高一 函数零点问题

合集下载

高中数学-函数零点问题

高中数学-函数零点问题

函数零点问题[题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围.常考题型精析题型一 零点个数与零点区间问题例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3}D.{-2-7,1,3}(2)(北京)设函数f (x )=⎩⎪⎨⎪⎧2x -a ,x <1,4(x -a )(x -2a ),x ≥1.①若a =1,则f (x )的最小值为________;②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法;(2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解.变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3D.4题型二 由函数零点求参数范围问题例2 (天津)已知函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数a 的取值范围为________.点评 利用函数零点的情况求参数值或取值范围的方法:(1)利用零点存在性定理构建不等式求解.(2)分离参数后转化为求函数的值域(最值)问题求解.(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.变式训练2 (北京东城区模拟)函数f (x )是定义在R 上的偶函数,且满足f (x +2)=f (x ).当x ∈[0,1]时,f (x )=2x .若在区间[-2,3]上方程ax +2a -f (x )=0恰有四个不相等的实数根,则实数a 的取值范围是______.高考题型精练1.已知x 1,x 2是函数f (x )=e -x -|ln x |的两个零点,则( ) A.1e<x 1x 2<1 B.1<x 1x 2<e C.1<x 1x 2<10D.e<x 1x 2<102.(天津)已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=b -f (2-x ),其中b ∈R ,若函数y =f (x )-g (x )恰有4个零点,则b 的取值范围是( ) A.⎝⎛⎭⎫74,+∞ B.⎝⎛⎭⎫-∞,74 C.⎝⎛⎭⎫0,74 D.⎝⎛⎭⎫74,23.(福州模拟)已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A.12,0 B.-2,0 C.12D.04.函数f (x )=2sin πx -x +1的零点个数为( ) A.4 B.5 C.6D.75.设函数f (x )=4sin(2x +1)-x ,则在下列区间中函数f (x )不存在零点的是( ) A.[-4,-2] B.[-2,0] C.[0,2]D.[2,4]6.(课标全国Ⅰ)已知函数f (x )=ax 3-3x 2+1,若f (x )存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A.(2,+∞)B.(-∞,-2)C.(1,+∞)D.(-∞,-1)7.定义在R 上的奇函数f (x ),当x ≥0时,f (x )=⎩⎪⎨⎪⎧log 0.5(x +1),0≤x <1,1-|x -3|,x ≥1,则关于x 的函数F (x )=f (x )-a (0<a <1)的所有零点之和为( ) A.1-2a B.2a -1 C.1-2-aD.2-a -18.(北京朝阳区模拟)已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x +34,x ≥2,log 2x ,0<x <2.若函数g (x )=f (x )-k 有两个不同的零点,则实数k 的取值范围是__________.9.已知函数f (x )=log a x +x -b (a >0,且a ≠1),当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.10.方程2-x +x 2=3的实数解的个数为________.11.(江苏)已知函数f (x )=|ln x |,g (x )=⎩⎪⎨⎪⎧0,0<x ≤1,|x 2-4|-2,x >1,则方程|f (x )+g (x )|=1实根的个数为________.12.已知f (x )是以2为周期的偶函数,当x ∈[0,1]时,f (x )=x ,且在[-1,3]内,关于x 的方程f (x )=kx +k +1 (k ∈R ,k ≠-1)有四个根,则k 的取值范围是__________.答案精析函数零点问题常考题型精析例1 (1)D (2)①-1 ②⎣⎡⎭⎫12,1∪[2,+∞) 解析 (1)令x <0,则-x >0, 所以f (-x )=(-x )2+3x =x 2+3x . 因为f (x )是定义在R 上的奇函数, 所以f (-x )=-f (x ).所以当x <0时,f (x )=-x 2-3x .所以当x ≥0时,g (x )=x 2-4x +3.令g (x )=0,即x 2-4x +3=0,解得x =1或x =3.当x <0时,g (x )=-x 2-4x +3.令g (x )=0,即x 2+4x -3=0,解得x =-2+7>0(舍去)或x =-2-7.所以函数g (x )有三个零点,故其集合为{-2-7,1,3}.(2)①当a =1时,f (x )=⎩⎪⎨⎪⎧2x -1,x <1,4(x -1)(x -2),x ≥1.当x <1时,f (x )=2x -1∈(-1,1), 当x ≥1时,f (x )=4(x 2-3x +2) =4⎣⎡⎦⎤⎝⎛⎭⎫x -322-14≥-1, ∴f (x )min =-1.②由于f (x )恰有2个零点,分两种情况讨论: 当f (x )=2x -a ,x <1没有零点时,a ≥2或a ≤0.当a ≥2时,f (x )=4(x -a )(x -2a ),x ≥1时,有2个零点; 当a ≤0时,f (x )=4(x -a )(x -2a ),x ≥1时无零点. 因此a ≥2满足题意.当f (x )=2x -a ,x <1有一个零点时, 0<a <2.f (x )=4(x -a )(x -2a ),x ≥1有一个零点,此时a <1, 2a ≥1,因此12≤a <1.综上知实数a 的取值范围是⎩⎨⎧⎭⎬⎫a |12≤a <1或a ≥2.变式训练1 B [函数h (x )=f (x )-g (x )的零点个数可转化为函数f (x )与g (x )图象的交点个数,作出函数f (x )=x -[x ]=⎩⎪⎨⎪⎧…x +1,-1≤x <0,x ,0≤x <1,x -1,1≤x <2,…与函数g (x )=log 4(x -1)的大致图象如图,由图可知两函数图象的交点个数为2,即函数h (x )=f (x )-g (x )的零点个数是 2.]例2 1<a <2解析 画出函数f (x )的图象如图所示.函数y =f (x )-a |x |有4个零点,即函数y 1=a |x |的图象与函数f (x )的图象有4个交点(根据图象知需a >0).当a =2时,函数f (x )的图象与函数y 1=a |x |的图象有3个交点.故a <2.当y =a |x |(x ≤0)与y =|x 2+5x +4|相切时,在整个定义域内,f (x )的图象与y 1=a |x |的图象有5个交点,此时,由⎩⎪⎨⎪⎧y =-ax ,y =-x 2-5x -4得x 2+(5-a )x +4=0. 由Δ=0得(5-a )2-16=0,解得a =1,或a =9(舍去), 则当1<a <2时,两个函数图象有4个交点. 故实数a 的取值范围是1<a <2. 变式训练2 25<a <23解析 由f (x +2)=f (x )得函数的周期是2. 由ax +2a -f (x )=0得f (x )=ax +2a ,设y =f (x ),y =ax +2a ,作出函数y =f (x ),y =ax +2a 的图象,如图,要使方程ax +2a -f (x )=0恰有四个不相等的实数根, 则直线y =ax +2a =a (x +2)的斜率满足k AH <a <k AG , 由题意可知,G (1,2),H (3,2),A (-2,0), 所以k AH =25,k AG =23,所以25<a <23.高考题型精练1. A [在同一坐标系中画出函数y =e -x 与y =|ln x |的图象,结合图象不难看出,它们的两个交点中,其中一个交点的横坐标属于区间(0,1),另一个交点的横坐标属于区间(1,+∞),即在x 1,x 2中,其中一个属于区间(0,1),另一个属于区间(1,+∞).不妨设x 1∈(0,1),x 2∈(1,+∞),则有e -x 1=|ln x 1|=-ln x 1∈(e-1,1),e -x 2=|ln x 2|=ln x 2∈(0,e -1),e -x 2-e -x 1=ln x 2+ln x 1=ln x 1x 2∈(-1,0),于是有e -1<x 1x 2<e 0,即1e <x 1x 2<1.]2.D [方法一 当x >2时,g (x )=x +b -4,f (x )=(x -2)2; 当0≤x ≤2时,g (x )=b -x ,f (x )=2-x ; 当x <0时,g (x )=b -x 2,f (x )=2+x . 由于函数y =f (x )-g (x )恰有4个零点, 所以方程f (x )-g (x )=0恰有4个根.当b =0时,当x >2时,方程f (x )-g (x )=0可化为x 2-5x +8=0,无解; 当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x -(-x )=0,无解; 当x <0时,方程f (x )-g (x )=0可化为x 2+x +2=0,无解. 所以b ≠0,排除答案B.当b =2时,当x >2时,方程f (x )-g (x )=0可化为(x -2)2=x -2,得x =2(舍去)或x =3,有1解;当0≤x ≤2时,方程f (x )-g (x )=0可化为2-x =2-x ,有无数个解;当x <0时,方程f (x )-g (x )=0可化为2-x 2=x +2,得x =0(舍去)或x =-1,有1解. 所以b ≠2,排除答案A.当b =1时,当x >2时,方程f (x )-g (x )=0可化为x 2-5x +7=0,无解; 当0≤x ≤2时,方程f (x )-g (x )=0可化为1-x =2-x ,无解; 当x <0时,方程f (x )-g (x )=0可化为x 2+x +1=0,无解.所以b ≠1,排除答案C.因此答案选D.方法二 记h (x )=-f (2-x )在同一坐标系中作出f (x )与h (x )的图象如图,直线AB :y =x -4,当直线l ∥AB 且与f (x )的图象相切时,由⎩⎪⎨⎪⎧y =x +b ′,y =(x -2)2,解得b ′=-94,-94-(-4)=74,所以曲线h (x )向上平移74个单位后,所得图象与f (x )的图象有两个公共点,平移2个单位后,两图象有无数个公共点,因此,当74<b <2时,f (x )与g (x )的图象有4个不同的交点,即y =f (x )-g (x )恰有4个零点.选D.]3.D [当x ≤1时,由f (x )=2x -1=0,解得x =0;当x >1时,由f (x )=1+log 2x =0,解得x =12,又因为x >1,所以此时方程无解.综上,函数f (x )的零点只有0.] 4.B [∵2sin πx -x +1=0,∴2sin πx =x -1,图象如图所示,由图象看出y =2sin πx 与y =x -1有5个交点,∴f (x )=2sin πx -x +1的零点个数为5.]5.A [f (0)=4sin 1>0,f (2)=4sin 5-2,由于π<5<2π, 所以sin 5<0,故f (2)<0,则函数在[0,2]上存在零点;由于f (-1)=4sin(-1)+1<0,故函数在[-1,0]上存在零点,也在[-2,0]上存在零点; 令x =5π-24∈[2,4],则f (5π-24)=4sin 5π2-5π-24=4-5π-24=18-5π4>0,而f (2)<0,所以函数在[2,4]上存在零点.选A.] 6.B [f ′(x )=3ax 2-6x ,当a =3时,f ′(x )=9x 2-6x =3x (3x -2),则当x ∈(-∞,0)时,f ′(x )>0;x ∈(0,23)时,f ′(x )<0;x ∈(23,+∞)时,f ′(x )>0,注意f (0)=1,f (23)=59>0,则f (x )的大致图象如图1所示.图1不符合题意,排除A 、C.当a =-43时,f ′(x )=-4x 2-6x =-2x (2x +3),则当x ∈(-∞,-32)时,f ′(x )<0,当x ∈(-32,0)时,f ′(x )>0,当x ∈(0,+∞)时,f ′(x )<0,注意f (0)=1,f (-32)=-54,则f (x )的大致图象如图2所示.图2不符合题意,排除D.] 7.A [当0≤x <1时,f (x )≤0.由F (x )=f (x )-a =0,画出函数y =f (x )与y =a 的图象如图.函数F (x )=f (x )-a 有5个零点. 当-1<x <0时,0<-x <1,所以f (-x )=log 0.5(-x +1)=-log 2(1-x ), 即f (x )=log 2(1-x ),-1<x <0. 由f (x )=log 2(1-x )=a , 解得x =1-2a , 因为函数f (x )为奇函数,所以函数F (x )=f (x )-a (0<a <1)的所有零点之和为1-2a .] 8.⎝⎛⎭⎫34,1解析 画出函数f (x )的图象如图.要使函数g (x )=f (x )-k 有两个不同零点,只需y =f (x )与y =k 的图象有两个不同交点,则图易知k ∈⎝⎛⎭⎫34,1.9.2解析 由于2<a <3<b <4, 故f (1)=log a 1+1-b =1-b <0, 而0<log a 2<1,2-b ∈(-2,-1), 故f (2)=log a 2+2-b <0, 又log a 3∈(1,2),3-b ∈(-1,0), 故f (3)=log a 3+3-b >0,因此函数必在区间(2,3)内存在零点,故n =2. 10.2解析 方程变形为3-x 2=2-x =(12)x ,令y 1=3-x 2,y 2=(12)x .如图所示,由图象可知有2个交点.11.4解析 令h (x )=f (x )+g (x ), 则h (x )=⎩⎪⎨⎪⎧-ln x ,0<x ≤1,-x 2+ln x +2,1<x <2,x 2+ln x -6,x ≥2.当1<x <2时,h ′(x )=-2x +1x =1-2x 2x <0,故当1<x <2时h (x )单调递减,在同一坐标系中画出y =|h (x )|和y =1的图象如图所示.由图象可知|f (x )+g (x )|=1的实根个数为4. 12.⎝⎛⎭⎫-13,0 解析 由题意作出f (x )在[-1,3]上的图象如图,记y =k (x +1)+1,∴函数y =k (x +1)+1的图象过定点A (-1,1).记B (2,0),由图象知,方程有四个根, 即函数y =f (x )与y =kx +k +1的图象有四个交点, 故k AB <k <0,k AB =0-12-(-1)=-13,∴-13<k <0.。

