初中数学动点问题例题集

合集下载

初一数学动点问题例题集

初一数学动点问题例题集

初一数学动点问题集锦1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动. ①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米,∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =.又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. (4分) ②∵P Qv v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒,∴515443Q CQ v t===厘米/秒.(7分)(2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯,解得803x =秒.∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. (12分) 2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式; (3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解(1)A (8,0)B (0,6) 1分 (2)86OA OB ==,10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) 1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = 1分当P 在线段BA 上运动(或38t <≤)时,61021O Q tA P t t==+-=-,,如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, 1分21324255S OQ PD t t∴=⨯=-+ 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, 3分3如图,在平面直角坐标系中,直线l :y=-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P.(1)连结PA ,若PA=PB ,试判断⊙P 与x 轴的位置关系,并说明理由;(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?解:(1)⊙P 与x 轴相切.∵直线y=-2x -8与x 轴交于A (4,0), 与y 轴交于B (0,-8), ∴OA=4,OB=8. 由题意,OP=-k , ∴PB=PA=8+k.在Rt △AOP 中,k2+42=(8+k)2, ∴k=-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P 在线段OB 上时,作PE ⊥CD 于E.∵△PCD 为正三角形,∴DE=12CD=32,PD=3,∴.∵∠AOB=∠PEB=90°, ∠ABO=∠PBE , ∴△AOB ∽△PEB ,∴2,AO PE AB PB PB =,∴PB∴8PO BO PB =-=-∴8)P -,∴8k -.当圆心P 在线段OB 延长线上时,同理可得P(0,-8),∴k=-8,∴当-8或k=-8时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形.4(09哈尔滨) 如图1,在平面直角坐标系中,点O 是坐标原点,四边形ABCO 是菱形,点A 的坐标为(-3,4),点C 在x 轴的正半轴上,直线AC 交y 轴于点M ,AB 边交y 轴于点H .(1)求直线AC 的解析式;(2)连接BM ,如图2,动点P 从点A 出发,沿折线ABC 方向以2个单位/秒的速度向终点C 匀速运动,设△PMB 的面积为S (S ≠0),点P 的运动时间为t 秒,求S 与t 之间的函数关系式(要求写出自变量t 的取值范围);(3)在(2)的条件下,当 t 为何值时,∠MPB 与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:5在Rt△ABC中,∠C=90°,AC = 3,AB =5.点P从点C出发沿CA以每秒1个单位长图16的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP= t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==,得45QF t =.∴45QF t=.∴14(3)25S t t=-⋅, 即22655S t t=-+. (3)能.①当DE ∥QB 时,如图4.P图4∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC ,得AQ APAC AB =,即335t t-=. 解得98t =.②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形.此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=,即353t t-=. 解得158t =.(4)52t =或4514t =.①点P 由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】P图56如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由. 解(1)①30,1;②60,1.5; ……………………4分(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC 是平行四边形. ……………………6分在Rt △ABC 中,∠ACB=900,∠B=600,BC=2, ∴∠A=300. ∴. ∴AO=12AC. ………………(备用图)……8分在Rt △AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.又∵四边形EDBC 是平行四边形, ∴四边形EDBC是菱形 ……………………10分7如图,在梯形ABCD中,354245A D B CAD C A BB====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. 1分在Rt ABK △中,sin 454AK AB =︒==CM2cos 45424BK AB =︒== 2分在Rt CDH △中,由勾股定理得,3HC = ∴43310BC BK KH HC =++=++= 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= 4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥ ∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△(图①)ADCBK H(图②)ADCBG MN∴CN CMCD CG = 5分 即10257t t -=解得,5017t =6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t =7分②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t-= 解得258t =8分解法二:ADCBMN(图③)(图④)AD CBM NH E∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t =8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△∴FC MCHC DC =即1102235tt-= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 9分(图⑤)ADCBH NMF8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),P M N △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A D E BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPNM(第25题)解(1)如图1,过点E 作EG BC ⊥于点G . 1分 ∵E 为AB 的中点, ∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. 2分∴112BG BE EG ====,即点E 到BC3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG == 同理4MN AB ==. 4分如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN ===∴PMN △的周长=4PM PN MN ++=. 6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC△恒为等边三角形.图1A D EBF CG图2A D E BFCPNMG H当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. 7分∵MNC △是等边三角形,∴3MC MN ==. 此时,6132x EP GM BC BG MC ===--=--=. 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=. 此时,6114x EP GM ===--=.综上所述,当2x =或4或(5时,PMN △为等腰三角形. 10分9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发图3A D E BFCPN M图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG沿A→B→C→D匀速运动,同时动点Q以相同速度在x轴正半轴上运动,当P点到达D点时,两点同时停止运动,设运动的时间为t秒.(1)当P点在边AB上运动时,点Q的横坐标x(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q开始运动时的坐标及点P运动速度;(2)求正方形边长及顶点C的坐标;(3)在(1)中当t为何值时,△OPQ的面积最大,并求此时P点的坐标;(4)如果点P、Q保持原速度不变,当点P沿A→B→C→D匀速运动时,OP与PQ能否相等,若能,写出所有符合条件的t的值;若不能,请说明理由.解:(1)Q (1,0) 1分点P 运动速度每秒钟1个单位长度. 2分(2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==.∴1046AF =-=. 在Rt △AFB中,10AB =过点C 作CG ⊥x 轴于点G ,与FB ∵90,ABC AB BC ∠=︒=∴△ABF ≌△BCH .∴6,8BH AF CH BF ====.∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MPAB AF BF ==.1068t A M M P∴==.∴3455AM t PM t==,.∴3410,55PN OM t ON PM t==-==. 设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大.6分此时P的坐标为(9415,5310). 7分(4) 当 53t =或29513t =时,OP 与PQ 相等. 9分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFGB 图1ADF GB 图2 ADFC GB图3解:(1)正确. (1分)证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). (5分)AE EF ∴=. (6分)(2)正确. (7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . (8分)BN BE ∴=. 45N PCE ∴∠=∠=°.四边形ABCD 是正方形,AD BE ∴∥. DAE BEA ∴∠=∠.NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). (10分) AE EF ∴=. (11分)A D F CGBM ADFGBN11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.解(Ⅰ)如图①,折叠后点B 与点A 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =.∴点C 的坐标为302⎛⎫ ⎪⎝⎭,. 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+, 即2128y x =-+6分由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求. ∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤.7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥.Rt Rt COB BOA ''∴△∽△.有OB OCOA OB ''=,得2OC OB ''=. 9分在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =.由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016. 10分12问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AM BN 的值等于 ;若1CE CD n =(n 为整数),则AMBN 的值等方法指导:为了求得AMBN的值,可先求BN 、AM 的长,不妨设:AB =2 图(1)A BCDEFMN于 .(用含n 的式子表示)联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E(不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)解:方法一:如图(1-1),连接BM EM BE ,,.图(2)ABCD EF MN 图(1-1)A BCEFM由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. 1分 ∵四边形ABCD是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =.3分在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+.5分设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =.6分 ∴15AM BN =. 7分 方法二:同方法一,54BN =.3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .NA BCDEFMG∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,.在BCE △与NGM △中90E B CM N G B CN G C N G M ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. 5分∵114AM AG MG AM =--=5,=.4 6分 ∴15AM BN =. 7分 类比归纳25(或410);917; ()2211n n -+ 10分联系拓广2222211n m n n m -++ 12分。

初一年级数学动点问题例题集

初一年级数学动点问题例题集

初一数学动点问题集锦1、如图,已知中,厘米,厘米,点为的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,与就是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使与全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿三边运动,求经过多长时间点P 与点Q 第一次在的哪条边上相遇?解:(1)①∵秒,∴厘米, ∵厘米,点为的中点,∴厘米.又∵厘米, ∴厘米,∴. 又∵, ∴,∴. (4分)②∵, ∴,又∵,,则,∴点,点运动的时间秒,AQDB∴厘米/秒. (7分) (2)设经过秒后点与点第一次相遇,由题意,得,解得秒.∴点共运动了厘米.∵,∴点、点在边上相遇,∴经过秒点与点第一次在边上相遇. (12分)2、直线与坐标轴分别交于两点,动点同时从点出发,同时到达点,运动停止.点沿线段 运动,速度为每秒1个单位长度,点沿路线→→运动. (1)直接写出两点的坐标;(2)设点的运动时间为秒,的面积为,求出与之间的函数关系式;(3)当时,求出点的坐标,并直接写出以点为顶点的平行四边形的第四个顶点的坐标.解(1)A(8,0)B(0,6)1分xAOQPBy(2)点由到的时间就是(秒)点的速度就是(单位/秒) 1分当在线段上运动(或0)时,1分当在线段上运动(或)时,, 如图,作于点,由,得, 1分1分(自变量取值范围写对给1分,否则不给分.)(3)1分3分3如图,在平面直角坐标系中,直线l:y=-2x-8分别与x轴,y轴相交于A,B 两点,点P(0,k)就是y轴的负半轴上的一个动点,以P为圆心,3为半径作⊙P、(1)连结PA,若PA=PB,试判断⊙P与x轴的位置关系,并说明理由;(2)当k为何值时,以⊙P与直线l的两个交点与圆心P为顶点的三角形就是正三角形?解:(1)⊙P与x轴相切、∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),∴OA=4,OB=8、由题意,OP=-k,∴PB=PA=8+k、在Rt△AOP中,k2+42=(8+k)2,∴k=-3,∴OP等于⊙P的半径,∴⊙P与x轴相切、(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E、∵△PCD为正三角形,∴DE=CD=,PD=3,∴PE=、∵∠AOB=∠PEB=90°, ∠ABO=∠PBE,∴△AOB∽△PEB,∴,∴∴,∴,∴、当圆心P在线段OB延长线上时,同理可得P(0,--8),∴k=--8,∴当k=-8或k=--8时,以⊙P与直线l的两个交点与圆心P为顶点的三角形就是正三角形、4 如图1,在平面直角坐标系中,点O就是坐标原点,四边形ABCO就是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:BEQDA C图165在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分PQ,且交PQ于点D,交折线QB-BC-CP于点E.点P、Q同时出发,当点Q到达点B时停止运动,点P也随之停止.设点P、Q运动的时间就是t秒(t>0).(1)当t = 2时,AP = ,点Q 到AC 的距离就是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.解:(1)1,;(2)作QF ⊥AC 于点F,如图3, AQ = CP= t,∴.由△AQF ∽△ABC,,得.∴.∴,即.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ,∴PQ ⊥QB,四边形QBED 就是直角梯形. 此时∠AQP=90°. 由△APQ ∽△ABC,得,即. 解得.②如图5,当PQ ∥BC 时,DE ⊥BC,四边形QBED 就是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC,得,即. 解得.(4)或.A CBPQED图4初一年级数学动点问题例题集①点P 由C 向A 运动,DE 经过点C. 连接QC,作QG ⊥BC 于点G,如图 6.,.由,得,解得.②点P 由A 向C 运动,DE 经过点C,如图7.,】6如图,在中,,.点就是的中点,过点的直线从与重合的位置开始,绕点作逆时针旋转,交边于点.过点作交直线于点,设直线的旋转角为.(1)①当 度时,四边形就是等腰梯形,此时的长为 ; ②当 度时,四边形就是直角梯形,此时的长为 ;(2)当时,判断四边形就是否为菱形,并说明理由.解(1)①30,1;②60,1、5; ……………………4分 (2)当∠α=900时,四边形EDBC 就是菱形、 ∵∠α=∠ACB=900,∴BC//ED 、∵CE//AB, ∴四边形EDBC 就是平行四边形、 ……………………6分在Rt △ABC 中,∠ACB=900,∠B=600,BC=2, ∴∠A=300、∴AB=4,AC=2、∴AC (E ) BPQD图6GA C (E )B PQD图7GO E CB DAlOCA(备用图)AO== 、 ……………………8分在Rt △AOD 中,∠A=300,∴AD=2、 ∴BD=2、 ∴BD=BC 、又∵四边形EDBC 就是平行四边形,∴四边形EDBC 就是菱形 ……………………10分7如图,在梯形中,动点从点出发沿线段以每秒2个单位长度的速度向终点运动;动点同时从点出发沿线段以每秒1个单位长度的速度向终点运动.设运动的时间为秒.(1)求的长.(2)当时,求的值.(3)试探究:为何值时,为等腰三角形. 解:(1)如图①,过、分别作于,于,则四边形就是矩形 ∴1分 在中,2分在中,由勾股定理得,∴ 3分ADCBN(图①)ADCBK H(图②)ADCBG MN(2)如图②,过作交于点,则四边形就是平行四边形∵ ∴ ∴ ∴4分 由题意知,当、运动到秒时,∵∴又∴∴ 5分即解得, 6分(3)分三种情况讨论: ①当时,如图③,即∴ 7分ADCBMN(图③)(图④)AD CBM NH E②当时,如图④,过作于解法一:由等腰三角形三线合一性质得在中,又在中,∴解得 8分解法二: ∵∴∴即∴ 8分③当时,如图⑤,过作于点、解法一:(方法同②中解法一)(图⑤)ADCBH N MF解得解法二:∵∴∴即∴综上所述,当、或时,为等腰三角形9分8如图1,在等腰梯形中,,就是的中点,过点作交于点.,、(1)求点到的距离;(2)点为线段上的一个动点,过作交于点,过作交折线于点,连结,设、①当点在线段上时(如图2),的形状就是否发生改变?若不变,求出的周长;若改变,请说明理由;②当点在线段上时(如图3),就是否存在点,使为等腰三角形?若存在,请求出所有满足要求的的值;若不存在,请说明理由、初一年级数学动点问题例题集解(1)如图1,过点作于点1分∵为的中点,∴在中,∴2分∴即点到的距离为 3分 (2)①当点在线段上运动时,的形状不发生改变. ∵∴∵∴,同理 4分 如图2,过点作于,∵∴∴A D EB FC 图4(备用) ADE BF C 图5(备用) A D E BF C 图1 图2 AD E B F C P NM图3 A D E BFCP N M (第25题) 图1A D EBF CG图2A D EBFCPNMG H∴则在中,∴的周长=6分②当点在线段上运动时,的形状发生改变,但恒为等边三角形.当时,如图3,作于,则类似①, ∴ 7分∵就是等边三角形,∴此时,8分当时,如图4,这时此时,当时,如图5,则又∴图3A D E BFCPN M 图4A D EBF CP M N 图5A D EBF (P ) CMN GGRG因此点与重合,为直角三角形.∴此时,综上所述,当或4或时,为等腰三角形. 10分 9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4),点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标(长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1)(1,0)1分 点P 运动速度每秒钟1个单位长度. 2分(2) 过点作BF ⊥y 轴于点,⊥轴于点,则=8,.∴. 在Rt △AFB 中, 3 过点作⊥轴于点,与的延长线交于点.∵ ∴△ABF ≌△BCH.∴.∴.∴所求C 点的坐标为(14,12). 4分AB CDEF G H M N PQOxy(3) 过点P作PM⊥y轴于点M,PN ⊥轴于点N,则△APM∽△ABF.∴. .∴. ∴.设△OPQ 的面积为(平方单位)∴(0≤≤10) 5分说明:未注明自变量的取值范围不扣分.∵<0 ∴当时, △OPQ的面积最大. 6分此时P的坐标为(,) . 7分(4) 当或时, OP与PQ相等. 9分10数学课上,张老师出示了问题:如图1,四边形ABCD就是正方形,点E就是边BC的中点.,且EF 交正方形外角的平行线CF于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB的中点M,连接ME,则AM=EC,易证,所以.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E就是边BC的中点”改为“点E就是边BC 上(除B,C外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,您认为小颖的观点正确不?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E就是BC的延长线上(除C点外)的任意一点,其她条件不变,结论“AE=EF”仍然成立.您认为小华的观点正确不?如果正确,写出证明过程;如果不正确,请说明理由.A DFC GEB图1 A DFC GEB图2A DFC GEB图3解:(1)正确. (1分) 证明:在上取一点,使,连接. (2分).,.就是外角平分线,, . .,,.(ASA). (5分).(6分)(2)正确. (7分) 证明:在的延长线上取一点.使,连接. (8分)..四边形就是正方形,.. .(ASA). (10分).(11分)11已知一个直角三角形纸片,其中.如图,A DF C GEBM ADFC GE BN将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边交于点,与边交于点.(Ⅰ)若折叠后使点与点重合,求点的坐标;(Ⅱ)若折叠后点落在边上的点为,设,,试写出关于的函数解析式,并确定的取值范围;(Ⅲ)若折叠后点落在边上的点为,且使,求此时点的坐标.解(Ⅰ)如图①,折叠后点与点重合,则、设点的坐标为、 则、 于就是、在中,由勾股定理,得,即,解得、点的坐标为、 4分(Ⅱ)如图②,折叠后点落在边上的点为,y BO Ay BOAyBO A则、由题设,则,在中,由勾股定理,得、,即6分由点在边上,有,解析式为所求、当时,随的增大而减小,的取值范围为、7分(Ⅲ)如图③,折叠后点落在边上的点为,且、则、又,有、、有,得、 9分在中,设,则、由(Ⅱ)的结论,得,解得、点的坐标为、 10分 12问题解决如图(1),将正方形纸片折叠,使点落在边上一点(不与点,重合),压平后得到折痕.当时,求的值.类比归纳在图(1)中,若则的值等于 ;若则的值等于 ;若(为整数),则的值等于 .(用含的式子表示)联系拓广如图(2),将矩形纸片折叠,使点落在边上一点(不与点重合),压平后得到折痕设则的值等于 .(用含的式子表示)解:方法一:如图(1-1),连接.方法指导: 为了求得的值,可先求、的长,不妨设:=2图(2)N ABCD EFM图(1)A BCDEFMN N 图(1-1)A BCDEFM由题设,得四边形与四边形关于直线对称.∴垂直平分.∴1分 ∵四边形就是正方形,∴∵设则在中,.∴解得,即 3分在与在中,, , 5分设则∴解得即 6分∴ 7分方法二:同方法一, 3分 如图(1-2),过点做交于点,连接N 图(1-2)A BCDEFMG∵∴四边形就是平行四边形.∴同理,四边形也就是平行四边形.∴∵与中∴5分∵6分∴7分类比归纳(或);; 10分联系拓广12分。

