是何种器件的光源解:由公式,所以=。
此光源为氦氖激光器。
2.12在杨氏干涉实验中,照明两小孔的光源是一个直径为2mm的圆形光源。
光源发光的波长为500nm,它到小孔的距离为1.5m。
问两小孔可以发生干涉的最大距离是多少?解:因为是圆形光源,由公式,则。
2.13月球到地球表面的距离约为km,月球的直径为3477km,若把月球看作光源,光波长取500nm,试计算地球表面上的相干面积。
解:相干面积。
2.14若光波的波长宽度为,频率宽度为,试证明:。
式中,和分别为光波的频率和波长。
对于波长为632.8nm的氦氖激光,波长宽度为,试计算它的频率宽度和相干长度。
解:证明:由,则有(频率增大时波长减小),取绝对值得证。
相干长度,频率宽度Hz。
2.15在图2.22(a)所示的平行平板干涉装置中,若平板的厚度和折射率分别为和,望远镜的视场角为,光的波长,问通过望远镜能够看见几个亮纹?解:设能看见个亮纹。
从中心往外数第个亮纹对透镜中心的倾角,成为第N个条纹的角半径。
设为中心条纹级数,为中心干涉极小数,令(,),从中心往外数,第N 个条纹的级数为,则,两式相减,可得,利用折射定律和小角度近似,得,(为平行平板周围介质的折射率)对于中心点,上下表面两支反射光线的光程差为。
因此,视场中心是暗点。
由上式,得,因此,有12条暗环,11条亮环。
2.16一束平行白光垂直投射到置于空气中的厚度均匀的折射率为的薄膜上,发现反射光谱中出现波长为400nm和600nm的两条暗线,求此薄膜的厚度?解:光程差,所以2.17用等厚条纹测量玻璃光楔的楔角时,在长5cm的范围内共有15个亮条纹,玻璃折射率,所用单色光波长,问此光楔的楔角为多少?解:由公式,所以楔角,又,所以。
2.18利用牛顿环测透镜曲率半径时,测量出第10个暗环的直径为2cm,若所用单色光波长为500nm,透镜的曲率半径是多少?解:由曲率半径公式。
2.19F-P干涉仪两反射镜的反射率为0.5,试求它的最大透射率和最小透射率。
若干涉仪两反射镜以折射率的玻璃平板代替,最大透射率和最小透射率又是多少(不考虑系统吸收)解:当反射率时,由光强公式可得最大透射率;最小透射率。
当用玻璃平板代替时,,则所以,。
2.20已知一组F-P标准具的间距分别为1mm和120mm ,对于的入射光而言,求其相应的标准具常数。
如果某激光器发出的激光波长为632.8nm,波长宽度为0.001nm,测量其波长宽度时应选用多大间距的标准具?解:,,。
2.21有两个波长和,在600nm附近相差0.0001nm,要用F-P干涉仪把两谱线分辨开来,间隔至少要多大在这种情况下,干涉仪的自由光谱范围是多少设反射率。
解:由分辨极限公式,得F-P 干涉仪间隔自由光谱范围。
2.22在照相物镜上通常镀上一层光学厚度为()的介质膜。
问:(1)介质膜的作用(2)求此时可见光区(390780nm)反射最大的波长?解:(1)作用:因为上下表面光程差,所以该介质膜对的反射达到最小,为增透膜;(2)由,可知,对波长为,,,反射最大的波长满足,则,取时则符合条件的可见光的波长分别为687.5nm和458.3nm。
2.23在玻璃基片上镀两层光学厚度为的介质薄膜,如果第一层的折射率为1.35,为了达到在正入射下膜系对全增透的目的,第二层薄膜的折射率应为多少(玻璃基片的折射率)解:由题意,得,,,要使膜系对全增透,由公式。
第三章光的衍射与现代光学3.1波长的单色光垂直入射到边长为3cm的方孔,在光轴(它通过方孔中心并垂直方孔平面)附近离孔z处观察衍射,试求出夫琅禾费衍射区德大致范围。
解:要求,又,所以。
3.5在白光形成的单缝的夫琅禾费衍射图样中,某色光的第3级大与600nm的第2极大重合,问该色光的波长是多少?解:单缝衍射明纹公式:当时,,因为与不变,当时,,所以。
3.6在不透明细丝的夫琅禾费衍射图样中,测得暗条纹的间距为1.5mm,所用透镜的焦距为300nm,光波波长为632.8nm。
问细丝直径是多少?解:由,所以直径即为缝宽3.8迎面开来的汽车,其两车灯相距,汽车离人多远时,两车灯刚能为人眼所分辨(假定人眼瞳孔直径,光在空气中的有效波长)。
解:此为夫琅禾费圆孔衍射,由公式,所以。
3.9在通常的亮度下,人眼瞳孔直径约为2mm,若视觉感受最灵敏的光波长为550nm,问:(1)人眼最小分辨角是多大(2)在教室的黑板上,画的等号的两横线相距2mm,坐在距黑板10m处的同学能否看清解:(1)(夫琅禾费圆孔衍射)rad。
(2),所以不能看清。
3.7边长为a和b 的矩孔的中心有一个边长为和的不透明屏,如图所示,试导出这种光阑的夫琅禾费衍射强度公式。
解:,,(C 为常数),所以,因为场中心强度(场中心对应于)为,所以。
其中,,。
3.10人造卫星上的宇航员声称,他恰好能分辨离他100km地面上的两个点光源。
设光波波长为550nm,宇航员眼瞳直径为4mm,这两个点光源的距离是多大?解:由夫琅禾费圆孔衍射,,所以。
3.11在一些大型的天文望远镜中,把通光圆孔做成环孔。