2018-2019学年长沙市宁乡县七年级下期末数学试卷(有答案)
2018-2019学年新人教版七年级下册期末数学试卷含答案
![2018-2019学年新人教版七年级下册期末数学试卷含答案](https://img.taocdn.com/s3/m/91ca2fd55ef7ba0d4a733b91.png)
2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共10小题,共30.0分) 1. 下列调查,比较适合全面调查方式的是( )A. 乘坐地铁的安检B. 长江流域水污染情况C. 某品牌圆珠笔笔芯的使用寿命D. 端午节期间市场上的粽子质量情况 2. 下列命题中,假命题是( )A. 如果两条直线都与第三条直线平行,那么这两条直线也互相平行B. 在同一平面内,过一点有且只有一条直线与已知直线垂直C. 两条直线被第三条直线所截,同旁内角互补D. 两直线平行,内错角相等3. 下列四组值中,是二元一次方程x −2y =1的解的是( )A. {y =1x=0B. {y =−1x=1C. {y =1x=1D. {y =0x=14. 如图图形中,由∠1=∠2能得到AB//CD 的是( )A. B.C. D.5. 下列说法不正确的是( )A. 4是16的算术平方根B. 53是259的一个平方根 C. (−6)2的平方根−6 D. (−3)3的立方根−36. 已知a <b ,则下列不等式一定成立的是( )A. 12a <12bB. −2a <−2bC. a −3>b −3D. a +4>b +47. 某班级的一次数学考试成绩统计图如图,则下列说法错误的是( )A. 得分在70~80分的人数最多B. 该班的总人数为40C. 得分及格(≥60分)的有12人D. 人数最少的得分段的频数为28. 亮亮准备用自己今年的零花钱买一台价值300元的英语学习机.现在他已存有45元,如果从现在起每月节省30元,设x 个月后他存够了所需钱数,则x 应满足的关系式是( ) A. 30x −45≥300 B. 30x +45≥300 C. 30x −45≤300D. 30x +45≤300 9. 某木工厂有22人,一个工人每天可加工3张桌子或10只椅子,1张桌子与4只椅子配套,现要求工人每天做的桌子和椅子完整配套而没有剩余.若设安排x 个工人加工桌子,y 个工人加工椅子,则列出正确的二元一次方程组为( )A. {12x −10y =0x+y=22B. {6x −10y =0x+y=22C.{24x −10y =0x+y=22D. {12x −20y =0x+y=2210. 已知点M(2m −1,1−m)在第四象限,则m 的取值范围在数轴上表示正确的是( )A.B.C.D.二、填空题(本大题共5小题,共15.0分) 11. √16的平方根是______.12. 如图,直线a//b ,点B 在直线上b 上,且AB ⊥BC ,∠1=55∘,则∠2的度数为______.13. 点P(−5,1)到x 轴距离为______.14. 不等式3(x −1)≤5−x 的非负整数解有______个.15. 算筹是中国古代用来记数、列式和进行各种数与式演算的一种工具.在算筹计数法中,以“立”,“卧”两种排列方式来表示单位数目,表示多位数时,个位用立式,十位用卧式,百位用立式,千位用卧式,以此类推.《九章算术》的“方程”一章中介绍了一种用“算筹图”解决一次方程组的方法.如图1,从左向右的符号中,前两个符号分别代表未知数x ,y 的系数.因此,根据此图可以列出方程:x +10y =26.请你根据图2列出方程组______.三、解答题(本大题共8小题,共64.0分)16.计算:(1)3(√3+√2)−2(√3−√2)(2)|√2−3|+√(−3)2−(−1)2019+√−27317.用适当的方法解下列方程组:(1){x−2y=2y=5−x(2){3x−2y=72x−3y=318.解不等式组:{4x>2x−6x+13≥x−1,并把解集表示在数轴上.19.已知:如图的网格中,△ABC的顶点A(0,5)、B(−2,2).(1)根据A、B坐标在网格中建立平面直角坐标系并写出点C的坐标:(______,______);(2)平移三角形ABC,使点C移动到点F(7,−4),画出平移后的三角形DEF,其中点D与点A对应,点E与点B对应.(3)画出AB边上中线CD和高线CE;(利用网格点和直尺画图)(4)△ABC的面积为______.20.如图,在△ABC中,BD⊥AC于点D,E为BC上一点,过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(1)请你补全图形(不要求尺规作图);(2)求证:∠BDH=∠CEF.21.2018年3月,某市教育主管部门在初中生中开展了“文明礼仪知识竞赛”活动,活动结束后,随机抽取了部分同学的成绩(x均为整数,总分100分),绘制了如下尚不完整的统计图表.(1)统计表中,a=______,b=______,c=______;(2)扇形统计图中,m的值为______,“C”所对应的圆心角的度数是______;(3)若参加本次竞赛的同学共有5000人,请你估计成绩在95分及以上的学生大约有多少人?22.某校计划购买篮球、排球共20个.购买2个篮球,3个排球,共需花费190元;购买3个篮球的费用与购买5个排球的费用相同.(1)篮球和排球的单价各是多少元?(2)若购买篮球不少于8个,所需费用总额不超过800元.请你求出满足要求的所有购买方案,并直接写出其中最省钱的购买方案.23.探究题学习完平行线的性质与判定之后,我们发现借助构造平行线的方法可以帮我们解决许多问题.(1)小明遇到了下面的问题:如图1,l1//l2,点P在l1、l2内部,探究∠A,∠APB,∠B的关系.小明过点P作l1的平行线,可证∠APB,∠A,∠B之间的数量关系是:∠APB=______.(2)如图2,若AC//BD,点P在AC、BD外部,∠A,∠B,∠APB的数量关系是否发生变化?请你补全下面的证明过程.过点P作PE//AC.∴∠A=______∴______//______∴∠B=______∵∠BPA=∠BPE−∠EPA∴______.(3)随着以后的学习你还会发现平行线的许多用途.试构造平行线解决以下问题:已知:如图3,三角形ABC,求证:∠A+∠B+∠C=180∘.【答案】 1. A 2. C 3. D 4. B 5. C 6. A 7. C8. B 9. A 10. B11. ±2 12. 35∘ 13. 1 14. 315. {x +y =18x+2y=2216. 解:(1)原式=3√3+3√2−2√3+2√2 =√3+5√2;(2)原式=3−√2+3+1−3 =4−√2. 17. 解:(1){x −2y =2 ②y=5−x ①把①代入②得 x −2(5−x)=2, 解得x =4把x =4代入得①,y =5−4=1, ∴原方程组的解为{y =1x=4;(2){3x −2y =7 ②2x−3y=3 ①解:由①得 6x −9y =9 ③ 由②得 6x −4y =14 ④ ③−④得−5y =−5, 解得 y =1,把y =1代入①得 2x −3=3, 解得x =1∴原方程组的解为{y =1x=3.18. 解:解不等式4x >2x −6,得:x >−3, 解不等式x+13≥x −1,得:x ≤2,∴不等式组的解集为:−3<x ≤2, 将不等式组解集表示在数轴上如图:19. 2;3;11220. 解:(1)如图所示,EF ,DH 即为所求;(2)∵DH//BC , ∴∠BDH =∠DBC , ∵BD ⊥AC ,EF ⊥AC , ∴BD//EF ,∴∠CEF =∠DBC , ∴∠BDH =∠CEF .21. 225;500;0.3;45;108∘22. 解:(1)设篮球每个x 元,排球每个y 元,依题意,得 {3x =5y 2x+3y=190, 解得,{y =30x=50,答:篮球每个50元,排球每个30元;(2)设购买篮球m 个,则购买排球(20−m)个,依题意,得 50m +30(20−m)≤800. 解得m ≤10, 又∵m ≥8, ∴8≤m ≤10.∵篮球的个数必须为整数, ∴m 只能取8、9、10,∴满足题意的方案有三种:①购买篮球8个,排球12个; ②购买篮球9,排球11个; ③购买篮球10个,排球10个, 以上三个方案中,方案①最省钱.23. ∠A +∠B ;∠1;PE ;BD ;∠EPB ;∠APB =∠B −∠1 【解析】1. 解:A 、乘坐地铁的安检,适合全面调查,故A 选项正确; B 、长江流域水污染情况,适合抽样调查,故B 选项错误;C 、某品牌圆珠笔笔芯的使用寿命,适合抽样调查,故C 选项错误;D 、端午节期间市场上的粽子质量情况,适于抽样调查,故D 选项错误. 故选:A .根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行判断.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.2. 解:∵如果两条直线都与第三条直线平行,那么这两条直线也互相平行, ∴选项A 是真命题;∵在同一平面内,过一点有且只有一条直线与已知直线垂直,∴选项B 是真命题;∵两条直线被第三条直线所截,同旁内角不一定互补, ∴选项C 是假命题;∵两直线平行,内错角相等, ∴选项D 是真命题. 故选:C .分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.主要主要考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理. 3. 解:{y =0x=1是二元一次方程x −2y =1的解,故选:D .把x 与y 的值代入方程检验即可.此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.4. 解:A 、∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; B 、∠1、∠2是内错角,由∠1=∠2能判定AB//CD ;C 、∠1、∠2是内错角,由∠1=∠2能判定AC//BD ,不能判定AB//CD ; D ,∠1、∠2是同旁内角,由∠1=∠2不能判定AB//CD ; 故选:B .在三线八角的前提下,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.据此判断即可.本题考查了平行线的判定,解题的关键是注意平行线判定的前提条件必须是三线八角.5. 解:4是16的算术平方根,故A 正确,不符合要求;53是259的一个平方根,故B 正确,不符合要求; (−6)2的平方根是±6,故C 错误,符合要求; (−3)3的立方根−3故D 正确,不符合要求. 故选:C .依据平方根、算术平方根、立方根的性质解答即可.本题主要考查的是立方根、平方根、算术平方根的性质,熟练掌握相关性质是解题的关键. 6. 解:∵a <b ,∴A 、12a <12b ,此选项正确;B 、−2a >−2b ,此选项错误;C 、a −3<b −3,此选项错误;D 、a +4<a +4,此选项错误; 故选:A .根据不等式的性质求解即可.本题考查了不等式的性质,利用不等式的性质是解题关键. 7. 解:A 、得分在70~80分的人数最多,正确; B 、该班的总人数为4+12+14+8+2=40,正确;C 、得分及格(≥60分)的有12+14+8+2=36人,错误;D 、人数最少的得分段的频数为2,正确; 故选:C .根据直方图即可得到每个分数段的人数,据此即可直接作出判断.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.8. 解:x 个月可以节省30x 元,根据题意,得 30x +45≥300. 故选:B .此题中的不等关系:现在已存有45元,计划从现在起以后每个月节省30元,直到他至少有300元.本题主要考查由实际问题抽象出一元一次不等式,抓住关键词语,弄清不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式. 9. 解:设安排x 个工人加工桌子,y 个工人加工椅子, 由题意得{4×3x −10y =0x+y=22,即{12x −10y =0x+y=22.故选:A .设安排x 个工人加工桌子,y 个工人加工椅子,根据共有22人,一张桌子与4只椅子配套,列方程组即可.本题考查了根据实际问题抽象二元一次方程组的知识,解答本题的关键是挖掘隐含条件:一张课桌需要配四把椅子. 10. 解:∵点M(2m −1,1−m)在第四象限, ∴{1−m <0 ②2m−1>0 ①,由①得,m >0.5; 由②得,m >1, 在数轴上表示为:故选:B .根据第四象限内点的坐标特点列出关于m 的不等式组,求出m 的取值范围,并在数轴上表示出来即可.本题考查的是在数轴上表示不等式组的解集,熟知实心圆点与空心圆点的区别是解答此题的关键. 11. 解:√16的平方根是±2.故答案为:±2根据平方根的定义,求数a 的平方根,也就是求一个数x ,使得x 2=a ,则x 就是a 的平方根,由此即可解决问题.本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 12. 解:∵AB ⊥BC ,∠1=55∘, ∴∠2=90∘−55∘=35∘. ∵a//b ,∴∠2=∠3=35∘. 故答案为:35∘.先根据∠1=55∘,AB ⊥BC 求出∠3的度数,再由平行线的性质即可得出结论. 本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等. 13. 解:点P(−5,1)到x 轴距离为1.故答案为1.根据点P(x,y)到x 轴距离为|y|求解.本题考查了点的坐标:直角坐标系中点与有序实数对一一对应;在x 轴上点的纵坐标为0,在y 轴上点的横坐标为0;记住各象限点的坐标特点. 14. 解:去括号,得:3x −3≤5−x ,移项,得:3x +x ≤5+3,合并同类项,得:4x ≤8,系数化为1,得:x ≤2,则不等式的非负整数解有0、1、2这3个,故答案为:3.根据解一元一次不等式基本步骤:去括号、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.15. 解:根据题意,图2可得方程组:{x +y =18x+2y=22,故答案为{x +y =18x+2y=22.由图1可得从左向右的算筹中,前两个算筹分别代表未知数x ,y 的系数,第三个算筹表示的两位数是方程右边的常数项:前面的表示十位,后面的表示个位,由此可得图2的表达式.本题考查了由实际问题抽象出二元一次方程组,主要培养学生的观察能力,关键是能够根据对应位置的算筹理解算筹表示的实际意义.16. (1)直接利用二次根式混合运算法则计算得出答案;(2)利用二次根式以及立方根、绝对值的性质分别化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.17. 根据代入消元法或加减消元法,可得答案.本题考查了及二元一次方程组,利用代入消元法或加减消元法是解题关键. 18. 分别求出每一个不等式的解集,根据口诀:大小小大中间找,确定不等式组的解集再表示在数轴上即可.本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.19. 解:(1)平面直角坐标系如图所示,C(2,3),故答案为2,3.(2)平移后的△DEF如图所示.(3)AB边上中线CD和高线CE如图所示;(4)S△ABC=3×4−12×2×3−12×2×2−12×1×3=112.故答案为112.(1)根据点C的位置写出坐标即可;(2)根据点C的平移规律,画出对应点D、E即可;(3)根据中线、高的定义画出中线,高即可;(4)利用分割法求三角形面积即可;本题考查作图−平移变换,作图−基本作图等知识,解题的关键是理解题意,学会用分割法求三角形的面积,属于中考常考题型.20. (1)过E点作EF⊥AC,垂足为F,过点D作DH//BC交AB于点H.(2)利用DH//BC,可得∠BDH=∠DBC,依据BD⊥AC,EF⊥AC,即可得到BD//EF,进而得出∠CEF=∠DBC,即可得到∠BDH=∠CEF.本题主要考查了复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.21. 解:(1)b=50÷0.1=500,a=500−(50+75+150)=225,c=150÷500=0.3;故答案为:225,500,0.3;(2)m%=225500×100%=45%,∴m=45,“C”所对应的圆心角的度数是360∘×0.3=108∘,故答案为:45,108∘;(3)5000×0.45=2250,答:估计成绩在95分及以上的学生大约有2250人.(1)由A组频数及其频率求得总数b=500,根据各组频数之和等于总数求得a,再由频率=频数÷总数可得c;(2)D组人数除以总人数得出其百分比即可得m的值,再用360∘乘C组的频率可得;(3)总人数乘以样本中D组频率可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22. (1)设篮球每个x元,排球每个y元,根据题意列出二元一次方程组,解方程组即可;(2)根据购买篮球不少于8个,所需费用总额不超过800元列出不等式,解不等式即可.本题考查的是二元一次方程组、一元一次不等式的应用,根据题意正确列出方程组、一元一次不等式是解题的关键.23. 解:(1)如图,过P作PE//l1,∵l1//l2,∴PE//l1//l2,∴∠APE=∠A,∠BPE=∠B,∴∠APB=∠APE+∠BPE=∠A+∠B,故答案为:∠A+∠B.(2)如图2,过点P作PE//AC.∴∠A=∠1,∵AC//BD,∴PE//BD,∴∠B=∠EPB,∵∠APB=∠BPE−∠EPA,∴∠APB=∠B−∠1;故答案为:∠1,PE,BD,∠EPB,∠APB=∠B−∠1;(3)证明:如图3,过点A作MN//BC,∴∠B=∠1,∠C=∠2,∵∠BAC+∠1+∠2=180∘,∴∠BAC+∠B+∠C=180∘.(1)过P作PE//l1,根据平行线的性质得到∠APE=∠A,∠BPE=∠B,据此可得∠APB=∠APE+∠BPE=∠A+∠B;(2)过点P作PE//AC,根据平行线的性质得出∠A=∠1,∠B=∠EPB,进而得出∠APB=∠B−∠1;(3)过点A作MN//BC,根据平行线的性质进行推导即可.本题主要考查了平行线的性质的运用,解题时注意:两直线平行,内错角相等.解决问题的关键是作平行线构造内错角.。
人教版2018--2019学年第二学期七年数学下册期末测试题及参考答案
![人教版2018--2019学年第二学期七年数学下册期末测试题及参考答案](https://img.taocdn.com/s3/m/03175408482fb4daa58d4b7c.png)
人教版2018--2019学年第二学期七年级数学下册期末测试题及参考答案(本试卷满分100分,考试时间100分钟)一、选择题(每题3分,共30分)( )1. 平面直角坐标系中,将正方形向上平移3个单位后,得到的正方形各顶点与原正方形各顶点坐标相比:A. 横坐标不变,纵坐标加3B. 纵坐标不变,横坐标加3 C . 横坐标不变,纵坐标乘以3D. 纵坐标不变,横坐标乘以3( )2. 下列各式是二元一次方程的是:A.y x 21+ B.342=+-y yx C.95-=yx D.02=-y x( )3. 平面内三条直线的交点个数可能有:A.0,1,2,3个B.1,3个C.2,3个D.1,2,3个( )4. 下列计算正确的是:A.24±=B. 3)3(2-=-C.5)5(2=-D.3)3(2-=-( )5. 如图,点F,E 分别在线段AB 和CD 上,下列条件能判定AB ∥CD 的是:A . ∠1=∠2B. ∠3=∠4C. ∠2=∠4D. ∠1=∠4( )6. 若y x ,满足018)2(2=-++y x ,则y x +的平方根是:A.4±B. 2±C. 4D. 2( )7. 若n m >,则下列各式一定成立的是:A.33+<+n mB. 33-<-n mC. 33nm > D. n m 33->-( )8. 以下调查中适合作抽样调查的有: ①了解全班同学期末考试的成绩情况; ②了解夏季冷饮市场上冰激凌的质量情况; ③了解“神七”飞船各部件的安全情况;④了解《长江作业本》在全省七年级学生中受欢迎的程度.A. 4个B. 3个C. 2个D. 1个( )9. 若关于x 的不等式⎩⎨⎧≤-<-1250x m x 的整数解有且只有4个,则m 的取值范围是:A.65≤≤mB. 65<<mC. 65<≤mD. 65≤<m( )10. 日本某地突发地震,为了紧急安置60名地震灾民,需要搭建可容纳6人或4人的帐篷,若所搭建的 帐篷恰好(即不多也不少)能容纳这60名灾民,则不同的搭建方案有:A. 4种B. 6种C. 9种D. 11种二、填空题:(每小题3分,共18分) 11. 用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有.............密..............封..............线. .............内..............不..............要.............答.............题..............36张白铁皮.若用x 张制盒身,y 张制盒底可以使盒身与盒底配套,那么可列方程组为:______________.12..如图,已知AB ∥ED,∠ACB=90°,则图中与∠CBA 互余的角是___________.13.课间操时,王超,邓祖男的位置如图所示,陈贝尔对邓祖男说,如果我的位置用)0,0(表示,王超的位置用)1,2(表示,那么邓祖男的位置可以表示成________.14.把三个能够重合的长方形如图排列在一个大长方形中,若大长方形的周长为888cm,则一个小长方形的 周长等于_________cm. 15. 若不等式1)32(<-x a 的解集是321->a x ,则a 的取值范围是_____________. 16. 已知无理数ba <+<51,并且b a ,是两个连续的整数,则ab 的值为___________.三、解答题:(本大题共8个小题,共52分) 17. (本小题满分6分)解下列不等式(组),并把它们的解集在数轴上表示出来:(1)1213312≥---x x(2)⎪⎩⎪⎨⎧≤-+<+321)1(352x x x x18. (本小题满分6分) 解下列方程组: (1)⎩⎨⎧=-=+33651643y x y x(2)⎪⎩⎪⎨⎧=-++=--+1624)(4)(3y x y x y x y x19. (本小题满分5分)如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示.求图中阴影部分的面积.20. (本小题满分5分)先阅读理解下面的例题,再按要求解答: 例题:解不等式0)3)(3(>-+x x解:由有理数的乘法法则“两数相乘,同号得正” 有①⎩⎨⎧>->+0303x x 或②⎩⎨⎧<-<+0303x x 解不等式组①得3>x ,解不等式组②得3-<x 故原不等式的解集为:3>x 或3-<x 问题: 求不等式01523<-+x x 的解集.21. (本小题满分6分)某学校计划购买一批课外读物,为了了解学生对课外读物的需求情况,学校进行了一次“我最喜爱的课外读物”的调查,设置了“文学”、“科普”、“艺术”和“其他”四个类别,规定每人必须并且只能选择其中一类,现从全体学生的调查表中随机抽取了部分学生的调查表进行统计,并把统计结果绘 制了如图所示的两幅不完整的统计图.(1) 从全体学生的调查表中随机抽取了_______名学生的调查表; (2) 将条形图补充完整;(3) 艺术类读物所在扇形的圆心角是________度. 22. (本小题满分5分)如图,已知AD 平分∠CAB,DE ∥AC,∠1=30°.