函数零点的个数问题

函数零点的个数问题

2x 2 x
2
2m
2x 2 x 2m2 8
0,利用换元设
t 2x 2x ( t 2 ),则问题转化为只需让方程 t2 2mt 2m2 8 0 存在大于等于 2 的解
即可,故分一个解和两个解来进行分类讨论。设 g t t2 2mt 2m2 8 0 。
(1)若方程有一个解,则有相切(切点 x m 大于等于 2)或相交(其中交点在 x 2 两侧),
3:已知函数
f
x
kx ln x,
2, x x
0
0k
R
,若函数
y
f x k 有三个零点,则实数 k
的取值范围是(

A. k 2
B. 1 k 0
C. 2 k 1
D. k 2
思路:函数 y f x k 有三个零点,等价于方程 f x k 有三个不同实数根,进而等
价于 f x 与 y k 图像有三个不同交点,作出 f x 的图像,则 k 的正负会导致 f x 图
A.
ln 3 3
,
1 e
B.
ln 3 9
,
1 3e
C.
ln 3 9
,
1 2e
D.
ln 3 9
,
ln 3 3
思路:
f x
f 3x
f x
f
x 3
,当
x
3,
9
时,
f
x
f
x 3
ln
x 3
,所以
- 4 - / 18
ln x,1 x 3
f
x
ln
x ,3 3
x
,而 g x
9
f
区间 a,b 内至少有函数 f x 的一个零点,即至少有一点 x0 a,b ,使得 f x0 0 。 (1) f x 在a,b 上连续是使用零点存在性定理判定零点的前提

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

专题十四 函数的零点问题(1)(解析版)

专题十四 函数的零点问题(1)(解析版)