初一数学动点问题20题及答案

初一数学动点问题20题及答案

初一数学动点问题20题及答案数轴上动点问题1.已知:如图,数轴上点A表示的数为6,点B表示的数为2,点C表示的数为﹣8,动点P从点A出发,沿数轴向左运动,速度为每秒1个单位长度.点M为线段BC中点,点N为线段BP中点.设运动时间为t秒.(1)线段AC的长为__________个单位长度;点M表示的数为;(2)当t=5时,求线段MN的长度;(3)在整个运动过程中,求线段MN的长度.(用含t的式子表示).2.已知数轴上点A,B,C所表示的数分别是x,﹣6,4.(1)线段BC的长为_________,线段BC的中点D所表示的数是;(2)若AC=8,求x的值;(3)在数轴上有两个动点P,Q,P的速度为1个单位长度/秒,Q的速度为2个单位/秒,点P,Q分别从点B,C同时出发,在数轴上运动,则经过多少时间后P,Q两点相距4个单位?3.动点A、B同时从数轴上的原点出发向相反的方向运动,且A、B的速度之比是1:4(速度单位:长度单位/秒),3秒后,A、B两点相距15个单位长度.(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置.(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间?4.如图A、B两点在数轴上分别表示﹣10和20,动点P从点A出发以10个单位每秒的速度向右运动,动点Q从点B出发以每秒5个单位的速度出向右运动.设运动时间为t.(1)当点P运动到B点时,求出t的值;(2)当t为何值时,P、Q两点相遇,并求出此时P点对应的数?(3)在此运动过程中,若P、Q相距10个单位,直接写出运动时间t?5.已知a,b满足(a+2)2+|b﹣1|=0,请回答下列问题:(1)a=_______,b=_______;(2)a,b在数轴上对应的点分别为A,B,在所给的数轴上标出点A,点B;(3)若甲、乙两个动点分别从A,B两点同时出发沿x轴正方向运动,已知甲的速度为每秒2个单位长度,乙的速度为每秒1个单位长度,更多好题请进入:437600809,请问经过多少秒甲追上乙?6.在数轴上有A、B两动点,点A起始位置表示数为﹣3,点B起始位置表示数为12,点A的速度为1单位长度/秒,点B的运动速度是点A速度的二倍.(1)若点A、B同时沿数轴向左运动,多少秒后,点B与点A相距6单位长度?(2)若点A、点B同时沿数轴向左运动,是否有一个时刻,表示数﹣3的点是线段AB 的中点?如果有,求出运动时间;如果没有,说明理由.7.如图,已知数轴上点A表示的为8,B是数轴上一点,且AB=14,动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B表示的数,点P表示的数(用含t的代数式表示);(2)动点H从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、H 同时出发,问点P运动多少秒时追上点H?8.如图,数轴上的点A,B对应的数分别为﹣10,5.动点P,Q分别从A,B同时出发,点P以每秒3个单位长度的速度沿数轴向右匀速运动,点Q以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为t秒.(1)求线段AB的长;(2)直接用含t的式子分别表示数轴上的点P,Q对应的数;(3)当PQ=AB时,求t的值.9.如图,已知数轴上点A表示的数为6,B是你数轴上一点,且AB=10,动点P从点O 出发,以每秒6个单位长度的速度沿数轴向右匀速运动,设运动时间为t(t>0)秒.(1)写出数轴上点B所表示的数______;当t=3时,OP=_______.(2)动点R从点B出发,以每秒8个单位长度的速度沿数轴向右匀速运动,若点P,R 同时出发,问点R运动多少秒时追上点P?10.如图.点A、点C是数轴上的两点,0是原点,0A=6,5AO=3CO.(1)写出数轴上点A、点C表示的数;(2)点P、Q分别从A、C同时出发,点P以每秒1个单位长度的速度沿数轴向右匀速运动,点Q以每4个单位长度的速度沿数轴向左匀速运动,问运动多少秒后,这两个动点到原点O的距离存在2倍关系?11.已知数轴上两点A,B对应的数分别为﹣1,3,P为数轴上的动点,其对应的数为x.(1)数轴上是否存在点P,使P到点A、点B的之和为5?若存在,请求出x的值;若不存在,说明理由;(2)当点P以每分钟1个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动.问,它们同时出发几分钟时点P到点A、点B的距离相等?12.A、B两个动点在数轴上做匀速运动,它们的运动时间以及位置记录如下.(1)根据题意,填写下列表格;(2)A、B两点能否相遇?如果相遇,求相遇时的时刻及在数轴上的位置;如果不能相遇,请说明理由;(3)A、B两点能否相距18个单位长度?如果能,求相距18个单位长度的时刻;如不能,请说明理由.13.如图1,点A,B是在数轴上对应的数字分别为﹣12和4,动点P和Q分别从A,B 两点同时出发向右运动,点P的速度是5个单位/秒,点Q的速度是2个单位/秒,设运动时间为t秒.(1)AB=.(2)当点P在线段BQ上时(如图2):①BP=______________(用含t的代数式表示);②当P点为BQ中点时,求t的值.。

(中考数学)动点问题专题训练(含答案)

(中考数学)动点问题专题训练(含答案)