求∠2的度数.23.(本小题满分9分)某中学开学初到商场购买A 、B 两种品牌的足球,购买A 种品牌的足球50个,B 种品牌的足球25个,共花费4500元.已知购买一个B 种品牌的足球比购买一个A 种品牌的足球多花30元.(1)求购买一个A 种品牌、一个B 种品牌的足球各需多少元? (2)学校为了响应习总书记“足球进校园”的号召,决定再次购进A 、B两种品牌的足球50个,正好赶上商场对商品价格进行调整,A 种品牌的足球售价比第一次购买时提高4元,B 种品牌的足球按第一次购买时售价的九折出售,如果学校此次购买A 、B 两种品牌的足球的总费用不超过第一次花费的70%,且保证这次购买的B 种品牌的足球不少于23个,则这次学校有哪几种购买方案?24.(本小题满分10分)如图,以直角△AOC 的直角顶点O 为原点,以OC,OA 所在直线为x 轴和y 轴建立平面直角坐标系,点A ),0(a ,C )0,(b 满足082=-++-b b a .(1) 点A 的坐标为______________;点C 的坐标为_____________. (2) 已知坐标轴上有两动点P,Q 同时出发,P 点从C 点出发沿x 轴负方向以每秒2个单位长度的速 度匀速移动,Q 点从O 点出发沿y 轴正方向以每秒1个单位长度的速度匀速移动,点P 到达O 点 整个运动随之结束.AC 的中点D 的坐标是)3,4(,设运动时间为t 秒.问:是否存在这样的t ,使得△ODP 与△ODQ 的面积相等?若存在,请求出t 的值;若不存在,请说明理由.(3) 在(2)的条件下,若∠DOC=∠DCO,点G 是第二象限中一点,并且y 轴平分∠GOD.点E 是线段OA 上一动点,连接接CE 交OD 于点H,当点E 在线段OA 上运动的过程中,探究∠GOA,∠OHC,∠ACE 之间的数量关系,并证明你的结论(三角形的内角和为180可以直接使用).2018-2019学年度下学期期末测试七年级数学试题参考答案一.选择题二.填空题11. ⎩⎨⎧⨯==+xy y x 2524036 12. ∠BAC 与∠ACE 13. )3,4( 14. 296 15. 23<a 16. 12三.解答题17. .(1)解:去分母,得6)13(3)12(2≥---x x (1)分去括号,得 63924≥+--x x 移项,得 32694-+≥-x x 合并同类项,得 55≥-x系数化为1,得 1-≤x ………......................………………………2分 数轴表示如图……....…………3分(2)解:解不等式①,得2>x .....................................………………………4分 解不等式②,得3≤x .......................………………………………5分 把不等式①和②的解集在数轴上表示出来:所以不等式组的解集:32≤<x …….......................................……6分 18. (1)⎩⎨⎧=-=+33651643y x y x解:①3⨯,得 48129=+y x ③②2⨯,得 661210=-y x ④③+④,得 11419=x6=x把6=x 代入①,得(2) 16463=+⨯y(2) ⎪⎩⎪⎨⎧=-++=--+1624)(4)(3yx y x y x y x 解:②6⨯,得 6)()(3=-++y x y x ③ ③-①,得 2)(5=-y x52=-y x ④把④代入①,得 1528=+y x ⑤④+⑤,得 1517=x④-⑤,得 1511=y所以这个方程组的解是⎪⎪⎩⎪⎪⎨⎧==15111517y x① ②①②24-=y 21-=y所以这个方程组的解是⎪⎩⎪⎨⎧-==216y x(每小题3分,请按步骤给分) 19. 解:设小长方形的长和宽分别为y x ,则 ⎩⎨⎧=+-=+42394y y x y x …………….........................….............……………1分解得⎩⎨⎧==15y x …………….........................……........................…………2分∴AB=713434=⨯+=+y∴6397=⨯=⋅=CD AB S ABCD 长方形…………….......………..……3分 ∴18159639=⨯⨯-=-=小长方形长方形阴S S S ABCD ………..........…4分答:阴影部分的面积是18.……………...........................………………5分 20. 解:由有理数的乘法法则“两数相除,异号得负”……………………………………1分有①⎩⎨⎧<->+015023x x 或②⎩⎨⎧>-<+015023x x …………………..............…………………2分解不等式组①,得5132<<-x ………………………....................……………3分解不等式组②,得不等式组②无解………………………..............……………4分故原不等式组的解集为:5132<<-x ……………………........………………5分21. 解:(1)300;....................................………………………2分(2)补全图如下;..................................………………4分 (3)72....................................……...…………………6分22证明: ∵AB 平分∠CAB…………………….........................………………1分 ∴∠CAB=2∠1=︒=︒⨯60302……………………………………2分 又∵DE ∥AC …………………………................................…………3分 ∴∠2=∠CAB=60°…………………………….....................………5分 23.解:(1)设购买一个A,B 品牌的足球分别要x 元与y 元,由题意可得:…….........……1分⎩⎨⎧+==+3045002550x y y x .........................................................………………………2分解得⎩⎨⎧==8050y x ...................................................................………………………………3分 答: 一个A 种品牌和一个B 种品牌的足球分别需要50元与80元..........…………4分(2)设再次购进A 品牌的足球m 个,购进B 品牌的足球)50(m -辆, 由题意可得: ⎩⎨⎧≥-⨯≤-⨯⨯++2350%704500)50(9.080)450(m m m ………....………6分解得2725≤≤m ………………………................................………7分 ∵m 取自然数∴27,26,25=m ………....................……….....……………………8分 ∴存在以下三种购买方案:①A 种品牌足球25个,B 种品牌足球25个; ②A 种品牌足球26个,B 种品牌足球24个;③A 种品牌足球27个,B 种品牌足球23个…………..……………9分24..(1) )0,8();6,0(….....…................................................…………………2分 (2) ∵t t x OQ S D ODQ 242121=⋅⋅=⋅=∆….....………….......…………3分 t t y OP S D ODP3123)28(2121-=⋅-⋅=⋅=∆….....……………4分 由t t 3122-=时,4.2=t ….....……………….....................……5分 ∴存在4.2=t 时,使得△ODP 与△ODQ 的面积相等….........……6分 (3) ∠GOD+∠ACE=∠OHC,理由如下:…................……………………7分 ∵x 轴⊥y 轴∴∠AOC=∠DOC+∠AOD=90° ∴∠OAC+∠ACO=90° 又∵∠DOC=∠DCO ∴∠OAC=∠AOD ∵x 轴平分∠GOD ∴∠GOA=∠AOD ∴∠GOA=∠OAC∴OG ∥AC…................……………......................................………8分 过点H 作HF ∥OG ∴HF ∥AC ∴∠FHC=∠ACE同理∠FHO=∠GOD…................……....................………………9分 ∴∠GOD+∠ACE=∠FHC+∠FHO即∠GOD+∠ACE=∠OHC…................……..........………….…10分。
精选长沙市宁乡县七年级下期末数学考试试卷(有答案)
![精选长沙市宁乡县七年级下期末数学考试试卷(有答案)](https://img.taocdn.com/s3/m/dbdc2a2d5f0e7cd185253602.png)
2018-2019学年湖南省长沙市宁乡县七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.(﹣2mn)2=4m2n2 B.y2+y2=2y4C.(a﹣b)2=a2﹣b2 D.m2+m=m33.(3分)已知一组数据1,2,2,x的平均数为3,则这组数据的中位数为()A.1 B.2 C.3 D.74.(3分)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+16.(3分)关于x,y的方程组的解满足x+y=7,则a的值为()A.7 B.8 C.9 D.107.(3分)下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角8.(3分)已知(m﹣n)2=10,(m+n)2=2,则mn的值为()A.10 B.﹣6 C.﹣2 D.29.(3分)甲、乙两地相距880千米小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y千米,则可列方程组为()A.B.C.D.10.(3分)如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个 B.2个C.3个D.4个二、填空题(每小题3分,共24分)11.(3分)计算: = .12.(3分)分解因式:x3y﹣2x2y2+xy3= .13.(3分)如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB= 度.14.(3分)当x=1,y=时,3x(2x+y)﹣2x(x﹣y)= .15.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为度.16.(3分)未测试两种电子表的走时误差,做了如下统计平均数方差甲0.4 0.026乙0.4 0.137则这两种电子表走时稳定的是.17.(3分)如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为.18.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.三、解答题(共66分)19.(8分)解方程组:(1)(2).20.(8分)在如图所示的方格纸中,(1)作出三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的?21.(8分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2﹣x2=6,求A的值.22.(8分)初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.(10分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:测试第1次第2次第3次第4次第5次第6次第7次第8次小明10 10 11 10 14 16 16 17小华11 13 13 12 14 13 15 13(1)根据上表中提供的数据填写下表:平均分(分)众数(分)中位数(分)方差小明10 8.25小华13 13 1.25(2)若从中选一人参加市中学生运动会,你认为选谁去合适?25.(14分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= °,∠3= °;(2)在(1)中,若∠1=55°,则∠3= °,若∠1=40°,则∠3= °;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3= °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.2018-2019学年湖南省长沙市宁乡县七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)下列运算正确的是()A.(﹣2mn)2=4m2n2 B.y2+y2=2y4C.(a﹣b)2=a2﹣b2 D.m2+m=m3【解答】解:A、(﹣2mn)2=4m2n2 故A选项正确;B、y2+y2=2y2,故B选项错误;C、(a﹣b)2=a2+b2﹣2ab故C选项错误;D、m2+m不是同类项,故D选项错误.故选:A.3.(3分)已知一组数据1,2,2,x的平均数为3,则这组数据的中位数为()A.1 B.2 C.3 D.7【解答】解:由题意得=3,解得:x=7,这组数据按照从小到大的顺序排列为:1,2,2,7,则中位数为2.故选:B.4.(3分)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°【解答】解:∵CF是∠ACM的平分线,∴∠FCM=∠ACF=50°,∵CF∥AB,∴∠B=∠FCM=50°.故选:D.5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x)C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.6.(3分)关于x,y的方程组的解满足x+y=7,则a的值为()A.7 B.8 C.9 D.10【解答】解:,①+②得:3x+3y=3a﹣6,∴x+y=a﹣2,∵x+y=7,∴a﹣2=7,a=9,故选:C.7.(3分)下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角【解答】解:A、旋转不改变图形的形状和大小,故本选项错误;B、两条平行直线被第三条直线所截,同位角相等,故本选项错误;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;D、对顶角相等,但相等的角不一定是对顶角,故本选项错误;故选:C.8.(3分)已知(m﹣n)2=10,(m+n)2=2,则mn的值为()A.10 B.﹣6 C.﹣2 D.2【解答】解:∵(m﹣n)2=10,(m+n)2=2,∴m2+n2﹣2mn=10①,m2+n2+2mn=2②,②﹣①得:4mn=﹣8,解得:mn=﹣2.故选:C.9.(3分)甲、乙两地相距880千米小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y千米,则可列方程组为()A.B.C.D.【解答】解:设大客车每小时行x千米,小轿车每小时行y千米,由题意得,.故选:B.10.(3分)如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个B.2个C.3个D.4个【解答】解:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)所以①正确∵AB∥CD(已证)∴∠BAD+∠ADC=180°(两直线平行,同旁内角互补)又∵∠BAD=∠BCD∴∠BCD+∠ADC=180°∴AD∥BC(同旁内角互补,两直线平行)故②也正确∵AB∥CD,AD∥BC(已证)∴∠B+∠BCD=180°∠D+∠BCD=180°∴∠B=∠D(同角的补角相等)所以③也正确.正确的有3个,故选C.二、填空题(每小题3分,共24分)11.(3分)计算: = ﹣a3b6.【解答】解;原式=﹣a3b6.故答案是:﹣a3b6.12.(3分)分解因式:x3y﹣2x2y2+xy3= xy(x﹣y)2.【解答】解:x3y﹣2x2y2+xy3,=xy(x2﹣2xy+y2),=xy(x﹣y)2.13.(3分)如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB= 120 度.【解答】解:∵直线AB,CD相交于点O,∠BOC与∠BOD是邻补角,∴∠MOD=30°,又OM⊥AB,∴∠BOM=90°,∴∠BOD=90°﹣30°=60°.∴∠BOC=180°﹣60°=120°.故答案为:12014.(3分)当x=1,y=时,3x(2x+y)﹣2x(x﹣y)= 5 .【解答】解:原式=6x2+3xy﹣2x2+2xy=4x2+5xy,当x=1,y=时,原式=4+5×=5.故答案为:5.15.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为50 度.【解答】解:∵∠2由∠1按顺时针方向旋转110°得到,且∠1=40°,∴∠2=∠1=40°,∴∠2的余角为:90°﹣40°=50°.故答案为:50°.16.(3分)未测试两种电子表的走时误差,做了如下统计平均数方差甲0.4 0.026乙0.4 0.137则这两种电子表走时稳定的是甲.【解答】解:∵甲的方差是0.026,乙的方差是0.137,0.026<0.137,∴这两种电子表走时稳定的是甲;故答案为:甲.17.(3分)如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为 6 .【解答】解:∵AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,∴BB'=2,△ABC的高AD=△A'B'C'的高=△A'B'C的高=3,∴B'C=BC﹣BB'=6﹣2=4,∴三角形A′B′C的面积=,故答案为:618.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.三、解答题(共66分)19.(8分)解方程组:(1)(2).【解答】解:(1)②﹣①,得5y=5,解得y=1.(2分)把y=1代入①,得x=4.(3分)因此,方程组的解为(4分)(2)②×6,得3x﹣2y=6③,③﹣①,得3y=3,解得y=1.(6分)把y=1代入①,得3x﹣5=3.解得x=.(7分)因此,方程组的解为(8分)20.(8分)在如图所示的方格纸中,(1)作出三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的?【解答】解:(1)△A1B1C1如图所示.(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).21.(8分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2﹣x2=6,求A的值.【解答】解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2﹣x2=6,化简得2x+1=6,解得x=,∴A=3x+3=.22.(8分)初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?【解答】解:设小亮质检的英语成绩为x分,质检数学成绩为y分,由题意得,,解得:,答:小亮质检英语成绩为95分,质检数学成绩为120分.23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.24.(10分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:测试第1次第2次第3次第4次第5次第6次第7次第8次小明10 10 11 10 14 16 16 17小华11 13 13 12 14 13 15 13(1)根据上表中提供的数据填写下表:平均分(分)众数(分)中位数(分)方差小明13 10 12.5 8.25小华13 13 13 1.25(2)若从中选一人参加市中学生运动会,你认为选谁去合适?【解答】解:(1)小明的平均成绩是:(10+10+11+10+14+16+16+17)÷8=13(分);小华的众数是:13分;先把小明的成绩从小到大排列为:10,10,10,11,14,16,16,17,最中间的数是第4、第5个数的平均数,则小明的中位数是=12.5分;故答案为:13,12.5,13.(2)∵小明和小华成绩的平均数均为13分,但小华的方差比小明的小,且高于13分的次数比小明的多,∴让小华去比较合适.25.(14分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2= 100 °,∠3= 90 °;(2)在(1)中,若∠1=55°,则∠3= 90 °,若∠1=40°,则∠3= 90 °;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3= 90 °时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.【解答】解:(1)100°,90°.∵入射角与反射角相等,即∠1=∠4,∠5=∠6,根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°,根据m∥n,所以∠2=180°﹣∠7=100°,所以∠5=∠6=(180°﹣100°)÷2=40°,根据三角形内角和为180°,所以∠3=180°﹣∠4﹣∠5=90°;(2)90°,90°.由(1)可得∠3的度数都是90°;(3)90°(2分)理由:因为∠3=90°,所以∠4+∠5=90°,又由题意知∠1=∠4,∠5=∠6,所以∠2+∠7=180°﹣(∠5+∠6)+180°﹣(∠1+∠4),=360°﹣2∠4﹣2∠5,=360°﹣2(∠4+∠5),=180°.由同旁内角互补,两直线平行,可知:m∥n.............。
2018-2019学年七年级下学期期末考试数学试卷含答案解析
![2018-2019学年七年级下学期期末考试数学试卷含答案解析](https://img.taocdn.com/s3/m/fbec6ac16edb6f1afe001fb4.png)
20、(1 题 5 分、2 题 6 分满分 11 分)
(1)解方程组
3x 3x
y2 11 2
y
(2)解不等式组
轴上表示出来。
并把它的解集在数
21、(5 分)下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充 完整:
证明: CD与EF相交于点H , (已知) 1 2 (_________________________)
B、2 个
C、3 个
D、 4 个
5、在“同一平面”条件下,下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)平移只改变图形的位置,不改变图形的形状和大小;
(4)有公共顶点且有一条公共边的两个角互为邻补角.
A、 1 个
B、2 个
C、3 个
根据以上提供的信息,解答下列问题:
(1)补全频数分布表;
(2)补全频数分布直方图; (3)请你估计该居民小区家庭属于中等收入(大于或等于1000不足1600元)的大约有多少 户?