专题十四函数的零点问题(1)1.函数零点的定义一般地,对于函数y=f(x)(x∈D),我们把方程f(x)=0的实数根x称为函数y=f(x)(x∈D)的零点.注:函数的零点不是一个“点”,而是方程f(x)=0的实根.2.函数零点存在性定理设函数f(x)在闭区间[a,b]上连续,且f(a) f(b)<0,那么在开区间(a,b)内至少有函数f(x)的一个零点,即至少有一点x0∈(a,b),使得f(x0)=0.注:(1)f(x)在[a,b]上连续是使用零点存在性定理判定零点的前提.(2)零点存在性定理中的几个“不一定”与“一定”(假设f(x)连续).①若f(a) f(b)<0,则f(x)“一定”存在零点,但“不一定”只有一个零点,可以有多个.要分析f(x)的性质与图象,如果f(x)单调,则“一定”只有一个零点.因此分析一个函数零点的个数前,可尝试判断函数是否单调.②若f(a) f(b)>0,则f(x)在[a,b]“不一定”存在零点,也“不一定”没有零点.如果f(x)单调,那么“一定”没有零点.③若f(x)在(a,b)有零点,则f(a) f(b)的符号是不确定的,“不一定”必须异号.受函数性质与图象影响.如果f(x)单调,则f(a) f(b)一定小于0.3.函数的零点,方程的根,两图象交点之间的联系设函数为y=f(x),则f(x)的零点即为满足方程f(x)=0的根,若f(x)=g(x)-h(x),则方程可转变为g(x)=h(x),即方程的根在坐标系中为g(x),h(x)交点的横坐标,其范围和个数可从图象中得到.由此看来,函数的零点,方程的根,两图象的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化.注:函数零点,方程的根,两图象交点的相互转化:有关零点个数及性质的问题会用到这三者的转化,且这三者各具特点:(1)函数的零点:有“零点存在性定理”作为理论基础,可通过区间端点值的符号和函数的单调性确定是否存在零点.(2)方程的根:当所给函数不易于分析性质和图象时,可将函数转化为方程,方程的特点在于能够进行灵活的变形,从而可将等号两边的表达式分别构造为两个可分析的函数,为作图做好铺垫.(3)两图象的交点:前两个主要是代数运算与变形,而将方程转化为函数交点,是将抽象的代数运算转变为图形特征,是数形结合的体现.通过图象可清楚的数出交点的个数(即零点,根的个数)或者确定参数的取值范围.数形结合能否解题,一方面受制于利用方程所构造的函数(故当方程含参时,通常进行参变分离,其目的在于若含x的函数可作出图象,那么因为另外一个只含参数的图象为直线,所以便于观察),另一方面取决于作图的精确度,所以会涉及到一个构造函数的技巧,以及作图时速度与精度的平衡.4.常用结论(1)若连续不断的函数f(x)在定义域上是单调函数,则f(x)至多有一个零点.(2)连续不断的函数,其相邻两个零点之间的所有函数值保持同号.(3)连续不断的函数图象通过零点时,函数值可能变号,也可能不变号.考点一 函数零点所在区间的判定问题 【方法总结】判断函数零点(方程的根)所在区间的方法(1)解方程法:当函数对应方程易解时,可通过解方程判断方程是否有根落在给定区间上.(2)定理法:利用零点存在性定理进行判断.若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内.例如:对于方程ln x +x =0,无法直接求出根,构造函数f (x )=ln x +x ,由f (1)>0,1()2f <0即可判定其零点必在(12,1)中.(3)数形结合法:画出相应的函数图象,通过观察图象与x 轴在给定区间上是否有交点来判断,或者转化为两个函数图象在给定区间上是否有交点来判断.【例题选讲】[例1] (1)已知函数f (x )的图象是连续不断的,且有如下对应值表:在下列区间中,函数f (x )必有零点的区间为( )A .(1,2)B .(2,3)C .(3,4)D .(4,5)答案 B 解析 由所给的函数值的表格可以看出,x =2与x =3这两个数字对应的函数值的符号不同,即f (2)·f (3)<0,所以函数在(2,3)内有零点.(2)若函数f (x )唯一的零点同时在区间(0,16),(0,8),(0,4),(0,2)内,那么下列命题正确的是( ) A .函数f (x )在区间(0,1)内有零点 B .函数f (x )在区间(0,1)或(1,2)内有零点 C .函数f (x )在区间[2,16)上无零点 D .函数f (x )在区间(1,16)内无零点 答案 C 解析 由题意可确定f (x )唯一的零点在区间(0,2)内,故在区间[2,16)内无零点. (3)函数f (x )=e x +2x -3的零点所在的一个区间为( )A .(-1,0)B .(0,12)C .(12,1)D .(1,32)答案 C 解析 ∵1()2f =12e -2<0,f (1)=e -1>0,∴零点在(12,1)上,故选C .(4)已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x +x -b 的零点所在的区间是( ) A .(-2,-1) B .(-1,0) C .(0,1) D .(1,2)答案 B 解析 ∵实数a ,b 满足2a =3,3b =2,∴a =log 23>1,0<b =log 32<1,∵函数f (x )=a x +x -b ,∴f (x )=(log 23)x +x -log 32单调递增,∵f (0)=1-log 32>0,f (-1)=log 32-1-log 32=-1<0,∴根据函数的零点判定定理得出函数f (x )=a x +x -b 的零点所在的区间为(-1,0).故选B .(5)函数f (x )=2x +ln 1x -1的零点所在的大致区间是( )A .(1,2)B .(2,3)C .(3,4)D .(1,2)与(2,3)答案 B 解析 f (x )=2x +ln 1x -1=2x -ln(x -1),当1<x <2时,ln(x -1)<0,2x >0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83.因为8=22≈2.828>e ,所以8>e 2,即ln8>2,即f (3)<0.又f (4)=12-ln3<0,所以f (x )在(2,3)内存在一个零点.(6)设函数f (x )=13x -ln x (x >0),则y =f (x )( )A .在区间⎝⎛⎭⎫1e ,1,(1,e)内均有零点 B .在区间⎝⎛⎭⎫1e ,1,(1,e)内均无零点C .在区间⎝⎛⎭⎫1e ,1内有零点,在区间(1,e)内无零点D .在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点答案 D 解析 由f (x )=13x -ln x (x >0)得f ′(x )=x -33x ,令f ′(x )>0得x >3,令f ′(x )<0得0<x <3,令f ′(x )=0得x =3,所以函数f (x )在区间(0,3)上为减函数,在区间(3,+∞)上为增函数,在点x =3处有极小值1-ln 3<0,又f (1)=13>0,f (e)=e 3-1<0,1()f e =13e +1>0,所以f (x )在区间⎝⎛⎭⎫1e ,1内无零点,在区间(1,e)内有零点.故选D .【对点训练】1.根据表格中的数据,可以判定方程e x -x -2=0的一个根所在的区间为________.1.答案 (1,2) 解析 据题意令f (x )=e x -x -2,由于f (1)=e 1-1-2=2.72-3<0,f (2)=e 2-4=7.39- 4>0,故函数在区间(1,2)内存在零点,即方程在相应区间内有根. 2.已知自变量和函数值的对应值如下表:则方程2x =x 2的一个根位于区间( )A .(0.6,1.0)B .(1.4,1.8)C .(1.8,2.2)D .(2.6,3.0)2.答案 C 解析 令f (x )=2x ,g (x )=x 2,因为f (1.8)=3.482,g (1.8)=3.24,f (2.2)=4.595,g (2.2)=4.84.令 h (x )=2x -x 2,则h (1.8)>0,h (2.2)<0.故选C .3.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( ) A .(a ,b )和(b ,c )内 B .(-∞,a )和(a ,b )内 C .(b ,c )和(c ,+∞)内 D .(-∞,a )和(c ,+∞)3.答案 A 解析 ∵a <b <c ,∴f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -a )(c -b )>0,由函 数零点存在性定理可知:在区间(a ,b ),(b ,c )内分别存在零点,又函数f (x )是二次函数,最多有两个零点;因此函数f (x )的两个零点分别位于区间(a ,b ),(b ,c )内. 4.函数f (x )=e x +x -2的零点所在的一个区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)4.答案 C 解析 方法一 ∵f (0)=e 0+0-2=-1<0,f (1)=e 1+1-2=e -1>0,∴f (0)f (1)<0,故函 数f (x )=e x +x -2的零点所在的一个区间是(0,1),选C .方法二 函数f (x )=e x +x -2的零点,即函数y =e x 的图象与y =-x +2的图象的交点的横坐标,作出函数y =e x 与直线y =-x +2的图象如图所示,由图可知选C . 5.在下列区间中,函数f (x )=e -x +4x -3的零点所在的区间可能为( )A .⎝⎛⎭⎫-14,0B .⎝⎛⎭⎫0,14C .⎝⎛⎭⎫14,12D .⎝⎛⎭⎫12,34 5.答案 D 解析 函数f (x )=e -x +4x -3是连续函数,又因为1()2f =1e -1<0,3()4f =14e 3+3-3>0,所以1()2f 3()4f ⋅<0,故选D .6.若x 0是方程131()2x x =的解,则x 0属于区间( )A .⎝⎛⎭⎫23,1B .⎝⎛⎭⎫12,23C .⎝⎛⎭⎫13,12D .⎝⎛⎭⎫0,13 6.答案 C 解析 令g (x )=1()2x ,f (x )=13x ,则g (0)=1>f (0)=0,11321111()()()()2222g f =<=,1311()()32g =1311()()33f >=,所以由图象关系可得13<x 0<12.7.已知实数a >1,0<b <1,则函数f (x )=a x +x -b 的零点所在的区间是( )A .(-2,-1)B .(-1,0)C .(0,1)D .(1,2)7.答案 B 解析 因为a >1,0<b <1,f (x )=a x +x -b ,所以f (-1)=1a -1-b <0,f (0)=1-b >0,所以f (-1)·f (0)<0,则由零点存在性定理可知f (x )在区间(-1,0)上存在零点.8.若函数y =f (x )(x ∈R )是奇函数,其零点分别为x 1,x 2,…,x 2 017,且x 1+x 2+…+x 2 017=m ,则关于x 的方程2x +x -2=m 的根所在区间是( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)8.答案 A 解析 因为函数y =f (x )(x ∈R )是奇函数,故其零点x 1,x 2,…,x 2 017关于原点对称,且其中 一个为0,所以x 1+x 2+…+x 2 017=m =0.则关于x 的方程为2x +x -2=0,令h (x )=2x +x -2,则h (x )为(-∞,+∞)上的增函数.因为h (0)=20+0-2=-1<0,h (1)=21+1-2=1>0,所以关于x 的方程2x+x -2=m 的根所在区间是(0,1).9.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)9.答案 C 解析 因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).10.函数f (x )=ln x -2x2的零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)10.答案 B 解析 易知f (x )=ln x -2x 2在定义域(0,+∞)上是增函数,又f (1)=-2<0,f (2)=ln 2-12>0.根据零点存在性定理,可知函数f (x )=ln x -2x 2有唯一零点,且在区间(1,2)内.11.函数f (x )=12ln x +x -1x-2的零点所在的区间是( )A .⎝⎛⎭⎫1e ,1 B .(1,2) C .(2,e) D .(e ,3)11.答案 C 解析 易知f (x )在(0,+∞)上单调递增,且f (2)=12ln 2-12<0,f (e)=12+e -1e -2>0.∴f (2)f (e)<0,故f (x )的零点在区间(2,e)内.12.已知函数f (x )=log a x +x -b (a >0且a ≠1).当2<a <3<b <4时,函数f (x )的零点x 0∈(n ,n +1),n ∈N *,则n =________.12.答案 2 解析 对于函数y =log a x ,当x =2时,可得y <1,当x =3时,可得y >1,在同一坐标系中画出函数y =log a x ,y =-x +b 的图象,判断两个函数图象的交点的横坐标在(2,3)内,∴函数f (x )的零点x 0∈(n ,n +1)时,n =2.考点二 简单函数(方程)零点(解)的个数判断 【方法总结】函数零点个数的判断方法(1)解方程法:令f (x )=0,如果能求出解,则方程解的个数即为函数零点的个数.(2)零点存在性定理法:利用定理不仅要求函数在区间[a ,b ]上是连续不断的曲线,且f (a )·f (b )<0,还必须结合函数的图象与性质(如单调性、奇偶性、周期性、对称性)才能确定函数有多少个零点或零点所具有的性质.(3)数形结合法:对于给定的函数不能直接求解或画出图象的,常分解转化为两个能画出图象的函数的交点问题.即将函数y =f (x )-g (x )的零点个数转化为函数y =f (x )与y =g (x )图象公共点的个数来判断.【例题选讲】[例2] (1)(2018·全国Ⅲ)函数f (x )=cos ⎝⎛⎭⎫3x +π6在[0,π]的零点个数是________. 答案 3 解析 由题意知,cos ⎝⎛⎭⎫3x +π6=0,所以3x +π6=π2+k π,k ∈Z ,所以x =π9+k π3,k ∈Z ,当k =0时,x =π9;当k =1时,x =4π9;当k =2时,x =7π9,均满足题意,所以函数f (x )在[0,π]的零点个数为3.(2)函数f (x )=⎩⎪⎨⎪⎧x 2+x -2,x ≤0,-1+ln x ,x >0的零点个数为( )A .3B .2C .1D .0答案 B 解析 法一 由f (x )=0得⎩⎪⎨⎪⎧x ≤0,x 2+x -2=0或⎩⎪⎨⎪⎧x >0,-1+ln x =0,解得x =-2或x =e .因此函数f (x )共有2个零点.法二 函数f (x )的图象如图所示,由图象知函数f (x )共有2个零点.(3)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≤0,|lg x |,x >0,则函数g (x )=f (1-x )-1的零点个数为( )A .1B .2C .3D .4答案 C 解析 g (x )=f (1-x )-1=⎩⎪⎨⎪⎧ (1-x )2+2(1-x )-1,1-x ≤0,|lg(1-x )|-1,1-x >0=⎩⎪⎨⎪⎧x 2-4x +2,x ≥1,|lg(1-x )|-1,x <1,易知当x ≥1时,函数g (x )有1个零点;当x <1时,函数g (x )有2个零点,所以函数g (x )的零点共有3个,故选C .(4)函数f (x )=⎩⎪⎨⎪⎧x 2-2,x ≤0,2x -6+ln x ,x >0的零点个数是 .答案 2 解析 当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上,f (x )有一个零点;当x >0时,f ′(x )=2+1x >0恒成立,所以f (x )在(0,+∞)上是增函数.又因为f (2)=-2+ln 2<0,f (3)=ln 3>0,所以f (x )在(0,+∞)上有一个零点,综上,函数f (x )的零点个数为2.(5)函数f (x )=12x -1()2x的零点个数为( )A .0B .1C .2D .3答案 B 解析 函数f (x )=12x -1()2x 的零点个数是方程12x -1()2x =0的解的个数,即方程12x =1()2x的解的个数,也就是函数y =12x 与y =1()2x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图所示,可得交点个数为1.(6)函数f (x )=3x |ln x |-1的零点个数为( )A .1B .2C .3D .4答案 B 解析 函数f (x )=3x |ln x |-1的零点数的个数即函数g (x )=|ln x |与函数h (x )=1()3x 图象的交点个数.作出函数g (x )=|ln x |和函数h (x )=1()3x 的图象,由图象可知,两函数图象有两个交点,故函数f (x )=3x |ln x |-1有2个零点.(7)已知函数f (x )=1()2x -cos x ,则f (x )在[0,2π]上的零点个数为________.答案 3 解析 如图,作出g (x )=1()2x 与h (x )=cos x 的图象,可知其在[0,2π]上的交点个数为3,所以函数f (x )在[0,2π]上的零点个数为3.(8)(2015湖北)函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数为__________. 答案 2 解析 函数f (x )=2sin x sin ⎝⎛⎭⎫x +π2-x 2的零点个数等价于方程2sin x sin ⎝⎛⎭⎫x +π2-x 2=0的根的个数,即函数g (x )=2sin x sin ⎝⎛⎭⎫x +π2=2sin x cos x =sin 2x 与h (x )=x 2的图象交点个数.分别画出两函数图象,如图,由图可知,函数g (x )与h (x )的图象有2个交点.故零点个数为2.【对点训练】13.已知函数f (x )=⎩⎪⎨⎪⎧x 2-2x ,x ≤0,1+1x,x >0,则函数y =f (x )+3x 的零点个数是( )A .0B .1C .2D .313.答案 C 解析 解法1 令f (x )+3x =0,则⎩⎪⎨⎪⎧x ≤0,x 2-2x +3x =0或⎩⎪⎨⎪⎧x >0,1+1x+3x =0,解得x =0或x =-1,所以函数y =f (x )+3x 的零点个数是2.故选C .解法2 函数y =f (x )+3x 的零点个数就是y =f (x )与y =-3x 两个函数图象的交点个数,如图所示,由函数的图象可知,零点个数为2.14.已知函数f (x )=⎩⎪⎨⎪⎧2x -1,x ≤1,1+log 2x ,x >1,则函数f (x )的零点为( )A .12,0B .-2,0C .12D .014.答案 D 解析 当x ≤1时,令f (x )=2x -1=0,解得x =0;当x >1时,令f (x )=1+log 2x =0,解得x=12,又因为x >1,所以此时方程无解.综上函数f (x )的零点只有0. 15.已知函数f (x )=⎩⎪⎨⎪⎧2-|x |,x ≤2,(x -2)2,x >2,函数g (x )=3-f (2-x ),则函数y =f (x )-g (x )的零点的个数为( )A .2B .3C .4D .515.答案 A 解析 当x <0时,f (2-x )=x 2,此时函数f (x )-g (x )=-1-|x |+x 2的小于零的零点为x =-1+52;当0≤x ≤2时,f (2-x )=2-|2-x |=x ,函数f (x )-g (x )=2-|x |+x -3=-1无零点;当x >2时,f (2-x )=2-|2-x |=4-x ,函数f (x )-g (x )=(x -2)2+4-x -3=x 2-5x +5大于2的零点有一个.因此函数y =f (x )-g (x )共有零点2个.16.设函数f (x )=2|x |+x 2-3,则函数y =f (x )的零点个数是( )A .4B .3C .2D .116.答案 C 解析 易知f (x )是偶函数,当x ≥0时,f (x )=2x +x 2-3,∴x ≥0时,f (x )在(0,+∞)上是增函数,且f (1)=0,∴x =1是函数y =f (x )在(0,+∞)上唯一零点.从而x =-1是y =f (x )在(-∞,0)内的零点.故y =f (x )有两个零点.17.函数f (x )=|x -2|-ln x 在定义域内的零点的个数为( )A .0B .1C .2D .317.答案 C 解析 由题意可知f (x )的定义域为(0,+∞),在同一直角坐标系中画出函数y =|x -2|(x >0),y =ln x (x >0)的图象,如图所示.由图可知函数f (x )在定义域内的零点个数为2.18.函数f (x )=|log 2x |+x -2的零点个数为( )A .1B .2C .3D .418.答案 B 解析 函数f (x )=|log 2x |+x -2的零点个数,就是方程|log 2x |+x -2=0的根的个数.令h (x )=|log 2x |,g (x )=2-x ,在同一坐标平面上画出两函数的图象,如图所示.由图象得h (x )与g (x )有2个交点,∴方程|log 2x |+x -2=0的根的个数为2.19.函数f (x )=x -cos x 在[0,+∞)内( )A .没有零点B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点19.答案 B 解析 当x ∈(]0,1时,因为f ′(x )=12x+sin x ,x >0,sin x >0,所以f ′(x )>0,故f (x )在[0,1]上单调递增,且f (0)=-1<0,f (1)=1-cos 1>0,所以f (x )在[0,1]内有唯一零点.当x >1时,f (x )=x -cos x >0,故函数f (x )在[0,+∞)上有且仅有一个零点,故选B . 20.函数f (x )=4cos 2x2·cos ⎝⎛⎭⎫π2-x -2sin x -|ln(x +1)|的零点个数为__________. 20.答案 2 解析 f (x )=2(1+cos x )sin x -2sin x -|ln(x +1)|=sin 2x -|ln(x +1)|,x >-1,函数f (x )的零点个数即为函数y 1=sin 2x (x >-1)与y 2=|ln(x +1)|(x >-1)的图象的交点个数.分别作出两个函数的图象,如图,可知有两个交点,则f (x )有两个零点.21.函数f (x )=⎩⎪⎨⎪⎧ln x -x 2+2x ,x >0x 2-2,x ≤0的零点个数是________.21.答案 3 解析 当x >0时,作函数y =ln x 和y =x 2-2x 的图象,由图知,当x >0时,f (x )有2个零 点;当x ≤0时,令x 2-2=0,解得x =-2(正根舍去),所以在(-∞,0]上有一个零点,综上知f (x )有3个零点.22.已知函数f (x )=⎩⎪⎨⎪⎧3x,x ≤1,log 13x ,x >1,则函数y =f (x )+x -4的零点个数为( )A .1B .2C .3D .422.答案 B 解析 函数y =f (x )+x -4的零点个数,即函数y =-x +4与y =f (x )的图象的交点的个数.如 图所示,函数y =-x +4与y =f (x )的图象有两个交点,故函数y =f (x )+x -4的零点有2个.故选B .23.已知f (x )=⎩⎪⎨⎪⎧x +3,x ≤1,-x 2+2x +3,x >1,则函数g (x )=f (x )-e x 的零点个数为________.23.答案 2 解析 函数g (x )=f (x )-e x 的零点个数即为函数y =f (x )与y =e x 的图象的交点个数.作出函数图象可知有2个交点,即函数g (x )=f (x )-e x 有2个零点.24.已知函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,则函数g (x )=2|x |f (x )-2的零点个数为( )A .1个B .2个C .3个D .4个24.答案 B 解析 画出函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,的图象如图,由g (x )=2|x |f (x )-2=0可得第11页f (x )=22|x |,则问题化为函数f (x )=⎩⎪⎨⎪⎧1-|x +1|,x <1,x 2-4x +2,x ≥1,与函数y =22|x |=21-|x |的图象的交点的个数问题.结合图象可以看出两函数图象的交点只有两个,应选答案B .。

高一 数学 函数的零点与二分法课件

高一 数学 函数的零点与二分法课件

二分法在寻找函数零点中的应用
二分法是一种通过不断将区间 一分为二来逼近函数零点的数 值方法。
在给定一个连续函数和一个闭 区间,不知道零点所在的大致 位置时,可以使用二分法来找 到零点。
二分法的基本思想是,如果函 数在区间两端取值异号,则该 区间内必定存在一个零点。
二分法在解决函数零点问题中的优势
实例
以 $f(x) = x^2 - 2x - 3$ 为例, 其零点为 $x = -1, x = 3$。
高次函数的零点问题
高次函数零点定义
高次函数 $f(x)$ 的零点是满足 $f(x) = 0$ 的 $x$ 值。
零点求解方法
通过解高次方程来找到零点。
实例
以 $f(x) = x^3 - x - 1$ 为例,其零点为 $x = 1, x = -1, x = frac{1}{3}$。
以 $f(x) = x - 3$ 为例,其零点为 $x = 3$。
零点求解方法
通过解方程 $ax + b = 0$ 来找到零 点。
二次函数的零点问题
二次函数零点定义
二次函数 $f(x) = ax^2 + bx + c$ 的零点是满足 $f(x) = 0$ 的
$x$ 值。
零点求解方法
通过解二次方程 $ax^2 + bx + c = 0$ 来找到零点。
导数法
通过判断导数的正负来判 断函数的单调性,进而找 到函数的零点。
03 二分法原理
二分法的定义
二分法定义
二分法是一种求解实数近似值的方法,通过不断将区间一分 为二,使区间长度逐渐缩小,当区间长度小于给定的误差范 围时,区间内的任意实数近似值即可作为所求的近似解。

