《小学数学思想与方法》读书心得
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读《小学数学思想方法》心得
虹桥一小:吴宝全
第一,通过阅读,我知道了什么是数学的思想方法。
《义务教育数学课程标准(2011年版)》中提到四基,即基础知识、基本技能、基本思想、基本活动经验。数学思想和数学方法既有区别又有密切联系。数学思想的理论和抽象程度要高一些,而数学方法的实践性更强一些。人们实现数学思想往往要靠一定的数学方法;而人们选择数学方法,又要以一定的数学思想为依据。因此,二者密切联系。合称为数学思想方法。数学思想方法是数学的灵魂,那么,要想学好数学、用好数学,就要深入到数学的“灵魂深处”。在小学阶段,数学思想方法主要有符号化思想、化归思想、类比思想、归纳思想、分类思想、方程思想、集合思想、函数思想、对应思想、模型思想、数形结合思想、演绎推理思想、变换思想、统计与概率思想等等。数学思想方法不同于一般的概念和技能,后者一般通过短期的训练便能掌握,数学思想方法的教学更应该是一个通过长期的渗透和影响才能够形成的过程。作为数学老师,自己应该了解熟悉数学的思想方法,在教学中潜移默化的渗透,滋润学生的心田,才能使学生真正提高数学素养。
第二,我和大家一起分享我学习第一节“抽象思想”的心得。
数学抽象思想是一般化的思想方法,对于培养人的抽象思维能力和理性精神具有重要的意义。
1.数学抽象在数学中及教学中无处不在,任何一个数学概念、法则、公式、规律、性质、定理等的概括和推导,都要用到抽象概括;用任何数学知识解决纯数学问题或联系实际的问题,都需要计算、推理、构建模型,都离不开抽象。
2.数学是研究数量关系和空间形式的科学,这种数量关系和空间形式是脱离了具体的事物的,是抽象的,因此,抽象思想在数学中无处不在。只要有数学课堂教学,就应该有抽象思想的存在,只不过是呈现方式(目标达成的层次)不同而已。
3.就计算而言,最简单的计算也是抽象的,如1+1=2,多数小学生需要借助各种实物或直观图来理解一加一等于二。尽管很多一年级学生甚至部分学前儿童对20以内的加减法能够脱口而出,但是多数是先借助操作或直观的手段计算,再孰能生巧地记忆,有的甚至是死记硬背,并不一定理解抽象的原理。
4.小学教学往往重视操作和直观,这样学生容易理解抽象的数学知识,但是教师需要注意的是,操作和直观是教学的手段而非目的,要在适当的时机进行适度的数学抽象,这对发展学生的抽象思维能力和认识数学的本质有益处。
5.就抽象的深度而言,大体上分为三个层次。第一层次是把握事物的本质,把复杂的问题简单化、条理化,能够清晰地表达,能够清晰地表达,我们称其为简约阶段。第二个层次,去掉具体的内容,利用概念、图形、符号、关系表述包括已经简约化得事物在内的一类事物,我们称其为符号阶段。第三个层次、通过假设和推理建立法则、模式或者模型,并能够在一般意义上解释具体事物,我们称其为普适阶段。其中第一个层次是最重要的,但是在教学中往往被忽略掉。
因此在小学数学的教学过程中,在注重操作、直观的同时,在符合学生认知特点的情况下,适时、适当体现数学抽象的思想,对学生的抽象思维的发展是有益的;而且抽象思维发展了,能够促进学生学好数学、用好数学,去解决更多的实际问题,这种做法符合新课标的理念。
第三,和大家分享我学习“变中有不变思想”的体会。
人类认识世界,就是在寻找世界变化中的不变;人类改造世界,就是建立在不变的基础上进行的实践活动。中国古人寻求的“道”,古希腊人寻求的“上帝”,无一例外都是在探索世界发展的规律。我们今天的学习又何尝不是在寻求变化的数学学科的规律,找到那不变的也就是数学的本质。
“在学习数学或运用数学解决问题过程中,会面对千变万化的对象,在这些变化中找到不变的性质和规律,发现数学的本质,这就是数学中变中不变的思想。”
小学中的数学学习从开始就没离开过这“变中有不变”的思想。数学中的概念、性质、法则、数量关系式等,都可以广泛应用“变中有不变”的思想(书中描述很多)。数学中的抽象思想、模型思想、推理思想都离不开“变中有不变”的思想。
例如加法,二年级两位数加减法的竖式学习,学习问题在变化,但方法是不变的:数位对齐,个位加起,满十进一,借一当十。学生在利用小棒操作进行推导中,初步感受到相同单位的数进行加减,并抽象化,多次实践,形成法则,这一法则(不变)迁移到小数,应用到分数。最后学生明确,只有相同单位的数才能加减,小数这样,分数也是这样,当分母不同时,就要通分,就是化为单位相同的数。这样整数、小数、分数加减要单位相同这一不变的法则把他们统一起来。计量中不同单位数加减也有了依据,如1时+20分 4米+21厘米;以后合并同类项也是对这一法则的运用。
平行四边形面积推导,学生在学过长方形面积计算后,掌握了公式s=ab,面对各种各样的平行四边形,要计算它们的面积,利用割补推导面积公式,这里面所含的“变中有不变”:公式的不变,而割补本身就是,保持面积的不变。还有割圆为方推导圆的面积等。这些推导
过程又遵循等积变化这一不变思想。
再如,把圆柱钢材锻造成圆锥,或把长方形容器中的水倒入其他规则的容器中这一类的问题,其实都是在遵循“变中有不变”的思想,在指导学生时,抓住这一不变,学生解决问题的能力自然提高。
小学数学中,具体的题目离不开“变中有不变”思想,某一部分知识的学习同样也离不开,一句话,数学学习就是在应用这一思想。这一思想的贯彻,将有利于学生对数学本质的认识,有力解决数学问题能力的提高。
思想指导行动,行动形成思想。有了正确思想作指导,行动中就会少走弯路,这思想本身就是那不变的东西,而为了实现目标,行动中各种策略方法是变化的。这些用到指导教学方面,会有一片新的天地。
王教授的这本好书介绍的内容还很丰富,我还将继续不断深入认真地读下去,争取更多的收获,并在自己教学实践的过程中联系学过的理论知识,用这些理论知识指导自己的教学。我想,只有教师对数学思想有了深刻的认识后,才能够通过教学向学生传播数学思想,让学生感悟数学思想。