中考专题训练 动点问题例1. 如图, 在ABC ∆中,AB AC =,AD BC ⊥于点D ,10BC cm =,8AD cm =. 点P 从点B 出发, 在线段BC 上以每秒3cm 的速度向点C 匀速运动, 与此同时, 垂直于AD 的直线m 从底边BC 出发, 以每秒2cm 的速度沿DA 方向匀速平移, 分别交AB 、AC 、AD 于E 、F 、H ,当点P 到达点C 时, 点P 与直线m 同时停止运动, 设运动时间为t 秒(0)t >.(1) 当2t =时, 连接DE 、DF ,求证: 四边形AEDF 为菱形;(2) 在整个运动过程中, 所形成的PEF ∆的面积存在最大值, 当PEF ∆的面积最大时, 求线段BP 的长;(3) 是否存在某一时刻t ,使PEF ∆为直角三角形?若存在, 请求出此时刻t 的值;若不存在, 请说明理由 .【解答】(1) 证明: 当2t =时,4DH AH ==,则H 为AD 的中点, 如答图 1 所示 . 又EF AD ⊥ ,EF ∴为AD 的垂直平分线,AE DE ∴=,AF DF =.AB AC = ,AD BC ⊥于点D ,AD BC ∴⊥,B C ∠=∠.//EF BC ∴,AEF B ∴∠=∠,AFE C ∠=∠,AEF AFE ∴∠=∠,AE AF ∴=,AE AF DE DF ∴===,即四边形AEDF 为菱形 .(2) 解: 如答图 2 所示, 由 (1) 知//EF BC ,AEF ABC ∴∆∆∽, ∴EF AH BC AD =,即82108EF t -=,解得:5102EF t =-. 221155510(10)210(2)10(0)222223PEF S EF DH t t t t t t ∆==-=-+=--+<< , ∴当2t =秒时,PEF S ∆存在最大值, 最大值为210cm ,此时36BP t cm ==.(3) 解: 存在 . 理由如下:①若点E 为直角顶点, 如答图 3①所示,此时//PE AD ,2PE DH t ==,3BP t =.//PE AD ,∴PE BP AD BD =,即2385t t =,此比例式不成立, 故此种情形不存在; ②若点F 为直角顶点如答图 3②所示,此时//PF AD ,2PF DH t ==,3BP t =,103CP t =-.//PF AD ,∴PF CP AD CD =,即210385t t -=,解得4017t =;③若点P 为直角顶点,如答图③所示 .过点E 作EM BC ⊥于点M ,过点F 作FN BC ⊥于点N ,则2EM FN DH t ===,////EM FN AD .//EM AD ,∴EM BM AD BD =,即285t BM =,解得54BM t =, 57344PM BP BM t t t ∴=-=-=. 在Rt EMP ∆中, 由勾股定理得:2222227113(2)()416PE EM PM t t t =+=+=. //FN AD ,∴FN CN AD CD =,即285t CN =,解得54CN t =, 5171031044PN BC BP CN t t t ∴=--=--=-. 在Rt FNP ∆中, 由勾股定理得:22222217353(2)(10)85100416PF FN PN t t t t =+=+-=-+. 在Rt PEF ∆中, 由勾股定理得:222EF PE PF =+, 即:2225113353(10)()(85100)21616t t t t -=+-+ 化简得:21833508t t -=, 解得:280183t =或0t =(舍 去) 280183t ∴=. 综上所述, 当4017t =秒或280183t =秒时,PEF ∆为直角三角形 .例2. 如图, 在同一平面上, 两块斜边相等的直角三角板Rt ABC ∆和Rt ADC ∆拼在一起,使斜边AC 完全重合, 且顶点B ,D 分别在AC 的两旁,90ABC ADC ∠=∠=︒,30CAD ∠=︒,4AB BC cm ==(1) 填空:AD = )cm ,DC = ()cm(2) 点M ,N 分别从A 点,C 点同时以每秒1cm 的速度等速出发, 且分别在AD ,CB 上沿A D →,C B →方向运动, 当N 点运动到B 点时,M 、N 两点同时停止运动, 连接MN ,求当M 、N 点运动了x 秒时, 点N 到AD 的距离 (用 含x 的式子表示)(3) 在 (2) 的条件下, 取DC 中点P ,连接MP ,NP ,设PMN ∆的面积为2()y cm ,在整个运动过程中,PMN ∆的面积y 存在最大值, 请求出y 的最大值 .(参考数据sin 75︒=sin15︒=【解答】解: (1)90ABC ∠=︒ ,4AB BC cm ==,AC ∴===,90ADC ∠=︒ ,30CAD ∠=︒,12DC AC ∴==,AD ∴==;故答案为:,;(2) 过点N 作NE AD ⊥于E ,作NF DC ⊥,交DC 的延长线于F ,如图所示:则NE DF =,90ABC ADC ∠=∠=︒ ,AB BC =,30CAD ∠=︒,45ACB ∴∠=︒,60ACD ∠=︒,180456075NCF ∴∠=︒-︒-︒=︒,15FNC ∠=︒,sinFC FNCNC ∠=,NC x=,FC x∴=,NE DF x∴==+,∴点N到ADx+;(3)sinFN NCFNC ∠=,FN x∴=,P为DC的中点,PD CP∴==PF x∴=PMN∴∆的面积y=梯形MDFN的面积PMD-∆的面积PNF-∆的面积111)) 222x x x x=+-+--+2x x=+,即y是x的二次函数,0<,y∴有最大值,当x==时,y=.例3. 如图,BD 是正方形ABCD 的对角线,2BC =,边BC 在其所在的直线上平移, 将通过平移得到的线段记为PQ ,连接PA 、QD ,并过点Q 作QO BD ⊥,垂足为O ,连接OA 、OP .(1) 请直接写出线段BC 在平移过程中, 四边形APQD 是什么四边形?(2) 请判断OA 、OP 之间的数量关系和位置关系, 并加以证明;(3) 在平移变换过程中, 设OPB y S ∆=,(02)BP x x =……,求y 与x 之间的函数关系式,并求出y 的最大值 .【解答】(1) 四边形APQD 为平行四边形;(2)OA OP =,OA OP ⊥,理由如下:四边形ABCD 是正方形,AB BC PQ ∴==,45ABO OBQ ∠=∠=︒,OQ BD ⊥ ,45PQO ∴∠=︒,45ABO OBQ PQO ∴∠=∠=∠=︒,OB OQ ∴=,在AOB ∆和OPQ ∆中,AB PQABO PQO BO QO=⎧⎪∠=∠⎨⎪=⎩()AOB POQ SAS ∴∆≅∆,OA OP ∴=,AOB POQ ∠=∠,90AOP BOQ ∴∠=∠=︒,OA OP ∴⊥;(3) 如图, 过O 作OE BC ⊥于E .①如图 1 ,当P 点在B 点右侧时,则2BQ x =+,22x OE +=, 1222x y x +∴=⨯,即211(1)44y x =+-, 又02x ……,∴当2x =时,y 有最大值为 2 ;②如图 2 ,当P 点在B 点左侧时,则2BQ x =-,22x OE -=, 1222x y x -∴=⨯ ,即211(1)44y x =--+, 又02x ……,∴当1x =时,y 有最大值为14; 综上所述,∴当2x =时,y 有最大值为 2 .例4. 如图, 在平面直角坐标系中,O 为原点, 四边形ABCO 是矩形, 点A ,C 的坐标分别是(0,2)A 和C ,0),点D 是对角线AC 上一动点 (不 与A ,C 重合) ,连结BD ,作DE DB ⊥,交x 轴于点E ,以线段DE ,DB 为邻边作矩形BDEF .(1) 填空: 点B 的坐标为 ;(2) 是否存在这样的点D ,使得DEC ∆是等腰三角形?若存在, 请求出AD 的长度;若不存在, 请说明理由;(3)①求证:DE DB =; ②设AD x =,矩形BDEF 的面积为y ,求y 关于x 的函数关系式 (可 利用①的结论) ,并求出y 的最小值 .【解答】解: (1) 四边形AOCB 是矩形,2BC OA ∴==,OC AB ==90BCO BAO ∠=∠=︒,B ∴2).故答案为2).(2) 存在 . 理由如下:2OA = ,OC =,tan AO ACO OC ∠== , 30ACO ∴∠=︒,60ACB ∠=︒①如图 1 中, 当E 在线段CO 上时,DEC ∆是等腰三角形, 观察图象可知, 只有ED EC =,30DCE EDC ∴∠=∠=︒,60DBC BCD ∴∠=∠=︒,DBC ∴∆是等边三角形,2DC BC ∴==,在Rt AOC ∆中,30ACO ∠=︒ ,2OA =,24AC AO ∴==,422AD AC CD ∴=-=-=.∴当2AD =时,DEC ∆是等腰三角形 .②如图 2 中, 当E 在OC 的延长线上时,DCE ∆是等腰三角形, 只有CD CE =,15DBC DEC CDE ∠=∠=∠=︒,75ABD ADB ∴∠=∠=︒,AB AD ∴==,综上所述, 满足条件的AD 的值为 2 或(3)①如图 1 ,过点D 作MN AB ⊥交AB 于M ,交OC 于N ,(0,2)A 和C ,0),∴直线AC 的解析式为2y x =+,设(,2)D a +,2DN ∴=+,BM a =90BDE ∠=︒ ,90BDM NDE ∴∠+∠=︒,90BDM DBM ∠+∠=︒,DBM EDN ∴∠=∠,90BMD DNE ∠=∠=︒ ,BMD DNE ∴∆∆∽,∴DE DN BD BM ===②如图 2 中, 作DH AB ⊥于H .在Rt ADH ∆中,AD x = ,30DAH ACO ∠=∠=︒,1122DH AD x ∴==,AH x ==,BH x ∴=, 在Rt BDH ∆中,BD ==,DE ∴==, ∴矩形BDEF的面积为22612)y x x ==-+,即2y x =-+,23)y x ∴=-+,0>,3x ∴=时,y .例5. 已知Rt OAB ∆,90OAB ∠=︒,30ABO ∠=︒,斜边4OB =,将Rt OAB ∆绕点O 顺时针旋转60︒,如图 1 ,连接BC .(1) 填空:OBC ∠= 60 ︒;(2) 如图 1 ,连接AC ,作OP AC ⊥,垂足为P ,求OP 的长度;(3) 如图 2 ,点M ,N 同时从点O 出发, 在OCB ∆边上运动,M 沿O C B →→路径匀速运动,N 沿O B C →→路径匀速运动, 当两点相遇时运动停止, 已知点M 的运动速度为 1.5 单位/秒, 点N 的运动速度为 1 单位/秒, 设运动时间为x 秒,OMN ∆的面积为y ,求当x 为何值时y 取得最大值?最大值为多少?【解答】解: (1) 由旋转性质可知:OB OC =,60BOC ∠=︒,OBC ∴∆是等边三角形,60OBC ∴∠=︒.故答案为 60 .(2) 如图 1 中,4OB = ,30ABO ∠=︒,122OA OB ∴==,AB ==11222AOC S OA AB ∆∴==⨯⨯=BOC ∆ 是等边三角形,60OBC ∴∠=︒,90ABC ABO OBC ∠=∠+∠=︒,AC ∴==2AOC S OP AC ∆∴===.(3)①当803x <…时,M 在OC 上运动,N 在OB 上运动,此时过点N 作NE OC ⊥且交OC 于点E .则sin 60NE ON x =︒= ,11 1.522OMN S OM NE x x ∆∴==⨯ ,2y x ∴=.83x ∴=时,y 有最大值, 最大值=. ②当843x <…时,M 在BC 上运动,N 在OB 上运动 .作MH OB ⊥于H . 则8 1.5BM x =-,sin 60 1.5)MH BM x =︒=- ,212y ON MH x ∴=⨯⨯=+.当83x =时,y 取最大值,y < ③当4 4.8x <…时,M 、N 都在BC 上运动, 作OG BC ⊥于G .12 2.5MN x =-,OG AB ==,12y MN OG ∴== ,当4x =时,y 有最大值, 最大值=,综上所述,y 有最大值, .。

七年级动点问题大全

七年级动点问题大全

七年级动点问题大全(一)例1:如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b 满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.例2:如图,有一数轴原点为O,点A所对应的数是-12,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)在(2)的条件下,从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4:已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A 点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6:在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表 - 24,- 10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

七年级数学动点题50道

七年级数学动点题50道

七年级数学动点题50道一、数轴上的动点问题(20道)1. 已知数轴上点A表示的数为 3,点B表示的数为1,点P以每秒2个单位长度的速度从点A出发向左运动,同时点Q以每秒3个单位长度的速度从点B出发向右运动,设运动时间为t秒。

(1)当t = 1时,求PQ的长度。

(2)求经过多少秒后,PQ = 5。

解析:(1)当t = 1时,点P表示的数为公式,点Q表示的数为公式。

所以公式。

(2)运动t秒后,点P表示的数为公式,点Q表示的数为公式。

则公式。

当公式时,即公式。

则公式或公式。

当公式时,公式,公式(舍去,因为时间不能为负)。

当公式时,公式,公式。

2. 数轴上点A对应的数为 2,点B对应的数为4,点C对应的数为x,若点C在点A、B之间,且公式,求x的值。

解析:因为点C在点A、B之间,公式,公式。

又因为公式,所以公式。

去括号得公式。

移项得公式。

合并同类项得公式。

解得公式。

3. 数轴上有A、B两点,A表示的数为 1,B表示的数为3,点P以每秒1个单位长度的速度从点A出发向右运动,设运动时间为t秒。

(1)当t为何值时,点P到点B的距离为2?(2)点Q以每秒2个单位长度的速度从点B出发向左运动,当公式时,求t的值。

解析:(1)点P表示的数为公式。

当点P到点B的距离为2时,公式。

则公式或公式。

解得公式或公式。

(2)点Q表示的数为公式,公式。

当公式时,公式。

即公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

4. 数轴上点A表示的数为5,点B表示的数为 3,点M从点A出发,以每秒1个单位长度的速度向左运动,点N从点B出发,以每秒2个单位长度的速度向右运动,设运动时间为t秒。

(1)求t秒后,点M表示的数和点N表示的数。

(2)当t为何值时,点M与点N相距4个单位长度?解析:(1)t秒后,点M表示的数为公式,点N表示的数为公式。

(2)当点M与点N相距4个单位长度时,公式。

则公式或公式。

当公式时,公式,公式。

当公式时,公式,公式。

初中数学动点问题专项训练复习资料经典例题带解析答案

初中数学动点问题专项训练复习资料经典例题带解析答案

初中数学动点问题专项训练复习资料经典例题带解析答案1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?1.解:(1)①∵1t=秒,∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米.又∵8PC BC BP BC =-=,厘米, ∴835PC =-=厘米, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ··························· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443QCQ v t ===厘米/秒.······················· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇,由题意,得1532104x x =+⨯, 解得803x =秒.∴点P 共运动了803803⨯=厘米. ∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. ·············· (12分)2、直线364yx =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.2.解(1)A (8,0)B (0,6) ····· 1分(2)86OA OB ==,10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) 1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ···································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,,如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ·········· 1分 21324255S OQ PD t t ∴=⨯=-+ ························ 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ································ 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ·················· 3分5、在Rt △ABC 中,∠C =90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.5.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC =, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅, 即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°.由△APQ ∽△ABC ,得AQ APAC AB=, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.图16P图4图5由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ; (2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.6.解(1)①30,1;②60,1.5; ……………………4分(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC. ∴AO =12AC. ……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分(备用图)7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.7.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC⊥于H ,则四边形ADHK 是矩形∴3KHAD ==.···························· 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ···················· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形 ∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ··························· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△ ∴CN CMCD CG = ····························· 5分 即10257t t -= 解得,5017t = ····························· 6分(3)分三种情况讨论:CM(图①)A DCB K H(图②)A DCBG MN①当NC MC =时,如图③,即102t t =-∴103t =······························· 7分 ②当MNNC =时,如图④,过N 作NE MC ⊥于E解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······························ 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ······························· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC= ADCBMN(图③)(图④)AD CBM NH E(图⑤)ADCBH N MF即1102235tt -= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ······ 9分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.10.解:(1)正确. ················· (1分)证明:在AB 上取一点M ,使AMEC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ························ (5分) AE EF ∴=.······························· (6分) (2)正确. ·················· (7分) 证明:在BA 的延长线上取一点N .使ANCE =,连接NE .············ (8分) BN BE ∴=.45N PCE ∴∠=∠=°. 四边形ABCD 是正方形,ADFC GE B图1ADFC G E B 图2ADFGB图3AD F C G B M ADFNAD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ······················· (10分) AE EF ∴=. (11分)11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D . (Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;11.解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△. 设点C 的坐标为()()00m m >,.则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ···························· 4分(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128yx =-+ ································ 6分由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤.························ 7分(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥.Rt Rt COB BOA ''∴△∽△.有OB OC OA OB''=,得2OC OB ''=. ······················ 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =.由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016.······················· 10分12如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当CE/CD=1/2时,求AM/BN 的值.方法指导: 为了求得AMBN的值,可先求BN 、AM 的长,不妨设:AB =2 图(1)A BCDEFMN类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)12解:方法一:如图(1-1),连接BM EM BE ,,.由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BMEM BN EN ==,.············ 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221xx =-+.解得54x =,即54BN =. ·············· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+. ···················· 5分设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ························ 6分∴15AM BN =. ····························· 7分 图(2)ABCD EFMN 图(1-1)A BCEFM方法二:同方法一,54BN =. ······················ 3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形.∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MNBE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,. 在BCE △与NGM △中90E B C M N G B C N G C N G M ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ········ 5分∵114AMAG MG AM =--=5,=.4 ·················· 6分 ∴15AM BN =. ····························· 7分12..如图所示,在直角梯形ABCD 中,AD//BC ,∠A =90°,AB =12,BC =21,AD=16。