浅谈高中数学零点问题

浅谈高中数学零点问题

浅谈⾼中数学零点问题 函数的零点是考纲上要求的基本内容,也是⾼中新课程标准新增内容之⼀,是函数的重要性质。

接下来店铺为你整理了浅谈⾼中数学零点问题,⼀起来看看吧。

浅谈⾼中数学零点问题篇⼀ ⼀、求函数的零点 例1求函数y=x2-(x<0)2x-1(x≥0)的零点。

解:令x2-1=0(x<0),解得x=1, 2x-1=0(x≥0),解得x=。

所以原函数的零点为和-1和。

点评:求函数f(x)的零点,转化为⽅程f(x)=0,通过因式分解把⽅程转化为⼀(⼆)次⽅程求解。

⼆、判断函数零点个数 例2求f(x)=x-的零点个数。

解:函数的定义域(-∞,0)∪(0,+∞)。

令f(x)=0即x-=0, 解得:x=2或x=-2。

所以原函数有2个零点。

点评:转化为⽅程直接求出函数零点,注意函数的定义域。

三、根据函数零点反求参数 例3若⽅程ax-x-a=0有两个解,求a的取值范围。

析:⽅程ax-x-a=0转化为ax=x+a。

由题知,⽅程ax-x-a=0有两个不同的实数解,即函数y=ax与y=a+x 有两个不同的交点,如图所⽰。

(1)0此种情况不符合题意。

(2)a>1。

直线y=x+a 在y轴上的截距⼤于1时,函数y=ax与函数y=a+x 有两个不同的交点。

所以a<0与0 点评:采⽤分类讨论与⽤数形结合的思想。

四、⽤⼆分法近似求解零点 例4求函数f(x)=x3+x2-2x-2的⼀个正数零点(精确到0.1)。

解:(1)第⼀步确定零点所在的⼤致区间(a,b),可利⽤函数性质,也可借助计算机,但尽量取端点为整数的区间,并尽量缩短区间长度,通常可确定⼀个长度为1的区间。

(2)列表如下: 零点所在区间中点函数值区间长度 (1,2)f(1.5) >0 1 (1,1.5) f(1.25) <00.5 (1.25,1.5) f(1.375) <00.25 (1.375,1.5) f(1.438)>0 0.125 (1.375,1.438) f(1.4065)>0 0.0625 可知区间(1.375,1.438)长度⼩于0.1,故可在(1.375,1.438)内取1.4065作为函数f(x)正数的零点的近似值。

高一数学重点:零点问题的解题方法

高一数学重点:零点问题的解题方法

谈函数与方程(零点问题)的解题方法——解题技能篇从近几年高考试题看,函数的零点、方程的根的问题是高考的热点,题型主要以选择题、填空题为主,难度中等及以上.主要考查转化与化归、数形结合及函数与方程的思想.(1)函数零点的定义对于函数y=f(x) (x∈D),把使f(x)=0成立的实数x叫做函数y=f(x) (x∈D)的零点.(2)零点存在性定理(函数零点的判定)若函数y=f(x)在闭区间[a,b]上的图像是连续曲线,并且在区间端点的函数值符号相反,即f(a)·f(b)<0,则在区间(a,b)内,函数y=f(x)至少有一个零点,即相应方程f(x)=0在区间(a,b)内至少有一个实数解.也可以说:如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是方程f(x)=0的根.[提醒] 此定理只能判断出零点存在,不能确定零点的个数.(3)几个等价关系函数y=f(x)有零点⇔方程f(x)=0有实数根⇔函数y=f(x)的图象与函数y=0(即x轴)有交点.推广:函数y=f(x)-g(x)有零点⇔方程f(x)-g(x)=0有实数根⇔函数y=f(x)-g(x)的图象与y =0(即x轴)有交点.推广的变形:函数y=f(x)-g(x)有零点⇔方程f(x)=g(x)有实数根⇔函数y=f(x)的图象与y=g(x)有交点.1.函数的零点是函数y=f(x)与x轴的交点吗?是否任意函数都有零点?提示:函数的零点不是函数y=f(x)与x轴的交点,而是y=f(x)与x轴交点的横坐标,也就是说函数的零点不是一个点,而是一个实数;并非任意函数都有零点,只有f(x)=0有根的函数y=f(x)才有零点.2.若函数y=f(x)在区间(a,b)内有零点,一定有f(a)·f(b)<0吗?提示:不一定,如图所示,f(a)·f(b)>0.3.若函数y=f(x)在区间(a,b)内,有f(a)·f(b)<0成立,那么y=f(x)在(a,b)内存在唯一的零点吗?提示:不一定,可能有多个.(4)二次函数y=ax2+bx+c (a>0)的图象与零点的关系Δ=b2-4ac Δ>0Δ=0Δ<0二次函数y=ax2+bx+c(a>0)的图象与x轴的交点(x1,0),(x2,0) (x1,0) 无交点零点个数210对于日后的考试中仍以考查函数的零点、方程的根和两函数图象交点横坐标的等价转化为主要考点,涉及题目的主要考向有:1.函数零点的求解与所在区间的判断;2.判断函数零点个数;3.利用函数的零点求解参数及取值范围.考向一、函数零点的求解与所在区间的判断1.(2015·温州十校联考)设f(x)=ln x+x-2,则函数f(x)的零点所在的区间为( )A.(0,1) B.(1,2)C .(2,3)D .(3,4)【解析】法一:∵f (1)=ln 1+1-2=-1<0,f (2)=ln 2>0,∴f (1)·f (2)<0,∵函数f (x )=ln x +x -2的图象是连续的,∴函数f (x )的零点所在的区间是(1,2).法二:函数f (x )的零点所在的区间转化为函数g (x )=ln x ,h (x )=-x +2图象交点的横坐标所在的范围,如图所示,可知f (x )的零点所在的区间为(1,2).【答案】B2.(2015·西安五校联考)函数y =ln(x +1)与y =1x的图象交点的横坐标所在区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【解析】函数y =ln(x +1)与y =1x 的图象交点的横坐标,即为函数f (x )=ln(x +1)-1x的零点,∵f (x )在(0,+∞)上为增函数,且f (1)=ln 2-1<0,f (2)=ln 3-12>0,∴f (x )的零点所在区间为(1,2).【答案】B3.函数f (x )=3x -7+ln x 的零点位于区间(n ,n +1)(n ∈N )内,则n =________.【解析】求函数f (x )=3x -7+ln x 的零点,可以大致估算两个相邻自然数的函数值,如f (2)=-1+ln 2,由于ln 2<ln e =1,所以f (2)<0,f (3)=2+ln 3,由于ln 3>1,所以f (3)>0,所以函数f (x )的零点位于区间(2,3)内,故n =2.【答案】24.(2015·长沙模拟)若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )(x -c )+(x -c )(x -a )的两个零点分别位于区间( )A .(a ,b )和(b ,c )内B .(-∞,a )和(a ,b )内C .(b ,c )和(c ,+∞)内D .(-∞,a )和(c ,+∞)内【解析】本题考查零点的存在性定理.依题意得f (a )=(a -b )(a -c )>0,f (b )=(b -c )(b -a )<0,f (c )=(c -b )(c -a )>0,因此由零点的存在性定理知f (x )的零点位于区间(a ,b )和(b ,c )内.【答案】A5.(2014·高考湖北卷)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( )A .{1,3}B .{-3,-1,1,3}C .{2-7,1,3}D .{-2-7,1,3}【解析】令x <0,则-x >0,所以f (x )=-f (-x )=-[(-x )2-3(-x )]=-x 2-3x .求函数g (x )=f (x )-x +3的零点等价于求方程f (x )=-3+x 的解.当x ≥0时,x 2-3x =-3+x ,解得x 1=3,x 2=1;当x <0时,-x 2-3x =-3+x ,解得x 3=-2-7.【答案】D确定函数f (x )零点所在区间的方法(1)解方程法:当对应方程f (x )=0易解时,可先解方程,再看解得的根是否落在给定区间上. (2)利用函数零点的存在性定理:首先看函数y =f (x )在区间[a ,b ]上的图象是否连续,再看是否有f (a )·f (b )<0.若有,则函数y =f (x )在区间(a ,b )内必有零点.(3)数形结合法:通过画函数图象,观察图象与x 轴在给定区间上是否有交点来判断.1.已知函数f (x )=6x-log 2x ,在下列区间中,包含f (x )零点的区间是( )A .(0,1)B .(1,2)C .(2,4)D .(4,+∞)【解析】因为f (1)=6-log 21=6>0,f (2)=3-log 22=2>0,f (4)=32-log 24=-12<0,所以函数f (x )的零点所在区间为(2,4).【答案】C2.方程log 3x +x =3的根所在的区间为( )。

高一数学函数的零点存在定理及其应用分析总结

高一数学函数的零点存在定理及其应用分析总结
在判断函数单调性中的应用
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则f(x)在区间(a, b)内有零点。
单调性判断:根据零点存在定理,如果函数f(x)在区间[a, b]上有零点,则f(x)在区间(a, b)上至少有一个单调区间。
应用实例:例如,判断函数f(x)=x^3-x在区间[-1, 1]上的单调性,可以通过零点存在定理来判断。
结合实际应用:结合实际例子,理解定理的应用方法和技巧
注意定理的局限性:了解定理的局限性和适用条件
掌握定理的应用范围:了解定理的应用条件和适用范围
感谢您的观看
注意事项:在使用零点存在定理判断函数单调性时,需要注意函数的连续性和零点的存在性。
在研究函数图像中的应用
求解函数方程:通过零点存在定理,可以求解函数方程,得到函数的解析式
确定函数图像的零点:通过零点存在定理,可以确定函数图像的零点位置
判断函数图像的性质:通过零点存在定理,可以判断函数图像的连续性、单调性等性质
研究函数图像的极限:通过零点存在定理,可以研究函数图像的极限,得到函数的极限值
在解决实际问题中的应用
零点存在定理在解决实际问题中的应用广泛,如求解方程、优化问题等
零点存在定理在解决实际问题时,需要注意定理的适用条件和范围,避免错误应用
零点存在定理在解决实际问题时,需要结合实际问题的具体情况,灵活运用
零点存在定理的数学表达
零点存在定理:如果函数f(x)在区间[a, b]上连续,且f(a)·f(b)<0,则函数f(x)在区间(a, b)内至少有一个零点。
零点:函数f(x)的零点是指使得f(x)=0的x值。
பைடு நூலகம்
连续函数:如果函数f(x)在区间[a, b]上每一点x都有定义,且对于任意的ε>0,存在δ>0,使得当|x-x0|<δ时,|f(x)-f(x0)|<ε,则称f(x)在区间[a, b]上是连续的。

高考常考题- 函数的零点问题(含解析)

高考常考题- 函数的零点问题(含解析)