分组 600≤x<800 800≤x<1000 1000≤x<1200 1200≤x<1400 1400≤x<1600 1600≤x<1800
8m+4n=20 (2 分)
当 m=1 时, n=3;当 m=2 时 n=1
汉 堡 店 可 以 配 送 的 方 案 是 一 个 汉 堡 包 和 3 杯 橙 汁 ;或 2 个 汉 堡 和 一 杯 橙 汁 。( 2 分 )
26.解 :( 1) 设 购 买 甲 种 树 苗 x 棵 , 合用全面调查的是( )
A、了解全班同学每周体育锻炼的时间
宁乡县初中2018-2019学年七年级下学期数学第一次月考试卷
![宁乡县初中2018-2019学年七年级下学期数学第一次月考试卷](https://img.taocdn.com/s3/m/135a86e63186bceb19e8bbca.png)
宁乡县初中2018-2019学年七年级下学期数学第一次月考试卷班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.(2分)某商人从批发市场买了20千克肉,每千克a元,又从肉店买了10千克肉,每千克b元,最后他又以元的单价把肉全部卖掉,结果赔了钱,原因是()A.a>bB.a<bC.a=bD.与a和b的大小无关【答案】A【考点】整式的加减运算,不等式及其性质【解析】【解答】解:根据题意得:(20a+10b)÷30﹣= = ,当a>b,即a﹣b>0时,结果赔钱.故答案为:A.【分析】根据单价×数量=总价,先求出两次购买肉的总价(20a+10b),再求出卖肉的总价×30,根据肉全部卖掉,结果赔了钱可知(20a+10b)-×30<0,然后解不等式即可得出结论。
2.(2分)在期末复习课上,老师要求写出几个与实数有关的结论:小明同学写了以下5个:①任何无理数都是无限不循环小数;②有理数与数轴上的点一一对应;③在1和3之间的无理数有且只有这4个;④是分数,它是有理数;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数.其中正确的个数是()A. 1B. 2C. 3D. 4【答案】B【考点】实数在数轴上的表示,无理数的认识【解析】【解答】①任何无理数都是无限不循环小数,故①正确;②实数与数轴上的点一一对应,故②错误;③在1和3之间的无理数有无数个,故③错误;④是无理数,故④错误;⑤由四舍五入得到的近似数7.30表示大于或等于7.295,而小于7.305的数,故⑤正确;故答案为:B.【分析】无理数的定义:无限不循环小数统称为无理数,所以①正确;又因为无理数都是小数,所以1和3之间有无数个;因为是无理数,所以也是无理数;最后一项考查的是四舍五入。
3.(2分)如图,直线AB、CD相交于点O,OE平分∠BOC,OF⊥OE于O,若∠AOD=70°,则∠AOF 等于()A. 35°B. 45°C. 55°D. 65°【答案】C【考点】角的平分线,角的运算,对顶角、邻补角【解析】【解答】∵∠B0C=∠AOD=70°,又∵OE平分∠BOC,∴∠BOE= ∠BOC=35°.∵OF⊥OE,∴∠EOF=90°.∴∠AOF=180°-∠EOF-∠BOE=55°.故答案为:C.【分析】有角平分线性质和对顶角相等,由角的和差求出∠AOF=180°-∠EOF-∠BOE的度数.4.(2分)三元一次方程组消去一个未知数后,所得二元一次方程组是()A. B. C. D.【答案】D【考点】三元一次方程组解法及应用【解析】【解答】解:,②−①,得3a+b=3④①×3+③,得5a−2b=19⑤由④⑤可知,选项D不符合题意,故答案为:D.【分析】观察各选项,排除C,而A、B、D的方程组是关于a、b的二元一次方程组,因此将原方程组中的c消去,观察各方程中c的系数特点,因此由②−①,①×3+③,就可得出正确的选项。
2018-2019学年人教版初一数学下册期末测试卷(含答案)
![2018-2019学年人教版初一数学下册期末测试卷(含答案)](https://img.taocdn.com/s3/m/44fc198cb0717fd5360cdc2a.png)
2018-2019学年七年级(下)期末数学试卷一、填空题〔本大题共6小题,每小题3分,共18分.请把答案填在题中横线上)1.计算:=.2.计算:=.3.由x﹣3y=6可以得到用x表示y的式子是.4.若a、b满足|a﹣2|+(3﹣b)2=0,则b a=.5.某商店以每件180元的进价购入T恤衫60件,并以每件240元的价格销售.一个月后T恤衫的销售款已经超过这批T恤衫的进货款,这时至少已售出T恤衫件.6.如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是.二、选择题(本大题共8小题,每小题4分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的)7.计算±的值为()A.±3B.±9C.3D.98.2013月5日,李克强总理在总结过去五年的政府工作时指出,中央财政加大对各类学校家庭困难学生资助力度,4.3亿人次受益,4.3亿用科学记数法表示为()A.4.3×106B.4.3×107C.4.3×108D.4.3×1099.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限10.如图,DE经过点A,DE∥BC,下列说法错误的是()A.∠DAB=∠EAC B.∠EAC=∠CC.∠EAB+∠B=180°D.∠DAB=∠B11.如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处12.若a>b,则下列各式中不正确的是()A.7+a>7+b B.a﹣7>b﹣7C.7a>7b D.﹣>﹣13.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式14.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第12个图形中共有()个三角形.A.47B.43C.39D.36三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明证明过程或演算步骤)15.(6分)计算:(﹣5)3÷(﹣)﹣16.(6分)先化简,再求值:5x3﹣[6x2﹣(3x2+4)﹣4x3],其中x=﹣3.17.(7分)解不等式组,并把它的解集在数轴上表示出来.18.(7分)解方程组19.(8分)甲、乙两个工人同时接受一批任务,上午工作的5小时中,甲用了2小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件,问这一天甲、乙每小时各做多少个零件?20.(7分)如图,∠AOB内有一点P;(1)过点P画PE⊥OB,PF⊥OA,垂足分别为E,F.(2)过点P画PM∥OB,交OA于点M;(3)画射线OP;(4)分别写出图中相等的角、互补的角、互余的角各一对.21.(7分)如图,已知:AB∥DE,∠1+∠3=180°,求证:BC∥EF.22.(10分)勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.根据以上图表,解答下列问题:(1)填空:这次调查的同学共有人,a+b=,m=;(2)求扇形统计图中扇形B的圆心角的度数;(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.23.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).参考答案与试题解析一、填空题〔本大题共6小题,每小题3分,共18分.请把答案填在题中横线上)1.计算:=.【分析】根据负数的绝对值是它的相反数,可得答案.【解答】解:|﹣|=,故答案为:.【点评】本题考查了实数的性质,负数的绝对值是它的相反数.2.计算:=﹣.【分析】根据立方根计算即可.【解答】解:=,故答案为:﹣【点评】此题考查立方根,关键是根据立方根计算.3.由x﹣3y=6可以得到用x表示y的式子是y=.【分析】把x看做已知数求出y即可.【解答】解:由x﹣3y=6可以得到用x表示y的式子是y=,故答案为:y=,【点评】此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.4.若a、b满足|a﹣2|+(3﹣b)2=0,则b a=9.【分析】直接利用偶次方的性质以及绝对值的性质得出a,b的值,进而得出答案.【解答】解:∵|a﹣2|+(3﹣b)2=0,∴a=2,b=3,∴b a=32=9.故答案为:9.【点评】此题主要考查了偶次方的性质以及绝对值的性质,得出a,b的值是解题关键.5.某商店以每件180元的进价购入T恤衫60件,并以每件240元的价格销售.一个月后T恤衫的销售款已经超过这批T恤衫的进货款,这时至少已售出T恤衫46件.【分析】设这时已售出T恤衫x件,根据总价=单价×数量结合一个月后T恤衫的销售款已经超过这批T恤衫的进货款,即可得出关于x的一元一次不等式,解之取其中的最小正整数即可得出结论.【解答】解:设这时已售出T恤衫x件,根据题意得:240x>180×60,解得:x>45,∴这时至少已售出T恤衫46件.故答案为:46.【点评】本题考查了一元一次不等式的应用,根据各数量间的关系,正确列出一元一次不等式是解题的关键.6.如图,△ABC的顶点都在网格点上,将△ABC向右平移3个单位长度,再向上平移2个单位长度,则平移后得到的△A′B′C′三个顶点A′、B′、C′的坐标分别是A′(1,3)、B′(﹣1,0)、C′(2,﹣1).【分析】根据“坐标,右移加,左移减;纵坐标,上移加,下移减”求解可得.【解答】解:因为点A(﹣2,1)、B(﹣4,﹣2)、C(﹣1,﹣3),所以向右平移3个单位长度,再向上平移2个单位长度平移后的对应点的坐标为:A′(1,3)、B′(﹣1,0)、C′(2,﹣1),故答案为:A′(1,3)、B′(﹣1,0)、C′(2,﹣1).【点评】本题主要考查坐标与图形的变化,解题的关键是掌握点的坐标的平移规律:坐标,右移加,左移减;纵坐标,上移加,下移减.二、选择题(本大题共8小题,每小题4分,共32分在每小题给出的四个选项中,只有一项是符合题目要求的)7.计算±的值为()A.±3B.±9C.3D.9【分析】根据平方根的性质,正数a有两个平方根,它们互为相反数即可解答.【解答】解:∵(±9)2=81,∴±=±9.故选:B.【点评】此题考查算术平方根的定义,关键是根据算术平方根的定义,熟记概念与性质是解题的关键.8.2013月5日,李克强总理在总结过去五年的政府工作时指出,中央财政加大对各类学校家庭困难学生资助力度,4.3亿人次受益,4.3亿用科学记数法表示为()A.4.3×106B.4.3×107C.4.3×108D.4.3×109【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:4.3亿=4.3×108,故选:C.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10﹣n,其中1≤|a|<10,确定a与n的值是解题的关键.9.在平面直角坐标系中,点P(2,﹣3)在()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据各象限内点的坐标特征解答.【解答】解:点P(2,﹣3)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).10.如图,DE经过点A,DE∥BC,下列说法错误的是()A.∠DAB=∠EAC B.∠EAC=∠CC.∠EAB+∠B=180°D.∠DAB=∠B【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【解答】解:∵DE∥BC,∴∠DAB=∠ABC(两直线平行,内错角相等),A选项错误、D选项正确;∠EAC=∠C(两直线平行,内错角相等),B选项正确;∠EAB+∠B=180°(两直线平行,同旁内角互补),C选项正确;故选:A.【点评】本题主要考查平行线的性质,解题的关键是掌握两直线平行,内错角相等、同旁内角互补.11.如图,轮船与灯塔相距120nmile,则下列说法中正确的是()A.轮船在灯塔的北偏西65°,120 n mile处B.灯塔在轮船的北偏东25°,120 n mile处C.轮船在灯塔的南偏东25°,120 n mile处D.灯塔在轮船的南偏西65°,120 n mile处【分析】根据方向角的定义作出判断.【解答】解:灯塔在轮船的北偏东25°,120 n mile处.故选:B.【点评】考查了方向角的定义.用方向角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边,故描述方向角时,一般先叙述北或南,再叙述偏东或偏西.(注意几个方向的角平分线按日常习惯,即东北,东南,西北,西南)12.若a>b,则下列各式中不正确的是()A.7+a>7+b B.a﹣7>b﹣7C.7a>7b D.﹣>﹣【分析】利用不等式的基本性质判断即可.【解答】解:由a>b,得到7+a>7+b,a﹣7>b﹣7,7a>7b,故选:D.【点评】此题考查了不等式的性质,熟练掌握不等式的基本性质是解本题的关键.13.下列调查方式中最适合的是()A.要了解一批节能灯的使用寿命,采用全面调查方式B.调查你所在班级的同学的身高,采用抽样调查方式C.环保部门调查嘉陵江某段水域的水质情况,采用抽样调查方式D.调查全市中学生每天的就寝时间,采用全面调查方式【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、要了解一批节能灯的使用寿命,采用抽样调查,故A错误;B、调查你所在班级的同学的身高,采用普查,故B错误;C、环保部门调查嘉陵江某段水域的水质情况,采用抽样调查,故C正确;D、调查全市中学生每天的就寝时间,采用抽样调查,故D错误;故选:C.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.14.如图,观察下列图形,第一个图形有3个三角形,第二个图形有7个三角形,第三个图形有11个三角形,依照此规律,第12个图形中共有()个三角形.A.47B.43C.39D.36【分析】易得第1个图形中三角形的个数,进而得到其余图形中三角形的个数在第1个图形中三角形的个数的基础上增加了几个4即可.【解答】解:第1个图形中有3个三角形;第2个图形中有3+4=7个三角形;第3个图形中有3+2×4=11个三角形;…第n个图形中有3+(n﹣1)×4=4n﹣1,当n=12时,4×12﹣1=47,故选:A.【点评】考查图形的规律性问题;得到不变的量及变化的量与n的关系是解决本题的关键.三、解答题(本大题共9小题,共70分.解答应写出必要的文字说明证明过程或演算步骤)15.(6分)计算:(﹣5)3÷(﹣)﹣【分析】根据算术平方根的概念计算此题.【解答】解:(﹣5)3÷(﹣)﹣=﹣125×(﹣)﹣7=168【点评】本题主要考查了算术平方根的概念,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.16.(6分)先化简,再求值:5x3﹣[6x2﹣(3x2+4)﹣4x3],其中x=﹣3.【分析】原式去括号合并得到最简结果,把x的值代入计算即可求出值.【解答】解:原式=5x3﹣6x2+(3x2+4)+4x3=5x3﹣6x2+3x2+4+4x3=9x3﹣3x2+4,当x=﹣3时,原式=9×(﹣3)3﹣3×(﹣3)2+4=﹣243﹣27+4=﹣266.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.17.(7分)解不等式组,并把它的解集在数轴上表示出来.【分析】先求出不等式组的解集,再在数轴上表示出来即可.【解答】解:∵解不等式①得:x≥﹣2,解不等式②得:x>2,∴不等式组的解集为x>2,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集找出不等式组的解集是解此题的关键.18.(7分)解方程组【分析】利用加减法解二元一次方程组,即可解答.【解答】解:把①×3得:a+3b=15 ③,②+③得:a=11,解得:a=,把a=代入①得:+b=5解得:b=,∴方程组的解为:.【点评】本题考查了解二元一次方程组,解决本题的关键是熟记加减法解二元一次方程组.19.(8分)甲、乙两个工人同时接受一批任务,上午工作的5小时中,甲用了2小时改装机器以提高工效,因此,上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件,问这一天甲、乙每小时各做多少个零件?【分析】设甲每小时做x个零件,乙每小时做y个零件,根据“上午工作结束时,甲比乙少做60个零件;下午两人继续工作4小时后,全天总计甲反而比乙多做468个零件”,即可得出关于x,y 的二元一次方程组,解之即可得出结论.【解答】解:设甲每小时做x个零件,乙每小时做y个零件,根据题意:,解得:.答:甲每小时做360个零件,乙每小时做228个零件.【点评】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.20.(7分)如图,∠AOB内有一点P;(1)过点P画PE⊥OB,PF⊥OA,垂足分别为E,F.(2)过点P画PM∥OB,交OA于点M;(3)画射线OP;(4)分别写出图中相等的角、互补的角、互余的角各一对.【分析】根据要求画出图形,根据相等的角、互补的角、互余的角的定义举例说明即可;(答案不唯一)【解答】解:如图所示,相等的角有:∠PEO=∠PFO=90°,互补的角有:∠EOF+∠EPF=180°.互余的角有:∠POE+∠OPE=90°.【点评】本题考查作图,互补的角、互余的角的定义等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考基础题.21.(7分)如图,已知:AB∥DE,∠1+∠3=180°,求证:BC∥EF.【分析】由AB与DE平行,利用两直线平行内错角相等得到一对角相等,由已知两个角互补,等量代换得到一对同旁内角互补,利用同旁内角互补两直线平行得到BC与EF平行.【解答】证明:∵AB∥DE,∴∠1=∠2,∵∠1+∠3=180°,∴∠2+∠3=180°,∴BC∥EF.【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(10分)勤俭节约一直是中华民族的传统美德,某中学校团委准备以“勤俭节约”为主题开展一次演讲比赛,为此先对同学们每月零花钱的数额进行一些了解,随机调查了本校部分同学,根据调查结果,绘制出了如下两个尚不完整的统计图表.根据以上图表,解答下列问题:(1)填空:这次调查的同学共有50人,a+b=36,m=52;(2)求扇形统计图中扇形B的圆心角的度数;(3)该校共有1200名学生,请估计每月零花钱的数额在60≤x<90范围的人数.【分析】(1)根据A组的频数是4,对应的百分比是8%,据此求得调查的总人数,利用百分比的意义求得a,然后求得a的值,m的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数1200乘以对应的比例即可求解.【解答】解:(1)∵被调查的同学共有4÷8%=50人,∴a=50×20%=10,b=50﹣(4+10+8+2)=26,则a+b=36,m%=×100%=52%,即m=52,故答案为:50、36、52;(2)扇形统计图中扇形B的圆心角的度数为360°×20%=72°;(3)估计每月零花钱的数额在60≤x<90范围的人数为1200×=864人.【点评】本题考查了扇形统计图,观察统计表、扇形统计图获得有效信息是解题关键,扇形统计图直接反映部分占总体的百分比大小.23.(12分)已知∠AOB是一个直角,作射线OC,再分别作∠AOC和∠BOC的平分线OD,OE.(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出∠DOE的度数(不必写过程).【分析】(1)如图①,当∠BOC=40°时,求∠DOE的度数;(2)如图②,当射线OC在∠AOB内绕O点旋转时,∠DOE的大小是否发生变化,说明理由;(3)当射线OC在∠AOB外绕O点旋转且∠AOC为钝角时,画出图形,直接写出相应的∠DOE的度数(不必写出过程).【解答】解:(1)如图,∠AOC=90°﹣∠BOC=50°,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC=25°,∠COE=∠BOC=20°,∴∠DOE=∠COD+∠COE=45°;(2)∠DOE的大小不变,理由是:∠DOE=∠COD+∠COE=∠AOC+∠COB=(∠AOC+∠COB)=∠AOB=45°;(3)∠DOE的大小发生变化情况为,如图3,则∠DOE为45°;如图4,则∠DOE为135°,分两种情况:如图3所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD﹣∠COE=(∠AOC﹣∠BOC)=45°;如图4所示,∵OD、OE分别平分∠AOC和∠BOC,∴∠COD=∠AOC,∠COE=∠BOC,∴∠DOE=∠COD+∠COE=(∠AOC+∠BOC)=×270°=135°.【点评】本题考查了角的计算,熟练掌握角平分线定义是解本题的关键.。
2018-2019学年七年级下期末考试数学试卷及答案
![2018-2019学年七年级下期末考试数学试卷及答案](https://img.taocdn.com/s3/m/d60468dff7ec4afe05a1df51.png)
2018--2019学年第二学期期末考试初一数学试卷考 生 须 知1.本试卷共6页,共三道大题,27道小题。
满分100分。
考试时间90分钟。
2.在试卷和答题卡上认真填写学校名称、姓名和考号。
3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。
4.在答题卡上,选择题、做图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答。
5.考试结束,将本试卷、答题卡和草稿纸一并交回。
