高中数学幂函数公式的应用总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学幂函数公式的应用总结

幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在

第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果

幂函数图象与坐标轴相交,则交点一定是原点.

1高中函数公式的变量:因变量,自变量。

在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向

的数轴上的点表示因变量。

2一次函数:①若两个变量,间的关系式可以表示成为常数,不等于0的形式,则称是的一次函数。②当=0时,称是的正比例函数。

3高中函数的一次函数的图象及性质

①把一个函数的自变量与对应的因变量的值分别作为点的横坐标与纵坐标,在直角坐

标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。

②正比例函数=的图象是经过原点的一条直线。

③在一次函数中,当0,O,则经2、3、4象限;当0,0时,则经1、2、4象限;当0,0时,则经1、3、4象限;当0,0时,则经1、2、3象限。

④当0时,的值随值的增大而增大,当0时,的值随值的增大而减少。

4高中函数的二次函数:

①一般式:,对称轴是

顶点是;

②顶点式:,对称轴是顶点是;

③交点式:,其中,是抛物线与x轴的交点

5高中函数的二次函数的性质

①函数的图象关于直线对称。

②时,在对称轴左侧,值随值的增大而减少;在对称轴右侧;的值随值的增大而增大。

当时,取得最小值

③时,在对称轴左侧,值随值的增大而增大;在对称轴右侧;的值随值的增大而减少。

当时,取得最大值

高中函数的图形的对称

1轴对称图形:①如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。②轴对称图形上关于对称轴对称的两点确定的线段被对称轴垂直平分。

2中心对称图形:①在平面内,一个图形绕某个点旋转180度,如果旋转前后的图形互相重合,那么这个图形叫做中心对称图形,这个点叫做他的对称中心。②中心对称图形上的每一对对应点所连成的线段都被对称中心平分。

感谢您的阅读,祝您生活愉快。

相关文档
最新文档