函数的零点问题一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

作图与根分布综合的题目,其中作图是通过分析函数的单调性和关键点来进行作图,在作图的过程中还要注意渐近线的细节,从而保证图像的准确。

例1、(2019苏州三市、苏北四市二调)定义在R 上的奇函数f (x )满足f (x +4)=f (x ),且在区间[2,4)上⎩⎨⎧<≤-<≤-=43,432,2)(x x x x x f 则函数x x f y log 5)(-=的零点的个数为 例2、(2017苏锡常镇调研)若函数f (x )=⎩⎪⎨⎪⎧12x-1,x <1,ln xx 2,x ≥1,)则函数y =|f (x )|-18的零点个数为________.例3、【2018年高考全国Ⅲ卷理数】函数()πcos 36f x x ⎛⎫=+ ⎪⎝⎭在[]0π,的零点个数为________. 题型二、函数零点问题中参数的范围已知函数零点的个数,确定参数的取值范围,常用的方法和思路:(1) 直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围.(2) 分离参数法:先将参数分离,转化成求函数值域问题加以解决,解法2就是此法.它的本质就是将函数转化为一个静函数与一个动函数的图像的交点问题来加以处理,这样就可以通过这种动静结合来方便地研究问题.(3) 数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图像,然后数形结合求解.例4、(2020届山东省枣庄、滕州市高三上期末)已知ln ,1()(2),1x x f x f x k x ≥⎧=⎨-+<⎩若函数()1y f x =-恰有一个零点,则实数k 的取值范围是( ) A .(1,)+∞B .[1,)+∞C .(,1)-∞D .(,1]-∞例5、(2020·全国高三专题练习(文))函数()()22log ,1,1,1,x x f x f x x ≥⎧=⎨+<⎩,若方程()2f x x m =-+有且只有两个不相等的实数根,则实数m 的取值范围是 ( ) A .(),4-∞B .(],4-∞C .()2,4-D .(]2,4-例6、【2020年高考天津】已知函数3,0,(),0.x x f x x x ⎧≥=⎨-<⎩若函数2()()2()g x f x kx x k =--∈R 恰有4个零点,则k 的取值范围是 A .1(,)(22,)2-∞-+∞ B .1(,)(0,22)2-∞-C .(,0)(0,22)-∞ D .(,0)(22,)-∞+∞例7、【2019年高考浙江】已知,a b ∈R ,函数32,0()11(1),032x x f x x a x ax x <⎧⎪=⎨-++≥⎪⎩.若函数()y f x ax b =--恰有3个零点,则A .a <–1,b <0B .a <–1,b >0C .a >–1,b <0D .a >–1,b >0例8、(2020·浙江学军中学高三3月月考)已知函数2(4),53()(2),3x x f x f x x ⎧+-≤<-=⎨-≥-⎩,若函数()()()1g x f x k x =-+有9个零点,则实数k 的取值范围是( )A .1111,,4664⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭B .1111,,3553⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭C .11,64⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭例9、(2020届浙江省杭州市第二中学高三3月月考)已知函数()()2,22,2,x f x f x x ≤<=-≥⎪⎩()2g x kx =+,若函数()()()F x f x g x =-在[)0,+∞上只有两个零点,则实数k 的值不可能为A .23- B .12-C .34-D .1-二、达标训练1、(2019·山东师范大学附中高三月考)函数()312xf x x ⎛⎫=- ⎪⎝⎭的零点所在区间为( ) A .()1,0-B .10,2⎛⎫ ⎪⎝⎭C .1,12⎛⎫ ⎪⎝⎭D .()1,22、【2018年高考全国Ⅰ卷理数】已知函数()e 0ln 0x x f x x x ⎧≤=⎨>⎩,,,,()()g x f x x a =++.若g (x )存在2个零点,则a 的取值范围是A .[–1,0)B .[0,+∞)C .[–1,+∞)D .[1,+∞)3、(2020届浙江省“山水联盟”高三下学期开学)已知,a b ∈R ,函数(),0(),0x x a e ax x f x x x ⎧++≤=⎨>⎩,若函数()y f x ax b =--恰有3个零点,则( ) A .1,0a b >>B .1,0a b ><C .1,0a b <>D .1,0a b <<4、(2020届山东实验中学高三上期中)设定义在R 上的函数()f x 满足()()2f x f x x -+=,且当0x ≤时,()f x x '<.己知存在()()()220111122x x f x x f x x ⎧⎫∈-≥---⎨⎬⎩⎭,且0x 为函数()x g x e a=-(,a R e ∈为自然对数的底数)的一个零点,则实数a 的取值可能是( ) A .12BC .2e D5、(2020届山东师范大学附中高三月考)已知函数(01)()2(1)x f x x x⎧<≤⎪=⎨>⎪⎩,若方程()f x x a =-+有三个不同的实根,则实数a 的取值范围是________.6、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.7、【2020届江苏省南通市如皋市高三下学期二模】已知函数()222,01,03x x ax a x f x e ex a x x⎧++≤⎪=⎨-+>⎪⎩,若存在实数k ,使得函数()y f x k =-有6个零点,则实数a 的取值范围为__________.一、题型选讲题型一 、运用函数图像判断函数零点个数可将零点个数问题转化成方程,进而通过构造函数将方程转化为两个图像交点问题,并作出函数图像。

指数函数与对数函数的零点问题

指数函数与对数函数的零点问题

指数函数与对数函数的零点问题指数函数和对数函数是高中数学中常见的函数类型,它们在解决实际问题中具有重要的应用价值。

其中,指数函数与对数函数的零点问题是一个比较常见且具有一定难度的问题。

本文将围绕指数函数和对数函数零点问题展开讨论。

一、指数函数的零点问题指数函数通常可以表示为f(x)=a^x(a>0, a≠1)的形式,其中a被称为底数。

当指数函数的底数a大于1时,函数呈现增长趋势;当0<a<1时,函数呈现衰减趋势。

指数函数的零点问题即是要找出满足f(x)=0的解x。

在解决指数函数零点问题时,常用的方法是对数运算法。

由于指数运算和对数运算是互逆的,因此我们可以通过对指数函数进行对数运算,将指数函数的零点问题转化为对数函数的求解问题。

举个例子来说明,假设有一个指数函数f(x)=2^x,要求解f(x)=0的解x。

我们可以将指数函数转化为对数形式,即2^x=0转化为log2(y)=x,其中y=0。

这样,我们就将求解指数函数的零点问题转化为了对数函数log2(y)的求解问题。

二、对数函数的零点问题对数函数通常可以表示为f(x)=loga(x)(a>0, a≠1)的形式,其中a 被称为底数。

对数函数的定义是y=loga(x)等价于a^y=x,其中y被称为指数。

对于对数函数的零点问题,即是要找出满足f(x)=0的解x。

与指数函数类似,我们可以通过指数运算的逆运算对数运算来解决对数函数的零点问题。

举个例子来说明,假设有一个对数函数f(x)=log2(x),要求解f(x)=0的解x。

我们可以将对数函数转化为指数形式,即2^0=x。

根据指数运算的性质可知,任何数的0次幂都等于1,因此x=1。

这样,我们就找到了对数函数f(x)=log2(x)的零点x=1。

三、指数函数与对数函数的关系指数函数和对数函数是互为反函数的关系。

即对于任意的a>0,a≠1和x,有a^(loga(x))=x,loga(a^x)=x。

高考数学总复习---压轴题之函数零点问题(解析版)

高考数学总复习---压轴题之函数零点问题(解析版)

整体的代换和过渡,再结合其他条件,从而最终解决问题.我们称这类问题为“隐零
点”问题.处理此类问题的策略可考虑“函数零点存在定理”、“构造函数”、利用“函
数方程思想”转化等,从操作步骤看,可遵循如下处理方法:
第一步:用零点存在性定理判定导函数零点的存在性,列出零点方程 f′(x0)=0,并
结合 f(x)的单调性得到零点的范围;这里应注意,确定隐性零点范围的方式是多种多
故 f (x) 在 (0, x0 ) 单调递减,在 ( x0 ,1] 单调递增,
所以当 x = x0 时, f (x) 取得最小值,最小值为 f (x0 ) = e2x0 − a ln x0 ,
由 2x0e2x0
−a
=
0 ,即 e2x0
=
a 2 x0
,两边去对数得 ln
x0
= ln
a 2
− 2x0
2 / 22
零点的情况讨论函数的性质或证明不等式等.本专题围绕利用函数的“隐零点”,破解
导数压轴问题,例题说法,高效训练.
【典型例题】
类型一 挖掘“隐零点”,求参数的最值或取值范围
例 1.【浙江省杭州第十四中学 2019 届高三 12 月月考】设函数
,曲线 y=f(x)在 x=1 处的切线与直线 y=3x 平行.
(1)求 a;
﹣2
﹣2
(2)证明:f(x)存在唯一的极大值点 x0,且 e <f(x0)<2 .
【答案】(1)1;(2)见解析.
2
【解析】(1)因为 f(x)=ax ﹣ax﹣xlnx=x(ax﹣a﹣lnx)(x>0),则 f(x)≥0 等
价于
1 h(x)=ax﹣a﹣lnx≥0,求导可知 h′(x)=a﹣ .则当 a≤0 时 h′(x)<0,即 y=h

函数与导数之零点问题(解析版)

函数与导数之零点问题(解析版)

函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。

函数零点问题典例(含答案)

函数零点问题典例(含答案)

3、已知函数f(x)=2x+ln(1-x),讨论函数f(x)在定义域内的零点个数.
4、已知函数f(x)=x2+2mx+2m+1.
(1)若函数f(x)的两个零点x1,x2满足x1∈(-1,0),x2∈(1,2),求实数m 的取值范围;
(2)若关于x的方程f(x)=0的两根均在区间(0,1)内,求实数m的取值范围.
当x<-2时,g′(x)<0,当-2<x<1时,g′(x)>0,
∴-2是极值点.
又当-2<x<1或x>1时,g′(x)>0,故1不是极值点.
∴函数g(x)的极值点是-2.
【点评】含指数式和对数式的方程常用换元法向常规方程转化,解二次方程的常用方法是因式分解和求根公式.注意导数的零点的意义.
2、分析
(1)直接解方程f(x)=0有困难,可以作出函数y=2-x及y=lg(x+1)的图象,还可以用判定定理.
(2)画出函数图象,结合最值与交点情况求解.
【解析】
(1)方法一:令f(x)=0,得2-x=lg(x+1),作出函数y=2-x及y=lg(x+1)的图象(如图2-16-1),可知有一个交点.∴函数f(x)的零点有且只有一个.
3、【解析】函数
f′(x)=2+-1 1-x
令f′(x)=0, 得
6、【解析】
函数f(x)的定义域为(-∞,0)∪(0,+∞).(1)当x>0时,-x<0,
∵f(x)=xln x,f(-x)=-xln x,
∴f(-x)=-f(x).
当x<0时,-x>0,
f(x)=xln(-x), f(-x)=-xln(-x),
∴f(-x)=-f(x).
∴f(x)是奇函数.(2)当x>0时,f(x)=xln x,。

高中数学讲义:函数零点的个数问题

高中数学讲义:函数零点的个数问题

函数零点的个数问题一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =Î,我们把方程()0f x =的实数根x 称为函数()()y f x x D =Î的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b Î,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提(2)零点存在性定理中的几个“不一定”(假设()f x 连续)① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <Þ在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧)二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f æö><ç÷èø即可判定其零点必在1,12æöç÷èø中2、函数的零点,方程的根,两函数的交点在零点问题中的作用(1)函数的零点:工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

第17讲 高中数学零点问题(解析版)

第17讲 高中数学零点问题(解析版)