一、选择题(本题共30分,每小题3分)第1-10题均有四个选项,符合题意的选项只有..一个. 1.根据北京小客车指标办的通报,截至2017年6月8日24时,个人普通小客车指标的基准中签几率继续创新低,约为0.001 22,相当于817人抢一个指标,小客车指标中签难度继续加大.将0.001 22用科学记数法表示应为 A .1.22×10-5B .122×10-3C .1.22×10-3D .1.22×10-2 2.32a a ÷的计算结果是 A .9aB .6aC .5aD .a3.不等式01<-x 的解集在数轴上表示正确的是A B C D4.如果⎩⎨⎧-==21y x ,是关于x 和y 的二元一次方程1ax y +=的解,那么a 的值是A .3B .1C .-1D .-35.如图,2×3的网格是由边长为a 的小正方形组成,那么图中阴影部分的面积是 A .2a B .232a C .22a D .23a 6.如图,点O 为直线AB 上一点,OC ⊥OD . 如果∠1=35°,那么∠2的度数是 A .35° B .45° C .55°D .65°7知道香草口味冰淇淋一天售出200的份数是 A .80 B .40 C .20D .108.如果2(1)2x -=,那么代数式722+-x x 的值是A .8B .9-3 -2 -1 1 23 0 -3 -2 -1 1 2 30 -3 -2 -1 1 23 0 -3 -2 -1 1 23 0 香草味50%21D CBAOC .10D .119.一名射箭运动员统计了45次射箭的成绩,并绘制了如图所示的折线统计图. 则在射箭成绩的这组数据中,众数和中位数分别是 A .18,18B .8,8C .8,9D .18,810.如图,点A ,B 为定点,直线l ∥AB ,P 是直线l 上一动点. 对于下列各值: ①线段AB 的长 ②△P AB 的周长 ③△P AB 的面积④∠APB 的度数其中不会..随点P 的移动而变化的是 A .① ③ B .① ④ C .② ③ D .② ④二、填空题(本题共18分,每小题3分) 11.因式分解:328m m -= . 12.如图,一把长方形直尺沿直线断开并错位,点E ,D ,B ,F 在同一条直线上.如果∠ADE =126°, 那么∠DBC = °. 13.关于x 的不等式b ax >的解集是abx <. 写出一组满足条件的b a ,的值: =a ,=b .14.右图中的四边形均为长方形. 根据图形的面积关系,写出一个正确的等式:_____________________.15.《九章算术》是中国传统数学重要的著作,奠定了中国传统数学的基本框架.它的代数成就主要包括开放术、正负术和方程术.其中方程术是《九章算术》最高的数学成就.《九章算术》中记载:“今有共买鸡,人出八,盈三;人出七,不足四. 问人数、鸡价各几何?” 译文:“今天有几个人共同买鸡,每人出8钱,多余3钱,每人出7钱,还缺4钱.问人数和鸡的价钱各是多少?”设人数有x 人,鸡的价钱是y 钱,可列方程组为_____________.16.同学们准备借助一副三角板画平行线. 先画一条直线MN ,再按如图所示的样子放置三角板. 小颖认为AC ∥DF ;小静认为BC ∥EF .ABCM ABlP你认为 的判断是正确的,依据是 .三、解答题(本题共52分,第17-21小题,每小题4分,第22-26小题,每小题5分,第27小题7分)17.计算:1072012)3()1(-+π---.18.计算:)312(622ab b a ab -.19.解不等式组:⎪⎩⎪⎨⎧-≤--<-,,2106)1(8175x x x x 并写出它的所有正整数解.....20.解方程组:2312 4.x y x y +=⎧⎨-=⎩,21.因式分解:223318273b a ab b a +--.22.已知41-=m ,求代数式)1()1(12)12)(32(2-+++++m m m m m )(-的值.23.已知:如图,在∆ABC 中,过点A 作AD ⊥BC ,垂足为D ,E 为AB 上一点,过点E 作EF ⊥BC ,垂足为F ,过点D 作DG ∥AB 交AC 于点G . (1)依题意补全图形;(2)请你判断∠BEF 与∠ADG 的数量关系,并加以证明.24.在的学校为加强学生的体育锻炼,需要购买若干个足球和篮球. 他曾三次在某商场购买过足球和篮球,其中有一次购买时,遇到商场打折销售,其余两次均按标价购买. 三次购买足球和篮球的数量和费用如下表:足球数量(个)篮球数量(个)总费用(元)第一次6 5 700第二次3 7 710第三次7 8 693(1)王老师是第次购买足球和篮球时,遇到商场打折销售的;(2)求足球和篮球的标价;(3)如果现在商场均以标价的6折对足球和篮球进行促销,王老师决定从该商场一次性购买足球和篮球60个,且总费用不能超过2500元,那么最多可以购买个篮球.25.阅读下列材料:为了解北京居民使用互联网共享单车(以下简称“共享单车”)的现状,北京市统计局采用拦截式问卷调查的方式对全市16个区,16-65周岁的1000名城乡居民开展了共享单车使用情况及满意度专项调查.在被访者中,79.4%的人使用过共享单车,39.9%的人每天至少使用1次,32.5%的人2-3天使用1次.从年龄来看,各年龄段使用过共享单车的比例如图所示.从职业来看,IT业人员、学生以及金融业人员使用共享单车的比例相对较高,分别为97.8%、93.1%和92.3%.使用过共享单车的被访者中,满意度(包括满意、比较满意和基本满意)达到97.4%,其中“满意”和“比较满意”的比例分别占41.1%和40.1%,“基本满意”占16.2%.从分项满意度评价结果看,居民对共享单车的“骑行”满意度评价最高,为97.9%;对“付费/押金”和“找车/开锁/还车流程”的满意度分别为96.2%和91.9%;对“管理维护”的满意度较低,为72.2%.(以上数据来源于北京市统计局)根据以上材料解答下列问题:(1)现在北京市16-65周岁的常住人口约为1700万,请你估计每天共享单车骑行人数至少约为万;(2)选择统计表或统计图,将使用共享单车的被访者的分项满意度表示出来;(3)请你写出现在北京市共享单车使用情况的特点(至少一条).26.如图,在小学我们通过观察、实验的方法得到了“三角形内角和是180°”的结论. 小明通过这学期的学习知道:由观察、实验、归纳、类比、猜想得到的结论还需要通过证明来确认它的正确性.受到实验方法1的启发,小明形成了证明该结论的想法:实验1的拼接方法直观上看,是把∠1和∠2移动到∠3的右侧,且使这三个角的顶点重合,如果把这种拼接方法抽象为几何图形,那么利用平行线的性质就可以解决问题了.小明的证明过程如下:已知:如图, ABC.求证:∠A+∠B+∠C =180°.证明:延长BC,过点C作CM∥BA.∴∠A=∠1(两直线平行,内错角相等),∠B=∠2(两直线平行,同位角相等).∵∠1+∠2+∠ACB =180°(平角定义),∴∠A+∠B+∠ACB =180°.请你参考小明解决问题的思路与方法,写出通过实验方法2证明该结论的过程.27.对x ,y 定义一种新运算T ,规定:)2)(()(y x ny mx y x T ++=,(其中m ,n 均为非零常数).例如:n m T 33)11(+=,. (1)已知8)20(0)11(==-,,,T T .① 求m ,n 的值;② 若关于p 的不等式组 ⎩⎨⎧≤->-a p p T p p T )234(4)22(,,,恰好有3个整数解,求a 的取值范围;(2)当22y x ≠时,)()(x y T y x T ,,=对任意有理数x ,y 都成立,请直接写出m ,n 满足的关系式.2018-2019学年度第二学期期末练习初一数学评分标准及参考答案二、填空题(本题共18分,每小题3分)17 18 19.解:20.分分21 -分1分23.(1)如图. ……1分(2)判断:∠BEF=∠ADG.……2分证明:∵AD⊥BC,EF⊥BC,∴∠ADF =∠EFB =90°.∴AD ∥EF (同位角相等,两直线平行).∴∠BEF =∠BAD (两直线平行,同位角相等). ……3分 ∵DG ∥AB ,∴∠BAD =∠ADG (两直线平行,内错角相等). ……4分 ∴∠BEF =∠ADG. ……5分24.解:(1)三; ……1分(2)设足球的标价为x 元,篮球的标价为y 元.根据题意,得65700,37710.x y x y +=⎧⎨+=⎩解得:50,80.x y =⎧⎨=⎩ 答:足球的标价为50元,篮球的标价为80元; ……4分 (3)最多可以买38个篮球. ……5分25.解:(1)略. ……1分(2) 使用共享单车分项满意度统计表……4分(3)略. ……5分26. 已知:如图,∆ABC .求证:∠A +∠B +∠C =180°.证明:过点A 作MN ∥BC. ……1分∴∠MAB =∠B ,∠NAC =∠C (两直线平行,内错角相等).…3分 ∵∠MAB +∠BAC +∠NAC =180°(平角定义),∴∠B +∠BAC +∠C =180°. ……5分ABCMN27.解:(1)①由题意,得()0,88.m n n --=⎧⎨=⎩1,1.m n =⎧∴⎨=⎩ ……2分②由题意,得(22)(242)4,(432)(464).p p p p p p p p a +-+->⎧⎨+-+-≤⎩①②解不等式①,得1p >-. ……3分 解不等式②,得1812a p -≤.181.12a p -∴-<≤……4分∵恰好有3个整数解,182 3.12a -∴≤<4254.a ∴≤< ……6分(2)2m n =. ……7分。
2018-2019学年湘教版七年级数学下册期末试卷(含答案)
![2018-2019学年湘教版七年级数学下册期末试卷(含答案)](https://img.taocdn.com/s3/m/c89eadc5c8d376eeaeaa31e6.png)
2018-2019学年七年级(下)期末数学试卷一、选择题(本大题共12小题,每小题4分,满分48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy2.下列计算正确的是()A.a2•a3=a6B.a2+a2=a4C.(﹣a3)2=a6 D.(a2b)2=a4b3.已知是方程2mx﹣y=10的解,则m的值为()A.2 B.4 C.6 D.104.下列运算正确的是()A.(x﹣1)2=x2﹣2x﹣1 B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(m+n)(﹣m+n)=﹣m2+n25.下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.46.下列从左到右的变形:(1)15x2y=3x•5xy;(2)(a+b)(a﹣b)=a2﹣b2;(3)a2﹣2a+1=(a﹣1)2;(4)x2+3x+1=x(x+3+)其中是因式分解的个数是()A.0个B.1个C.2个D.3个7.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)8.点P是直线l外一点,A、B、C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离()A.小于2cm B.等于2cm C.不大于2cm D.等于4cm9.下列叙述中,正确的是()A.相等的两个角是对顶角B.过一点有且只有一条直线与已知直线平行C.垂直于同一条直线的两直线平行D.从直线外一点到这条直线上的各点连结的所有线段中,垂线段最短10.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差11.若一列数据x1,x2,x3,…,x n,的平均数是3,方差是2,则数据x1+5,x2+5,…,x n+5的平均数与方差分别是()A.8,7 B.5,5 C.3,2 D.8,212.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直 D.无法确定二、填空题(本大题共8小题,每小题4分,满分32分.)13.已知(a﹣2)+y=1是一个二元一次方程,则a的值为.14.(﹣3ab2)3•(a2b)=.15.若代数式x2+mx+9是完全平方式,那么m=.16.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=40°,则∠BOC=.17.△ABC与△DEF关于直线m对称,AB=4,BC=6,△DEF的周长是15,则AC=.18.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数是.19.若a+b=2,ab=1,则a2+b2=.20.观察下列等式:12﹣3×1=1×(1﹣3);22﹣3×2=2×(2﹣3);32﹣3×3=3×(3﹣3);42﹣3×4=4×(4﹣3);…则第n个等式可表示为.三、解答题(本大题共7小题,满分65分,解答应写出文字说明、证明过程或演算步骤)21.解方程:(1);(2).22.因式分解(1)a3b﹣ab3(2)(x2+4)2﹣16x2.23.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2,其中a,b满足|a+|+(b﹣1)2=0.24.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?26.某班七年级第二学期数学一共进行四次考试,小丽和小明的成绩如表所示:(1)请你通过计算这四次考试成绩的方差,比较谁的成绩比较稳定?(2)若老师计算学生的学期总评成绩按照如下的标准:单元测验1占10%,单元测验2占10%,期中考试占30%,期末考试占50%.请你通过计算,比较谁的学期总评成绩高?27.如图,已知直线l1∥l2,直线l和直线l1、l2交于点C和D,在C、D之间有一点P,A是l1上的一点,B是l2上的一点.(1)如果P点在C、D之间运动时,如图(1)问∠PAC,∠APB,∠PBD之间有何关系,并说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),在图(2),图(3)中画出图形并探索∠PAC,∠APB,∠PBD之间的关系又是如何?并选择其中一种情况说明理由.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共12小题,每小题4分,满分48分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣=0 D.2x﹣3y=xy【考点】二元一次方程的定义.【分析】二元一次方程满足的条件:含有2个未知数,未知数的项的次数是1的整式方程.【解答】解::A、3x﹣6=x是一元一次方程;B、3x=2y是二元一次方程;C、x﹣=0是分式方程;D、2x﹣3y=xy是二元二次方程故选:B.2.下列计算正确的是()A.a2•a3=a6B.a2+a2=a4C.(﹣a3)2=a6 D.(a2b)2=a4b【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】根据合并同类项法则,同底数幂的乘法,幂的乘方和积的乘方分别求出每个式子的值,再判断即可.【解答】解:A、结果是a5,故本选项错误;B、结果是2a2,故本选项错误;C、结果是a6,故本选项正确;D、结果是a4b2,故本选项错误;故选C.3.已知是方程2mx﹣y=10的解,则m的值为()A.2 B.4 C.6 D.10【考点】二元一次方程的解;解一元一次方程.【分析】把x=1,y=2代入方程得到一个关于m的方程,求出方程的解即可【解答】解:把x=1,y=2代入方程2mx﹣y=10得:2m﹣2=10,解得:m=6,故选:C.4.下列运算正确的是()A.(x﹣1)2=x2﹣2x﹣1 B.(a﹣b)2=a2﹣b2C.(a+m)(b+n)=ab+mn D.(m+n)(﹣m+n)=﹣m2+n2【考点】整式的混合运算.【分析】分别利用完全平方公式以及平方差公式和多项式乘法运算法则化简求出答案.【解答】解:A、(x﹣1)2=x2﹣2x+1,故此选项错误;B、(a﹣b)2=a2﹣2ab+b2,故此选项错误;C、(a+m)(b+n)=ab+mn+an+mb,故此选项错误;D、(m+n)(﹣m+n)=﹣m2+n2,正确.故选:D.5.下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.4【考点】轴对称图形.【分析】关于某条直线对称的图形叫轴对称图形.【解答】解:中间两个图形是轴对称图形,轴对称图形的个数是2,故选B.6.下列从左到右的变形:(1)15x2y=3x•5xy;(2)(a+b)(a﹣b)=a2﹣b2;(3)a2﹣2a+1=(a﹣1)2;(4)x2+3x+1=x(x+3+)其中是因式分解的个数是()A.0个B.1个C.2个D.3个【考点】因式分解的意义.【分析】因式分解就是把多项式分解成几个整式积的形式,根据定义即可进行判断.【解答】解:(1)不是对多项式进行变形,故错误;(2)多项式的乘法,故错误;(3)正确;(4)结果不是整式,故错误.故选B.7.如图所示,在边长为a的正方形中,剪去一个边长为b的小正方形(a>b),将余下部分拼成一个梯形,根据两个图形阴影部分面积的关系,可以得到一个关于a、b的恒等式为()A.(a﹣b)2=a2﹣2ab+b2B.(a+b)2=a2+2ab+b2C.a2﹣b2=(a+b)(a﹣b)D.a2+ab=a(a+b)【考点】平方差公式的几何背景.【分析】可分别在正方形和梯形中表示出阴影部分的面积,两式联立即可得到关于a、b的恒等式.2﹣b2;【解答】解:正方形中,S阴影=a梯形中,S(2a+2b)(a﹣b)=(a+b)(a﹣b);阴影=故所得恒等式为:a2﹣b2=(a+b)(a﹣b).故选:C.8.点P是直线l外一点,A、B、C为直线l上的三点,PA=4cm,PB=5cm,PC=2cm,则点P到直线l的距离()A.小于2cm B.等于2cm C.不大于2cm D.等于4cm【考点】垂线段最短.【分析】点P到直线l的距离为点P到直线l的垂线段,结合已知,因此点P到直线l的距离小于等于2.【解答】解:∵根据点到直线的距离为点到直线的垂线段(垂线段最短),2<4<5,∴点P到直线l的距离小于等于2,即不大于2,故选:C.9.下列叙述中,正确的是()A.相等的两个角是对顶角B.过一点有且只有一条直线与已知直线平行C.垂直于同一条直线的两直线平行D.从直线外一点到这条直线上的各点连结的所有线段中,垂线段最短【考点】平行线的性质;垂线段最短;平行公理及推论.【分析】分别根据对顶角的性质、平行线的判定与性质及垂线段最短的知识对各选项进行逐一分析即可.【解答】解:A、对顶角相等,但是相等的两个角不一定是对顶角,故本选项错误;B、过直线外一点有且只有一条直线与已知直线平行,故本选项错误;C、同一平面内,垂直于同一条直线的两直线平行,故本选项错误;D、从直线外一点到这条直线上的各点连结的所有线段中,垂线段最短,符合垂线段的定义,故本选项正确.故选D.10.有19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学的()A.平均数B.中位数C.众数D.方差【考点】统计量的选择.【分析】因为第10名同学的成绩排在中间位置,即是中位数.所以需知道这19位同学成绩的中位数.【解答】解:19位同学参加歌咏比赛,所得的分数互不相同,取得前10位同学进入决赛,中位数就是第10位,因而要判断自己能否进入决赛,他只需知道这19位同学的中位数就可以.故选:B.11.若一列数据x1,x2,x3,…,x n,的平均数是3,方差是2,则数据x1+5,x2+5,…,x n+5的平均数与方差分别是()A.8,7 B.5,5 C.3,2 D.8,2【考点】方差;算术平均数.【分析】根据平均数的变化规律可得出数据x1+5,x2+5,x3+5,…,x n+5的平均数是8;根据数据x1,x2,x3,…,x n的方差为2,即可求出x1+5,x2+5,x3+5,…,x n+5的方差是2.【解答】解:∵x1,x2,x3,…,x n的平均数是3,∴x1+5,x2+5,x3+5,…,x n+5的平均数是3+5=8;∵x1,x2,x3,…,x n的方差是2,∴x1+5,x2+5,x3+5,…,x n+5的方差是2;故选D.12.在同一平面内,有8条互不重合的直线,l1,l2,l3…l8,若l1⊥l2,l2∥l3,l3⊥l4,l4∥l5…以此类推,则l1和l8的位置关系是()A.平行B.垂直C.平行或垂直 D.无法确定【考点】平行线的判定.【分析】如果一条直线垂直于两平行线中的一条,那么它与另一条一定也垂直.再根据“垂直于同一条直线的两直线平行”,可知L1与L8的位置关系是平行.【解答】解:∵l2∥l3,l3⊥l4,l4∥l5,l5⊥l6,l6∥l7,l7⊥l8,∴l2⊥l4,l4⊥l6,l6⊥l8,∴l2⊥l8.∵l1⊥l2,∴l1∥l8.故选A二、填空题(本大题共8小题,每小题4分,满分32分.)13.已知(a﹣2)+y=1是一个二元一次方程,则a的值为﹣2.【考点】二元一次方程的定义.【分析】根据方程中只含有2个未知数;含未知数项的最高次数为一次;方程是整式方程,可得答案.【解答】解:由题意,得a2﹣3=1且a﹣2≠0,解得a=﹣2,故答案为:﹣2.14.(﹣3ab2)3•(a2b)=﹣27a5b7.【考点】单项式乘单项式;幂的乘方与积的乘方.【分析】根据单项式乘以单项式,即可解答.【解答】解:(﹣3ab2)3•(a2b)=(﹣3)3•a3b6•a2b=﹣27a5b7,故答案为:﹣27a5b7.15.若代数式x2+mx+9是完全平方式,那么m=±6.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定m的值.【解答】解:∵x2+mx+9=x2+mx+32,∴mx=±2×x×3,解得m=±6.故答案为:±6.16.如图,直线AB与直线CD相交于点O,OE⊥AB,垂足为O,∠EOD=40°,则∠BOC=130°.【考点】垂线;对顶角、邻补角.【分析】运用垂线,对顶角、邻补角的定义计算.【解答】解:∵OE⊥AB,∴∠EOB=90°,∵∠EOD=40°,∴∠DOB=90°﹣40°=50°,∴∠BOC=180°﹣∠DOB=180°﹣50°=130°.故答案为:130°.17.△ABC与△DEF关于直线m对称,AB=4,BC=6,△DEF的周长是15,则AC=5.【考点】轴对称的性质.【分析】首先根据成轴对称的两个三角形的周长相等确定△ABC的周长,然后减去其他两边的长即可求得第三边的长.【解答】解:∵△ABC与△DEF关于直线m对称,△DEF的周长是15,∴△ABC的周长为15,∵AB=4,BC=6,∴AC=15﹣AB﹣BC=15﹣4﹣6=5,故答案为:5.18.一组数据2,4,x,2,4,7的众数是2,则这组数据的平均数是 3.5.【考点】众数;算术平均数.【分析】根据众数的概念可得x=2,然后根据平均数的计算公式进行求解即可.【解答】解:∵2,4,x,2,4,7的众数是2,∴x=2,∴该组数据的平均数为(2+4+2+2+4+7)÷6=3.5;故答案为3.5.19.若a+b=2,ab=1,则a2+b2=2.【考点】完全平方公式.【分析】将a+b=2两边平方,利用完全平方公式展开,将ab的值代入计算即可求出a2+b2的值.【解答】解:∵a+b=2,ab=1,∴(a+b)2=a2+b2+2ab,即4=a2+b2+2,则a2+b2=2.故答案为:220.观察下列等式:12﹣3×1=1×(1﹣3);22﹣3×2=2×(2﹣3);32﹣3×3=3×(3﹣3);42﹣3×4=4×(4﹣3);…则第n个等式可表示为n2﹣3n=n(n﹣3).【考点】因式分解的应用.【分析】由于每个等式第一个数值由1的平方到2的平方逐渐增加,接着减去的是3×1、3×2等,等式右边是前面数字的一种组合,由此即可得到第n个等式.【解答】解:∵12﹣3×1=1×(1﹣3);22﹣3×2=2×(2﹣3);32﹣3×3=3×(3﹣3);42﹣3×4=4×(4﹣3);…∴第n个等式可表示为n2﹣3n=n(n﹣3).三、解答题(本大题共7小题,满分65分,解答应写出文字说明、证明过程或演算步骤)21.解方程:(1);(2).【考点】解二元一次方程组.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组利用代入消元法求出解即可.【解答】解:(1),①×2+②得:7x=14,即x=2,把x=2代入①得:y=﹣1,则方程组的解为;(2),把①代入②得:4y+4﹣5y=5,即y=﹣1,把y=﹣1代入①得:x=0,则方程组的解为.22.因式分解(1)a3b﹣ab3(2)(x2+4)2﹣16x2.【考点】提公因式法与公式法的综合运用.【分析】(1)根据提公因式法,可得平方差公式,根据平方差公式,可得答案;(2)根据平方差公式,可得完全平方公式,根据完全平方公式,可得答案.【解答】解:(1)原式=ab(a2﹣b2)=ab(a+b)(a﹣b);(2)原式=(x2+4x+4)(x2﹣4x+4)=(x+2)2(x﹣2)2.23.