(完整版)初一数学动点问题例题集

(完整版)初一数学动点问题例题集

初一数学动点问题集锦1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米,∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. (4分) ②∵P Qv v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒,∴515443QCQvt===厘米/秒.(7分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得1532104x x=+⨯,解得803x=秒.∴点P共运动了803803⨯=厘米.∵8022824=⨯+,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.(12分)2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.解(1)A(8,0)B(0,6)1分(2)86OA OB ==,10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) 1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,,如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, 1分 21324255S OQ PD t t∴=⨯=-+ 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭,1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, 3分 3如图,在平面直角坐标系中,直线l :y=-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P.(1)连结PA ,若PA=PB ,试判断⊙P 与x 轴的位置关系,并说明理由;(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?解:(1)⊙P 与x 轴相切.∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),∴OA=4,OB=8.由题意,OP=-k,∴PB=PA=8+k.在Rt△AOP中,k2+42=(8+k)2,∴k=-3,∴OP等于⊙P的半径,∴⊙P与x轴相切.(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E.∵△PCD为正三角形,∴DE=12CD=32,PD=3,∴PE=33.∵∠AOB=∠PEB=90°,∠ABO=∠PBE,∴△AOB∽△PEB,∴332,45AO PEAB PB PB=即,∴315 PB=∴3158PO BO PB=-=,∴3158)P-,∴3158k-.当圆心P在线段OB延长线上时,同理可得P(0,-315-8),∴k=-315-8,∴当k=315-8或k=-315-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:5在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).ACBPQED图16(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP= t ,∴3AP t =-.由△AQF ∽△ABC,4BC =,得45QF t =.∴45QF t=. ∴14(3)25S t t=-⋅, 即22655S t t=-+. (3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°.由△APQ ∽△ABC ,得AQ APAC AB =, 即335t t -=. 解得98t =.②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABC ,得 AQ APAB AC =, 即353t t -=. 解得158t =.(4)52t =或4514t =.P图4①点P 由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--. 由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.解(1)①30,1;②60,1.5; ……………………4分(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC 是平行四边形. ……………………6分在Rt △ABC 中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴3∴AO=12AC 3……………………8分AC (E ) BPQD图6GA C (E )B PQD图7GOE CDAα lOCA(备用图)在Rt △AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. 1分在Rt ABK △中,sin 4542AK AB =︒==. 2cos 454242BK AB =︒== 2分在Rt CDH △中,由勾股定理得,3HC =∴43310BC BK KH HC =++=++= 3分C(图①)A DCB K H(图②)A DCBG MN(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= 4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥ ∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△∴CN CMCD CG =5分 即10257t t -= 解得,5017t =6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t =7分ADCB MN(图③)(图④)A D CBM NH E②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t -= 解得258t =8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC EC DC HC =即553t t -= ∴258t =8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠,(图⑤)ADCBH N MF∴MFC DHC △∽△∴FC MCHC DC =即1102235tt-= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 9分8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.解(1)如图1,过点E 作EG BC ⊥于点G . 1分 ∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. 2分∴112BG BE EG ====,即点E 到BC 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG == 同理4MN AB ==. 4分如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM ==A D EB FC 图4(备用) ADE BF C 图5(备用) A D E BF C 图1 图2 ADE BF C P NM图3 A D E BFCP N M (第25题) 图1A D EBF CGA D EBF CPNMG H∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN ===∴PMN △的周长=4PM PN MN ++=.6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. 7分∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.图3A D E BFCPN M 图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG因此点P 与F 重合,PMC △为直角三角形.∴tan301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(53时,PMN △为等腰三角形. 10分 9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1)Q (1,0) 1分点P 运动速度每秒钟1个单位长度. 2分(2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB 中,228610AB =+ 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分A B CDEF G H M N PQOxy(3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MPAB AF BF ==. 1068t AM MP ∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t==-==. 设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. 6分此时P 的坐标为(9415,5310) . 7分(4) 当53t =或29513t =时, OP 与PQ 相等. 9分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.A D F C G EB 图1 A D FC G E B 图2A D F C GB 图3解:(1)正确. (1分)证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). (5分)AE EF ∴=. (6分) (2)正确. (7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . (8分)BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形,AD BE ∴∥. DAE BEA ∴∠=∠.NAE CEF ∴∠=∠. ANE ECF ∴△≌△(ASA ). (10分)AE EF ∴=. (11分)11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如A DF C GBM ADFGE BN图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.解(Ⅰ)如图①,折叠后点B 与点A则ACD BCD △≌△.设点C 的坐标为()()00m m >,.则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =.∴点C 的坐标为302⎛⎫ ⎪⎝⎭,. 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ 6分由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求. ∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△.有OB OCOA OB ''=,得2OC OB ''=. 9分 在Rt B OC ''△中, 设()00OB x x ''=>,则2OC x =.由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,21∴点C 的坐标为()016.10分12问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AM BN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN 的值等于 .(用含n的式子表示)联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC mCD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)解:方法一:如图(1-1),连接BM EM BE ,,.方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2)ABCD EFM图(1)A BCDEFMN N 图(1-1)A BCDEFM22由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称. ∴MN 垂直平分BE .∴BM EM BN EN ==,. 1分 ∵四边形ABCD是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. 3分在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+.5分设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =.6分 ∴15AM BN =.7分方法二:同方法一,54BN =.3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .N图(1-2)A BC DEFMG23∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,. BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. 5分∵114AM AG MG AM =--=5,=.4 6分 ∴15AM BN =. 7分类比归纳25(或410);917; ()2211n n -+ 10分联系拓广2222211n m n n m -++ 12分。

初一数学动点问题例题集(可编辑修改word版)

初一数学动点问题例题集(可编辑修改word版)