第17讲 零点问题高考预测一:三次函数零点问题 1.已知函数32()(,)f x x ax b a b R =++∈(1)若函数()f x 在1x =处取得极值2,求a ,b 的值; (2)求试讨论()f x 的单调性;(3)若b c a =-(实数c 是a 与无关的常数),当函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞,求c 的值. 【解析】解:(1)32()f x x ax b =++,2()32f x x ax '=+, 若函数()f x 在1x =处取得极值2, 则(1)320(1)12f a f a b '=+=⎧⎨=++=⎩,解得:3252a b ⎧=-⎪⎪⎨⎪=⎪⎩;(2)2()32(32)f x x ax x x a '=+=+,0a >时,令()0f x '>,解得:0x >或23x a <-,()f x ∴在2(,)3a -∞-递增,在2(3a -,0)递减,在(0,)+∞递增,0a =时,()0f x ',()f x 在R 递增,0a <时,令()0f x '>,解得:0x <或23x a >-,()f x ∴在(,0)-∞递增,在2(0,)3a -递减,在2(3a -,)+∞递增;(3)由(2)得:函数()f x 有2个极值, 分别是:(0)f b =,324()327f a a b -=+,则函数()f x 有3个零点等价于324(0)()()0327f f a b a b -=+<,∴304027a a b >⎧⎪⎨-<<⎪⎩或304027a b a <⎧⎪⎨<<-⎪⎩,又b c a =-,0a ∴>时,34027a a c -+>或0a <时,34027a a c -+<, 设g (a )3427a a c =-+,函数()f x 有三个不同的零点时,a 的取值范围恰好是33(,3)(1,)(,)22-∞-+∞, (,3)∴-∞-上,g (a )0<,在(1,33)(22⋃,)+∞上,g (a )0>均恒成立,从而(3)10g c -=-,且3()102g c =-,故1c =;此时,322()1(1)[(1)1]f x x ax a x x a x a =++-=++-+-,()f x 有3个零点,则2(1)10x a x a +-+-=有2个异于1-的不等实根, ∴△22(1)4(1)230a a a a =---=+->,且2(1)(1)10a a ---+-≠, 解得:33(,3)(1,)(,)22a ∈-∞-+∞, 综上:1c =.2.已知函数21()(),()4lnxf x x a a Rg x x x=-+-∈=. (1)当a 为何值时,x 轴为曲线()y f x =的切线,(2)用{max m ,}n 表示m ,n 中的最大值,设函数(){()h x max xf x =,()}(0)xg x x >,当03a <<时,讨论()h x 零点的个数.【解析】解:(1)设曲线()y f x =与x 轴相切与点0(x ,0),则00()0()0f x f x =⎧⎨'=⎩,即20020201041204x a x x x ⎧-+-=⎪⎪⎨⎪-+=⎪⎩,∴01234x a ⎧=⎪⎪⎨⎪=⎪⎩,∴当34a =时,x 轴为曲线()y f x =的切线. (2)令211()()4f x xf x x ax ==-+-,1()()(0)g x xg x lnx x ==>,则1(){()h x max f x =,1()}g x ,21()3f x x a '=-+,由1()0f x '=,得x = ∴当x ∈时,1()0fx '>,1()f x 为增函数; 当x ∈)+∞时,1()f x '为减函数,03a <<,01∴<, ①当10f <,即304a <<时,()h x 有一个零点; ②当10f =,即34a =时,()h x 有两个零点; ③当110()0f f x ⎧>⎪⎨⎪<⎩,即3544a <<时,()h x 有三个零点; ④当110()0f f x ⎧>⎪⎨⎪=⎩,即54a =时,()h x 有两个零点; ⑤当11(1)0f f ⎧>⎪⎨⎪>⎩,即534a <<时,()h x 有一个零点, 综上,304a <<或534a <<时,()h x 有一个零点; 当34a =或54a =时,()h x 有两个零点; 当3544a <<,()h x 有三个零点. 高考预测二:含超越函数的零点问题3.已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明: (1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.【解析】证明:(1)()f x 的定义域为(1,)-+∞, 1()cos 1f x x x'=-+,21()sin (1)f x x x ''=-++,令21()sin (1)g x x x =-++,则32()cos 0(1)g x x x '=--<+在(1,)2π-恒成立, ()f x ∴''在(1,)2π-上为减函数, 又(0)1f ''=,21()11102(1)2f ππ''=-+<-+=+,由零点存在定理可知, 函数()f x ''在(1,)2π-上存在唯一的零点0x ,结合单调性可得,()f x '在0(1,)x -上单调递增,在0(x ,)2π上单调递减,可得()f x '在区间(1,)2π-存在唯一极大值点;(2)由(1)知,当(1,0)x ∈-时,()f x '单调递增,()(0)0f x f '<'=,()f x 单调递减; 当0(0,)x x ∈时,()f x '单调递增,()(0)0f x f '>'=,()f x 单调递增;由于()f x '在0(x ,)2π上单调递减,且0()0f x '>,1()0212f ππ'=-<+,由零点存在定理可知,函数()f x '在0(x ,)2π上存在唯一零点1x ,结合单调性可知,当0(x x ∈,1)x 时,()f x '单调递减,1()()0f x f x '>'=,()f x 单调递增; 当1(,)2x x π∈时,()f x '单调递减,1()()0f x f x '<'=,()f x 单调递减.当(2x π∈,)π时,cos 0x <,101x -<+,于是1()cos 01f x x x'=-<+,()f x 单调递减,其中 3.2()1(1)1(1)1 2.610222f ln ln ln lne ππ=-+>-+=->-=,()(1)30f ln ln ππ=-+<-<.于是可得下表:结合单调性可知,函数()f x 在(1-,]2π上有且只有一个零点0,由函数零点存在性定理可知,()f x 在(2π,)π上有且只有一个零点2x ,当[x π∈,)+∞时,sin 1(1)x ln x <+,则()sin (1)0f x x ln x =-+<恒成立, 因此函数()f x 在[π,)+∞上无零点. 综上,()f x 有且仅有2个零点. 4.已知函数1()1x f x lnx x +=--. (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 【解析】解析:(1)函数1()1x f x lnx x +=--.定义域为:(0,1)(1⋃,)+∞;212()0(1)f x x x '=+>-,(0x >且1)x ≠, ()f x ∴在(0,1)和(1,)+∞上单调递增,①在(0,1)区间取值有21e,1e 代入函数,由函数零点的定义得, 21()0f e <,1()0f e >,211()()0f f e e<, ()f x ∴在(0,1)有且仅有一个零点,②在(1,)+∞区间,区间取值有e ,2e 代入函数,由函数零点的定义得, 又f (e )0<,2()0f e >,f (e )2()0f e <,()f x ∴在(1,)+∞上有且仅有一个零点,故()f x 在定义域内有且仅有两个零点; (2)0x 是()f x 的一个零点,则有00011x lnx x +=-, 曲线y lnx =,则有1y x'=; 由直线的点斜式可得曲线的切线方程,曲线y lnx =在点0(A x ,0)lnx 处的切线方程为:0001()y lnx x x x -=-, 即:0011y x lnx x =-+,将00011x lnx x +=-代入, 即有:00121y x x x =+-, 而曲线x y e =的切线中,在点01(ln x ,01)x 处的切线方程为:00000011111()y x ln x lnx x x x x x -=-=+, 将00011x lnx x +=-代入化简,即:00121y x x x =+-, 故曲线y lnx =在点0(A x ,0)lnx 处的切线也是曲线x y e =的切线. 故得证.5.已知函数1()1x xf x e x+=+-.( 2.71828e =⋯⋯ 1.64872)⋯⋯ (1)讨论()f x 的单调性,并证明()f x 有且仅有两个零点;(2)设0x 是()f x 的一个零点,证明曲线x y e =在点00(,)xA x e 处的切线也是曲线y lnx =的切线. 【解析】解:(1)()f x 的定义域为{|1}x x ≠22()0(1)x f x e x '=+>-所以()f x 在(,1)-∞,(1,)+∞上单调递增.又3223(2)30,()502f e f e =->=-<,所以()f x 在区间(1,)+∞有唯一零点1x ,即()1111101x x f x e x +=⋅=-即, 又1111111111111,()0111x x x x x f x e x x x -----<--=+=+=+++, 所以()f x 在区间(,1)-∞有唯一零点1x -. 综上所述,()f x 有且仅有两个零点. (2)因为00x lne x -=-,所以点00(,)x B ex --在曲线y lnx =上.由题设()000010,1x x f x e x +==-即 所以直线AB 的斜率00000000000111111x x x x x e x x x k e x x x e x x -+++-+====----+.因为曲线x y e =在点00(,)xA x e 处切线的斜率是0x e , 曲线y lnx =在点00(,)x B ex --处切线的斜率也是0x e ,所以曲线x y e =在点00(,)xA x e 处的切线也是曲线y lnx =的切线. 6.已知函数2()(21)f x lnx ax a x =+++.(1)若函数()f x 在1x =处取得极值,求曲线()y f x =在点(2,f (2))处的切线方程; (2)讨论函数()f x 的单调性;(3)当0a =时,2()(1)()1g x x f x x =---,证明:函数()g x 有且仅有两个零点,且两个零点互为倒数. 【解析】解:(1)1()221f x ax a x'=+++,(0)x >, 由已知有f '(1)0=,即12210a a +++=,所以12a =-(经验证成立),切点为3(2,22),(2)2ln k f '-==-,故切线方程为:3122y x ln =-++;(2)()f x 的定义域为(0,)+∞, 1(21)(1)()221ax x f x ax a x x++'=+++=, 若0a ,则当(0,)x ∈+∞时,()0f x '>, 故()f x 在(0,)+∞上单调递增, 若0a <,则当1(0,),()02x f x a '∈->;当1(,),()02x f x a'∈-+∞<, 故()f x 在1(0,)2a-上单调递增,在1(,)2a -+∞上单调递减;综上:0a 时,()f x 在(0,)+∞上单调递增, 0a <时,()f x 在1(0,)2a-上单调递增,在1(,)2a -+∞上单调递减;(3)证明:2()(1)()1(1)1g x x f x x x lnx x =---=---, 1()g x lnx x'=-,因为y lnx =在(0,)+∞上递增,1y x =在(0,)+∞递减,所以()g x '在(0,)+∞上递增,又141(1)10,(2)2022ln g g ln -''=-<=-=>, 故存在唯一0(1,2)x ∈使得0()0g x '=,所以()g x 在0(0,)x 上递减,在0(x ,)+∞上递增, 又220()(1)2,()30g x g g e e <=-=->,所以()0g x =在0(x ,)+∞内存在唯一根α, 由01x α<<,得:011x α<<,又1111()()(1)10g g ln αααααα=---==,故1α是()0g x =在0(0,)x 上的唯一零点, 综上,函数()g x 有且仅有两个零点,且两个零点互为倒数.7.已知函数2()67(f x lnx ax x b a =--+,b 为常数),且2x =为()f x 的一个极值点. (1)求a ;(2)求函数()f x 的单调区间;(3)若()y f x =的图象与x 轴有且只有3个交点,求b 的取值范围.(20.693, 1.50.405)ln ln == 【解析】解:(1)2()67f x lnx ax x b =--+,6()27f x ax x∴'=--, 又2x =是()f x 的一个极值点f ∴'(2)3470a =--=,则1a =-.(2)函数()f x 的定义域为(0,)+∞. 由(1)知2()67f x lnx x x b =+-+. 6(2)(23)()27x x f x x x x--∴'=+-=. 由()0f x '>可得2x >或32x <,由()0f x '<可得322x <<. ∴函数()f x 的单调递增区间为3(0,)2和(2,)+∞,单调递减区间为3(2,2).(3)由(2)可知函数()f x 在3(0,)2单调递增,在3(2,2)单调递减,在(2,)+∞单调递增.且当2x =或32x =时,()0f x '=. ()f x ∴的极大值为3333()6224f ln b =-+,()f x '的极小值为f (2)6210ln b =-+.当x 充分接近0时,()0f x '<.当x 充分大时,()0f x >. ∴要使的()f x '图象与x 轴正半轴有且仅有三个不同的交点,只需3()2f f (2)0<,即333(6)(6210)024ln b ln b -+-+<,解得:3336106242ln b ln -<<-. 8.已知函数2()8f x x x =-+,()6g x lnx m =+. (Ⅰ)求()f x 在区间[t ,1]t +上的最大值()h t ;(Ⅱ)是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值范围;若不存在,说明理由.【解析】解:22()()8(4)16I f x x x x =-+=--+. 当14t +<,即3t <时,()f x 在[t ,1]t +上单调递增,22()(1)(1)8(1)67h t f t t t t t =+=-+++=-++;当41t t +,即34t 时,()h t f =(4)16=; 当4t >时,()f x 在[t ,1]t +上单调递减,2()()8h t f t t t ==-+.综上,2267,3()16,348,4t t t h t t t t t ⎧-++<⎪=⎨⎪-+>⎩()II 函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()m x g x f x =-的图象与x 轴的正半轴有且只有三个不同的交点.2()86m x x x lnx m =-++,∴262862(1)(3)()28(0)x x x x m x x x x x x-+--'=-+==>,当(0,1)x ∈时,()0m x '>,()m x 是增函数; 当(1,3)x ∈时,()0m x '<,()m x 是减函数; 当(3,)x ∈+∞时,()0m x '>,()m x 是增函数; 当1x =,或3x =时,()0m x '=.()m x m ∴=极大值(1)7m =-,()m x m =极小值(3)6315m ln =+-.当x 充分接近0时,()0m x <,当x 充分大时,()0m x >.