先化简,再求值:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2,其中a,b满足|a+|+(b﹣1)2=0.【考点】整式的混合运算—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】先算乘法,再合并同类项,求出a、b后代入求出即可.【解答】解:a(a﹣2b)+2(a+b)(a﹣b)+(a+b)2=a2﹣2ab+2a2﹣2b2+a2+2ab+b2=4a2﹣b2,∵|a+|+(b﹣1)2=0,∴a+=0,b﹣1=0,a=﹣,b=1,原式=4×(﹣)2﹣12=0.24.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.【考点】平行线的判定与性质;角平分线的定义;平行线的性质.【分析】根据垂直可得∠ADC=∠EGC=90°,根据同位角相等两直线平行可得AD∥EG,根据平行线的性质可得∠1=∠2,∠E=∠3,再利用等量代换可得∠2=∠3,进而得到AD平分∠BAC.【解答】证明:∵AD⊥BC于D,EG⊥BC于G,(已知)∴∠ADC=∠EGC=90°,∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)25.为了鼓励市民节约用水,某市居民生活用水按阶梯式水价计费,表是该市居民“一户一表”生活用水阶梯式计费价格表的一部分信息:(水价计费=自来水销售费用+污水处理费用)已知小王家2012年4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)小王家6月份交水费184元,则小王家6月份用水多少吨?【考点】二元一次方程组的应用.【分析】(1)根据题意和表格可以列出相应的二元一次方程组,从而可以求出a、b的值;(2)根据题意可以列出相应的方程,从而可以求得小王家本月用水量为多少吨.【解答】解:(1)根据题意可得,,解得,,即a的值是2.2,b的值是4.4;(2)设小王家6月份用水x吨,根据题意知,30吨的水费为:17×2.2+13×4.2+30×0.8=116,∵184>116,∴小王家6月份计划用水超过了30吨∴6.0(x﹣30)+116=184,解得,x=即小王家6月份用水量吨.26.某班七年级第二学期数学一共进行四次考试,小丽和小明的成绩如表所示:(1)请你通过计算这四次考试成绩的方差,比较谁的成绩比较稳定?(2)若老师计算学生的学期总评成绩按照如下的标准:单元测验1占10%,单元测验2占10%,期中考试占30%,期末考试占50%.请你通过计算,比较谁的学期总评成绩高?【考点】方差;加权平均数.【分析】(1)先求出两人的平均成绩,根据方差的计算公式求出方差;(2)利用加权平均数的计算公式计算即可.【解答】解:(1)小丽的平均数为:×(80+70+90+80)=80,小明的平均数为:×(60+90+80+90)=80,小丽的方差为:×[(80﹣80)2+(70﹣80)2+(90﹣80)2+(80﹣80)2]=50,小明的方差为:×[(60﹣80)2+(90﹣80)2+(80﹣80)2+(90﹣80)2]=150,则小丽的成绩比较稳定;(2)小丽的平均成绩为:80×10%+90×10%+70×30%+80×50%=78,小明的平均的平均成绩为:60×10%+80×10%+90×30%+90×50%=86,小明的学期总评成绩高.27.如图,已知直线l1∥l2,直线l和直线l1、l2交于点C和D,在C、D之间有一点P,A是l1上的一点,B是l2上的一点.(1)如果P点在C、D之间运动时,如图(1)问∠PAC,∠APB,∠PBD之间有何关系,并说明理由.(2)若点P在C、D两点的外侧运动时(P点与点C、D不重合),在图(2),图(3)中画出图形并探索∠PAC,∠APB,∠PBD之间的关系又是如何?并选择其中一种情况说明理由.【考点】平行线的性质.【分析】(1)当P点在C、D之间运动时,首先过点P作PE∥l1,由l1∥l2,可得PE∥l2∥l1,根据两直线平行,内错角相等,即可求得:∠APB=∠PAC+∠PBD.(2)当点P在C、D两点的外侧运动时,由直线l1∥l2,根据两直线平行,同位角相等与三角形外角的性质,即可求得:∠PBD=∠PAC+∠APB.【解答】解:(1)如图1,当P点在C、D之间运动时,∠APB=∠PAC+∠PBD.理由如下:过点P作PE∥l1,∵l1∥l2∴PE∥l2∥l1,∴∠PAC=∠1,∠PBD=∠2,∴∠APB=∠1+∠2=∠PAC+∠PBD;(2)如图2,当点P在C、D两点的外侧运动,且在l2下方时,∠PAC=∠PBD+∠APB.理由如下:∵l1∥l2,∴∠PED=∠PAC,∵∠PED=∠PBD+∠APB,∴∠PAC=∠PBD+∠APB.如图3,当点P在C、D两点的外侧运动,且在l1上方时,∠PBD=∠PAC+∠APB.理由如下:∵l1∥l2,∴∠PEC=∠PBD,∵∠PEC=∠PAC+∠APB,∴∠PBD=∠PAC+∠APB.2016年10月25日。
2018-2019学年湘教版七年级下学期期末考试数学试卷(含答案)
![2018-2019学年湘教版七年级下学期期末考试数学试卷(含答案)](https://img.taocdn.com/s3/m/c9d92c22ff00bed5b9f31d3f.png)
2018-2019学年七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元.设大圆珠笔为x元/枝,小圆珠笔为y元/枝,根据题意,列方程组正确的是()A. B.C.D.2.下列等式中,正确的是()A.3a﹣2a=1 B.(a2)3=a5C.(﹣2a3)2=4a6D.(a﹣b)2=a2﹣b2 3.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)4.下面各图中∠1和∠2是对顶角的是()A.B.C.D.5.下列图形中,不是轴对称图形的是()A.B.C.D.6.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是8.4s2乙=0.7,s2丙=0.9,s2丁=1.5,射击测试中,成绩最稳定环,方差分别是s2甲=0.5,的是()A.甲B.乙C.丙D.丁7.三元一次方程组的解是()A.B.C.D.8.把代数式xy2﹣9x分解因式,结果正确的是()A.x(y2﹣9)B.x(y+3)2C.x(y+3)(y﹣3)D.x(y+9)(y﹣9)9.下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角10.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠3=180°B.∠1+∠2=∠3C.∠2+∠3+∠1=180°D.∠2+∠3﹣∠1=180°二、填空题(本大题共有8小题,每小题3分,共24分)11.方程组的解是.12.已知a x=2,a y=3,求a x+2y=.13.若m2+n2=6,且m﹣n=3,则mn=.14.如图,直线l与直线a,b相交,且a∥b,∠1=45°,则∠2的度数是.15.一张长方形纸条,折成如图所示的形状,若∠1=110°,则∠2=.16.一组数据2,2,1,4,4,4的中位数是.17.如图,将三角形AOB绕点O逆时针旋转到三角形COD的位置,若旋转角是20°,则∠AOC的度数为.18.如图,下列推理是否正确,请写出你认为是正确推理的编号.①因为AB∥DC,所以∠ABC+∠C=180°②因为∠1=∠2,所以AD∥BC③因为AD∥BC,所以∠3=∠4④因为∠A+∠ADC=180°,所以AB∥DC.三、解答题(本大题共有4小题,共24分)19.(6分)先化简,再求值(a+b)2﹣(b﹣a)2﹣2(b﹣a)(b+a),其中a=1,b=2.20.(6分)已知a+b=2,ab=2,求a2b+ab2的值.21.(6分)如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠DOB 是∠EOD的两倍,即∠DOB=2∠EOD,求∠AOC,∠COB的度数.22.(6分)如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=(又∵∠1=∠2∴∠1=∠3()∴AB∥()∴∠BAC+ =180°()∵∠BAC=70°()∴∠AGD=()四、图形操作题(本大题共有2小题,共12分)23.(6分)在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O 都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.24.(6分)如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2(已知),∠1=∠3(),∴∠2=∠3(等量代换).∴∥(同位角相等,两直线平行).∴∠C=∠ABD ().又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF().五、实践与应用题(本大题共有2小题,共18分)25.(9分)小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?26.(9分)某公司欲招聘一名公关人员,对甲、乙两位候选人进行了笔试和面试,他们的成绩如表所示:根据需要,笔试与面试的成绩按4:6的比例确定个人成绩(成绩高者被录用),那么谁将被录用?六、探究题(本大题共有2小题,共12分)27.(4分)小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.28.(8分)先阅读下列知识,然后回答后面的问题:(1)二元一次方程组的解的情况有以下三种:当==时,方程组有解.当=≠时,方程组有解.当≠时,方程组有解.(2)判断二元一次方程组的解的情况:.判断二元一次方程组的解的情况:.判断二元一次方程组的解的情况:.(3)小明在解下面的二元一次方程组时,碰到了一个非常“严重”的问题,发现“10=8”,他知道这是不可能的,但是又找不到错误的原因,请你解释一下:解方程组:.解:由①得y=5﹣2x,代入②得4x+2(5﹣2x)=8,得10=8.请指出出现这种错误的原因.2018-2019学年七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.有大小两种圆珠笔,3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元.设大圆珠笔为x元/枝,小圆珠笔为y元/枝,根据题意,列方程组正确的是()A. B.C.D.【考点】由实际问题抽象出二元一次方程组.【分析】设1枝大圆球笔售价为x元,1枝小圆珠笔的售价为y元.等量关系为:3枝大圆珠笔和2枝小圆珠笔的售价是14元,2枝大圆珠笔和3枝小圆珠笔的售价为11元,依此列出方程组即可.【解答】解:设1枝大圆球笔售价为x元,1枝小圆珠笔的售价为y元,根据题意得,故选B【点评】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.2.下列等式中,正确的是()A.3a﹣2a=1 B.(a2)3=a5C.(﹣2a3)2=4a6D.(a﹣b)2=a2﹣b2【考点】幂的乘方与积的乘方;合并同类项;完全平方公式.【分析】结合选项根据幂的乘方与积的乘方、完全平方公式的运算法则进行求解即可.【解答】解:A、3a﹣2a=a≠1,本选项错误;B、(a2)3=a6≠a5,本选项错误;C、(﹣2a3)2=4a6,本选项正确;D、(a﹣b)2=a2+b2﹣2ab≠a2﹣b2,本选项错误.故选C.【点评】本题考查了幂的乘方与积的乘方、完全平方公式的知识,解答本题的关键在于熟练掌握各知识点的运算法则.3.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A.x3﹣x=x(x2﹣1)B.x2﹣2xy+y2=(x﹣y)2C.x2y﹣xy2=xy(x﹣y)D.x2﹣y2=(x﹣y)(x+y)【考点】因式分解的意义.【分析】要找出“做得不够完整的一题”,实质是选出分解因式不正确的一题,只有选项A:x3﹣x=x(x2﹣1)没有分解完.【解答】解:A、分解不彻底还可以继续分解:x3﹣x=x(x2﹣1)=x(x+1)(x ﹣1),B、C、D正确.故选A.【点评】因式分解要彻底,直至分解到不能再分解为止.4.下面各图中∠1和∠2是对顶角的是()A.B.C.D.【考点】对顶角、邻补角.【分析】利用对顶角的定义(首先看是不是有共同的顶点,然后看两边是不是反向延长线)直接判断即可;【解答】解:∵有公共顶点且两条边都互为反向延长线的两个角称为对顶角,∴A,C没有共同的顶点,A,C错误,D、一边不是反向延长线上,D错误,B、满足对顶角的定义,B正确,故选B.【点评】此题是对顶角,邻补角题,主要考查了对顶角的意义,熟练掌握对顶角的意义是解本题的关键,判断一对角是不是对顶角,首先看是不是有共同的顶点,然后看两边是不是反向延长线.5.下列图形中,不是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念对各选项分析判断后利用排除法求解.【解答】解:A、不是轴对称图形,故本选项正确;B、是轴对称图形,故本选项错误;C、是轴对称图形,故本选项错误;D、是轴对称图形,故本选项错误.故选A.【点评】本题考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是8.4环,方差分别是s2甲=0.5,s2乙=0.7,s2丙=0.9,s2丁=1.5,射击测试中,成绩最稳定的是()A.甲B.乙C.丙D.丁【考点】方差.【分析】根据方差越大,波动性越大,越不稳定进行判断.【解答】解:∵s2甲<s2乙<s2丙<s2丁,∴在本次测试中,成绩最稳定的是甲.故选A.【点评】本题考查方差:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.三元一次方程组的解是()A.B.C.D.【考点】解三元一次方程组.【分析】把其中一个未知数当已知对待,可用此未知数表示出令外两个未知数,从而解出方程组.【解答】解:由②,得y=5﹣z,由③,得x=6﹣z,将y和x代入①,得11﹣2z=1,∴z=5,x=1,y=0∴方程组的解为.故选A.【点评】主要考查三元一次方程组的解法.8.把代数式xy2﹣9x分解因式,结果正确的是()A.x(y2﹣9)B.x(y+3)2C.x(y+3)(y﹣3)D.x(y+9)(y﹣9)【考点】提公因式法与公式法的综合运用.【分析】先提取公因式x,再根据平方差公式分解即可.【解答】解:xy2﹣9x,=x(y2﹣9),=x(y+3)(y﹣3).故选C.【点评】本题要用到二次分解因式,分解因式时一定要分解彻底.9.下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角【考点】旋转的性质;对顶角、邻补角;垂线.【分析】根据旋转的性质、对顶角的概念、垂线和平行线的性质分别对每一项进行分析即可.【解答】解:A、旋转不改变图形的形状和大小,故本选项错误;B、两条平行直线被第三条直线所截,同位角相等,故本选项错误;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;D、对顶角相等,但相等的角不一定是对顶角,故本选项错误;故选C.【点评】此题考查了旋转的性质、对顶角的概念、垂线和平行线的性质,比较简答,注意熟记定理是解此题的关键.10.如图,AB∥CD∥EF,则下列各式中正确的是()A.∠1+∠3=180°B.∠1+∠2=∠3C.∠2+∠3+∠1=180°D.∠2+∠3﹣∠1=180°【考点】平行线的性质.【分析】根据平行线的性质可得到∠2+∠BDC=180°,∠BDC+∠1=∠3,从而可找到∠1、∠2、∠3之间的关系.【解答】解:∵AB∥CD,∴∠2+∠BDC=180°,即∠BDC=180°﹣∠2,∵EF∥CD,∴∠BDC+∠1=∠3,即∠BDC=∠3﹣∠1,∴180°﹣∠2=∠3﹣∠1,即∠2+∠3﹣∠1=180°,故选D.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.二、填空题(本大题共有8小题,每小题3分,共24分)11.方程组的解是.【考点】解二元一次方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①+②得:3x=6,即x=2,把x=2代入①得:y=2,则方程组的解为,故答案为:【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.12.已知a x=2,a y=3,求a x+2y=18.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】把a x+2y根据同底数幂的乘法的逆运算进行变形,对于a2y要化成(a y)2,再把已知代入.【解答】解:a x+2y=a x•a2y=a x•(a y)2=2×32=18,故答案为:18.【点评】本题考查了同底数幂的乘法和幂的乘方的性质,熟练掌握运算性质和法则是解题的关键,要注意法则的逆用.13.若m2+n2=6,且m﹣n=3,则mn=﹣.【考点】完全平方公式.【分析】根据﹣2mn=(m﹣n)2﹣(m2+n2),结合m2+n2=6,且m﹣n=3,即可得出mn的值.【解答】解:∵﹣2mn=(m﹣n)2﹣(m2+n2),且m2+n2=6,m﹣n=3,∴mn=﹣=﹣.故答案为:﹣.【点评】本题考查了完全平方公式,解题的关键是利用完全平方公式将mn变形为只含m2+n2与m﹣n的形式.本题属于基础题,难度不大,解决该题型题目时,能够熟练运用完全平方公式解决问题是关键.14.如图,直线l与直线a,b相交,且a∥b,∠1=45°,则∠2的度数是45°.【考点】平行线的性质.【分析】先求出∠3,再根据平行线的性质得出∠2=∠3,即可得出答案.【解答】解:∵∠1=45°,∴∠3=∠1=45°,∵a∥b,∴∠2=∠3=45°,故答案为:45°.【点评】本题考查了平行线的性质的应用,能根据平行线的得出∠2=∠3是解此题的关键,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.15.一张长方形纸条,折成如图所示的形状,若∠1=110°,则∠2=55°.【考点】翻折变换(折叠问题).【分析】先根据图形折叠的性质得出∠2=∠3,再根据平行线的性质即可得出∠1+∠4=180°,根据平角的定义即可得出∠2的度数.【解答】解:由图形折叠的性质可知∠2=∠3,∵AB∥CD,∴∠1+∠4=180°,∵∠1=110°,∴∠4=180﹣110°=70°,∴∠2===55°.故答案为:55°.【点评】本题考查的是图形翻折变换的性质及长方形的性质,熟知“折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等”是解答此题的关键.16.一组数据2,2,1,4,4,4的中位数是3.【考点】中位数.【分析】根据中位数的定义解答.需将这组数据从小到大重新排列.【解答】解:将这组数据从小到大重新排列后为1,2,2,4,4,4.最中间的那两个数是2,4,所以中位数是3.故答案为:3.【点评】本题考查中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.17.如图,将三角形AOB绕点O逆时针旋转到三角形COD的位置,若旋转角是20°,则∠AOC的度数为20°.【考点】旋转的性质.【分析】根据旋转的性质,即可得出答案.【解答】解:∵旋转角是20°,∴∠AOC=20°;故答案为:20°.【点评】本题考查了旋转的性质.旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点﹣旋转中心;②旋转方向;③旋转角度.18.如图,下列推理是否正确,请写出你认为是正确推理的编号①②④.①因为AB∥DC,所以∠ABC+∠C=180°②因为∠1=∠2,所以AD∥BC③因为AD∥BC,所以∠3=∠4④因为∠A+∠ADC=180°,所以AB∥DC.【考点】平行线的判定与性质.【分析】有图形中找到同位角,内错角,同旁内角结合平行线的性质和判定直接判断即可.【解答】解:①∵AB∥DC,∴∠ABC+∠C=180°,此结论正确;②∵∠1=∠2,∴AD∥BC,此结论正确;③∵AD∥BC,∴∠1=∠2,而∠3≠∠4,此结论错误,④∵∠A+∠ADC=180°,∴AB∥DC,此结论正确.故答案为①②④.【点评】此题是平行线的性质和判定,熟练掌握平行线的性质和判定是解本题的关键.三、解答题(本大题共有4小题,共24分)19.先化简,再求值(a+b)2﹣(b﹣a)2﹣2(b﹣a)(b+a),其中a=1,b=2.【考点】整式的混合运算—化简求值.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:(a+b)2﹣(b﹣a)2﹣2(b﹣a)(b+a)=a2+2ab+b2﹣b2+2ab﹣a2﹣2b2+2a2=4ab+2a2﹣2b2,当a=1,b=2时,原式=2.【点评】本题考查了整式的混合运算法则和求值的应用,能正确根据整式的运算法则进行化简是解此题的关键.20.已知a+b=2,ab=2,求a2b+ab2的值.【考点】因式分解-提公因式法.【分析】首先提公因式ab,进而分解因式得出答案.【解答】解:∵a+b=2,ab=2,∴a2b+ab2=ab(a+b)=2×2=4.【点评】此题主要考查了提取公因式法的应用,正确分解因式是解题关键.21.如图,直线AB、CD相交于点O,OE⊥AB,O为垂足,如果∠DOB是∠EOD 的两倍,即∠DOB=2∠EOD,求∠AOC,∠COB的度数.【考点】垂线;对顶角、邻补角.【分析】由垂直得∠EOB=90°,即∠EOD与∠DOB互余;再根据已知∠DOB是∠EOD的两倍,得∠DOB=60°,由对顶角相等和邻补角性质得出结论.【解答】解:∵OE⊥AB,∴∠EOB=90°,∴∠EOD+∠DOB=90°,∵∠DOB=2∠EOD,∴∠DOB=60°,∴∠AOC=∠DOB=60°,∴∠COB=180°﹣60°=120°.【点评】本题考查了垂线的定义及对顶角和邻补角性质,要注意∠DOB是∠EOD 的两倍和垂线的定义的结合运用,得方程组或比的关系,可求这两个角的度数.22.如图,已知EF∥AD,∠1=∠2,∠BAC=70°,求∠AGD(请填空)解:∵EF∥AD∴∠2=∠3(两直线平行,同位角相等又∵∠1=∠2∴∠1=∠3(等量代换)∴AB∥DG(内错角相等,两直线平行)∴∠BAC+ ∠DGA=180°(两直线平行,同旁内角互补)∵∠BAC=70°(已知)∴∠AGD=110°(补角定义)【考点】平行线的判定与性质.【分析】根据平行线的性质和已知求出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质求出∠BAC+∠DGA=180°即可.【解答】解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°(已知),∴∠AGD=110°(补角定义).故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠DGA,两直线平行,同旁内角互补,已知,110°,补角定义.