初一数学动点问题集锦1、如图,已知△ABC 中, AB = AC = 10 厘米, BC = 8 厘米,点D 为AB 的中点.(1) 如果点 P 在线段 BC 上以 3 厘米/秒的速度由 B 点向 C 点运动,同时,点 Q 在线段 CA 上由 C 点向 A 点运动. ①若点 Q 的运动速度与点P 的运动速度相等, 经过1秒后, △BPD 与△CQP 是否全等,请说明理由;②若点 Q 的运动速度与点P 的运动速度不相等,当点 Q 的运动速度为多少时,能够使△BPD 与△CQP 全等?(2) 若点 Q 以②中的运动速度从点 C 出发,点 P 以原来的运动速度从点 B 同时出发,都逆时针沿△ABC 三边运动,求经过多长时间点 P 与点 Q 第一次在△ABC 的哪条边上相遇?解:(1)①∵t = 1秒, ∴ BP = CQ = 3⨯1 = 3 厘米,∵ AB = 10 厘米,点D 为 AB 的中点, ∴ BD = 5 厘米. 又∵厘米,∴ PC = 8 - 3 = 5 厘米PC = BC - BP ,BC = 8 ,∴PC = BD .又∵ AB =AC ,∴∠B =∠C ,∴△BPD ≌△CQP .(4 分)②∵v P ≠v Q ,∴BP ≠CQ ,又∵△BPD ≌△CQP ,∠B =∠C ,则BP =PC = 4,CQ =BD = 5 ,t =BP=4∴点P ,点Q 运动的时间 3 3 秒,v =CQ=5=15Q t 4 4∴ 3 厘米/秒.(7 分)(2)设经过x 秒后点P 与点Q 第一次相遇,15x = 3x + 2 ⨯10由题意,得4 ,x =80解得 3 秒.80⨯ 3 = 80∴点P 共运动了3 厘米.∵80 = 2 ⨯ 28 + 24 ,∴点P 、点Q 在AB 边上相遇,∴经过803 秒点P 与点Q 第一次在边AB 上相遇.(12 分)y =-3x + 62、直线 4 与坐标轴分别交于A、B 两点,动点P、Q 同时从O 点出发,同时到达 A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1 个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A、B 两点的坐标;(2) 设点Q 的运动时间为t 秒, △OPQ 的面积为S ,求出S 与t 之间的函数关系式;S =48(3) 当5 时,求出点P 的坐标,并直接写出以点O 、P 、Q 为顶点的平行四边形的第四个顶点M 的坐标.解(1)A (8,0)B (0,6) 1 分 (2) OA = 8,OB = 6∴ AB = 108= 8点Q 由O 到 A 的时间是1 (秒)6 +10 = 2∴点P 的速度是 8 (单位/秒) 1 分当P 在线段OB 上运动(或 0≤ t ≤ 3 )时, OQ = t ,OP = 2tS = t 2 1 分当 P 在 线 段 BA 上 运 动 ( 或 3 < t ≤ 8 ) 时 ,OQ = t ,AP = 6 +10 - 2t = 16 - 2t ,PD = AP 如图,作PD ⊥ OA 于点D ,由 BO AB ,得 ∴ S = 1 OQ ⨯ PD = - 3 t 2 + 24tPD =48 - 6t5,1 分 2 5 5 1 分(自变量取值范围写对给 1 分,否则不给分.)yBPO QAxP ⎛8 24 ⎫,⎪(3)⎝5 5 ⎭ 1 分I ⎛28 24 ⎫⎛12 24 ⎫⎛12 24 ⎫1 5⎪,M2 - ,⎪,M3 ,-⎪⎝ 5 ⎭⎝ 5 5 ⎭⎝5 5 ⎭3 分3 如图,在平面直角坐标系中,直线l:y=-2x-8 分别与x 轴,y 轴相交于A,B 两点,点P(0,k)是y 轴的负半轴上的一个动点,以P 为圆心,3 为半径作⊙P.(1)连结PA,若PA=PB,试判断⊙P 与x 轴的位置关系,并说明理由;(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?,4 4 5解:(1)⊙P 与 x 轴相切.∵直线 y=-2x -8 与 x 轴交于 A (4,0),与 y 轴交于 B (0,-8), ∴OA=4,OB=8. 由题意,OP=-k , ∴PB=PA=8+k.在 Rt △AOP 中,k2+42=(8+k)2, ∴k=-3,∴OP 等于⊙P 的半径, ∴⊙P 与 x 轴相切.(2)设⊙P 与直线 l 交于 C ,D 两点,连结PC ,PD 当圆心P 在线段OB 上时,作PE ⊥CD 于 E.1 3∵△PCD 为正三角形,∴DE= 2 CD= 2 ,PD=3,3 3∴PE= 2 .∵∠AOB=∠PEB=90°, ∠ABO=∠PBE , ∴△AOB ∽△PEB ,3 3AO PE ,即 = 2∴AB PB PB ,PB = 3 15 ,∴2PO = BO - PB = 8 -3 15∴2 ,P (0, 3 15 - 8)∴ 2 ,k = 3 15 - 8 ∴ 2 .当圆心 P 在线段 OB 延长线上时,同理可得 P(0,- 3 15 2 -8),∴k=- 3 152-8,∴当 k= 3 152-8 或 k=- 3 152-8 时,以⊙P 与直线 l 的两个交点和圆心 P 为顶点的三角形是正三角形.4(09 哈尔滨) 如图 1,在平面直角坐标系中,点 O 是坐标原点,四边形 ABCO 是菱形,点 A 的坐标为(-3,4),点 C 在 x 轴的正半轴上,直线 AC 交 y 轴于点 M ,AB 边交 y 轴于点 H .(1) 求直线 AC 的解析式;(2) 连接 BM ,如图 2,动点 P 从点 A 出发,沿折线 ABC方向以 2 个单位/秒的速度向终点 C 匀速运动,设△PMB 的面积为 S (S ≠0),点 P 的运动时间为 t 秒,求 S 与 t 之间的函数关系式(要求写出自变量 t 的取值范围);(3)在(2)的条件下,当t 为何值时,∠MPB 与∠BCO 互为余角,并求此时直线OP 与直线AC 所夹锐角的正切值.解:5 在 Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点 P 从点 C 出发沿 CA 以每秒 1 个单位长的速度向点 A 匀速运动,到达点 A 后立刻BEQDA图 16C以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1 个单位长的速度向点B 匀速运动.伴随着P、Q 的运动,DE 保持垂直平分PQ,且交PQ 于点D,交折线QB-BC-CP 于点E.点P、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P、Q 运动的时间是t 秒(t>0).(1)当t = 2 时,AP = ,点Q 到AC 的距离是;(2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由;(4)当DE 经过点C 时,请直接写出t 的值.8解:(1)1, 5 ;(2)作QF⊥AC 于点F,如图3,AQ = CP= t,∴ AP = 3 -t .由△AQF∽△ABC,BC == 4 ,QF=t得 4 5 .∴S =1(3 -t) ⋅4tQF =4t5 .∴ 2 5 ,S =-2t 2+6t即 5 5 .(3)能.①当DE∥QB 时,如图4.图 4 ∵DE⊥PQ,∴PQ⊥QB,四边形QBED 是直角梯形.此时∠AQP=90°.QGD C (E )PQGDA PC (E )[ (5AQ = AP由△APQ ∽△ABC ,得 AC AB , Bt =3 - t 即35. 解得t = 9 8 .②如图 5,当 PQ ∥BC 时,DE ⊥BC ,四边形 QBED 是直Q D角梯形. E 此时∠APQ =90°.由△AQP ∽△ABC ,得AQ =APAB AC , APC图 5Bt =3 - t 即5 3 . 解得 t = 15 8 .(4) (4)t = 52 或t =45 14 .①点 P 由 C 向 A 运动,DE 经过点 C . 连接 QC ,作 QG ⊥BC 于点 G ,如图 6.A图 6B =3 24 2 PC = t , QC 2 = QG 2 + CG 2 [ (5 - t )] 5+[4 - (5 - t )] 5 . t 2 =3 24 25 由PC 2 = QC 2 ,得 [ (5 - t )] 5 +[4 - (5 - t )] 5 t = ,解得 2.②点 P 由 A 向 C 运动,DE 经过点 C ,如图 7.图 7(6 - t )2 = 3 - t )]2 +[4 - 4 (5 - t )]2 5 5t =45, 14 】6 如图,在Rt △ABC 中, ∠ACB = 90°,∠B = 60°BC = 2 .点O 是 AC 的中点,过点O 的直线l 从与 AC A重合的位置开始,绕点O 作逆时针旋转,交 AB 边于点D .过点C 作CE ∥ AB 交直线l 于点E ,设直线l 的旋转角为.A(1) ①当=度时,四边形EDBC 是B(备用图)等腰梯形,此时AD 的长为 ;l E OD CCO②当 度时,四边形EDBC 是直角梯形,此时AD 的长3 为 ;(2) 当90° 时,判断四边形EDBC 是否为菱形,并说明理由.解 ( 1) ① 30, 1; ② 60,1.5; .............................................................................. 4 分(2)当∠α=900 时,四边形 EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED.∵ CE//AB, ∴ 四 边 形 EDBC 是 平 行 四 边形 ................................................. 6 分在 Rt △ABC 中,∠ACB=900,∠B=600,BC=2,∴∠A=300.∴AB=4,AC=2 . 1AC∴AO= 2 =. ……………………8 分在 Rt △AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.又∵四边形 EDBC 是平行四边形,∴ 四 边 形 EDBC 是菱形 .................................................................................. 10 分352 - 42 ADA DN7 如 图 , 在 梯 形ABCD 中,AD ∥ BC ,AD = 3,DC = 5,AB = 4 2,∠B = 45︒ 动AD点 M 从 B 点出发沿线段 BC 以每秒 2 个单位长N度的速度向终点C 运动;动点 N 同时从C 点出 BM发沿线段CD 以每秒 1 个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1) 求BC 的长.(2) 当MN ∥ AB 时,求t 的值.(3) 试探究: t 为何值时, △MNC 为等腰三角形.解:(1)如图①,过 A 、D 分别作 AK ⊥ BC 于K , DH ⊥ BC 于H , 则四边形 ADHK 是矩形∴KH = AD = 3在Rt △ABK 中, 1 分AK = AB sin 45︒ = 4 2. 2= 4 2BK = AB cos 45︒ = 4 22 = 42 2 分在Rt △CDH 中,由勾股定理得,HC = = 3 ∴ BC = BK + KH + HC = 4 + 3 + 3 = 10 3 分BK H(图①)CBCG M(图②)(2)如图②,过D 作DG ∥AB 交BC 于G 点,则四边形ADGB 是平行四边形∵MN ∥AB∴MN ∥DG∴BG =AD = 3∴GC = 10 - 3 = 7 4 分由题意知,当M 、N 运动到t 秒时,CN =t,CM = 10 - 2t∵DG ∥MN∴∠NMC =∠DGC又∠C =∠C∴△MNC ∽△GDCCN=CM∴CD CG 5 分t=10 - 2t即5 7t =50解得,17 6 分(3)分三种情况讨论:①当NC =MC 时,如图③,即t = 10 - 2tt =10∴ 3 7 分A DN A DNM HB C B E CM(图③)(图④)②当MN =NC 时,如图④,过N 作NE ⊥MC 于E解法一:由等腰三角形三线合一性质得cos c =EC=5 -tEC =1MC =1 (10 - 2t )= 5 -t2 2在Rt△CEN 中,NC t 又在Rt△DHC 中,5 -t=3cos c =CH=3CD 5∴t 5t =25解得8 8 分解法二:∵∠C =∠C,∠DHC =∠NEC = 90︒ ∴△NEC ∽△DHCNC=EC∴DC HCt =5 -t即5 3t =25∴8 8 分③当MN =MC 时,如图⑤,过M 作MF ⊥CN 于F 点. FC =1NC =1t2 2解法一:(方法同②中解法一)1 tA Dcos C = FC MC = 2 = 310 - 2t 5 t = 60 解得 17B 解法二:∵∠C =∠C ,∠MFC = ∠DHC = 90︒ ∴△MFC ∽△DHC(图⑤)N FH MCFC = MC∴HC DC1 t2 = 10 - 2t即 3 5 t = 60∴ 17t =10 t = 25t =60综上所述,当 3 、 8 或 17 时,△MNC 为等腰三角形 9分8 如图 1,在等腰梯形 ABCD 中, AD ∥ BC , E 是 AB 的中点,过点E 作EF ∥ BC 交CD 于点F . AB = 4,BC = 6 ,∠B = 60︒.(1) 求点E 到BC 的距离;(2) 点P 为线段EF 上的一个动点,过P 作PM ⊥ EF 交BC 于点M ,过M 作MN ∥ AB 交折线 ADC 于点 N ,连结PN ,设EP = x .AD E F A D E F A EPD N F ①当点 N 在线段 AD 上时(如图 2), △PMN 的形状是否发生改变?若不变,求出△PMN 的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图 3),是否存在点P ,使△PMN 为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.BCBMCBCM 图 1 图 2 图 3 (第 25 题) ADEFBC图4(备用)BC图5(备用)22 -12 NH 2 + PH 2 ⎛ 5 ⎫22⎝ 2 ⎭ ⎪ + ⎛ 3 ⎫⎝ 2 ⎭ ⎪ 3 7 A D EFAND E PF H3 解(1)如图 1,过点E 作EG ⊥ BC 于点G .1 分 ∵ E 为 AB 的中点,BE = 1AB = 2∴2 在Rt △EBG 中,∠B = 60︒ ∴∠BEG = 30︒2 分BGC图 1BG = 1BE = 1,EG = = ∴2即点E 到BC 的距离为 3. 3 分(2)①当点 N 在线段 AD 上运动时, △PMN 的形状不发生改变.∵PM ⊥ EF ,EG ⊥ EF ∴ PM ∥ EG∵EF ∥ BC ∴ EP = GM , PM = EG =同理MN = AB = 4. 4 分如图 2,过点P 作PH ⊥ MN 于H ,∵ MN ∥ AB , ∴∠NMC =∠B = 60︒,∠PMH = 30︒PH = 1 PM = 3∴2 2∴MH = PM cos 30︒ = 2BG MC图 2NH = MN - MH = 4 - 3 = 5则2 2PN = = = 在Rt △PNH 中,∴△PMN 的周长= PM + PN + MN = + + 4. 6 分②当点 N 在线段 DC 上运动时, △PMN 的形状发生改变, 但△MNC 恒为等边三角形.33 7AEPDN FR3 当PM = PN 时,如图 3,作PR ⊥ MN 于R ,则MR = NRMR = 3类似①,2 ∴ MN = 2MR =3 7 分∵△MNC 是等边三角形,∴ MC = MN = 3此时, x = EP = GM = BC - BG - MC = 6 -1- 3 = 2 8 分A DEP FNADEF (P ) NBGMCBGMCBGM C图 3图 4图 5当MP = MN 时,如图 4,这时MC = MN = MP = 此时,x = EP = GM = 6 -1- = 5 - 当NP = NM 时,如图 5,∠NPM =∠PMN = 30︒ 则∠PMN = 120︒ 又∠MNC = 60︒ ∴∠PNM +∠MNC = 180︒因此点P 与F 重合, △PMC 为直角三角形.∴MC = PM tan 30︒ = 1. 此时, x = EP = GM = 6 -1-1 = 4综上所述,当x = 2 或 4 或(5 - 分3)时, △PMN 为等腰三角形. 109 如图①,正方形 ABCD 中,点 A 、B 的坐标分别为(0,10),(8, 4),点 C 在第一象限.动点 P 在正方形 ABCD 的边上,从点 A 出发33沿A→B→C→D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t(秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标;(4)如果点P、Q 保持原速度不变,当点P 沿A→B→C→D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1) Q(1,0) 1 分点 P 运动速度每秒钟 1 个单位长度. 2 分(2) 过点 B 作 BF ⊥y 轴于点 F , BE ⊥ x 轴于点 E ,则 BF =8,OF = BE = 4 .∴AF = 10 - 4 = 6 .在 Rt △AFB 中, AB == 10过点C 作CG ⊥ x 轴于点G ,与FB M ∵∠ABC = 90︒,AB = BC∴△ABF ≌△BCH .∴ BH = AF = 6, CH = BF = 8 .∴OG = FH = 8 + 6 = 14, CG = 8 + 4 = 12 . ∴所求 C 点的坐标为(14,12).4 分(3) 过点 P 作 PM ⊥y 轴于点 M ,PN ⊥ x 轴于点 N ,则△APM ∽△ABF .AP= AM =MP∴ t = AM = MP∴AB AF BF . 10 6 8 .AM = 3 t ,PM = 4 tPN = OM = 10 - 3 t , ON = PM = 4t∴5 5 . ∴55 .设△OPQ 的面积为S (平方单位)S = 1 ⨯ (10 - 3 t )(1+ t ) = 5 + 47 t - 3t 2∴2 5 10 10(0≤ t ≤10) 5 分说明:未注明自变量的取值范围不扣分.47 t = -10 = 47 a = - 3∵ 10 <0∴当分2 ⨯ (- 3) 10 6时, △OPQ 的面积最大. 6DFDFFD94 53此时P 的坐标为(15 ,10 ).7 分(4)当t =53 或t =29513 时,OP 与PQ 相等.9 分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.∠AEF = 90 ,且EF 交正方形外角∠DCG 的平行线CF 于点F,求证:AE=EF.经过思考,小明展示了一种正确的解题思路:取AB 的中点M,连接ME,则AM=EC,易证△AME ≌△ECF ,所以AE =EF .在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B,C 外)的任意一点”,其它条件不变,那么结论“AE=EF”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.A A AB C E GB B图1 图2 图 3)D F(2 分 解:(1)正确. (1 分)证明:在 AB 上取一点M ,使 AM = EC ,连接ME .A ∴ BM = BE .∴∠BME = 45° ,∴∠AME = 135° .CF 是外角平分线, ∴∠DCF = 45° , ∴∠ECF = 135° . ∴∠AME = ∠ECF .∠AEB + ∠BAE = 90° , ∠AEB + ∠CEF = 90° ,∴ ∠BAE = ∠CEF .∴△AME ≌△BCF (ASA ).(5 分)∴ AE = EF . (6 分)(2)正确. (7 分) 证明:在BA 的延长线上取一点N . 使 AN = CE ,连接 NE . (8分)∴ BN = BE . ∴∠N = ∠PCE = 45° .四边形 ABCD 是正方形, ∴ AD ∥ BE . ∴∠DAE = ∠BEA .∴∠NAE = ∠CEF .∴△ANE ≌△ECF (ASA ). (10 分)∴ AE = EF . (11 分)FDMBECGN ABC E G11 已知一个直角三角形纸片OAB ,其中∠AOB = 90°,OA = 2,OB = 4.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边 AB 交于点D .(Ⅰ)若折叠后使点B 与点 A(Ⅱ)若折叠后点 B 落在边OA 上的点为 B ',设OB ' = x , OC = y ,试写出 y 关于x 的函数解析式,并确定 y(Ⅲ)若折叠后点B 落在边OA 上的点为B ' ,且使B 'D ∥OB ,求此时点C 的坐标.解(Ⅰ)如图①,折叠后点B 与点 A 则△ACD ≌△BCD .设点C 的坐标为(0,m )(m > 0) . 则BC = OB - OC = 4 - m . 于是 AC = BC = 4 - m .在Rt △AOC 中,由勾股定理,得 AC 2 = OC 2 + OA 2,(4 - m )2= m 2+ 22,解得 m = 32 .⎛ 0 3 ⎫∴点C 的坐标为⎝ , ⎪2 ⎭ . 4 分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ', 则△B 'CD ≌△BCD . 由题设OB ' = x ,OC = y , 则B 'C = BC = OB - OC = 4 - y ,在Rt △B 'OC 中,由勾股定理,得B 'C 2= OC 2+ OB '2.∴(4 - y )2= y 2 + x 2y = - 1x 2 + 2即8 6 分由点B '在边OA 上,有0 ≤ x ≤ 2 ,y = - 1x 2 + 2 (0 ≤ x ≤ 2)∴ 解析式8为所求.∴ 当0 ≤ x ≤ 2 时, y 随x 的增大而减小,3≤ y ≤ 2∴ y 的取值范围为 2. 7 分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B ' ,且B 'D ∥OB . 则∠OCB ' = ∠CB 'D .又 ∠CBD = ∠CB 'D ,∴∠OCB ' = ∠CBD ,有CB '∥ BA . , 即5 MF∴Rt △COB ' ∽ Rt △BOA . OB ' = OC有OA OB ,得OC = 2OB ' . 9 分在Rt △B 'OC 中,设OB ' = x 0 ( x > 0) ,则OC = 2x 0 .由(Ⅱ)的结论,得2x 0 = - 1 x 2+ 2 8 0 ,解得x 0 = -8 ± 4 5.x 0 > 0,∴ x 0 = -8 + 4 . ∴点C 的坐标为(0,8 5 -16) . 10 分12 问题解决A D如图(1),将正方形纸片 ABCD 折叠,使点B 落在ECD 边上一点E (不与点C , D 重合),压平后得到折痕CE 1 AMBNC=MN .当CD 2 时,求 BN 的值.图(1)方法指导: AM 为了求得BN的值,可先求 BN 、 AM 的长,不妨设: AB =2类比归纳CE = 1,AMCE = 1在图(1)中,若CD 3 则 BN 的值等于 ;若CD 4AMCE =1 AM则 BN 的值等于;若 CD n ( n 为整数),则 BN 的值等M F于.(用含n 的式子表示)联系拓广如图(2),将矩形纸片 ABCD 折叠,使点B 落在CD 边上一点EAB = 1(m > 1CE = 1(不与点C ,D 重合),压平后得到折痕MN ,设BC m ),F CD n 则 AMAMD BN 的值等于.(用含m ,n 的式子表示)EBNC图(2)解:方法一:如图(1-1),连接BM ,EM ,BE .AEBNC图(1-1)由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM =EM,BN =EN 1 分∵四边形ABCD 是正方形,∴∠A =∠D =∠C = 90° , AB =BC =CD =DA = 2CE=1,∴CE=DE=1∵CD 2 设BN =x 则NE =x NC = 2 -x 在Rt△CNE 中,NE2=CN 2+CE2.x2=(2-x)2+12x =5解得4BN =5,即 4 3 分在Rt△ABM 和在Rt△DEM 中,AM 2+AB2=BM 2,DM 2+DE2=EM 2,∴AM 2+AB2=DM 2+DE2 5 分设AM =y则DM=2-y,∴y2+22=(2-y)2+12y =1,AM =1.解得 4 即AM=1∴ BN 5 7 分4 6 分BN =5方法二:同方法一, 4 3 分如图(1-2),过点N 做NG∥CD,交AD于点G,连接BE.∴⎨ ⎩ △BCE ≌△NGM ,EC = MG∵AD ∥ BC ∴四边形GDCN 是平行四边形.∴ NG = CD = BC同理,四边形 ABNG 也是平行四边形.∴ ∵MN ⊥ BE ,∴∠EBC + ∠BNM = 90°AG = BN = 5 4 NG ⊥ BC ,∴∠MNG + ∠BNM = 90°,∴∠EBC = ∠MNG 在△BCE 与△NGM 中⎧∠EBC = ∠MNG , ⎪BC = NG , ⎪∠C = ∠NGM = 90° ∴5分AM = AG - MG ,AM = 5 -1 = 1∵AM =1 4 4 6 分 ∴ BN 57 分类比归纳2 4 9(n -1)25 (或10 ); 17 ; n 2 +1 10 分联系拓广n2m2- 2n +1n2m2+1 12 分。

(完整版)七年级动点问题大全(给力)

(完整版)七年级动点问题大全(给力)

七年级动点问题大全例1 如图,在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|a+2|+(b+3a)2=0(1)求A、B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间.例2如图,有一数轴原点为O,点A所对应的数是-1 2,点A沿数轴匀速平移经过原点到达点B.(1)如果OA=OB,那么点B所对应的数是什么?(2)从点A到达点B所用时间是3秒,求该点的运动速度.(3)从点A沿数轴匀速平移经过点K到达点C,所用时间是9秒,且KC=KA,分别求点K和点C所对应的数。

例3动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,3秒后,两点相距15个单位长度.已知动点A、B的速度比是1:4.(速度单位:单位长度/秒)(1)求出两个动点运动的速度,并在数轴上标出A、B两点从原点出发运动3秒时的位置;(2)若A、B两点从(1)中的位置同时向数轴负方向运动,几秒后原点恰好处在两个动点正中间;(3)在(2)中A、B两点继续同时向数轴负方向运动时,另一动点C同时从B 点位置出发向A运动,当遇到A后,立即返回向B点运动,遇到B点后立即返回向A点运动,如此往返,直到B追上A时,C立即停止运动.若点C一直以20单位长度/秒的速度匀速运动,那么点C从开始到停止运动,运动的路程是多少单位长度.例4已知数轴上两点A、B对应的数分别为-1、3,点P为数轴上一动点,其对应的数为x.(1)若点P到点A,点B的距离相等,求点P对应的数;(2)数轴上是否存在点P,使点P到点A、点B的距离之和为6?若存在,请求出x的值;若不存在,说明理由;(3)点A、点B分别以2个单位长度/分、1个单位长度/分的速度向右运动,同时点P以6个单位长度/分的速度从O点向左运动.当遇到A时,点P立即以同样的速度向右运动,并不停地往返于点A与点B之间,求当点A与点B重合时,点P 所经过的总路程是多少?例5数轴上两个质点A、B所对应的数为-8、4,A、B两点各自以一定的速度在上运动,且A点的运动速度为2个单位/秒.(1)点A、B两点同时出发相向而行,在原点处相遇,求B点的运动速度;(2)A、B两点以(1)中的速度同时出发,向数轴正方向运动,几秒钟时两者相距6个单位长度;(3)A、B两点以(1)中的速度同时出发,向数轴负方向运动,与此同时,C点从原点出发作同方向的运动,且在运动过程中,始终有CB:CA=1:2,若干秒钟后,C停留在-10处,求此时B点的位置?例6在数轴上,点A表示的数是-30,点B表示的数是170.(1)求A、B中点所表示的数.(2)一只电子青蛙m,从点B出发,以4个单位每秒的速度向左运动,同时另一只电子青蛙n,从A点出发以6个单位每秒的速度向右运动,假设它们在C点处相遇,求C点所表示的数.(3)两只电子青蛙在C点处相遇后,继续向原来运动的方向运动,当电子青蛙m 处在A点处时,问电子青蛙n处在什么位置?(4)如果电子青蛙m从B点处出发向右运动的同时,电子青蛙n也向右运动,假设它们在D点处相遇,求D点所表示的数例7、已知数轴上有A、B、C三点,分别代表—24,—10,10,两只电子蚂蚁甲、乙分别从A、C两点同时相向而行,甲的速度为4个单位/秒。