∴要使()m x 的图象与x 轴正半轴有三个不同的交点,必须且只须()70()63150m x m m x m ln =->⎧⎨=+-<⎩极大值极小值即71563m ln <<-.∴存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值范围为(7,1563)ln -.9.已知函数()f x x alnx =+(Ⅰ)当1a =时,求曲线()y f x =在点(1,f (1))处的切线方程; (Ⅱ)求()f x 的单调区间;(Ⅲ)若函数()f x 没有零点,求a 的取值范围.【解析】解:()I 当1a =时,()f x x lnx =+,1()1(0)f x x x'=+>,f ∴(1)1=,f '(1)2=,∴曲线()y f x =在点(1,f (1))处的切线方程为210x y --=;()II 函数()f x x alnx =+,()(0)x af x x x+'=>.当0a 时,在(0,)x ∈+∞时()0f x '>,()f x ∴的单调增区间是(0,)+∞; 当0a <时,函数()f x 与()f x '在定义域上的情况如下:()f x ∴的单调减区间为(0,)a -,单调增区间为(,)a -+∞. ∴当0a 时()f x 的单调增区间是(0,)+∞;当0a <时,()f x 的单调减区间为(0,)a -,单调增区间为(,)a -+∞. ()III 由()II 可知,①当0a >时,(0,)+∞是函数()f x 的单调增区间, 且有11()1110aaf e e--=-<-=,f (1)10=>,此时函数有零点,不符合题意;②当0a =时,函数()f x x =,在定义域(0,)+∞上没零点;③当0a <时,()f a -是函数()f x 的极小值,也是函数()f x 的最小值, ∴当()(()1)0f a a ln a -=-->,即a e >-时,函数()f x 没有零点.综上所述,当0e a -<时,()f x 没有零点. 10.已知关于x 的函数()(0)xax af x a e -=≠. (1)当1a =-时,求函数()f x 在点(0,1)处的切线方程; (2)设()()x g x e f x lnx '=+,讨论函数()g x 的单调区间; (3)若函数()()1F x f x =+没有零点,求实数a 的取值范围. 【解析】解:(1)当1a =-时,1()xx f x e-+=, ∴2(1)112()()x x x x x e e x x x f x e e e ---+-+--'===,∴002(0)2f e -'==-, (0)1f =, 12y x ∴-=-,即()f x 在(0,1)处的切线方程为210y x +-=.(2)2()()2(0)()x x xx ae e ax a g x e lnx ax a lnx a e --=+=-++≠, ∴1()g x a x'=-+, 当0a <时,()0g x '>在(0,)+∞上恒成立, ()g x ∴在(0,)+∞上单调递增;当0a >时,令()0g x '>,解得10x a<<, 令()0g x '<,解得1x a>, ()g x ∴在1(0,)a 单调递增,在1(,)a+∞单调递减.(3)()0xxax a e F x e-+==没有零点, 即(1)x e a x =--无解,∴1x y e =与2(1)y a x =--两图象无交点,设两图象相切于(,)m n 两点, ∴(1)m n e a m e a ⎧=--⎨=-⎩,2m ∴=,2a e =-,两图象无交点,2(a e ∴∈-,0).11.已知函数2()(2)(1)x f x x e a x =---,a R ∈. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围. 【解析】解:(1)由2()(2)(1)x f x x e a x =---, 可得()(1)2(1)(1)(2)x x f x x e a x x e a '=---=--,①当0a 时,由()0f x '>,可得1x >;由()0f x '<,可得1x <, 即有()f x 在(,1)-∞递减;在(1,)+∞递增;②当0a >时,由()0f x '=,解得1x =或2x ln a =, 若2ea =,则()0f x '恒成立,即有()f x 在R 上递增;若02ea <<时,由()0f x '>,可得1x >或(2)x ln a <; 由()0f x '<,可得(2)1ln a x <<; 即有()f x 在(-∞,(2))ln a ,(1,)+∞递增, 在((2)ln a ,1)递减; 若2ea >,由()0f x '>,可得1x <或(2)x ln a >; 由()0f x '<,可得1(2)x ln a <<即有()f x 在(,1)-∞,((2)ln a ,)+∞递增;在(1,(2))ln a 递减; 综上:当0a 时,()f x 在(,1)-∞递减;在(1,)+∞递增; 当0a >时,2ea =时,()f x 在R 上递增; 02ea <<时,()f x 在(-∞,(2))ln a ,(1,)+∞递增,在((2)ln a ,1)递减; 2ea >时,()f x 在(,1)-∞,((2)ln a ,)+∞递增;在(1,(2))ln a 递减. (2)①由(1)可得,当0a <时,()f x 在(,1)-∞递减;在(1,)+∞递增, 且f (1)0e =-<,f (2)0a =->,故()f x 在(1,2)上存在1个零点, 取b 满足0b <,且()2ab ln <-,则f (b )223(2)(1)(2)(1)()022b a b e a b b a b ab b =--->----=-->,故()f x 在(,1)b 是也存在1个零点, 故0a <时,()f x 有2个零点;②当0a =时,()(2)x f x x e =-,所以()f x 只有一个零点2x =,不合题意; ③当0a >时,若2ea =时,()f x 在R 递增,()f x 不存在2个零点,不合题意; 若02ea <<,()f x 在(1,)+∞递增,又当1x 时,()0f x <,()f x 不存在2个零点,不合题意,当2ea >时,()f x 在(,1)-∞单调增,在(1,(2))ln a 递减,在((2)ln a ,)+∞递增, ()f x 极大值f =(1)0e =-<,故()f x 不存在2个零点,不合题意;综上,()f x 有两个零点时,a 的取值范围为(,0)-∞. 12.已知函数21()2f x lnx ax =-.(1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】解:(1)()f x 的定义域为(0,)+∞,且21()ax f x x-'=,当0a 时,()0f x '>,此时()f x 在(0,)+∞上单调递增;当0a >时,由()0f x '>解得0x <,由()0f x '<解得x >,此时()f x 在上单调递增,在)+∞上单调递减; 综上,当0a 时,()f x 在(0,)+∞上单调递增;当0a >时,()f x 在上单调递增,在)+∞上单调递减; (2)由(1)知,当0a 时,()f x 在(0,)+∞上单调递增,函数()f x 至多一个零点,不合题意;当0a >时,()f x 在上单调递增,在)+∞上单调递减,则211()(1)22max f x f a ln a ==⋅⋅=-+,当1ae时,1()(1)02max f x f ln a ==-+,函数()f x 至多有一个零点,不合题意;当10a e<<时,1()(1)02max f x f ln a ==-+>,由于1∈,且211(1)11022f ln a a =-⋅⋅=-<,由零点存在性定理可知,()f x 在上存在唯一零点,由于2a >222122222()()02f ln a ln a a a a a a a =-⋅⋅=-<-=(由于)lnx x <, 由零点存在性定理可知,()f x 在)+∞上存在唯一零点;综上,实数a 的取值范围为1(0,)e.13.已知函数2()(2)x x f x ae a e x =+--. (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求a 的取值范围.【解析】解:(1)由2()(2)x x f x ae a e x =+--,求导2()2(2)1x x f x ae a e '=+--, 当0a =时,()210x f x e '=--<, ∴当x R ∈,()f x 单调递减,当0a >时,11()(21)(1)2()()2x x x x f x e ae a e e a '=+-=+-,令()0f x '=,解得:1x ln a =,当()0f x '>,解得:1x ln a >,当()0f x '<,解得:1x ln a<,1(,)x ln a ∴∈-∞时,()f x 单调递减,1(x ln a ∈,)+∞单调递增;当0a <时,11()2()()02x x f x a e e a '=+-<,恒成立,∴当x R ∈,()f x 单调递减,综上可知:当0a 时,()f x 在R 单调减函数,当0a >时,()f x 在1(,)ln a -∞是减函数,在1(ln a,)+∞是增函数;(2)①若0a 时,由(1)可知:()f x 最多有一个零点, 当0a >时,2()(2)x x f x ae a e x =+--, 当x →-∞时,20x e →,0x e →, ∴当x →-∞时,()f x →+∞,当x →∞,2x e →+∞,且远远大于x e 和x , ∴当x →∞,()f x →+∞,∴函数有两个零点,()f x 的最小值小于0即可,由()f x 在1(,)ln a -∞是减函数,在1(ln a ,)+∞是增函数,21111()()()(2)0min f x f ln a a ln a a a a ∴==⨯+-⨯-<,1110ln a a ∴--<,即1110ln a a+->, 设1t a=,则()1g t lnt t =+-,(0)t >, 求导1()1g t t '=+,由g (1)0=,11t a∴=>,解得:01a <<, a ∴的取值范围(0,1).方法二:(1)由2()(2)x x f x ae a e x =+--,求导2()2(2)1x x f x ae a e '=+--,当0a =时,()210x f x e '=--<, ∴当x R ∈,()f x 单调递减,当0a >时,11()(21)(1)2()()2x x x x f x e ae a e e a'=+-=+-,令()0f x '=,解得:x lna =-, 当()0f x '>,解得:x lna >-, 当()0f x '<,解得:x lna <-,(,)x lna ∴∈-∞-时,()f x 单调递减,(,)x lna ∈-+∞单调递增; 当0a <时,11()2()()02x x f x a e e a '=+-<,恒成立,∴当x R ∈,()f x 单调递减,综上可知:当0a 时,()f x 在R 单调减函数,当0a >时,()f x 在(,)lna -∞-是减函数,在(,)lna -+∞是增函数; (2)①若0a 时,由(1)可知:()f x 最多有一个零点,②当0a >时,由(1)可知:当x lna =-时,()f x 取得最小值,11()()1min f x f lna ln a a=-=--, 当1a =,时,()0f lna -=,故()f x 只有一个零点, 当(1,)a ∈+∞时,由1110ln a a-->,即()0f lna ->, 故()f x 没有零点, 当(0,1)a ∈时,1110ln a a--<,()0f lna -<, 由422(2)(2)2220f ae a e e ----=+-+>-+>, 故()f x 在(,)lna -∞-有一个零点,假设存在正整数0n ,满足03(1)n ln a >-,则00000000()(2)20n n n nf n e ae a n e n n =+-->->->,由3(1)ln lna a->-,因此在(,)lna -+∞有一个零点.a ∴的取值范围(0,1).14.已知函数2()x f x e ax =-.(1)若1a =,证明:当0x 时,()1f x ; (2)若()f x 在(0,)+∞只有一个零点,求a .【解析】解:(1)证明:当1a =时,函数2()x f x e x =-. 则()2x f x e x '=-,令()2x g x e x =-,则()2x g x e '=-, 令()0g x '=,得2x ln =.当(0,2)x ln ∈时,()0g x '<,当(2,)x ln ∈+∞时,()0g x '>,2()(2)222220ln g x g ln e ln ln ∴=-⋅=->,()f x ∴在[0,)+∞单调递增,()(0)1f x f ∴=.(2)方法一:()f x 在(0,)+∞只有一个零点⇔方程20x e ax -=在(0,)+∞只有一个根,2xe a x⇔=在(0,)+∞只有一个根,即函数y a =与2()xe G x x =的图象在(0,)+∞只有一个交点.3(2)()x e x G x x -'=, 当(0,2)x ∈时,()0G x '<,当(2,)∈+∞时,()0G x '>, ()G x ∴在(0,2)递减,在(2,)+∞递增,当0→时,()G x →+∞,当→+∞时,()G x →+∞,()f x ∴在(0,)+∞只有一个零点时,a G =(2)24e =.方法二:①当0a 时,2()0x f x e ax =->,()f x 在(0,)+∞没有零点..②当0a >时,设函数2()1x h x ax e -=-.()f x 在(0,)+∞只有一个零点()h x ⇔在(0,)+∞只有一个零点.()(2)x h x ax x e -'=-,当(0,2)x ∈时,()0h x '<,当(2,)x ∈+∞时,()0h x '>,()h x ∴在(0,2)递减,在(2,)+∞递增,∴24()(2)1min ah x h e==-,(0)x . 当h (2)0<时,即24e a >,()i 由于(0)1h =,当0x >时,2x e x >,可得33342241616161(4)11110()(2)a a a a a h a e e a a =-=->-=->. ()h x 在(0,)+∞有2个零点()ii 当h (2)0>时,即24e a <,()h x 在(0,)+∞没有零点,()iii 当h (2)0=时,即24e a =,()h x 在(0,)+∞只有一个零点,综上,()f x 在(0,)+∞只有一个零点时,24e a =.15.已知函数32()(1)(5)f x x k x k x d =+-+++. (1)若1k =-,求函数()f x 的单调区间;(2)若函数()f x 在区间(0,3)上不单调,求实数k 的取值范围;(3)求证:2k <-或7k >是函数()f x 在R 上有三个不同零点的必要不充分条件. 【解析】解:(1)若1k =-,则32()24f x x x x d =-++,2()344f x x x ∴'=-+由于△16480=-<,2()3440f x x x ∴'=-+>∴函数()f x 的单调递增区间为(,)-∞+∞,没有单调递减区间.