【点评】本题考查了平行线的性质和判定的应用,能灵活运用平行线的性质和判定定理进行推理是解此题的关键,注意:平行线的性质是①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.四、图形操作题(本大题共有2小题,共12分)23.在边长为1个单位长度的小正方形组成的网格中,点A、B、C、O都是格点.(1)将△ABC向左平移6个单位得到△A1B1C1,请画出△A1B1C1;(2)将△ABC绕点O按逆时针方向旋转180°得到△A2B2C2,请画出△A2B2C2.【考点】作图-旋转变换;作图-平移变换.【分析】(1)把A、B、C三点分别向左平移6个单位长度,即可得到三个顶点的对应点,然后顺次连接三点即可;(2)连接AO并延长,然后截取OA2=OA,则A2就是A的对应点,同样可以作出B、C的对应点,然后顺次连接即可.【解答】解:(1)所作图形如图所示;(2)所作图形如图所示.【点评】本题考查了利用平移变换和旋转变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.24.如图,E点为DF上的点,B为AC上的点,∠1=∠2,∠C=∠D.试说明:AC∥DF.解:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换).∴EC∥DB(同位角相等,两直线平行).∴∠C=∠ABD (两直线平行,同位角相等).又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换).∴AC∥DF(内错角相等,两直线平行).【考点】平行线的判定与性质.【分析】根据平行线的判定方法:同位角相等两直线平行,内错角相等两直线平行,同旁内角互补两直线平行做题求解.【解答】解:∵∠1=∠2(已知),∠1=∠3(对顶角相等),∴∠2=∠3(等量代换),∴EC∥DB(同位角相等,两直线平行),∴∠C=∠ABD (两直线平行,同位角相等),又∵∠C=∠D(已知),∴∠D=∠ABD(等量代换),∴AC∥DF(内错角相等,两直线平行).【点评】本题考查平行线的判定方法.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.五、实践与应用题(本大题共有2小题,共18分)25.小亮的妈妈用28元钱买了甲、乙两种水果,甲种水果每千克4元,乙种水果每千克6元,且乙种水果比甲种水果少买了2千克,求小亮妈妈两种水果各买了多少千克?【考点】二元一次方程组的应用.【分析】设小亮妈妈买了甲种水果x千克,乙种水果y千克,根据两种水果共花去28元,乙种水果比甲种水果少买了2千克,据此列方程组.【解答】解:设小亮妈妈买了甲种水果x千克,乙种水果y千克,由题意得,解得.故小亮妈妈买了甲种水果4千克,乙种水果2千克.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.26.某公司欲招聘一名公关人员,对甲、乙两位候选人进行了笔试和面试,他们的成绩如表所示:根据需要,笔试与面试的成绩按4:6的比例确定个人成绩(成绩高者被录用),那么谁将被录用?【考点】加权平均数.【分析】根据题意先算出甲、乙两位候选人的加权平均数,再进行比较,即可得出答案.【解答】解:甲的平均成绩为:(85×6+95×4)÷10=89(分),乙的平均成绩为:(95×6+83×4)÷10=90.2(分),因为乙的平均分数最高,所以乙将被录取.【点评】本题考查了加权平均数的计算公式,注意,计算平均数时按6和4的权进行计算.六、探究题(本大题共有2小题,共12分)27.小明设计了这样一个游戏:在4×4方格内有3个小圆,其余方格都是空白,请你分别在下面四个图中的某个方格内补画一个小圆,使补画后的图形为轴对称图形.【考点】利用轴对称设计图案.【分析】要补成轴对称图形,关键是找出对称轴,不同的对称轴有不同的轴对称图形,所以此题首先要找出对称轴,再思考怎么画轴对称图形.【解答】解:.【点评】做这类题的关键是找对称轴.而且这是一道开放题,答案不唯一.28.先阅读下列知识,然后回答后面的问题:(1)二元一次方程组的解的情况有以下三种:当==时,方程组有无数解.当=≠时,方程组有无解.当≠时,方程组有唯一解.(2)判断二元一次方程组的解的情况:无数解.判断二元一次方程组的解的情况:无解.判断二元一次方程组的解的情况:唯一解.(3)小明在解下面的二元一次方程组时,碰到了一个非常“严重”的问题,发现“10=8”,他知道这是不可能的,但是又找不到错误的原因,请你解释一下:解方程组:.解:由①得y=5﹣2x,代入②得4x+2(5﹣2x)=8,得10=8.请指出出现这种错误的原因.【考点】二元一次方程组的解.【分析】(1)根据二元一次方程组的解与系数的关系求解即可;(2)根据(1)的结论求解即可;(3)根据(1)的结论可知,原方程组外角,所以出现错误.【解答】解:(1)二元一次方程组的解的情况有以下三种:当==时,方程组有无数解.当=≠时,方程组有无解.当≠时,方程组有唯一解.故答案为无数;无;唯一;(2)∵==,∴二元一次方程组有无数解;∵=≠,∴二元一次方程组无解;∵≠,∴二元一次方程组有唯一解;故答案为无数解;无解;唯一解;(3)∵=≠。
2018-2019(下)期末七年级数学考试试卷(含参考答案)
![2018-2019(下)期末七年级数学考试试卷(含参考答案)](https://img.taocdn.com/s3/m/29bb42bea32d7375a5178026.png)
2018-2019学年度第二学期期末学情分析样题七年级数学(满分:100分 考试时间:100分钟)一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母代号涂在答题卡...相应位置上.....) 1.下列计算正确的是( ▲ ) A .a 2+a 3=a 5 B .a 2•a 3=a 6 C .a 3÷a 2=a D .(a 3 ) 2=a 92.若a <b ,则下列不等式中,一定正确的是( ▲ )A . a +2>b +2B .-a <-bC .a -2<b +2D .a 2<ab3 -2204.下列各式能用平方差公式计算的是( ▲ ) A .(-a +b ) (a -b ) B .(a +b ) (a -2b ) C .(a +b ) (-a -b ) D .(-a -b ) (-a +b )5.下列命题中,真命题的有 ( ▲ ) (1)内错角相等; (2)锐角三角形中任意两个内角的和一定大于第三个内角; (3)相等的角是对顶角; (4)平行于同一直线的两条直线平行.6.若某n 边形的每个内角都比其外角大120°,则n 等于( ▲ )7.如图,给出下列条件:①∠1=∠2; ②∠3=∠4;③AD ∥BE ,且∠D =∠B ;④AD ∥BE ,∠DCE =∠DA . c >a >bB .b >c >aC .a >c >bD . a >b >c A .(1)(2)B .(2)(3)C .(2)(4)D .(3)(4)A .6B .10C .12D .15A . ①②B .②③C . ③④D .②③④A . a ≤3B .-3<a ≤3C . -3≤a <3D .-3 <a <3 (第7题)二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把答案直接填写在答题卷...相应位置....上) 9.计算: 30+ (13)-2= ▲ .10.不等式-2x +1 ≤ 3的解集是 ▲ .11.命题“同旁内角互补,两直线平行”的逆命题是 ▲ .12. 某种感冒病毒的直径是0. 000 000 12米,用科学记数法表示为 ▲ 米.13. 若⎩⎨⎧x =2,y =1,是关于x 、y 的二元一次方程kx -y =k 的解,则k 的值为 ▲ .14. 已知a -b =2 ,a +b =3.则a 2+b 2= ▲ .15. 关于x 的方程﹣2x +5=a 的解小于3,则a 的范围 ▲ .16. 如图,a ∥b ,将30°的直角三角板的30°与60°的内角顶点分别放在直线a 、b 上,若∠1+∠2=110°,则∠1= ▲ °.17. 如图,∠A =32°,则∠B +∠C +∠D +∠E = ▲ °.18. 若不等式组⎩⎨⎧≥-≤02x ax 有3个整数解,则a 的范围为 ▲ .(第17题)(第16题)21 abA CDB三、解答题(本大题共10小题,共64分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤) 19.(8分)因式分解:(1)a 3-a ; (2)m 3-2m 2+m .20. (5分)先化简,再求值:(x -1)2 -2(x +1)(x -1),其中x =-1.21. (5分)解方程组⎩⎪⎨⎪⎧2x +y =4,x +2y =5.22.(6分)解不等式组 ⎩⎪⎨⎪⎧2-x >0,5x +12+1≥2x -13,并把解集在数轴上表示出来.23.(6分) 运输两批救灾物资,第一批360t ,用6节火车车皮和15辆汽车正好装完;第二批440t , 用8节火车车皮和10辆汽车正好装完。
2018-2019学年七年级(下)期末数学试卷及答案详解
![2018-2019学年七年级(下)期末数学试卷及答案详解](https://img.taocdn.com/s3/m/20035e56eff9aef8941e0681.png)
2018-2019学年七年级(下)期末数学试卷一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .47.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .210.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3)11.(3分)如果点(3,1)P m m ++在x 轴上,则点P 的坐标为( )A .(0,2)B .(2,0)C .(4,0)D .(0,4)-12.(3分)如图,若12∠=∠,//DE BC ,则:①//FG DC ;②AED ACB ∠=∠;③CD 平分ACB ∠;④190B ∠+∠=︒;⑤BFG BDC ∠=∠,⑥FGC DEC DCE ∠=∠+∠,其中正确的结论是( )A .①②③B .①②⑤⑥C .①③④⑥D .③④⑥13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为( )A .2531B .3635C .47D .626314.(3分)定义:直线a 与直线b 相交于点O ,对于平面内任意一点M ,点M 到直线a 与直线b 的距离分别为p 、q ,则称有序实数对(,)p q 是点M 的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是( )A .1B .2C .3D .4二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 .16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 .17.(3分)点(,)p q 到y 轴距离是 .18.(3 3.65 1.91036.5 6.042365000≈ .19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 .三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= ( )又1A ∠=∠(已 知) ,//AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .26.(12分)ABC ∆与△A B C '''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A ' ;B ' ;C ' ;(2)说明△A B C '''由ABC ∆经过怎样的平移得到? .(3)若点(,)P a b 是ABC ∆内部一点,则平移后△A B C '''内的对应点P '的坐标为 ;(4)求ABC ∆的面积.参考答案与试题解析一、选择题(共14小题,每小题3分,满分42分)1.(3分)如图所示,把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是( )A .垂线段最短B .过一点确定一条直线与已知直线垂直C .两点之间线段最短D .以上说法都不对【分析】根据垂线段的性质,可得答案.【解答】解:把河水引向水池M ,要向水池M 点向河岸AB 画垂线,垂足为N ,再沿垂线MN 开一条渠道才能使渠道最短.其依据是垂线段最短,故选:A .【点评】本题考查了垂线段最短,利用垂线段的性质是解题关键.2.(3分)实数27-的立方根是( )A .3-B .3±C .3D .13- 【分析】根据立方根的定义进行解答.【解答】解:3(3)27-=-,27∴-3273-=-,故选:A .【点评】本题主要考查了立方根的定义,找出立方等于27-的数是解题的关键.3.(3分)如图,在平面直角坐标系中,小猫遮住的点的坐标可能是( )A .(2,1)-B .(2,3)C .(3,5)-D .(6,2)--【分析】根据平面直角坐标系内各象限内点的坐标特点解答即可.【解答】解:由图可知小猫位于坐标系中第四象限,所以小猫遮住的点的坐标应位于第四象限,故选:C .【点评】本题主要考查点的坐标,掌握平面直角坐标系内各象限内点的坐标特点是解题的关键.4.(3分)如图,点E 在四边形ABCD 的边BC 的延长线上,则下列两个角是同位角的是()A .BAC ∠和ACB ∠ B .B ∠和DCE ∠C .B ∠和BAD ∠ D .B ∠和ACD ∠【分析】利用同位角、内错角及同旁内角的定义分别判断后即可确定正确的选项.【解答】解:A 、BAC ∠和ACB ∠是同旁内角,不符合题意;B 、B ∠和DCE ∠是同位角,符合题意;C 、B ∠和BAD ∠是同旁内角,不符合题意;D 、B ∠和ACD ∠不属于同位角、内错角及同旁内角的任何一种,不符合题意,故选:B .【点评】本题考查了同位角、内错角及同旁内角的知识,牢记它们的定义是解答本题的关键,难度不大.5.(3分)下列各图中, 能够由12∠=∠得到//AB CD 的是( )A .B .C .D .【分析】根据对等角相等可得13∠=∠,再由12∠=∠,可得32∠=∠,根据同位角相等, 两直线平行可得//AB CD .【解答】解:13∠=∠,12∠=∠,32∴∠=∠,//AB CD ∴,故选:B .【点评】此题主要考查了平行线的判定, 关键是掌握平行线的判定定理 .6.(3分)有下列说法中正确的说法的个数是( )(1)无理数就是开方开不尽的数;(2)无理数是无限不循环小数;(3)无理数包括正无理数,零,负无理数;(4)无理数都可以用数轴上的点来表示.A .1B .2C .3D .4【分析】(1)根据无理数的定义即可判定;(2)根据无理数的定义即可判定;(3)根据无理数的分类即可判定;(4)根据无理数和数轴上的点对应关系即可判定.【解答】解:(1)开方开不尽的数是无理数,但是无理数不仅仅是开方开不尽的数,故(1)说法错误;(2)无理数是无限不循环小数,故(2)说法正确;(3)0是有理数,故(3)说法错误;(4)无理数都可以用数轴上的点来表示,故(4)说法正确.故选:B .【点评】此题主要考查了无理数的定义.无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001⋯,等有这样规律的数.7.(3分)若点P 是第二象限内的点,且点P 到x 轴的距离是4,到y 轴的距离是3,则点P的坐标是( )A .(4,3)-B .(4,3)-C .(3,4)-D .(3,4)-【分析】首先根据题意得到P 点的横坐标为负,纵坐标为正,再根据到x 轴的距离与到y 轴的距离确定横纵坐标即可. 【解答】解:点P 在第二象限,P ∴点的横坐标为负,纵坐标为正,到x 轴的距离是4,∴纵坐标为:4,到y 轴的距离是3,∴横坐标为:3-,(3,4)P ∴-,故选:C .【点评】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握其特点是解题关键.8.(3分)如图,//a b ,点B 在直线b 上,且AB BC ⊥,135∠=︒,那么2(∠=)A .45︒B .50︒C .55︒D .60︒【分析】先根据135∠=︒,//a b 求出3∠的度数,再由AB BC ⊥即可得出答案.【解答】解://a b ,135∠=︒,3135∴∠=∠=︒.AB BC ⊥,290355∴∠=︒-∠=︒.故选:C .【点评】本题考查的是平行线的性质、垂线的性质,熟练掌握垂线的性质和平行线的性质是解决问题的关键.9.(380;3π327227;1.1010010001⋯,无理数的个数是( ) A .5 B .4 C .3 D .2【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 80不是无理数;3π3273=不是无理数;227不是无理数;1.1010010001⋯是无理数,故选:C .【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001⋯,等有这样规律的数.10.(3分)在平面直角坐标系xOy 中,线段AB 的两个端点坐标分别为(1,1)A --,(1,2)B ,平移线段AB ,得到线段A B '',已知A '的坐标为(3,1)-,则点B '的坐标为( )A .(4,2)B .(5,2)C .(6,2)D .(5,3) 【分析】根据A 点的坐标及对应点的坐标可得线段AB 向右平移4个单位,然后可得B '点的坐标.【解答】解:(1,1)A --平移后得到点A '的坐标为(3,1)-,∴向右平移4个单位,(1,2)B ∴的对应点坐标为(14,2)+,即(5,2).故选:B .【点评】此题主要考查了坐标与图形的变化--平移,关键是掌握横坐标,右移加,左移减;纵坐标,上移加,下移减.11.(3分)如果点(3,1)++在x轴上,则点P的坐标为()P m mA.(0,2)B.(2,0)C.(4,0)D.(0,4)-【分析】根据点P在x轴上,即0y=,可得出m的值,从而得出点P的坐标.【解答】解:点(3,1)++在x轴上,P m m∴=,y∴+=,m10解得:1m=-,∴+=-+=,3132m∴点P的坐标为(2,0).故选:B.【点评】本题考查了点的坐标,注意平面直角坐标系中,点在x轴上时纵坐标为0,得出m 的值是解题关键.12.(3分)如图,若12∠=∠,//∠=∠;③CD平FG DC;②AED ACBDE BC,则:①//分ACB∠=∠+∠,其中正∠=∠,⑥FGC DEC DCE∠+∠=︒;⑤BFG BDC∠;④190B确的结论是()A.①②③B.①②⑤⑥C.①③④⑥D.③④⑥【分析】由平行线的性质得出内错角相等、同位角相等,得出②正确;再由已知条件证出∠=∠,得出//FG DC,①正确;由平行线的性质得出⑤正确;进而得出⑥2DCB∠=∠+∠正确,即可得出结果.FGC DEC DCE【解答】解://DE BC,∠=∠,故②正确;1∴∠=∠,AED ACBDCB∠=∠,12∴∠=∠,2DCBFG DC∴,故①正确;//∴∠=∠,故⑤正确;BFG BDC∴∠=∠+∠,故⑥正确;FGC DEC DCE而CD不一定平分ACB∠,1B∠+∠不一定等于90︒,故③,④错误;故选:B.【点评】本题考查了平行线的判定与性质;熟练掌握平行线的判定与性质,并能进行推理论证是解决问题的关键.13.(3分)观察下列各数:1,43,97,1615,⋯,按你发现的规律计算这列数的第6个数为()A.2531B.3635C.47D.6263【分析】观察数据,发现第n个数为221nn-,再将6n=代入计算即可求解.【解答】解:观察该组数发现:1,43,97,1615,⋯,第n个数为221nn-,当6n=时,22664 21217nn==--.故选:C.【点评】本题考查了数字的变化类问题,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题是应该具备的基本能力.本题的关键是发现第n个数为221nn-.14.(3分)定义:直线a与直线b相交于点O,对于平面内任意一点M,点M到直线a与直线b的距离分别为p、q,则称有序实数对(,)p q是点M的“距离坐标”.根据上述定义,“距离坐标”是(1,2)的点的个数是()A.1B.2C.3D.4【分析】画出两条相交直线,到a的距离为1的直线有2条,到b的距离为2的直线有2条,看所画的这些直线的交点有几个即为所求的点的个数.【解答】解:如图所示,所求的点有4个,故选:D.【点评】综合考查点的坐标的相关知识;得到到直线的距离为定值的直线有2条是解决本题的突破点.二、填空题(共5小题,每小题3分,满分15分)15.(3分)81的平方根是 3± .【分析】根据平方根、算术平方根的定义即可解决问题.【解答】解:819=,9的平方根是3±,∴81的平方根是3±.故答案为3±.【点评】本题考查算术平方根、平方根的定义,解题的关键是记住平方根的定义,正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根,属于基础题,中考常考题型.16.(3分)如图,在ABC ∆中,BE 、CE 分别是ABC ∠和ACB ∠的平分线,过点E 作//DF BC 交AB 于D 、交AC 于F ,若4AB =,3AC =,则ADF ∆周长为 7 .【分析】根据角平分线的定义可得EBD EBC ∠=∠,ECF ECB ∠=∠,再根据两直线平行,内错角相等可得EBC BED ∠=∠,ECB CEF ∠=∠,然后求出EBD DEB ∠=∠,ECF CEF ∠=∠,再根据等角对等边可得ED BD =,EF CF =,即可得出DF BD CF =+;求出ADF ∆的周长AB AC =+,然后代入数据进行计算即可得解.【解答】解:E 是ABC ∠,ACB ∠平分线的交点,EBD EBC ∴∠=∠,ECF ECB ∠=∠,//DF BC ,DEB EBC ∴∠=∠,FEC ECB ∠=∠,DEB DBE ∴∠=∠,FEC FCE ∠=∠,DE BD ∴=,EF CF =,DF DE EF BD CF ∴=+=+,即DE BD CF =+,ADF ∴∆的周长()()AD DF AF AD BD CF AF AB AC =++=+++=+,4AB =,3AC =,ADF ∴∆的周长437=+=,故答案为7.【点评】本题考查了等腰三角形的判定与性质,平行线的性质,主要利用了角平分线的定义,等角对等边的性质,两直线平行,内错角相等的性质,熟记各性质是解题的关键.17.(3分)点(,)p q 到y 轴距离是 ||p .【分析】点到y 轴的距离等于横坐标的绝对值.【解答】解:点(,)p q 到y 轴距离||p =故答案为||P .【点评】本题考查点的坐标,记住点到坐标轴的距离与坐标的关系是解题的关键.18.(3 3.65 1.91036.5 6.042365000≈ 604.2 .【分析】根据被开方数扩大100倍,算术平方根扩大10倍,可得答案. 3.65 1.910≈36.5 6.042≈365000604.2,故答案为:604.2.【点评】本题考查了算术平方根,利用被开方数与算术平方根的关系是解题关键.19.(3分)已知//AB x 轴,A 点的坐标为(3,2)-,并且4AB =,则B 点的坐标为 (1,2)或(7,2)- .【分析】在平面直角坐标系中与x 轴平行,则它上面的点纵坐标相同,可求B 点纵坐标;与x 轴平行,相当于点A 左右平移,可求B 点横坐标.