2021年高一下学期第一次段考题数学理

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年高一下学期第一次段考题数学理

一、选择题:(本大题共有10小题,每小题5分,共50分) 1.若A(1,2),B(-2,3),C(4,y )在同一条直线上,则y 的值是 ( )

A .

B .

C .1

D .-1

2.直线l 与两直线y =1和x -y -7=0分别交于A ,B 两点,若线段AB 的中点为

M (1,-1),则直线l 的斜率为

( )

A .

B .

C .-

D . -

3.两直线与平行,则它们之间的距离为( ) A . B . C . D .

4.已知点,若直线过点与线段相交,则直线的

斜率的取值范围是( ) A . B . C . D .

5.点()在圆x +y -2y -4=0的内部,则的取值范围是 ( ) A .-1<<1 B . 0<<1 C .–1<< D .-<<1 6.过点A (1,-1)与B (-1,1)且圆心在直线x+y -2=0上的圆的方程为 ( )

A .(x -3)2+(y +1)2=4

B .(x -1)2+(y -1)2=4

C .(x +3)2+(y -1)2=4

D .(x +1)2+(y +1)2=4 7.圆与直线的交点的个数是 ( ) A .0个 B .1个

C .2个

D .随a 值变化而变化

8、设集合)}0()1()1(|),{(},4|),{(2

2

2

2

2

>≤-+-=≤+=r r y x y x N y x y x M 当时,的取值范围是 ( ) A 、 B 、 C 、 D 、

9.已知半径为1的动圆与定圆相切,则动圆圆心的轨迹方程是( ) A . B . 或

C .

D . 或

2

2

P

Q

x

y

A

图7

10.已知定义在实数集上的偶函数在区间(0,+)上是增函数,那么,和之间的大小关系为 ( )

A. y 1 < y 3 < y 2

B. y 1

C. y 3

D. y 3

二、填空题:(本大题共有4个小题,每小题5分,共20分)

11、与直线平行,并且距离等于3的直线方程是

12、圆:上的点到直线的距离最大值是

13、若直线与曲线恰有一个公共点,则实数的值为

14、在正三棱锥P —ABC 中,D 为PA 的中点,O 为△ABC 的中心,给出下列四个结论: ①OD ∥平面PBC ; ②OD ⊥PA ;③OD ⊥BC ; ④PA=2OD. 其中正确结论的序号是 .

三、解答题:(本大题共6小题,共80分)解答应写出文字说明、证明过程或演算步骤. 15.(12分)求经过点A (-5,2)且在x 轴上的截距等于在y 轴上的截距的2倍的直线方程; 16. (12分)已知函数(、b 是常数且>0,≠1)在区间[-,0]上有y max =3,y min =,试求和b 的值.

17. (14分)如图,四棱锥P —ABCD 的底面ABCD 为正方形, PD ⊥底面ABCD ,PD =AD . 求证:(1)平面PAC ⊥平面PBD ;(2)求PC 与平面PBD 所成的角; 18.(14分)一束光线l 自A (-3,3)发出,射到x 轴上, 被x 轴反射到⊙C :x 2+y 2-4x -4y +7=0上. (1)求反射线通过圆心C 时,光线l 的方程; (2)求在x 轴上,反射点M 的范围.

19(14分)已知圆C :x 2+y 2-2x +4y -4=0,问是否存在斜率是1的直线l ,使l 被圆C 截得的弦AB ,以AB 为直径的圆经过原点,若存在,写出直线l 的方程;若不存在,说明理由.

20(14分)如图7,.已知圆O :和定点A (2,1), 由圆O 外一点向圆O 引切线PQ ,切点为Q ,且满足.(1) 求实数a 、b 间满足的等量关系;

(2) 求线段PQ 长的最小值;(3) 若以P 为圆心所作的圆P 与圆O 有公共点,试求半径取最小值时圆P 的方程.

20(文).已知圆及点.

(1)在圆上,求线段的长及直线的斜率; (2)若为圆上任一点,求的最大值和最小值; (3)若实数满足,求的最大值和最小值.

揭阳一中2011-xx学年度第二期第一次阶段考试试题高一级数学科试题答案

一、选择题:

1-5.CDDCD 6-10. BCCDA

二、填空题:

11.或;12.;13.﹤或;14.③④;

三、解答题:

15.解①当直线l在x、y轴上的截距都为零时,

设所求的直线方程为y=kx,

将(-5,2)代入y=kx中,

得k=-,此时,直线方程为y=-x,

即2x +5y =0.

②当横截距、纵截距都不是零时, 设所求直线方程为=1,

将(-5,2)代入所设方程, 解得a =-,

此时,直线方程为x +2y +1=0.

综上所述,所求直线方程为x +2y +1=0或2x +5y =0.

16. 解:令u =x 2+2x =(x +1)2-1 x ∈[-,0] ∴当x =-1时,u min =-1 当x =0时,u max =0

.

233

22222

3

225310)222253

1)10

11

0⎪⎪⎩

⎪⎪⎨⎧=

=⎩⎨⎧==⎪⎪⎩⎪⎪⎨⎧

==⎪⎩⎪⎨⎧=+=+<<⎩⎨⎧==⎪

⎨⎧=+=+>--b a b a b a a b a b a b a a b a b a 或综上得解得时当解得时当 17. 解.(1)∵PD ⊥底面ABCD ,

∴AC ⊥PD ,

又∵底面ABCD 为正方形,

∴AC ⊥BD ,而PD 与BD 交于点D , ∴AC ⊥平面PBD , 又AC 平面PAC ,

∴平面PAC ⊥平面PBD . (2)记AC 与BD 相交于O ,连结PO ,由(1)知, AC ⊥平面PBD ,

∴PC 在平面PBD 内的射影是PO ,

∴∠CPO 就是PC 与平面PBD 所成的角, ∵PD =AD ,

∴在Rt △PDC 中,PC =CD ,

而在正方形ABCD 中,OC =AC = CD , ∴在Rt △POC 中,有∠CPO =30°. 即PC 与平面PBD 所成的角为30°. 18. 解: ⊙C :(x -2)2+(y -2)2=1

(Ⅰ)C 关于x 轴的对称点C ′(2,-2),过A ,C ′的方程:x +y =0为光线l 的方程.

(Ⅱ)A 关于x 轴的对称点A ′(-3,-3),设过A ′的直线为y +3=k (x +3),当该直线与⊙C 相切时, 有或 ∴过A ′,⊙C 的两条切线为 令y =0,得 ∴反射点M 在x 轴上的活动范围是 19. 解 假设存在直线l 满足题设条件,设l 的方程为y =x +m ,

圆C 化为(x -1)2+(y +2)2=9,圆心C (1,-2),

相关文档
最新文档