7年级动点题10道

7年级动点题10道

7年级动点题10道一、数轴上的动点问题。

1. 已知数轴上点A表示的数为 -2,点B表示的数为4,点P从点A出发,以每秒2个单位长度的速度沿数轴向右运动,同时点Q从点B出发,以每秒1个单位长度的速度沿数轴向左运动,设运动时间为t秒。

- 当t = 1时,求点P和点Q所表示的数。

- 求经过多少秒,点P与点Q相遇?- 求经过多少秒,点P与点Q之间的距离为2个单位长度?解析:- 点P从 - 2出发,速度为每秒2个单位长度,当t = 1时,点P表示的数为-2 + 2×1=0;点Q从4出发,速度为每秒1个单位长度,当t = 1时,点Q表示的数为4-1×1 = 3。

- 设经过t秒点P与点Q相遇。

点P向右运动的路程为2t,点Q向左运动的路程为t,相遇时2t + t=4 - (-2),即3t = 6,解得t = 2秒。

- 分两种情况:- 相遇前相距2个单位长度:2t+t+2 = 4-(-2),3t+2 = 6,3t = 4,解得t=(4)/(3)秒。

- 相遇后相距2个单位长度:2t + t-2=4 - (-2),3t-2 = 6,3t = 8,解得t=(8)/(3)秒。

2. 数轴上点A对应的数为 -1,点B对应的数为3,点P为数轴上一动点,其对应的数为x。

- 若点P到点A、点B的距离相等,求点P对应的数。

- 数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,求出x的值;若不存在,请说明理由。

- 当点P以每分钟1个单位长度的速度从原点向左运动时,点A以每分钟5个单位长度的速度向左运动,点B以每分钟20个单位长度的速度向左运动,问几分钟时点P到点A、点B的距离相等?解析:- 因为点P到点A、点B的距离相等,所以x=(-1 + 3)/(2)=1。

- 存在。

当点P在点A左侧时,-1 - x+3 - x = 5,-2x+2 = 5,-2x = 3,解得x =-(3)/(2);当点P在点B右侧时,x - (-1)+x - 3 = 5,2x - 2 = 5,2x = 7,解得x=(7)/(2)。

(完整版)初一数学动点问题例题集

(完整版)初一数学动点问题例题集

初一数学动点问题集锦1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点.(1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由;②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等?(2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米,∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. (4分) ②∵P Qv v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒,∴515443QCQvt===厘米/秒.(7分)(2)设经过x秒后点P与点Q第一次相遇,由题意,得1532104x x=+⨯,解得803x=秒.∴点P共运动了803803⨯=厘米.∵8022824=⨯+,∴点P、点Q在AB边上相遇,∴经过803秒点P与点Q第一次在边AB上相遇.(12分)2、直线364y x=-+与坐标轴分别交于A B、两点,动点P Q、同时从O点出发,同时到达A点,运动停止.点Q沿线段OA运动,速度为每秒1个单位长度,点P沿路线O→B→A运动.(1)直接写出A B、两点的坐标;(2)设点Q的运动时间为t秒,OPQ△的面积为S,求出S与t之间的函数关系式;(3)当485S=时,求出点P的坐标,并直接写出以点O P Q、、为顶点的平行四边形的第四个顶点M的坐标.解(1)A(8,0)B(0,6)1分(2)86OA OB ==,10AB ∴=点Q 由O 到A 的时间是881=(秒) ∴点P 的速度是61028+=(单位/秒) 1分当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,,如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, 1分 21324255S OQ PD t t∴=⨯=-+ 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭,1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, 3分 3如图,在平面直角坐标系中,直线l :y=-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P.(1)连结PA ,若PA=PB ,试判断⊙P 与x 轴的位置关系,并说明理由;(2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?解:(1)⊙P 与x 轴相切.∵直线y=-2x-8与x轴交于A(4,0),与y轴交于B(0,-8),∴OA=4,OB=8.由题意,OP=-k,∴PB=PA=8+k.在Rt△AOP中,k2+42=(8+k)2,∴k=-3,∴OP等于⊙P的半径,∴⊙P与x轴相切.(2)设⊙P与直线l交于C,D两点,连结PC,PD当圆心P在线段OB上时,作PE⊥CD于E.∵△PCD为正三角形,∴DE=12CD=32,PD=3,∴PE=33.∵∠AOB=∠PEB=90°,∠ABO=∠PBE,∴△AOB∽△PEB,∴332,45AO PEAB PB PB=即,∴315 PB=∴3158PO BO PB=-=,∴3158)P-,∴3158k-.当圆心P在线段OB延长线上时,同理可得P(0,-315-8),∴k=-315-8,∴当k=315-8或k=-315-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.4 如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当 t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:5在Rt △ABC 中,∠C=90°,AC = 3,AB = 5.点P 从点C 出发沿CA 以每秒1个单位长的速度向点A 匀速运动,到达点A 后立刻以原来的速度沿AC 返回;点Q 从点A 出发沿AB 以每秒1个单位长的速度向点B 匀速运动.伴随着P 、Q 的运动,DE 保持垂直平分PQ ,且交PQ 于点D ,交折线QB-BC-CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).ACBPQED图16(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与 t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成 为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接写出t 的值.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP= t ,∴3AP t =-.由△AQF ∽△ABC,4BC =,得45QF t =.∴45QF t=. ∴14(3)25S t t=-⋅, 即22655S t t=-+. (3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP=90°.由△APQ ∽△ABC ,得AQ APAC AB =, 即335t t -=. 解得98t =.②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°.由△AQP ∽△ABC ,得 AQ APAB AC =, 即353t t -=. 解得158t =.(4)52t =或4514t =.P图4①点P 由C 向A 运动,DE 经过点C . 连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--. 由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.22234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.解(1)①30,1;②60,1.5; ……………………4分(2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC//ED. ∵CE//AB, ∴四边形EDBC 是平行四边形. ……………………6分在Rt △ABC 中,∠ACB=900,∠B=600,BC=2, ∴∠A=300.∴3∴AO=12AC 3……………………8分AC (E ) BPQD图6GA C (E )B PQD图7GOE CDAα lOCA(备用图)在Rt △AOD 中,∠A=300,∴AD=2. ∴BD=2. ∴BD=BC.又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7如图,在梯形ABCD中,3545AD BC AD DC AB B ====︒∥,,,.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒.(1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形.解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==. 1分在Rt ABK △中,sin 4542AK AB =︒==. 2cos 454242BK AB =︒== 2分在Rt CDH △中,由勾股定理得,3HC =∴43310BC BK KH HC =++=++= 3分C(图①)A DCB K H(图②)A DCBG MN(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= 4分由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥ ∴NMC DGC =∠∠ 又C C =∠∠ ∴MNC GDC △∽△∴CN CMCD CG =5分 即10257t t -= 解得,5017t =6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =-∴103t =7分ADCB MN(图③)(图④)A D CBM NH E②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=-在Rt CEN △中,5cos EC tc NC t -== 又在Rt DHC △中,3cos 5CH c CD ==∴535t t -= 解得258t =8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC EC DC HC =即553t t -= ∴258t =8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===-解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠,(图⑤)ADCBH N MF∴MFC DHC △∽△∴FC MCHC DC =即1102235tt-= ∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 9分8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠.(1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =.①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由;②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.解(1)如图1,过点E 作EG BC ⊥于点G . 1分 ∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. 2分∴112BG BE EG ====,即点E 到BC 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG == 同理4MN AB ==. 4分如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴12PH PM ==A D EB FC 图4(备用) ADE BF C 图5(备用) A D E BF C 图1 图2 ADE BF C P NM图3 A D E BFCP N M (第25题) 图1A D EBF CGA D EBF CPNMG H∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN ===∴PMN △的周长=4PM PN MN ++=.6分②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =.∴23MN MR ==. 7分∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. 8分当MP MN =时,如图4,这时MC MN MP ===此时,615x EP GM ===-=-当NP NM =时,如图5,30NPM PMN ==︒∠∠. 则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.图3A D E BFCPN M 图4A D EBF CP MN 图5A D EBF (P ) CMN GGRG因此点P 与F 重合,PMC △为直角三角形.∴tan301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(53时,PMN △为等腰三角形. 10分 9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1)Q (1,0) 1分点P 运动速度每秒钟1个单位长度. 2分(2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB 中,228610AB =+ 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH . ∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分A B CDEF G H M N PQOxy(3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MPAB AF BF ==. 1068t AM MP ∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t==-==. 设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. 6分此时P 的坐标为(9415,5310) . 7分(4) 当53t =或29513t =时, OP 与PQ 相等. 9分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E 是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE=EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM=EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE=EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE=EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.A D F C G EB 图1 A D FC G E B 图2A D F C GB 图3解:(1)正确. (1分)证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线, 45DCF ∴∠=°, 135ECF ∴∠=°. AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°,∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). (5分)AE EF ∴=. (6分) (2)正确. (7分)证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . (8分)BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形,AD BE ∴∥. DAE BEA ∴∠=∠.NAE CEF ∴∠=∠. ANE ECF ∴△≌△(ASA ). (10分)AE EF ∴=. (11分)11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如A DF C GBM ADFGE BN图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C 的坐标;(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.解(Ⅰ)如图①,折叠后点B 与点A则ACD BCD △≌△.设点C 的坐标为()()00m m >,.则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+,即()22242m m -=+,解得32m =.∴点C 的坐标为302⎛⎫ ⎪⎝⎭,. 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ 6分由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求. ∴当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. 7分(Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠.又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△.有OB OCOA OB ''=,得2OC OB ''=. 9分 在Rt B OC ''△中, 设()00OB x x ''=>,则2OC x =.由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,21∴点C 的坐标为()016.10分12问题解决如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AM BN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN 的值等于 .(用含n的式子表示)联系拓广如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D ,重合),压平后得到折痕MN ,设()111AB CE m BC mCD n =>=,,则AMBN 的值等于 .(用含m n ,的式子表示)解:方法一:如图(1-1),连接BM EM BE ,,.方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2)ABCD EFM图(1)A BCDEFMN N 图(1-1)A BCDEFM22由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称. ∴MN 垂直平分BE .∴BM EM BN EN ==,. 1分 ∵四边形ABCD是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,.∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. 3分在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+.5分设AM y =,则2DM y =-,∴()2222221y y +=-+. 解得14y =,即14AM =.6分 ∴15AM BN =.7分方法二:同方法一,54BN =.3分 如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .N图(1-2)A BC DEFMG23∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==.∵90MN BE EBC BNM ⊥∴∠+∠=,°.90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,. BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. 5分∵114AM AG MG AM =--=5,=.4 6分 ∴15AM BN =. 7分类比归纳25(或410);917; ()2211n n -+ 10分联系拓广2222211n m n n m -++ 12分。

中考数学动点问题专题练习(含答案)

中考数学动点问题专题练习(含答案)

动点专题一、应用勾股定理建立函数解析式例1(2000年·上海)如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥O A,垂足为H,△OPH 的重心为G .(1)当点P在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设P Hx =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PG H是等腰三角形,试求出线段PH 的长.二、应用比例式建立函数解析式例2(2006年·山东)如图2,在△ABC 中,AB=AC =1,点D,E在直线B C上运动.设BD=,x CE=y . (1)如果∠B AC=30°,∠DA E=105°,试确定y 与x 之间的函数解析式;(2)如果∠B AC的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.AEDCB 图2H M NG PO A B 图1 x yC三、应用求图形面积的方法建立函数关系式例4(2004年·上海)如图,在△A BC中,∠BAC =90°,AB=AC =22,⊙A 的半径为1.若点O在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域.(2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A相切时, △AO C的面积.一、以动态几何为主线的压轴题 (一)点动问题.1.(09年徐汇区)如图,ABC ∆中,10==AC AB ,12=BC ,点D 在边BC 上,且4=BD ,以点D 为顶点作B EDF ∠=∠,分别交边AB 于点E ,交射线CA 于点F . (1)当6=AE 时,求AF 的长;(2)当以点C 为圆心CF 长为半径的⊙C 和以点A 为圆心AE 长为半径的⊙A 相切时,求BE 的长; (3)当以边AC 为直径的⊙O 与线段DE 相切时,求BE的长.AB C O 图8HAB CDEOlA ′(二)线动问题2,在矩形A BCD 中,AB =3,点O 在对角线A C上,直线l过点O ,且与AC 垂直交AD于点E .(1)若直线l 过点B,把△ABE 沿直线l 翻折,点A 与矩形A BCD的对称中心A '重合,求BC 的长; (2)若直线l 与AB 相交于点F,且AO=41AC,设AD 的长为x ,五边形BCDEF 的面积为S.①求S 关于x 的函数关系式,并指出x 的取值范围;②探索:是否存在这样的x ,以A 为圆心,以-x 43长为半径的圆与直线l 相切,若存在,请求出x 的值;若不存在,请说明理由.(三)面动问题3.如图,在ABC ∆中,6,5===BC AC AB ,D 、E 分别是边AB 、AC 上的两个动点(D 不与A 、B 重合),且保持BC DE ∥,以DE 为边,在点A 的异侧作正方形DEFG .(1)试求ABC ∆的面积;(2)当边FG 与BC 重合时,求正方形DEFG 的边长; (3)设x AD =,ABC ∆与正方形DEFG 重叠部分的面积为y ,试求y 关于x 的函数关系式,并写出定义域;(4)当BDG ∆是等腰三角形时,请直接写出AD 的长.解决动态几何问题的常见方法有:C一、 特殊探路,一般推证例2:(2004年广州市中考题第11题)如图,⊙O 1和⊙O2内切于A,⊙O1的半径为3,⊙O2的半径为2,点P为⊙O1上的任一点(与点A 不重合),直线PA 交⊙O2于点C,PB 切⊙O2于点B ,则PCBP的值为(A)2 (B)3 (C)23(D)26二、 动手实践,操作确认例4(2003年广州市中考试题)在⊙O中,C 为弧AB 的中点,D 为弧A C上任一点(与A 、C 不重合),则(A)A C+CB=AD+DB (B) A C+C B<AD+DB(C) AC+CB >A D+D B (D) AC+C B与AD+DB 的大小关系不确定例5:如图,过两同心圆的小圆上任一点C 分别作小圆的直径CA 和非直径的弦CD ,延长CA 和C D与大圆分别交于点B 、E,则下列结论中正确的是( * ) (A)AB DE = (B )AB DE >(C)AB DE <(D )AB DE ,的大小不确定三、 建立联系,计算说明例6:如图,正方形ABCD 的边长为4,点M在边DC 上,且DM=1,N为对角线A C上任意一点,则DN +MN 的最小值为 .BMND CBA以圆为载体的动点问题中,AC=5,BC=12,∠ACB=90°,P是AB边上的动点(与点A、B不重例1.在Rt ABC合),Q是BC边上的动点(与点B、C不重合),当PQ与AC不平行时,△CPQ可能为直角三角形吗?若有可能,请求出线段CQ的长的取值范围;若不可能,请说明理由。