【解答】解://AB x 轴,∴点B 纵坐标与点A 纵坐标相同,为2,又4AB =,可能右移,横坐标为341-+=-;可能左移横坐标为347--=-,B ∴点坐标为(1,2)或(7,2)-,故答案为:(1,2)或(7,2)-.【点评】此题考查平面直角坐标系中平行特点和平移时坐标变化规律,解决本题的关键是分类讨论思想.三、解答题(共7小题,满分63分)20.(6分)完成下面的证明 (在 括号中注明理由) .已知: 如图,//BE CD ,1A ∠=∠,求证:C E ∠=∠.证明://BE CD (已 知) ,2∴∠= C ∠ ( )又1A ∠=∠(已 知) , //AC ∴ ( ),2∴∠= ( ),C E ∴∠=∠(等 量代换)【分析】先根据两直线平行, 得出同位角相等, 再根据内错角相等, 得出两直线平行, 进而得出内错角相等, 最后根据等量代换得出结论 .【解答】证明://BE CD (已 知)2C ∴∠=∠(两 直线平行, 同位角相等)又1A ∠=∠(已 知)//AC DE ∴(内 错角相等, 两直线平行)2E ∴∠=∠(两 直线平行, 内错角相等)C E ∴∠=∠(等 量代换)【点评】本题主要考查了平行线的性质, 解题时注意区分平行线的性质与平行线的判定的区别, 条件与结论不能随意颠倒位置 .21.(8分)求下列x 的值:(1)2(32)16x +=(2)3(21)27x -=-.【分析】(1)利用平方根的定义,即可求得32x +,即可转化成一元一次方程即可求得x 的值;(2)利用立方根的定义,即可转化成一元一次方程即可求得x 的值.【解答】解:(1)2(32)16x +=,324x +=±, 23x ∴=或2x =;(2)3(21)27x -=-,213x -=-,1x ∴=-.【点评】本题考查了平方根与立方根的定义,理解定义是关键.22.(8分)如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分.(1)直接写出图中AOC ∠的对顶角: BOD ∠ ,EOB ∠的邻补角:(2)若70AOC ∠=︒且:2:3BOE EOD ∠∠=,求AOE ∠的度数.【分析】(1)根据对顶角和邻补角的定义直接写出即可;(2)根据对顶角相等求出BOD ∠的度数,再根据:2:3BOE EOD ∠∠=求出BOE ∠的度数,然后利用互为邻补角的两个角的和等于180︒即可求出AOE ∠的度数.【解答】解:(1)AOC ∠的对顶角是BOD ∠,EOB ∠的邻补角是AOE ∠,故答案为:BOD ∠,AOE ∠;(2)70AOC ∠=︒,70BOD AOC ∴∠=∠=︒,:2:3BOE EOD ∠∠=, 2702832BOE ∴∠=⨯︒=︒+, 18028152AOE ∴∠=︒-︒=︒.AOE ∴∠的度数为152︒.【点评】本题主要考查了对顶角和邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180︒求解是解答此题的关键.23.(9分)如图是小明所在学校的平面示意图,请你以教学楼为坐标原点建立平面直角坐标系,描述学校其它建筑物的位置.【分析】根据题意建立平面直角坐标系进而得出各点坐标即可.【解答】解:如图所示:实验楼(2,2)-,行政楼(2,2)--,大门(0,4)-,食堂(3,4),图书馆(4,2)-.【点评】此题主要考查了坐标确定位置,正确建立平面直角坐标系是解题关键.24.(10分)将一副直角三角板如图放置, 已知//AE BC ,求AFD ∠的度数 .【分析】根据平行线的性质及三角形内角定理解答 .【解答】解: 由三角板的性质, 可知45EAD ∠=︒,30C ∠=︒,90BAC ADE ∠=∠=︒.因为//AE BC ,所以30EAC C ∠=∠=︒,所以453015DAF EAD EAC ∠=∠-∠=︒-︒=︒,所以180180901575AFD ADE DAF ∠=︒-∠-∠=︒-︒-︒=︒.【点评】本题考查的是平行线的性质及三角形内角和定理, 解题时注意: 两直线平行, 内错角相等 .25.(10分)已知:如图,12∠=∠,3E ∠=∠.求证://AD BE .【分析】先根据题意得出132E ∠+∠=∠+∠,再由25E ∠+∠=∠可知,135∠+∠=∠,即5ADC ∠=∠,据此可得出结论.【解答】证明:12∠=∠,3E ∠=∠,132E ∴∠+∠=∠+∠.25E ∠+∠=∠,135∴∠+∠=∠,5ADC ∴∠=∠,//AD BE ∴.【点评】本题考查的是平行线的判定,用到的知识点为:同位角相等,两直线平行.26.(12分)ABC∆与△A B C'''在平面直角坐标系中的位置如图.(1)分别写出下列各点的坐标:A'(3,1)-;B';C';(2)说明△A B C'''由ABC∆经过怎样的平移得到?.(3)若点(,)P a b是ABC∆内部一点,则平移后△A B C'''内的对应点P'的坐标为;(4)求ABC∆的面积.【分析】(1)根据平面直角坐标系写出各点的坐标即可;(2)根据对应点A、A'的变化写出平移方法即可;(3)根据平移规律逆向写出点P'的坐标;(4)利用ABC∆所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)(3,1)A'-;(2,2)B'--;(1,1)C'--;(2)先向左平移4个单位,再向下平移2个单位;或:先向下平移2个单位,再向左平移4个单位;(3)(4,2)P a b'--;(4)ABC∆的面积111 23131122 222=⨯-⨯⨯-⨯⨯-⨯⨯6 1.50.52=---2=.故答案为:(1)(3,1)-,(2,2)--,(1,1)--;(2)先向左平移4个单位,再向下平移2个单位;(3)(4,2)a b--.【点评】本题考查了利用平移变换作图,熟练掌握网格结构,根据对应点的坐标确定出平移的方法是解题的关键.。
2018-2019学年第二学期七年级数学期末综合练习及参考答案(01)
![2018-2019学年第二学期七年级数学期末综合练习及参考答案(01)](https://img.taocdn.com/s3/m/503e493d02020740be1e9b5d.png)
2018-2019学年七年级(下)期末数学试卷(一)一、选择题(每小题3分,满分30分)1.在﹣2,,,3.14这4个数中,无理数是()A.﹣2B.C.D.3.14 2.下面四个图形中,∠1与∠2为对顶角的图形是()A.B.C.D.3.如图,已知AB∥CD,∠2=100°,则下列正确的是()A.∠1=100°B.∠3=80°C.∠4=80°D.∠4=100°4.下列二元一次方程组的解为的是()A.B.C.D.5.下列不等式中一定成立的是()A.5a>4a B.﹣a>﹣2a C.a+2<a+3D.<6.以下问题,不适合使用全面调查的是()A.对旅客上飞机前的安检B.航天飞机升空前的安全检查C.了解全班学生的体重D.了解广州市中学生每周使用手机所用的时间7.如图,把周长为10的△ABC沿BC方向平移1个单位得到△DFE,则四边形ABFD 的周长为()A.14 B.12C.10 D.88.已知x、y满足方程组,则x+y的值是()A.3B.5C.7D.99.小米家位于公园的正东100米处,从小米家出发向北走250米就到小华家,若选取小华家为原点,分别以正东,正北方向为x轴,y轴正方向建议平面直角坐标系,则公园的坐标是()A.(﹣250,﹣100)B.(100,250)C.(﹣100,﹣250)D.(250,100)10.在频数分布直方图中,有11个小长方形,若中间一个小长方形的面积等于其它10个小长方形面积的和的,且数据有160个,则中间一组的频数为()A.32B.0.2C.40D.0.25二、填空题(每小题3分,满分18分)11.当x时,式子3x﹣5的值大于5x+3的值.12.已知是方程3mx﹣y=﹣1的解,则m=.13.如图,直线AB,CD相交于O,OE⊥AB,O为垂足,∠COE=34°,则∠BOD=度.14.如图,下列能判定AB∥CD的条件有个(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠515.已知关于x的不等式组的整数解共有6个,则a的取值范围是.16.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2019的坐标为.三、解答题(本大题共7题,满分52分)17.(4分)计算:﹣(﹣1)+|﹣2|18(8分).解下列方程组:(1)(2)19.(6分)解不等式组,把其解集表示在数轴上,并写出这个不等式组的整数解.20.(8分)已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.21.(8分)某学校对学生的暑假参加志愿服务时间进行抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,并绘制成如下的统计图表(图中信息不完整).请结合以上信息解答下列问题(1)求a、m、n的值.(2)补全“人数分组统计图①中C组的人数和图②A组和B组的比例值”.(3)若全校学生人数为800人,请估计全校参加志愿服务时间在30≤x<40的范围的学生人数.分组统计表22.(8分)如图所示,小方格边长为1个单位,(1)请写出△ABC各点的坐标.(2)求出S.△ABC(3)若把△ABC向上平移2个单位,再向右平移2个单位△A′B′C′,在图中画出△A′B′C′.23.(10分)如图,A、B两地有公路和铁路相连,在这条路上有一家食品厂,它到B 地的距离是到A地的2倍,这家厂从A地购买原料,制成食品卖到B地.已知公路运价为1.5元/(公里•吨),铁路运价为1元/(公里•吨),这两次运输(第一次:A地→食品厂,第二次:食品厂→B地)共支出公路运费15600元,铁路运费20600元.问:(1)这家食品厂到A地的距离是多少?(2)这家食品厂此次买进的原料每吨5000元,卖出的食品每吨10000元,此批食品销售完后工厂共获利多少元?2018-2019学年七年级(下)期末数学试卷(一)参考答案一、选择题(每小题3分,满分30分)1.C.2.C.3.D.4.C.5.C.6.D.7.B.8.B.9.C.10.A.二、填空题(每小题3分,满分18分)11.x<﹣4.12.﹣1.13.56.14.3.15.﹣6≤a<﹣516.(1009,0)三、解答题(本大题共7题,满分52分)17.计算:﹣(﹣1)+|﹣2|【解答】解:﹣(﹣1)+|﹣2|=2﹣3+﹣+2=1.18.【解答】(1),解:①+②得:8x=8,解得:x=1,把x=1代入①得:y=3,则方程组的解为;(2)方程组整理得:,①×6+②得:22x=33,解得:x=1.5,把x=1.5代入①得:y=2,则方程组的解为.19.【解答】解:解不等式①,得:x≤1,解不等式②,得:x>﹣3,将解集表示在数轴上如下:∴不等式组的解集为﹣3<x≤1,整数解为﹣2,﹣1,0,1.20.已知:如图,∠A=∠ADE,∠C=∠E.(1)若∠EDC=3∠C,求∠C的度数;(2)求证:BE∥CD.【解答】解:(1)∵∠A=∠ADE,∴AC∥DE,∴∠EDC+∠C=180°,又∵∠EDC=3∠C,∴4∠C=180°,即∠C=45°;(2)∵AC∥DE,∴∠E=∠ABE,又∵∠C=∠E,∴∠C=∠ABE,∴BE∥CD.21.【解答】解:(1)∵本次调查的总人数为16÷8%=200(人),则m=200×40%=80,n=200×30%=60,∴a=200﹣(40+80+60+16)=4;(2)A组的百分比为×100%=2%,B组百分比为×100%=20%,补全统计图如下:(3)估计全校参加志愿服务时间在30≤x<40的范围的学生人数为800×30%=240(人).22.如图所示,小方格边长为1个单位,(1)请写出△ABC各点的坐标..(2)求出S△ABC(3)若把△ABC向上平移2个单位,再向右平移2个单位△A′B′C′,在图中画出△A′B′C′.解:(1)A(﹣2,3),B(1,0),C(5,0);(2)BC=5﹣1=4,点A到BC的距离为3,=×4×3=6;所以,S△ABC(3)△A′B′C′如图所示.23.【解答】解:(1)设这家食品厂到A地的距离是x公里,到B地的距离是y公里,根据题意,得:,解得:.答:这家食品厂到A地的距离是50公里.(2)设这家食品厂此次买进的原料m吨,卖出食品n吨,根据题意得:,解得:,∴10000n﹣5000m﹣15600﹣20600=863800.答:这家食品厂此批食品销售完共获利863800元.。
2018-2019学年度七年级下期末数学试卷及答案
![2018-2019学年度七年级下期末数学试卷及答案](https://img.taocdn.com/s3/m/51521402b0717fd5370cdc4a.png)
12AE D BC2018---2019学年度第二学期期末考试七年级数学试卷一、选择题(每小题3分,本题共30分)1.一个一元一次不等式组的解集在数轴上表示如图所示,则该不等式组的解集为 A .2x -> B . 3≤x C .32<≤-x D .32≤<-x 2. 下列计算中,正确的是A .3412()x x =B .236a a a ⋅=C .33(2)6a a =D .336a a a += 3. 已知a b <,下列不等式变形中正确的是A .22a b ->-B .22a b ->-C .22a b> D .3131a b +>+ 4. 下列各式由左边到右边的变形中,是因式分解的是A. 2632(3)3xy xz x y z ++=++B. 36)6)(6(2-=-+x x xC.)(2222y x x xy x +-=--D. )b a (3b 3a 32222+=-5. 如图,点C 是直线AB 上一点,过点C 作⊥CD CE ,那么图中1∠和2∠的关系是 A. 互为余角 B. 互为补角 C. 对顶角 D. 同位角6. 已知⎩⎨⎧==21y x 是方程3=-ay x 的一个解,那么a 的值为A .1B . -1C .-3D .37. 为了测算一块600亩试验田里新培育的杂交水稻的产量,随机对其中的10亩杂交水稻的产量进行了检测,在这个问题中10是 A .个体B .总体C .总体的样本D .样本容量8. 如图,直线a ∥b ,直线l 与a ,b 分别交于点A ,B ,过点A 作AC ⊥b 于点C ,若1=50∠°,则2∠的度数为 A .130°B .50°21Ca A l BC.40°D.25°9. 为了解游客在野鸭湖国家湿地公园、松山自然保护区、玉渡山风景区和百里山水画廊这四个风景区旅游的满意率,数学小组的同学商议了几个收集数据的方案:方案一:在多家旅游公司调查400名导游;方案二:在野鸭湖国家湿地公园调查400名游客;方案三:在玉渡山风景区调查400名游客;方案四:在上述四个景区各调查100名游客.在这四个收集数据的方案中,最合理的是A. 方案一B. 方案二C.方案三D.方案四10. 数学小组的同学为了解“阅读经典”活动的开展情况,随机调查了50名同学,对他们一周的阅读时间进行了统计,并绘制成下图.这组数据的中位数和众数分别是A. 中位数和众数都是8小时B. 中位数是25人,众数是20人C. 中位数是13人,众数是20人,D. 中位数是6小时,众数是8小时二、填空题(每小题2分,本题共16分)11. 一种细胞的直径约为0.000052米,将0.000052用科学记数法表示为.12 计算:2(36)3a a a-÷=.13. 分解因式:错误!未找到引用源。
2018-2019学年度下学期期末质量检测初一数学答案
![2018-2019学年度下学期期末质量检测初一数学答案](https://img.taocdn.com/s3/m/246a1e27fd0a79563d1e7243.png)
2018~2019学年度初一下学期期末考试数学试题参考答案一、选择题:(本大题共10小题,每小题3分,共30分.)二、填空题:本大题共10小题,每小题3分,共30分.)11. 6 12.○3④ 13.1/2 、4 14.55° 15.116. 6 17.3 18.11或5 19.-14、-2、0 20.12-3x三、解答题(本大题共8小题,共60分.)21、作图:图略,(1)、(2)(3)各2分。
………………6分22、计算:(1)-45;………………5分(2)9.………………5分23、(1)-a3-3a2+4a+5;………………3分原式=-1 ………………3分(2)x=8 ;………………4分24、 (1)M=25/4 -………………4分(2) M=-4/3 ………………3分25、解:(1)10 …………………………2分(2)图略,每图各2分…………………………6分(3)32×5×5=800cm2 …………………………8分26、解:(1 )+5-3+10-8-9+12-10=-3 (厘米),所以小虫最后没有回到出发点,在出发点左3厘米处。
…………………………3分(2 )经计算比较得+5-3+10=12是最远的。
……………………6分(3 )│+5 │+ │-3 │+ │10 │+ │-8 │+ │-9 │+ │12 │+ │-10 │=57 厘米57 ×2=114( 粒) ,故小虫一共能得到114粒芝麻。
…………………9分27、解:(1)∵AB=16cm,C点为AB的中点∴AC=BC=8cm∵点D、E分别是AC和BC的中点∴CD=CE=4cm∴DE=8cm …………………3分(2)∵AB=16cm∴AC=4cm∴BC=12cm∵点D、E分别是AC和BC的中点∴CD=2cm,CE=6cm说明:如果学生有不同的解题方法。
只要正确,可参照本评分标准,酌情给分.。
2018-2019学年第二学期七年级数学期末综合练习及参考答案(02)
![2018-2019学年第二学期七年级数学期末综合练习及参考答案(02)](https://img.taocdn.com/s3/m/90a1863990c69ec3d5bb755d.png)
2018-2019学年第二学期七年级数学期末综合练习二一、选择题1.下列各点中,在第二象限的点是A. B. C. D.2.下列各数属于无理数的是A. B. C. D.3.下列调查中,适宜采用全面调查方式的是A. 调查电视剧《人民的名义》的收视率B. 调查重庆市民对皮影表演艺术的喜爱程度C. 调查某市居民平均用水量D. 调查你所在班级同学的身高情况4.下列方程组中,是二元一次方程组的是A. B. C. D.5.如图,,,,则的度数是A. B. C. D.6.下列命题中,假命题是A. 垂线段最短B. 同位角相等C. 对顶角相等D. 邻补角一定互补7.若方程组的解中与的值相等,则为()A. 4B. 3C. 2D. 18.把不等式组的解集表示在数轴上正确的是A. B. C. D.9.定义一种新的运算:对任意的有序数对和都有y,m,n为任意实数,则下列说法错误的是A. 若,则x和m互为相反数,y和n互为相反数.B. 若,则C. 存在有序数对,使得D. 存在有序数对,使得10.如图,在直角坐标系中,,,第一次将变换成,,;第二次将变换成,,,第三次将变换成,,则的横坐标为A. B. C. D.二、填空题11.剧院里11排5号可以用表示,则表示______.12.如图,D、E分别是AB、AC上的点,,若,则______13.一条船顺流航行每小时行40km,逆流航行每小时行32km,设该船在静水中的速度为每小时xkm,水流速度为每小时ykm,则可列方程组为______.14.已知,则______.15.已知关于x的不等式组无解,则a的取值范围是______.16.如果n为正偶数且,,那么______.三、解答题17.计算18.解方程组:19.解不等式组,并把解集表示在数轴上.20.已知:如图,,试说明;若,求的度数.21.完成推理填空:如图在中,已知,,试说明.解:______,________邻补角定义,____________同角的补角相等_______内错角相等,两直线平行____________________________已知_____________________等量代换______同位角相等,两直线平行____________________________22.某校课外小组为了解同学们对学校“阳光跑操”活动的喜欢程度,抽取部分学生进行调查.被调查的每个学生按A(非常喜欢)、B(比较喜欢)、C(一般)、D(不喜欢)四个等级对活动评价.图1和图2是该小组采集数据后绘制的两幅统计图.经确认扇形统计图是正确的,而条形统计图尚有一处错误且并不完整.请你根据统计图提供的信息,解答下列问题:(1)此次调查的学生人数为___;(2)条形统计图中存在错误的是___(填A. B. C中的一个),并在图中加以改正;(3)在图2中补画条形统计图中不完整的部分;(4)如果该校有600名学生,那么对此活动“非常喜欢”和“比较喜欢”的学生共有多少人?23.如图所示,三角形记作在方格中,方格纸中的每个小方格都是边长为1个单位的正方形,先将向上平移3个单位长度,再向右平移2个单位长度,得到.三个顶点的坐标分别是:______,______,______,在图中画出;平移后的三个顶点坐标分别为:______、______、______;若y轴有一点P,使与面积相等,则P点的坐标为______.24.某校决定购买一些跳绳和排球,需要的跳绳数量是排球数量的3倍,购买的总费用不低于2200元,但不高于2500元.(1)商场内跳绳的售价为20元/根,排球的售价为50元/个,按照学校所定的费用,有几种购买方案?每种方案中跳绳和排球数量各为多少?(2)在(1)的方案中,哪一种方案的总费用最少?最少的费用是多少元?25.如图,在平面直角坐标系中,长方形OABC的两边分别在x轴和y轴上,,,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒个单位长度的速度匀速运动,运动到点A停止,Q在线段CO上沿CO方向以每秒1个单位长度的速度匀速运动,运动到点O停止,设运动时间为t秒.点的坐标为______,______,______用含t的代数式表示当t为何值时,的面积不小于的面积?当t为何值时,的面积与的面积的和为36?请求出t的值;连接AC,试探究此时线段PQ与AC之间的数量关系并说明理由.参考答案1.A2.C3.D4.A5.B6.B.7.C.8.D9.C 10.D11.9排8号12. 50 13.14.6 15.16.或17.;.18.19.解:.解不等式,得:;解不等式,得:.不等式组的解集为:.将其表示在数轴上,如图所示.20.证明:,,=;解:,,,则.21.解:已知,邻补角定义,同角的补角相等内错角相等,两直线平行两直线平行内错角相等已知等量代换同位角相等,两直线平行两直线平行同位角相等.22.解:(1)∵40÷20%=200,80÷40%=200,∴此次调查的学生人数为200;(2)由(1)可知C条形高度错误,应为:200×(1﹣20%﹣40%﹣15%)=200×25%=50,即C的条形高度改为50;故答案为:200;C;(3)D的人数为:200×15%=30;(4)600×60%=360(人).答:该校对此活动“非常喜欢”和“比较喜欢”的学生有360人.23.解:观察图象可知,,;故答案为,,;如图即为所求;平移后的三个顶点坐标分别为:、、;故答案为,,;如图,过点A作交y轴于P,,,此时.作点P关于直线BC的对称点,则点也满足条件,此时,综上所述,满足条件的点P坐标为或.故答案为或.24.解:(1)设购买跳绳x根,则购买排球x个,根据题意得:,解得60≤x≤68,∵x为正整数,∴x可取60,61,62,63,64,65,66,67,68,∵x也必需是整数,∴x可取20,21,22;∴有三种购买方案:方案一:跳绳60根,排球20个;方案二:跳绳63根,排球21个;方案三:跳绳66根,排球22个.(2)在(1)中,方案一购买的总数量最少,所以总费用最少,最少费用为:60×20+20×50=2200.答:方案一购买的总数量最少,所以总费用最少,最少费用为2200元.25. 解:四边形OABC是矩形,且,,,由题意得:,,,,故答案为:,,;,,,,在线段OA上沿OA方向以每秒个单位长度的速度匀速运动,运动到点A停止,,,当时,的面积不小于的面积;由题意得:,,,或舍,当t为4时,的面积与的面积的和为36;此时,理由是:如下图所示,当时,,,和Q分别是OA和OC的中点,.。
