复数单元测试题百度文库

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、复数选择题

1.已知复数2z i =-,若i 为虚数单位,则1i

z

+=( ) A .

3155

i + B .

1355i + C .113

i +

D .

13

i + 2.复数3

(23)i +(其中i 为虚数单位)的虚部为( ) A .9i

B .46i -

C .9

D .46-

3.已知复数()2m m m i

z i

--=为纯虚数,则实数m =( )

A .-1

B .0

C .1

D .0或1

4.已知复数31i

z i

-=,则z 的虚部为( ) A .1

B .1-

C .i

D .i -

5.已知复数z 满足2

2z z =,则复数z 在复平面内对应的点(),x y ( ) A .恒在实轴上 B .恒在虚轴上

C .恒在直线y x =上

D .恒在直线y x

=-上

6.复数z 满足22z z i +=,则z 在复平面上对应的点位于( ) A .第一象限

B .第二象限

C .第三象限

D .第四象限

7.在复平面内,复数z 对应的点为(,)x y ,若2

2

(2)4x y ++=,则( ) A .22z +=

B .22z i +=

C .24z +=

D .24z i +=

8.复数112z i =+,21z i =+(i 为虚数单位),则12z z ⋅虚部等于( ). A .1- B .3

C .3i

D .i -

9.

122i

i

-=+( ) A .1 B .-1

C .i

D .-i

10.已知i 是虚数单位,a 为实数,且3i

1i 2i

a -=-+,则a =( ) A .2 B .1

C .-2

D .-1

11.设21i

z i

+=-,则z 的虚部为( ) A .12

B .12-

C .

32

D .32

-

12.设a +∈R ,复数()()()

24

2

121i i z ai ++=-,若1z =,则a =( )

A .10

B .9

C .8

D .7

13.复数()()212z i i =-+在复平面内对应的点位于( ) A .第一象限 B .第二象限

C .第三象限

D .第四象限

14.若复数11i

z i

,i 是虚数单位,则z =( ) A .0 B .

12

C .1

D .215.题目文件丢失!

二、多选题

16.已知复数z 满足2

20z z +=,则z 可能为( ) A .0

B .2-

C .2i

D .2i -

17.设复数z 满足1

z i z

+=,则下列说法错误的是( ) A .z 为纯虚数

B .z 的虚部为12

i -

C .在复平面内,z 对应的点位于第三象限

D .2

z =

18.下列说法正确的是( ) A .若2z =,则4z z ⋅=

B .若复数1z ,2z 满足1212z z z z +=-,则120z z =

C .若复数z 的平方是纯虚数,则复数z 的实部和虛部相等

D .“1a ≠”是“复数()()

()2

11z a a i a R =-+-∈是虚数”的必要不充分条件

19.已知复数1z =-+(i 为虚数单位),z 为z 的共轭复数,若复数z

w z

=,则下列结论正确的有( )

A .w 在复平面内对应的点位于第二象限

B .1w =

C .w 的实部为12

-

D .w 20.已知1z ,2z 为复数,下列命题不正确的是( ) A .若12z z =

,则12=z z B .若12=z z ,则12z z =

C .若12z z >则12z z >

D .若12z z >,则12z z >

21.已知i 为虚数单位,则下列选项中正确的是( )

A .复数34z i =+的模5z =

B .若复数34z i =+,则z (即复数z 的共轭复数)在复平面内对应的点在第四象限

C .若复数(

)(

)

2

2

34224m m m m +-+--i 是纯虚数,则1m =或4m =- D .对任意的复数z ,都有2

0z

22.任何一个复数z a bi =+(其中a 、b R ∈,i 为虚数单位)都可以表示成:

()cos sin z r i θθ=+的形式,通常称之为复数z 的三角形式.法国数学家棣莫弗发现:

()()()n cos sin co i s s n

n n

z i n r i r n n N θθθθ+==+⎡⎤⎣∈⎦

+,我们称这个结论为棣莫弗定理.根据以上信息,下列说法正确的是( ) A .2

2

z z = B .当1r =,3

π

θ=时,31z =

C .当1r =,3

π

θ=时,12z =

D .当1r =,4

π

θ=

时,若n 为偶数,则复数n z 为纯虚数

23.下列命题中,正确的是( ) A .复数的模总是非负数

B .复数集与复平面内以原点为起点的所有向量组成的集合一一对应

C .如果复数z 对应的点在第一象限,则与该复数对应的向量的终点也一定在第一象限

D .相等的向量对应着相等的复数

24.已知复数z 满足(1﹣i )z =2i ,则下列关于复数z 的结论正确的是( )

A .||z =

B .复数z 的共轭复数为z =﹣1﹣i

C .复平面内表示复数z 的点位于第二象限

D .复数z 是方程x 2+2x +2=0的一个根

25.已知复数(

)(()()2

11z m m m i m R =-+-∈,则下列说法正确的是( )

A .若0m =,则共轭复数1z =-

B .若复数2z =,则m

C .若复数z 为纯虚数,则1m =±

D .若0m =,则2420z z ++=

26.已知复数z 满足(2i)i z -=(i 为虚数单位),复数z 的共轭复数为z ,则( )

A .3||5

z = B .12i

5

z +=-

C .复数z 的实部为1-

D .复数z 对应复平面上的点在第二象限

27.若复数2

1i

z =

+,其中i 为虚数单位,则下列结论正确的是( )

A .z 的虚部为1-

B .||z =

相关文档
最新文档