初一数学动点题集锦

初一数学动点题集锦

初一数学动点题集锦1.已知数轴上两点A、B对应的数分别为-1,3,点P为数轴上一动点,其对应的数为x。

⑴若点P到点A、点B的距离相等,求点P对应的数。

答:根据题意,P点到A、B两点距离相等,即PA=PB,因此P点在AB中垂线上,所以x=1.⑵数轴上是否存在点P,使点P到点A、点B的距离之和为5?若存在,请求出x的值。

若不存在,请说明理由?答:存在。

由于AB的长度为4,所以PA+PB=5时,P点在AB上离A点2个单位长度处,因此x=-3或x=5.不存在其他解。

⑶当点P以每分钟一个单位长度的速度从O点向左运动时,点A以每分钟5个单位长度向左运动,点B以每分钟20个单位长度向左运动,问它们同时出发,几分钟后P点到点A、点B的距离相等?答:设P点到O点的距离为d,则P点到A、B两点的距离分别为d+1和d+3.由于P点向左运动,A、B两点向左运动,因此P点到A、B两点的距离差会不断缩小,当P点到达A、B两点之间垂线的交点时,两点的距离差最小,此时P点到A、B两点的距离相等。

设此时P点到垂线交点的距离为x,则有:d+1-x=5t(t为时间,单位为分钟)d+3-x=20t2.数轴上A点对应的数为-5,B点在A点右边,电子蚂蚁甲、乙在B分别以分别以2个单位/秒、1个单位/秒的速度向左运动,电子蚂蚁丙在A以3个单位/秒的速度向右运动。

1)若电子蚂蚁丙经过5秒运动到C点,求C点表示的数;答:由于丙以3个单位/秒的速度向右运动,因此5秒后到达的位置与A点距离为15个单位长度,即C点对应的数为-20.2)若它们同时出发,若丙在遇到甲后1秒遇到乙,求B点表示的数;答:设它们同时出发的时间为t秒,则甲、乙、丙三点的位置分别为:甲:B点左侧2t个单位长度___:B点左侧t个单位长度丙:A点右侧3t个单位长度当丙在遇到甲后1秒遇到乙时,有:2t+3=3t-1t=4因此它们同时出发的时间为4秒,B点对应的数为-2.3)在(2)的条件下,设它们同时出发的时间为t秒,是否存在t的值,使丙到乙的距离是丙到甲的距离的2倍?若存在,求出t值;若不存在,说明理由。

动点综合问题(共32题)2023年中考数学真题(全国通用)(解析版)

动点综合问题(共32题)2023年中考数学真题(全国通用)(解析版)