2018-2019学年七年级下期末考试数学试卷(含答案)
![2018-2019学年七年级下期末考试数学试卷(含答案)](https://img.taocdn.com/s3/m/8e5b12eb7fd5360cbb1adb90.png)
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
2018-2019学年七年级下期末考试数学试卷(含答案)
![2018-2019学年七年级下期末考试数学试卷(含答案)](https://img.taocdn.com/s3/m/8e5b12eb7fd5360cbb1adb90.png)
2018-2019学年第二学期期末考试七年级数学试卷一、选择题(本大题共15小题,每小题3分,共45分)1.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中因变量是( ) A.沙漠 B.体温 C.时间 D.骆驼2.两根长度分别为3cm 、7cm 的钢条,下面为第三根的长,则可组成一个三角形框架的是( )3.计算2x 2·(-3x 3)的结果是( )A.-6x 3 C.-2x 64.如图,已知∠1=70°,如果CD 列事件中是必然事件的是( )A.明天太阳从西边升起B.篮球队员在罚球线上投篮一次,未投中C.实心铁球投入水中会沉入水底D.抛出一枚硬币,落地后正面朝上6.将数据用科学记数法表示为( )×10-7 下列世界博览会会徽图案中是轴对称图形的是( )A. B C. D.1A BCD E8.一列火车匀速通过隧道(隧道长大于火车的长),火车在隧道内的长度y与火车进入隧道的时间x之间的关系用图象描述正确的是()9.下列计算正确的是()A.(ab)2=a2b2(a+1)=2a+1 +a3=a6÷a2=a310.如图,已知∠1=∠2,要说明△ABD≌△ACD,还需从下列条件中选一个,错误的选法是()A.∠ADB=∠ADCB.∠B=∠C=DC=ACB12C11.如图,在锐角△ABC中,CD、BE分别是AB、AC边上的高,CD、BE交于点P,∠A=50°,则∠BPC是()°°°°PE DBA C12.若x 2+(m -3)x +16是完全平方式,则m 的值是( ) A.-5 C.-5或11 D.-11或5 13.如果等腰三角形两边长是6和3,那么它的周长是( ) 或1214.规定:log a b (a >0,a ≠1,b >0)表示a ,b 之间的一种运算,现有如下的运算法则:log a a n =n , log N M =log n M log nN (a >0,a ≠1,N >0,N ≠1,M >0).例如:log 223=3,log 25=log 105log 102,则log 1001000=( )A.32B.2315.如图,四边形ABCD 是边长为2cm 的正方形,动点P 在ABCD 的边上沿A →B →C →D 的路径以1cm/s 的速度运动(点P 不与A ,D 重合)。
2018-2019学年七年级下期末考试数学试卷及答案
![2018-2019学年七年级下期末考试数学试卷及答案](https://img.taocdn.com/s3/m/bb383c57b207e87101f69e3143323968011cf47d.png)
2018-2019学年七年级下期末考试数学试卷及答案2018--2019学年第⼆学期期末考试初⼀数学试卷⼀、选择题(本题共30分,每⼩题3分)下⾯各题均有四个选项,其中只有⼀个..是符合题意的 1.9的平⽅根为 A .±3 B .﹣3 C .3D .2.下列实数中的⽆理数是A .1.414B . 0C .13D .3.如图,为估计池塘岸边A ,B 的距离,⼩明在池塘的⼀侧选取⼀点O ,测得OA =15⽶,OB =10⽶,A ,B 间的距离可能是 A .30⽶B .25⽶C .20⽶D .5⽶4.下列调查⽅式,你认为最合适的是 A .了解北京市每天的流动⼈⼝数,采⽤抽样调查⽅式B .旅客上飞机前的安检,采⽤抽样调查⽅式C .了解北京市居民”⼀带⼀路”期间的出⾏⽅式,采⽤全⾯调查⽅式D .⽇光灯管⼚要检测⼀批灯管的使⽤寿命,采⽤全⾯调查⽅式5. 如图,已知直线a//b ,∠1=100°,则∠2等于 A .60° B . 80° C .100° D .70°6.象棋在中国有着三千多年的历史,由于⽤具简单,趣味性强,成为流⾏极为⼴泛的益智游戏.如图,是⼀局象棋残局,已知表⽰棋⼦“⾺”和“⾞”的点的坐标分别为(4,3),(-2,1),则表⽰棋⼦“炮”的点的坐标为A .(-3,3)B .(0,3)C .(3,2)D .(1,3)7.若⼀个多边形的内⾓和等于外⾓和的2倍,则这个多边形的边数是 A .4B .5C .6D .88.若m >n ,则下列不等式中⼀定成⽴的是 A .m+2<n+3 B .2m <3n C .a ﹣m <a ﹣n D . ma 2>na 29. 在⼤课间活动中,同学们积极参加体育锻炼.⼩丽在全校随机抽取⼀部分同学就“⼀分钟跳绳”进⾏测试,并以测试数据为样本绘制如图所⽰的部分频数分布直⽅图(从左到右依次分为六个⼩组,每⼩组含最⼩值,不含最⼤值)和扇形统计图,若“⼀分钟跳绳”次数不低于130次的成绩为优秀,全校共有1200名学⽣,根据图中提供的信息,下列说法不.正确..的是A .第四⼩组有10⼈B .第五⼩组对应圆⼼⾓的度数为45°C .本次抽样调查的样本容量为50D .该校“⼀分钟跳绳”成绩优秀的⼈数约为480⼈10. 如图所⽰,下列各三⾓形中的三个数之间均具有相同的规律,根据此规律,最后⼀个三⾓形中y 与n 之间的关系是( )A .y =2n +1B .y =2n +nC .y =2n +1+n D .y =2n +n +1⼆、填空题:(本题共16分,每⼩题2分,将答案填在题中横线上)11.如图,盖房⼦时,在窗框未安装好之前,⽊⼯师傅常常先在窗框上斜钉⼀根⽊条,这种做法的依据是12.⽤不等式表⽰:a 与2的差⼤于-113.在这四个⽆理数中,被墨迹(如图所⽰)覆盖住的⽆理数是.14.若2-30=(),则=+a a b 15. 如图,将⼀副三⾓板叠放在⼀起,使直⾓的顶点重合于点O ,AB//OC,DC 与OB 交于点E ,则∠DEO 的度数为.16. 在平⾯直⾓坐标系中,若x 轴上的点P 到y 轴的距离为3,则点P 的坐标是_______________. 17.如图,ABC 中,点D 在BC 上且BD=2DC ,点E 是AC 中点,已知CDE ⾯积为1,那么ABC 的⾯积为18.在数学课上,⽼师提出如下问题:⼩军同学的作法如下:①连接AB ;②过点A 作AC ⊥直线l 于点C ;则折线段B-A-C 为所求.D lCBAlCBA⽼师说:⼩军同学的⽅案是正确的. 请回答:该⽅案最节省材料的依据是.三、解答题(本题共10个⼩题,共54分,解答应写出⽂字说明,证明过程或演算步骤) 19.(53-2( 20.(5分)解不等式组()38,41710.x x x x <++≤+?? 并把它的解集在数轴上表⽰出来。
七下期末数学试卷答案宁乡
![七下期末数学试卷答案宁乡](https://img.taocdn.com/s3/m/1c925109f11dc281e53a580216fc700abb6852f2.png)
一、选择题(每题3分,共15分)1. 下列数中,是整数的是()A. 2.5B. -3.6C. -2D. 1.2答案:C解析:整数包括正整数、负整数和零,所以选C。
2. 下列运算中,正确的是()A. 3 + 4 = 7B. 5 - 3 = 8C. 2 × 2 = 4D. 6 ÷ 3 = 2.5答案:C解析:根据基本的四则运算规则,C选项正确。
3. 下列分数中,最大的是()A. $\frac{3}{4}$B. $\frac{5}{6}$C. $\frac{7}{8}$D. $\frac{2}{3}$答案:C解析:分数的大小可以通过通分后比较分子的大小来确定,通分后比较得到$\frac{3}{4} < \frac{5}{6} < \frac{7}{8} < \frac{2}{3}$,所以选C。
4. 已知x + 2 = 5,则x的值为()A. 2B. 3C. 4D. 5答案:B解析:将方程两边同时减去2,得到x = 3,所以选B。
5. 下列图形中,不是轴对称图形的是()A. 正方形B. 等腰三角形C. 长方形D. 梯形答案:D解析:轴对称图形是指可以沿某条直线折叠后,图形的两部分完全重合。
正方形、等腰三角形和长方形都是轴对称图形,而梯形不是,所以选D。
二、填空题(每题3分,共15分)6. -3的相反数是__________。
答案:3解析:一个数的相反数是指与之相加等于零的数,所以-3的相反数是3。
7. $\frac{1}{2}$ + $\frac{2}{3}$ = ________。
答案:$\frac{7}{6}$解析:两个分数相加,需要通分后相加,通分后得到$\frac{3}{6} + \frac{4}{6} = \frac{7}{6}$。
8. 5 × 7 = ________。
答案:35解析:乘法运算,直接相乘得到35。
9. 9 - 4 ÷ 2 = ________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018-2019学年湖南省长沙市宁乡县七年级(下)期末数学试卷一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.2.(3分)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2 D.m2+m=m33.(3分)已知一组数据1,2,2,x的平均数为3,则这组数据的中位数为()A.1 B.2 C.3 D.74.(3分)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+16.(3分)关于x,y的方程组的解满足x+y=7,则a的值为()A.7 B.8 C.9 D.107.(3分)下列说法中正确的是()A .旋转一定会改变图形的形状和大小B .两条直线被第三条直线所截,同位角相等C .在同一平面内,过一点有且只有一条直线与已知直线垂直D .相等的角是对顶角8.(3分)已知(m ﹣n )2=10,(m +n )2=2,则mn 的值为( ) A .10 B .﹣6 C .﹣2 D .29.(3分)甲、乙两地相距880千米小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y 千米,则可列方程组为( )A .B .C .D .10.(3分)如图已知∠1=∠2,∠BAD=∠BCD ,则下列结论:①AB ∥CD ,②AD ∥BC ,③∠B=∠D ,④∠D=∠ACB ,正确的有( )A .1个B .2个C .3个D .4个二、填空题(每小题3分,共24分)11.(3分)计算:= .12.(3分)分解因式:x 3y ﹣2x 2y 2+xy 3= .13.(3分)如图所示,直线AB ,CD 相交于点O ,OM ⊥AB ,若∠MOD=30°,则∠COB= 度.14.(3分)当x=1,y=时,3x(2x+y)﹣2x(x﹣y)=.15.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为度.16.(3分)未测试两种电子表的走时误差,做了如下统计.17.(3分)如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为.18.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是.三、解答题(共66分)19.(8分)解方程组:(1)(2).20.(8分)在如图所示的方格纸中,(1)作出三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的?21.(8分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2﹣x2=6,求A的值.22.(8分)初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.24.(10分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:25.(14分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=°,∠3=°;(2)在(1)中,若∠1=55°,则∠3=°,若∠1=40°,则∠3=°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.2018-2019学年湖南省长沙市宁乡县七年级(下)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.(3分)下面四个手机应用图标中是轴对称图形的是()A.B.C.D.【解答】解:A、是轴对称图形,故此选项正确;B、不是轴对称图形,故此选项错误;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选:A.2.(3分)下列运算正确的是()A.(﹣2mn)2=4m2n2B.y2+y2=2y4C.(a﹣b)2=a2﹣b2 D.m2+m=m3【解答】解:A、(﹣2mn)2=4m2n2 故A选项正确;B、y2+y2=2y2,故B选项错误;C、(a﹣b)2=a2+b2﹣2ab故C选项错误;D、m2+m不是同类项,故D选项错误.故选:A.3.(3分)已知一组数据1,2,2,x的平均数为3,则这组数据的中位数为()A.1 B.2 C.3 D.7【解答】解:由题意得=3,解得:x=7,这组数据按照从小到大的顺序排列为:1,2,2,7,则中位数为2.故选:B.4.(3分)如图,CF是△ABC的外角∠ACM的平分线,且CF∥AB,∠ACF=50°,则∠B的度数为()A.80°B.40°C.60°D.50°【解答】解:∵CF是∠ACM的平分线,∴∠FCM=∠ACF=50°,∵CF∥AB,∴∠B=∠FCM=50°.故选:D.5.(3分)将下列多项式分解因式,结果中不含因式x﹣1的是()A.x2﹣1 B.x(x﹣2)+(2﹣x) C.x2﹣2x+1 D.x2+2x+1【解答】解:A、x2﹣1=(x+1)(x﹣1),故A选项不合题意;B、x(x﹣2)+(2﹣x)=(x﹣2)(x﹣1),故B选项不合题意;C、x2﹣2x+1=(x﹣1)2,故C选项不合题意;D、x2+2x+1=(x+1)2,故D选项符合题意.故选:D.6.(3分)关于x,y的方程组的解满足x+y=7,则a的值为()A.7 B.8 C.9 D.10【解答】解:,①+②得:3x+3y=3a﹣6,∴x+y=a﹣2,∵x+y=7,∴a﹣2=7,a=9,故选:C.7.(3分)下列说法中正确的是()A.旋转一定会改变图形的形状和大小B.两条直线被第三条直线所截,同位角相等C.在同一平面内,过一点有且只有一条直线与已知直线垂直D.相等的角是对顶角【解答】解:A、旋转不改变图形的形状和大小,故本选项错误;B、两条平行直线被第三条直线所截,同位角相等,故本选项错误;C、在同一平面内,过一点有且只有一条直线与已知直线垂直,故本选项正确;D、对顶角相等,但相等的角不一定是对顶角,故本选项错误;故选:C.8.(3分)已知(m﹣n)2=10,(m+n)2=2,则mn的值为()A.10 B.﹣6 C.﹣2 D.2【解答】解:∵(m﹣n)2=10,(m+n)2=2,∴m2+n2﹣2mn=10①,m2+n2+2mn=2②,②﹣①得:4mn=﹣8,解得:mn=﹣2.故选:C.9.(3分)甲、乙两地相距880千米小轿车从甲地出发,2小时后,大客车从乙地出发相向而行,又经过4小时两车相遇.已知小轿车比大客车每小时多行20千米.设大客车每小时行x 千米,小轿车每小时行y千米,则可列方程组为()A. B.C.D.【解答】解:设大客车每小时行x千米,小轿车每小时行y千米,由题意得,.故选:B.10.(3分)如图已知∠1=∠2,∠BAD=∠BCD,则下列结论:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:∵∠1=∠2∴AB∥CD(内错角相等,两直线平行)所以①正确∵AB∥CD(已证)∴∠BAD+∠ADC=180°(两直线平行,同旁内角互补)又∵∠BAD=∠BCD∴∠BCD+∠ADC=180°∴AD∥BC(同旁内角互补,两直线平行)故②也正确∵AB∥CD,AD∥BC(已证)∴∠B+∠BCD=180°∠D+∠BCD=180°∴∠B=∠D(同角的补角相等)所以③也正确.正确的有3个,故选C.二、填空题(每小题3分,共24分)11.(3分)计算:=﹣a3b6.【解答】解;原式=﹣a3b6.故答案是:﹣a3b6.12.(3分)分解因式:x3y﹣2x2y2+xy3=xy(x﹣y)2.【解答】解:x3y﹣2x2y2+xy3,=xy(x2﹣2xy+y2),=xy(x﹣y)2.13.(3分)如图所示,直线AB,CD相交于点O,OM⊥AB,若∠MOD=30°,则∠COB=120度.【解答】解:∵直线AB,CD相交于点O,∠BOC与∠BOD是邻补角,∴∠MOD=30°,又OM⊥AB,∴∠BOM=90°,∴∠BOD=90°﹣30°=60°.∴∠BOC=180°﹣60°=120°.故答案为:12014.(3分)当x=1,y=时,3x(2x+y)﹣2x(x﹣y)=5.【解答】解:原式=6x2+3xy﹣2x2+2xy=4x2+5xy,当x=1,y=时,原式=4+5×=5.故答案为:5.15.(3分)如图所示,以点O为旋转中心,将∠1按顺时针方向旋转110°得到∠2,若∠1=40°,则∠2的余角为50度.【解答】解:∵∠2由∠1按顺时针方向旋转110°得到,且∠1=40°,∴∠2=∠1=40°,∴∠2的余角为:90°﹣40°=50°.故答案为:50°.16.(3分)未测试两种电子表的走时误差,做了如下统计甲.【解答】解:∵甲的方差是0.026,乙的方差是0.137,0.026<0.137,∴这两种电子表走时稳定的是甲;故答案为:甲.17.(3分)如图,在三角形ABC中,AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,得到三角形A′B′C′,连接A′C,则三角形A′B′C的面积为6.【解答】解:∵AD⊥BC,BC=6,AD=3,将三角形ABC沿射线BC的方向平移2个单位后,∴BB'=2,△ABC的高AD=△A'B'C'的高=△A'B'C的高=3,∴B'C=BC﹣BB'=6﹣2=4,∴三角形A′B′C的面积=,故答案为:618.(3分)如图,将一副三角板和一张对边平行的纸条按如图方式摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是15°.【解答】解:如图,过A点作AB∥a,∴∠1=∠2,∵a∥b,∴AB∥b,. ∴∠3=∠4=30°,而∠2+∠3=45°,∴∠2=15°,∴∠1=15°.故答案为15°.三、解答题(共66分)19.(8分)解方程组:(1)(2).【解答】解:(1)②﹣①,得5y=5,解得y=1.(2分)把y=1代入①,得x=4.(3分)因此,方程组的解为(4分)(2)②×6,得3x﹣2y=6③,③﹣①,得3y=3,解得y=1.(6分)把y=1代入①,得3x﹣5=3.解得x=.(7分)因此,方程组的解为(8分)20.(8分)在如图所示的方格纸中,(1)作出三角形ABC关于MN对称的三角形A1B1C1;(2)说明三角形A2B2C2是由三角形A1B1C1经过怎样的平移得到的?【解答】解:(1)△A1B1C1如图所示.(2)向右平移6个单位,再向下平移2个单位(或向下平移2个单位,再向右平移6个单位).21.(8分)已知多项式A=(x+2)2+(1﹣x)(2+x)﹣3.(1)化简多项式A;(2)若(x+1)2﹣x2=6,求A的值.【解答】解:(1)A=(x+2)2+(1﹣x)(2+x)﹣3=x2+4x+4+2+x﹣2x﹣x2﹣3=3x+3;(2)∵(x+1)2﹣x2=6,化简得2x+1=6,解得x=,∴A=3x+3=.22.(8分)初中毕业班质量考试结束后,老师和小亮进行了对话.老师:你这次质检语数英三科总分338分,据估计今年要上达标校,语数英三科总分需达到368分,你有何计划?小亮:中考时,我语文成绩保持123分,英语成绩再多18分,数学成绩增加10%,则刚好达到368分.请问:小亮质检英语、数学成绩各多少?【解答】解:设小亮质检的英语成绩为x分,质检数学成绩为y分,由题意得,,解得:,答:小亮质检英语成绩为95分,质检数学成绩为120分.23.(10分)如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=120°,∠ACF=20°,求∠FEC的度数.【解答】解:∵EF∥AD,AD∥BC,∴EF∥BC,∴∠ACB+∠DAC=180°,∵∠DAC=120°,∴∠ACB=60°,又∵∠ACF=20°,∴∠FCB=∠ACB﹣∠ACF=40°,∵CE平分∠BCF,∴∠BCE=20°,∵EF∥BC,∴∠FEC=∠ECB,∴∠FEC=20°.24.(10分)小明和小华参加某体育项目的训练,近期的8次测试成绩(单位:分)如表:【解答】解:(1)小明的平均成绩是:(10+10+11+10+14+16+16+17)÷8=13(分);小华的众数是:13分;先把小明的成绩从小到大排列为:10,10,10,11,14,16,16,17,最中间的数是第4、第5个数的平均数,则小明的中位数是=12.5分;故答案为:13,12.5,13.(2)∵小明和小华成绩的平均数均为13分,但小华的方差比小明的小,且高于13分的次数比小明的多,∴让小华去比较合适.25.(14分)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m射到平面镜上,被a反射到平面镜b上,又被b镜反射,若被b反射出的光线n与光线m平行,且∠1=50°,则∠2=100°,∠3=90°;(2)在(1)中,若∠1=55°,则∠3=90°,若∠1=40°,则∠3=90°;(3)由(1)、(2)请你猜想:当两平面镜a、b的夹角∠3=90°时,可以使任何射到平面镜a上的光线m,经过平面镜a、b的两次反射后,入射光线m与反射光线n平行,请说明理由.【解答】解:(1)100°,90°.∵入射角与反射角相等,即∠1=∠4,∠5=∠6,根据邻补角的定义可得∠7=180°﹣∠1﹣∠4=80°,根据m∥n,所以∠2=180°﹣∠7=100°,所以∠5=∠6=(180°﹣100°)÷2=40°,根据三角形内角和为180°,所以∠3=180°﹣∠4﹣∠5=90°;(2)90°,90°.由(1)可得∠3的度数都是90°;(3)90°(2分)理由:因为∠3=90°,所以∠4+∠5=90°,又由题意知∠1=∠4,∠5=∠6,所以∠2+∠7=180°﹣(∠5+∠6)+180°﹣(∠1+∠4),=360°﹣2∠4﹣2∠5,=360°﹣2(∠4+∠5),=180°.由同旁内角互补,两直线平行,可知:m∥n...。