(2)32()(1)(5)f x x k x k x d =+-+++,2()32(1)5f x x k x k ∴'=+-++,()f x 在区间(0,3)上不单调,由题意知,当[0x ∈,3]时,()0max f x '>,且()0min f x '<, 函数()f x '的对称轴为直线13kx -=, ①当103k-<,即1k >时, 由()max f x f '='(3)0>,得267k >-,由()(0)0min f x f '='<得5k <-, 此时解集为空集; ②当133k->,即8k <-时, 由()(0)0max f x f '='>得5k >-, 由()min f x f '='(3)0<得267k <-, 此时解集为空集; 1370,1322k k -<<-<<③若则, 由()max f x f '='(3)0>,得267k >-, 由1()()03min kf x f -'='<,得2k <-或7k >,此时解集为7(,2)2--;④若3173,8232k k -<-<-则,由()(0)0max f x f '='>得5k >-, 由()0min f x '<得2k <-或7k >, 此时解集为7(5,]2--综上可得,k 的取值范围是(5,2)--. (3)证明:2()32(1)5f x x k x k '=+-++∴当△224(1)12(5)4(514)0k k k k =--+=--,即27k -时函数()f x 在R 上单调递增故()f x 在R 上不可能有三个不同零点∴若()f x 在R 上有三个不同零点,则必有△0>,即2k <-或7k >是()f x 在R 上有三个不同零点的必要条件;而当0d =,3k =+2k <-或7k >但322()(1)(5)(1f x x k x k x x x =+-++=+ 即此时()f x 只有两个不同零点同样,当3k =-2k <-或7k >,但322()(1)(5)(1f x x k x k x x x =+-++=+- 即此时()f x 也只有两个不同零点,2k ∴<-,或7k >是()f x 在R 上有三个不同零点的不充分条件,故2k <-或7k >是()f x 在R 上有三个不同零点的必要不充分条件. 16.设函数()23(0)f x alnx ax a =-+≠ (1)设1a =-,求()f x 的极值;(2)在(1)的条件下,若321()[()]3g x x x f x m =+'+在(1,3)上不是单调函数,求m 的范围;(3)求()(3)x f x x e =-的单调递增区间.【解析】解:(1)当1a =-,()23(0)f x lnx x x =-++>,1()2f x x-'=+,⋯(2分) ()f x ∴的单调递减区间为1(0,)2,单调递增区间为1(2,)+∞⋯(4分),()f x ∴的极小值是111()2324222f ln ln =-+⨯+=+.⋯(6分)(2)3211()(2)3g x x x m x=+-++,2()(42)1g x x m x '=++-,⋯(8分)()g x ∴在区间(1,3)上不是单调函数,且(0)1g '=-,∴(1)0(3)0g g '<⎧⋯⎨'>⎩(10分)∴4202060m m +<⎧⎨+>⎩,即:1023m -<<-. 故m 的取值范围10(,2)3--⋯(12分) (3)()(3)x f x x e =-,()(3)(3)()(2)x x x f x x e x e x e ∴'=-'+-'=-,令()0f x '>,解得2x >. 即函数单调递增区间为(2,)+∞.17.设常数0a >,函数2()1x f x alnx x=-+(Ⅰ)当34a =时,求()f x 的最小值; (Ⅱ)求证:()f x 有唯一的极值点. 【解析】解:(Ⅰ)()f x 的定义域是(0,)+∞,322(2)2()(1)x a x ax a f x x x +---'=+,34a =时,322224563(1)(493)()4(1)4(1)x x x x x x f x x x x x +---++'==++, 0x >,∴2249304(1)x x x x ++>+, 令()0f x '>,解得:1x >,令()0f x '<,解得:01x <<, ()f x ∴在(0,1)递减,在(1,)+∞递增, 1x ∴=时,()f x 最小,最小值是f (1)12=;(Ⅱ)由(Ⅰ)得:322(2)2()(1)x a x ax af x x x +---'=+, 令32()(2)2g x x a x ax a =+---,要证()f x 有唯一的极值点,即证()g x 在(0,)+∞有唯一的变号零点, 而2()3(42)2g x x a x a '=+--,令()0g x '=,解得:1x =,2x =其中10x <,20x >,(0)20g a '=-<,且()g x '的图象开口向上,故在区间2(0,)x 上,()0g x '<,()g x 递减, 2()(0)0g x g a ∴<=-<,在区间2(x ,)+∞上,()0g x '>,()g x 递增,2()()2()g x x x a x x a a =-+--, 2(1)(1)20g a a a ∴+=+++>,2()(1)0g x g a ∴+<,即()g x 在(0,)+∞上有唯一零点,即()f x 在(0,)+∞上有唯一的极值点且是极小值点.18.已知函数3()1()h x ax a R =-∈,()g x lnx =,()()3()(f x h x xg x e =+为自然对数的底数). ()I 若()f x 图象过点(1,1)-,求()f x 的单调区间;()II 若()f x 在区间1(e,)e 上有且只有一个极值点,求实数a 的取值范围;()III 函数3211()()32F x a x x g =-+(a )()1h x --,当103a e >时,函数()F x 过点(1,)A m 的切线至少有2条,求实数m 的值.【解析】解:(Ⅰ)由已知3()()3()13f x h x xg x ax xlnx =+=-+, 又()f x 过点(1,1)-,所以0a =, ()31f x xlnx ∴=-,且定义域为(0,)+∞, ()333(1)f x lnx lnx '=+=+,令()0f x '>,解得:1x e >,令()0f x '<,解得:10x e <<,故()31f x xlnx =-在1(0,)e 上是减函数,在1(e,)+∞上是增函数;(Ⅱ)函数3()31f x ax xlnx =+-的定义域为(0,)+∞,2()3(1)f x ax lnx '=++,令2()1r x ax lnx =++,则2121()2ax r x ax x x+'=+=,当0a >时,()0r x '>在(0,)+∞恒成立, 故2()3(1)f x ax lnx '=++在(0,)+∞上是增函数, 而213()0af e e'=>,故当1(x e∈,)e 时,()0f x '>恒成立,故()f x 在区间1(e ,)e 上单调递增,故()f x 在区间1(e,)e 上没有极值点;当0a =时,由(Ⅰ)知,()f x 在区间1(e,)e 上没有极值点;当0a <时,令2210ax x +=,解得,x故2()1r x ax lnx =++在上是增函数,在)+∞上是减函数,①当r (e )1()0r e <,即220a e-<<时,()r x 在1(e ,)e 上有且只有一个零点,且在该零点两侧异号,②令1()0r e =,得20ae=,不成立;③令r (e )0=,得22a e =-1(e ,)e ,而1()0222e e r r ln ==+>,又1()0r e<, 所以()r x 在1(e,)e 上有且只有一个零点,且在该零点两侧异号,综上所述,实数a 的取值范围是22[e -,0). (Ⅲ)函数3211()()32F x a x x g =-+(a )()1h x --,由函数()F x 过点(1,)A m 的切线,所以3200011(1)32m x lna x x lna =-++,(*)②据题意,原命题等价于关于0x 的方程(*)至少有2个不同的解. 设3221()(1)32x x lna x xlna ϕ=-++, 2()2(2)(1)(2)x x lna x lna x x lna ϕ'=-++=--,因为103a e >,所以15123lna >>,当(,1)x ∈-∞和1(2lna ,)+∞时,()0x ϕ'>,()x ϕ为增函数;当1(1,)2x lna ∈时,()0x ϕ'<,()x ϕ为减函数;所以()x ϕ的极大值为ϕ(1)1123lna =-,()x ϕ的极小值为32111()2244lna ln a ln a ϕ=-+, 设lna t =,103t >, 则原命题等价于3232111123231111244244m lna t m ln a ln a t t ⎧-=-⎪⎪⎨⎪-+=-+⎪⎩对103t >恒成立,所以由1123m t -对103t >恒成立,得43m ; (1) 记3211()244s t t t =-+,21111()(1)8224s t t t t t '=-+=-, 所以103t >时,()s t 的最大值为s (4)43=,由3211244m t t -+对103t >恒成立,得43m . (2)由(1)(2)得,43m =. 综上,当103a e >,实数m 的值为43时,函数()F x 过点(1,)A m 的切线至少有2条. 19.在平面直角坐标系xOy 中,已知函数()()f x clnx c R =∈的图象与直线2y x e=相切,其中e 是自然对数的底数. (1)求实数c 的值;(2)设函数()()a h x ax f x x=--在区间1(e,)e 内有两个极值点.①求实数a 的取值范围;②设函数()h x 的极大值和极小值的差为M ,求实数M 的取值范围.【解析】解:(1)()cf x x'=,设切点0(P x ,0)y ,则0c k x =,所以过原点的切线方程为:0c y x x =,且000clnx c x x =, 所以0x e =,由题意:c y x e =与2y x e=是同一条直线,所以2c =;(2)由(1)知,①()2ah x ax lnx x=--, 设函数()h x 在区间1(e,)e 内有两个极值点分别为1x ,2x ,12()x x <,22222()(0)a ax x ah x a x x x x-+'=+-=>, 由题意()0h x '=则220ax x a -+=,2()2m x ax x a =-+,121x x =, 所以只需020()a m e >⎧⎪⎪>⎨⎪⎪⎩,所以2211e a e <<+②因为121x x =,所以21211221111112111112()()2()2(2)22a a a a a M f x f x ax lnx ax lnx ax lnx ax ln ax lnx x x x x x x =-=-----=-----=--,由21120ax x a -+=,12121x a x ∴=+,且111x e<<, 所以1222211111122111222111224()112x x x x M x lnx lnx x x x +-=--=-++,设21x t =,211t e<<, 令11()4()12t g t lnt t -=-+,222212(1)()4[]0(1)2(1)t g t t t t t --'=-=<++, 所以()g t 在21(e ,1)单调递减, 从而g (1)21()()g t g e <<, 所以实数M 的取值范围28(0,)1e +.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.函数的零点
一般地,我们把使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.
2.方程、函数、图象之间的关系(函数有零点的等价说法)
方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.
3.函数零点的存在性定理
一般地,若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.
思考:你能说出函数①y=lg x;②y=lg(x+1);③y=2x;④y=2x-2的零点吗?
例1求证:二次函数y=2x2+3x-7有两个不同的零点.
跟踪训练1若函数f(x)=ax+b(a≠0)有一个零点为2,那么函数g(x)=bx2-ax的零点是________.
例2判断函数f(x)=x2-2x-1在区间[2,3]上是否存在零点.
思考1你能归纳出判断函数y=f(x)在区间(a,b)上存在零点的一般方法吗?
答函数零点存在性定理:若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)·f(b)<0,则函数y=f(x)在区间(a,b)上有零点.
思考2如果函数y=f(x)在区间[a,b]上的图象是不间断的一条曲线,函数y=f(x)在区间(a,b)上存在零点,f(a)·f(b)<0是否一定成立?
答不一定成立,由下图可知.
思考3如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,满足了上述两个条件后,函数的零点是唯一的吗?还要添加什么条件可以保证函数有唯一零点?
答函数零点不一定唯一,由下图可知,还需添加函数y=f(x)在区间[a,b]上单调.
小结函数y=f(x)在区间(a,b)内有零点,但不一定有f(a)·f(b)<0.也就是说上述定理不可逆.
跟踪训练2 求证:函数f (x )=x 3+x 2+1在区间(-2,-1)上存在零点.
例3 求函数f (x )=ln x +2x -6的零点的个数.
跟踪训练3 根据表格中的数据,可以断定方程e x -(x +2)=0(e ≈2.72)的一个根所在的区间是________. ①(-1,0);②(0,1);③(1,2);④(2,3).
例4 求函数f (x )=2x +lg(x +1)-2的零点个数.
跟踪训练4 已知a ∈R ,讨论关于x 的方程|x 2-6x + 8|=a 的实数解的个数.
课后练习
1.若关于x 的方程x 2+mx +1=0有两个不相等的实数根,则实数m 的取值范围是________________.
2.若函数y =f (x )在R 上递增,则函数y =f (x )的零点的个数为________.
3.函数f (x )=x +1x
的零点的个数为________. 1.函数f (x )=2x +3x 的零点所在的一个区间是下列中的________.
①(-2,-1);②(-1,0);③(0,1);④(1,2).
2.若a <b <c ,则函数f (x )=(x -a )(x -b )+(x -b )·(x -c )+(x -c )(x -a )的两个零点分别位于区间________________.
3.已知函数f (x )=x 3-x -1仅有一个正零点,则此零点所在的区间是下列所给区间中的________.(填序号)
①(3,4);②(2,3);③(1,2);④(0,1).
4.已知函数f (x )=x x )(-log 312,若实数x 0是方程f (x )=0的解,且0<x 1<x 0,则f (x 1)的值为________.
①恒为负;②等于零;③恒为正;④不小于零.
5.已知函数f (x )是定义域为R 的奇函数,-2是它的一个零点,且在(0,+∞)上是增函数,则该函数有______个零点,这几个零点的和等于______.
6.函数f (x )=⎩
⎪⎨⎪⎧
x 2+2x -3, x ≤0,-2+ln x , x >0零点的个数为________. 7.关于x 的方程mx 2+2(m +3)x +2m +14=0有两实根,且一个大于4,一个小于4,求m 的取值范围. 8.若函数f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )为偶函数,又f (x )在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有________个.
9.方程|x 2-2x |=a 2+1(a >0)的解的个数是________.
10.已知y =f (x )是定义域为R 的奇函数,当x ∈[0,+∞)时,f (x )=x 2-2x .
(1)写出函数y =f (x )的解析式;
(2)若方程f (x )=a 恰有3个不同的解,求a 的取值范围.
11.已知a 是正实数,函数f (x )=2ax 2+2x -3-a .如果函数y =f (x )在区间[-1,1]上有零点,求a 的取值范围.
12.是否存在这样的实数a ,使函数f (x )=x 2+(3a -2)x +a -1在区间[-1,3]上与x 轴有且只有一个交点.若存在,求出a 的范围;若不存在,说明理由.。

相关文档
最新文档