动点综合问题(32题)统考中考真题)如图,在ABC 中,移动,到达点 A .()55,B .246,5⎛⎫ ⎪⎝⎭C .3224,5⎛ ⎝【答案】C 【分析】如图所示,过点C 作CD AB ⊥于D ,连接CP ,先利用勾股定理的逆定理证明ABC 是直角三角形,即90C ∠=︒,进而利用等面积法求出245CD =,则可利用勾股定理求出325AD =;再证明四边形CMPN 是矩形,得到MN CP =,故当点P 与点重合时,CP 最小,即MN 最小,此时MN 最小值为245,325AP =,则点E 的坐标为3224,55⎛⎫ ⎪⎝⎭.【详解】解:如图所示,过点C 作CD AB ⊥于D ,连接CP ,∵在ABC 中,1068AB BC AC ===,,,∴2222226810010AC BC AB +=+===,∴ABC 是直角三角形,即90C ∠=︒,∴1122ABC S AC BC AB CD =⋅=⋅, ∴245AC BC CD AB ⋅==,∴325AD =;∵90PM AC PN BC C =︒⊥,⊥,∠,∴四边形CMPN 是矩形,∴MN CP =,∴当MN 最小时,即CP 最小,∴当点P 与点D 重合时,CP 最小,即MN 最小,此时MN 最小值为245,325AP AD ==, ∴点E 的坐标为3224,55⎛⎫ ⎪⎝⎭,故选:C .【点睛】本题主要考查了勾股定理和勾股定理的逆定理,矩形的性质与判断,垂线段最短,坐标与图形等等,正确作出辅助线是解题的关键.【答案】C【分析】根据图象可知0=t 时,点P 与点A 重合,得到15AB =,进而求出点P 从点A 运动到点B 所需的时间,进而得到点P 从点B 运动到点C 的时间,求出BC 的长,再利用勾股定理求出AC 即可.【详解】解:由图象可知:0=t 时,点P 与点A 重合,∴15AB =,∴点P 从点A 运动到点B 所需的时间为1527.5s ÷=;∴点P 从点B 运动到点C 的时间为11.57.54s −=,∴248BC =⨯=;在Rt ABC △中:17AC =;故选:C .【点睛】本题考查动点的函数图象,勾股定理.从函数图象中有效的获取信息,求出,AB BC 的长,是解题的关键. 秒,AMN 的面积为 A . . . . 【答案】A【分析】连接BD ,过点B 作BE AD ⊥于点E ,根据已知条件得出ABD △是等边三角形,进而证明AMN ABE ∽得出90ANM AEB ∠=∠=︒,当04t <<时,M 在AB 上,当48t ≤<时,M 在BC 上,根据三角形的面积公式得到函数关系式,【详解】解:如图所示,连接BD ,过点B 作BE AD ⊥于点E ,当04t <<时,M 在AB 上,菱形ABCD 中,60A ∠=︒,4AB =,∴AB AD =,则ABD △是等边三角形,∴122AE ED AD ===,BE ==∵2,AM x AN x ==, ∴2AM AB AN AE ==,又A A ∠=∠∴AMN ABE ∽∴90ANM AEB ∠=∠=︒∴MN ,∴212y x =当48t ≤<时,M 在BC 上,∴1122y AN BE x =⨯=⨯,综上所述,04t <<时的函数图象是开口向上的抛物线的一部分,当48t ≤<时,函数图象是直线的一部分, 故选:A .【点睛】本题考查了动点问题的函数图象,二次函数图象的性质,一次函数图象的性质,菱形的性质,勾股定理,等边三角形的性质与判定,相似三角形的性质与判定,熟练掌握以上知识是解题的关键.4.(2023·黑龙江齐齐哈尔·统考中考真题)如图,在正方形ABCD 中,4AB =,动点M ,N 分别从点A ,B 同时出发,沿射线AB ,射线BC 的方向匀速运动,且速度的大小相等,连接DM ,MN ,ND .设点M 运动的路程为()04x x ≤≤,DMN 的面积为S ,下列图像中能反映S 与x 之间函数关系的是( )A .B .C .D .【答案】A【分析】先根据ADM DCN BMN ABCD S S S S S =−−−V V V 正方形,求出S 与x 之间函数关系式,再判断即可得出结论. 【详解】解:ADM DCN BMN ABCD S S S S S =−−−V V V 正方形,1114444(4)(4)222x x x x =⨯−⨯−⨯−−−,21282x x =−+, 21(2)62x =−+,故S 与x 之间函数关系为二次函数,图像开口向上,2x =时,函数有最小值6,故选:A .【点睛】本题考查了正方形的性质,二次函数的图像与性质,本题的关键是求出S 与x 之间函数关系式,再判断S 与x 之间函数类型.A .6B .3C .43 【答案】A 【分析】如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,PB PC =,AO =30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为AO OB ==,过点O 作OD AB ⊥,解直角三角形可得cos303AD AO =⋅︒=,进而可求得等边三角形ABC 的边长.【详解】解:如图,令点P 从顶点A 出发,沿直线运动到三角形内部一点O ,再从点O 沿直线运动到顶点B .结合图象可知,当点P 在AO 上运动时,1PB PC =,∴PB PC =,AO =又∵ABC 为等边三角形,∴60BAC ∠=︒,AB AC =,∴()SSS APB APC △≌△,∴BAO CAO ∠=∠,∴30BAO CAO ∠=∠=︒,当点P 在OB 上运动时,可知点P 到达点B 时的路程为∴OB =AO OB ==∴30BAO ABO ∠=∠=︒,过点O 作OD AB ⊥,∴AD BD =,则cos303AD AO =⋅︒=,∴6AB AD BD =+=,即:等边三角形ABC 的边长为6,故选:A .【点睛】本题考查了动点问题的函数图象,解决本题的关键是综合利用图象和图形给出的条件. 的O 上两动点,且动时,PAB 面积的最大值是( A .8B .6 【答案】D【分析】根据一次函数与坐标轴的交点得出2OA OB ==,确定AB =PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,利用勾股定理求解即可.【详解】解:∵直线2y x =−−与x 轴、y 轴分别交于A 、B 两点,∴当0x =时,=2y −,当0y =时,2x =−,∴()()2,0,0,2A B −−,∴2OA OB ==,∴AB ==∵PAB 的底边AB =∴使得PAB 底边上的高最大时,面积最大,点P 为CD 的中点,当PO 的延长线恰好垂直AB 时,垂足为点E ,此时PE 即为三角形的最大高,连接DO ,∵CD ,O 的半径为1,∴2DP =∴OP =, ∵OE AB ⊥,∴12OE AB ==∴PE OE OP =+=,∴132PAB S =⨯=,故选:D .【点睛】题目主要考查一次函数的应用及勾股定理解三角形,垂径定理的应用,理解题意,确定出高的最大值是解题关键. 7.(2023·河北·统考中考真题)如图是一种轨道示意图,其中ADC 和ABC 均为半圆,点M ,A ,C ,N 依次在同一直线上,且AM CN =.现有两个机器人(看成点)分别从M ,N 两点同时出发,沿着轨道以大小相同的速度匀速移动,其路线分别为M A D C N →→→→和N C B A M →→→→.若移动时间为x ,两个机器人之间距离为y ,则y 与x 关系的图象大致是( )A .B .C .D .【答案】D【分析】设圆的半径为R ,根据机器人移动时最开始的距离为2AM CN R ++,之后同时到达点A ,C ,两个机器人之间的距离y 越来越小,当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大.【详解】解:由题意可得:机器人(看成点)分别从M ,N 两点同时出发,设圆的半径为R ,∴两个机器人最初的距离是2AM CN R ++,∵两个人机器人速度相同,∴分别同时到达点A ,C ,∴两个机器人之间的距离y 越来越小,故排除A ,C ;当两个机器人分别沿A D C →→和C B A →→移动时,此时两个机器人之间的距离是直径2R ,保持不变, 当机器人分别沿C N →和A M →移动时,此时两个机器人之间的距离越来越大,故排除C ,故选:D .【点睛】本题考查动点函数图像,找到运动时的特殊点用排除法是关键.【答案】D【分析】根据题意,得出()4,0E ,()5,3F ,勾股定理求得EF =AC =【详解】解:连接AC 、EF∵点A 的坐标为()9,0,点C 的坐标为()0,3,以,OA OC 为边作矩形OABC .∴()9,3B ,AC ==则9OA =,9BC OA ==依题意,414OE =⨯=,414BF =⨯=∴945AE =−=,则()4,0E ,∴945CF BC BF =−=−=∴()5,3F ,∴EF∵()0,3C ,∴AC EF ⋅30==故选:D .【点睛】本题考查了坐标与图形,勾股定理求两点坐标距离,矩形的性质,求得,E F 的坐标是解题的关键.9.(2023·山东滨州·统考中考真题)已知点P 是等边ABC 的边BC 上的一点,若104APC ∠=︒,则在以线段,,AP BP CP 为边的三角形中,最小内角的大小为( )A .14︒B .16︒C .24︒D .26︒【答案】B 【分析】将ABP 绕点A 逆时针旋转60︒得到ACQ ,可得以线段,,AP BP CP 为边的三角形,即PCQ △,最小的锐角为PQC ∠,根据邻补角以及旋转的性质得出76AQC APB ∠=∠=︒,进而即可求解.【详解】解:如图所示,将ABP 绕点A 逆时针旋转60︒得到ACQ ,∴,60AP AQ PAQ =∠=︒,BP CQ =,AQC APB ∠=∠,∴APQ △是等边三角形,∴PQ AP =,∴以线段,,AP BP CP 为边的三角形,即PCQ △,最小的锐角为PQC ∠,∵104APC ∠=︒,∴76APB ∠=︒∴76AQC APB ∠=∠=︒∴PQC ∠766016=︒−︒=︒,故选:B .【点睛】本题考查了旋转的性质,等边三角形的性质与判定,熟练掌握旋转的性质是解题的关键. 10.(2023·甘肃武威·统考中考真题)如图1,正方形ABCD 的边长为4,E 为CD 边的中点.动点P 从点A 出发沿AB BC →匀速运动,运动到点C 时停止.设点P 的运动路程为x ,线段PE 的长为y ,y 与x 的函数图象如图2所示,则点M 的坐标为( )【答案】C 【分析】证明4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,则当P 与A ,B 重合时,PE 最长,此时PE ==0或4,从而可得答案.【详解】解:∵正方形ABCD 的边长为4,E 为CD 边的中点,∴4AB BC CD AD ====,90C D ∠=∠=︒,2CE DE ==,当P 与A ,B 重合时,PE 最长,此时PE ==运动路程为0或4,结合函数图象可得(M , 故选:C.【点睛】本题考查的是从函数图象中获取信息,正方形的性质,勾股定理的应用,理解题意,确定函数图象上横纵坐标的含义是解本题的关键.11.(2023·浙江绍兴·统考中考真题)如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出( )A .AFE △的面积B .BDF V 的面积C .BCN △的面积D .DCE △的面积【答案】D【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FD ED EC =,由已知得出NF BF ME DE =,则FD NF EC ME =,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S ==,即可求解.【详解】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FB FD ED EC =.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==, ∴NF BF ME DE =. ∴FD NF EC ME =. 又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD ∠=∠∴MCD NDB ∠=∠. ∴MC ND ∥.∴MNC MDC S S =.∵2DM ME =,∴1122EMC DMC MNC S S S ==.故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键. 和BCE 是位于直线的是( ) .CDE 周长的最小值为【答案】A 【分析】延长,AD BC ,则ABQ 是等边三角形,观察选项都是求最小时,进而得出当E 点与F 重合时,则,,Q P F 三点共线,各项都取得最小值,得出B ,C ,D 选项正确,即可求解.【详解】解:如图所示,延长,AD BC ,依题意60QAD QBA ∠=∠=︒∴ABQ 是等边三角形,∵P 是CD 的中点,∴PD PC =,∵DEA CBA ∠=∠,∴ED CQ ∥∴,PQC PED PCQ PDE ∠=∠∠=∠,∴PDE PCQ ≌∴PQ PE =,∴四边形DECQ 是平行四边形,则P 为EQ 的中点如图所示,设,AQ BQ 的中点分别为,G H , 则11,22GP AE PH EB == ∴当E 点在AB 上运动时,P 在GH 上运动,当E 点与F 重合时,即AE EB =,则,,Q P F 三点共线,PF 取得最小值,此时()122AE EB AE EB ==+=, 则ADE ECB △≌△,∴,C D 到AB 的距离相等,则CD AB ∥,此时PF AD ==此时ADE V 和BCE 的边长都为2,则,AP PB 最小,∴2PF ==∴PA PB ==∴PA PB +=或者如图所示,作点B 关于GH 对称点B ',则PB PB '=,则当,,A P B '三点共线时,AP PB AB '+=此时AB '=故A 选项错误,根据题意可得,,P Q F 三点共线时,PF 最小,此时PE PF ==PE PF +=,故B 选项正确; CDE 周长等于4CD DE CE CD AE EB CD AB CD ++=++=+=+,即当CD 最小时,CDE 周长最小,如图所示,作平行四边形GDMH ,连接CM ,∵60,60GHQ GHM GDM ∠=︒∠=∠=︒,则120CHM ∠=︒如图,延长DE ,HG ,交于点N , 则60NGD QGH ∠=∠=︒,60NDG ADE ∠=∠=︒∴NGD △是等边三角形,∴ND GD HM ==,在NPD 与HPC △中,60NPD HPC N CHP PD PC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩∴NPD HPC ≌∴ND CH =∴CH MH =∴30HCM HMC ∠=∠=︒∴CM QF ∥,则CM DM ⊥,∴DMC 是直角三角形,在DCM △中,DC DM >∴当DC DM =时,DC 最短,122DC GH AB === ∵2CD PC PC =+∴CDE 周长的最小值为2226++=,故C 选项正确;∵NPD HPC ≌∴四边形ABCD 面积等于ADE DEC ADE NEBH S S S S S ++=+平行四边∴当BGD △的面积为0时,取得最小值,此时,,D G 重合,C H ,重合∴四边形ABCD 面积的最小值为232=D 选项正确, 故选:A . 【点睛】本题考查了解直角三角形,等边三角形的性质,勾股定理,熟练掌握等边三角形的性质,得出当E 点与F 重合时得出最小值是解题的关键.二、填空题 在ABC 中,【答案】2 【分析】如图,作ABC 的外接圆,圆心为M ,连接AM 、BM 、CM ,过M 作MD AB ⊥于D ,过B 作BN AB ⊥,交BP 的垂直平分线于N ,连接AN 、BN 、PN ,以N 为圆心,()BN PN 为半径作圆;结合圆周角定理及垂径定理易得4AM BM CM ===,再通过圆周角定理、垂直及垂直平分线的性质、三角形内角和定理易得AMC PNB ∠=∠,从而易证AMC PNB 可得21CM AC PN PB ==即122PN CM ==勾股定理即可求得AN =在APN 中由三角形三边关系AP AN PN ≥−即可求解.【详解】解:如图,作ABC 的外接圆,圆心为M ,连接AM 、BM 、CM ,过M 作MD AB ⊥于D ,过B 作BN AB ⊥,交BP 的垂直平分线于N ,连接AN 、BN 、PN ,以N 为圆心,()BN PN 为半径作圆; 60C ∠=︒,M 为ABC 的外接圆的圆心, 120AMB ︒∴∠=,AM BM =,30MAB MBA ∴∠=∠=︒,12MD AM ∴=,MD AB ⊥,12AD AB ∴==,在Rt ADM △中,222AM MD AD =+,(22212AM AM ⎛⎫∴=+ ⎪⎝⎭, 4AM ∴=,即4AM BM CM ===,由作图可知BN AB ⊥,N 在BP 的垂直平分线上,90PBN BPN ABC ∴∠=∠=︒−∠,()1802PNB PBN BPN ABC ∴∠=︒−∠+∠=∠,又M 为ABC 的外接圆的圆心,2AMC ABC ∴∠=∠,AMC PNB ∴∠=∠, CM AM PN BN =,AMC PNB ∴,CM AC PN PB ∴=, 12BP AC =, 21CM AC PN PB ∴==,即122PN CM ==,2PN BN ∴==,在Rt ABN △中,AN在APN 中,2AP AN PN ≥−=,即AP 最小值为2,故答案为:2.【点睛】本题考查了圆周角定理,垂径定理,勾股定理解直角三角形,相似三角形的判定和性质,垂直平分线的性质,30︒角所对的直角边等于斜边的一半,三角形三边之间的关系;解题的关键是结合ABC 的外接圆构造相似三角形.【答案】或6【分析】连接OD ,勾股定理求出半径,平行线分线段成比例,求出CD 的长,勾股定理求出AC 和AD 的长,分AP AD =和AP PD =两种情况进行求解即可.【详解】解:连接OD ,∵以AE 为直径的半圆O 与BC 相切于点D ,∴OD BC ⊥,OA OE OD ==,∴90ODB ∠=︒设OA OE OD r ===,则3OB OE BE r =+=+,在Rt ODB △中:222OD BD OB +=,即:(()2223r r +=+, 解得:6r =,∴6OA OE OD ===,∴9OB =,15AB =,12AE =,∵90C ODB ∠=∠=︒,∴OD AC ∥, ∴9362OB DB OA DC ===,∵DB =∴CD =∴BC DB CD =+=∴10AC =,∴AD =∵ADP △为等腰三角形,当AD AP =时,AP =当PA PD =时,∵OA OD =,∴点P 与点O 重合,∴6AP OA ==,不存在PD AD =的情况;综上:AP 的长为6.故答案为:或6.【点睛】本题考查切线的性质,平行线分线段成比例,勾股定理,等腰三角形的定义.熟练掌握切线的性质,等腰三角形的定义,确定点P 的位置,是解题的关键. 15.(2023·四川凉山·统考中考真题)如图,边长为2的等边ABC 的两个顶点AB 、分别在两条射线OM ON 、上滑动,若OM ON ⊥,则OC 的最大值是_________.【答案】1【分析】如图所示,取AB 的中点D ,连接OD CD ,,先根据等边三角形的性质和勾股定理求出CD =再根据直角三角形的性质得到112OD AB ==,再由OC OD CD ≤+可得当O C D 、、三点共线时,OC 有最大值,最大值为1【详解】解:如图所示,取AB 的中点D ,连接OD CD ,,∵ABC 是边长为2的等边三角形,∴2CD AB BC AB ==⊥,,∴1BD AD ==,∴CD ==∵OM ON ⊥,即90AOB ∠=︒,∴112OD AB ==,∵OC OD CD ≤+,∴当O C D 、、三点共线时,OC 有最大值,最大值为1故答案为:1+【点睛】本题主要考查了等边三角形的性质,勾股定理,直角三角形斜边上的中线的性质等等,正确作出辅助线确定当O C D 、、三点共线时,OC 有最大值是解题的关键.【答案】27【分析】作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',此时PE PF +取得最小值,过点F '作AD 的垂线段,交AC 于点K ,根据题意可知点F '落在AD 上,设正方形的边长为a ,求得AK 的边长,证明AEP KF P '''△∽△,可得2KP AP '=',即可解答.【详解】解:作点F 关于AC 的对称点F ',连接EF '交AC 于点P ',过点F '作AD 的垂线段,交AC 于点K ,由题意得:此时F '落在AD 上,且根据对称的性质,当P 点与P '重合时PE PF +取得最小值,设正方形ABCD 的边长为a ,则23AF AF a '==,四边形ABCD 是正方形,45F AK '∴∠=︒,45P AE '∠=︒,AC =F K AF ''⊥,45F AK F KA ''∴∠=∠=︒,AK ∴=,F P K EP A '''∠=∠,E KP EAP '''∴△∽△,2F K KP AE AP ''∴==',13AP AK '∴==,CP AC AP ''∴=−=,27AP CP '∴=', ∴当PE PF +取得最小值时,AP PC 的值是为27, 故答案为:27.【点睛】本题考查了四边形的最值问题,轴对称的性质,相似三角形的证明与性质,正方形的性质,正确画出辅助线是解题的关键. 17.(2023·河南·统考中考真题)矩形ABCD 中,M 为对角线BD 的中点,点N 在边AD 上,且1AN AB ==.当以点D ,M ,N 为顶点的三角形是直角三角形时,AD 的长为______.【答案】21【分析】分两种情况:当90MND ∠=︒时和当90NMD ∠=︒时,分别进行讨论求解即可. 【详解】解:当90MND ∠=︒时,∵四边形ABCD 矩形,∴90A ∠=︒,则∥MN AB ,由平行线分线段成比例可得:AN BM ND MD =,又∵M 为对角线BD 的中点,∴BM MD =,∴1AN BM ND MD ==,即:1ND AN ==,∴2AD AN ND =+=,当90NMD ∠=︒时,∵M 为对角线BD 的中点,90NMD ∠=︒∴MN 为BD 的垂直平分线,∴BN ND =,∵四边形ABCD 矩形,1AN AB ==∴90A ∠=︒,则BN =∴BN ND ==∴1AD AN ND =+,综上,AD 的长为21,故答案为:21.【点睛】本题考查矩形的性质,平行线分线段成比例,垂直平分线的判定及性质等,画出草图进行分类讨论是解决问题的关键. 重合时,将ABP 沿AP 对折,得到AB P ',连接2【分析】根据折叠的性质得出B '在A 为圆心,2为半径的弧上运动,进而分类讨论当点P 在BC 上时,当点P 在DC 上时,当P 在AD 上时,即可求解.【详解】解:∵在矩形ABCD 中,2,AB AD ==∴BC AD =AC =如图所示,当点P 在BC 上时,∵2AB AB '==∴B '在A 为圆心,2为半径的弧上运动,当,,A B C '三点共线时,CB '最短,此时2CB AC AB ''=−,当点P 在DC 上时,如图所示,此时2CB '当P 在AD 上时,如图所示,此时2CB '>综上所述,CB '2,2.【点睛】本题考查了矩形与折叠问题,圆外一点到圆上的距离的最值问题,熟练掌握折叠的性质是解题的关键.【分析】首先证明出MN 是AEF △的中位线,得到12MN AE =,然后由正方形的性质和勾股定理得到AE ==BE 最大时,AE 最大,此时MN 最大,进而得到当点E 和点C 重合时,BE 最大,即BC 的长度,最后代入求解即可.【详解】如图所示,连接AE ,∵M ,N 分别是EF AF ,的中点,∴MN 是AEF △的中位线, ∴12MN AE =,∵四边形ABCD 是正方形,∴90B Ð=°,∴AE ==∴当BE 最大时,AE 最大,此时MN 最大,∵点E 是BC 上的动点,∴当点E 和点C 重合时,BE 最大,即BC 的长度,∴此时AE ==∴12MN AE ==∴MN.【点睛】此题考查了正方形的性质,三角形中位线的性质,勾股定理等知识,解题的关键是熟练掌握以上知识点. 20.(2023·山东·统考中考真题)如图,在四边形ABCD 中,90,5,4,ABC BAD AB AD AD BC ∠=∠=︒==<,点E 在线段BC 上运动,点F 在线段AE 上,ADF BAE =∠∠,则线段BF 的最小值为__________.2【分析】设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',证明90DFA ∠=︒,可知点F 在以AD 为直径的半圆上运动,当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,据此求解即可.【详解】解:设AD 的中点为O ,以AD 为直径画圆,连接OB ,设OB 与O 的交点为点F ',∵90ABC BAD ∠=∠=︒,∴AD BC ∥,∴DAE AEB ∠=∠,∵ADF BAE =∠∠,∴90DFA ABE ==︒∠∠,∴点F 在以AD 为直径的半圆上运动,∴当点F 运动到OB 与O 的交点F '时,线段BF 有最小值,∵4=AD , ∴122AO OF AD '===,,∴BO ==BF 2,2.【点睛】本题考查了平行线的性质,圆周角定理的推论,勾股定理等知识,根据题意分析得到点F 的运动轨迹是解题的关键. 21.(2023·四川内江·统考中考真题)出入相补原理是我国古代数学的重要成就之一,最早是由三国时期数学家刘徽创建.“将一个几何图形,任意切成多块小图形,几何图形的总面积保持不变,等于所分割成的小图形的面积之和”是该原理的重要内容之一、如图,在矩形ABCD 中,5AB =,12AD =,对角线AC 与BD交于点O ,点E 为BC 边上的一个动点,EF AC ⊥,EG BD ⊥,垂足分别为点F ,G ,则EF EG +=___________.【答案】6013【分析】连接OE ,根据矩形的性质得到12BC AD ==,AO CO BO DO ===,90ABC ∠=︒,根据勾股定理得到13AC =,求得132OB OC ==,根据三角形的面积公式即可得到结论.【详解】解:连接OE ,四边形ABCD 是矩形,90ABC ∴∠=︒,12BC AD ==,AO CO BO DO ===,5AB =,12BC =,13AC ∴==,132OB OC ∴==,111115121522222BOC BOE COE ABC S S S OB EG OC EF S ∴=+=⨯⋅+⋅==⨯⨯⨯=,∴113113113()15222222EG EF EG EF ⨯+⨯=⨯+=,6013EG EF ∴+=,故答案为:6013.【点睛】此题考查了矩形的性质、勾股定理.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.22.(2023·山东烟台·统考中考真题)如图1,在ABC 中,动点P 从点A 出发沿折线AB BC CA →→匀速运动至点A 后停止.设点P 的运动路程为x ,线段AP 的长度为y ,图2是y 与x 的函数关系的大致图象,其中点F 为曲线DE 的最低点,则ABC 的高CG 的长为_______.【答案】【分析】过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,勾股定理求得AQ ,然后等面积法即可求解.【详解】如图过点A 作AQ BC ⊥于点Q ,当点P 与Q 重合时,在图2中F 点表示当12AB BQ +=时,点P 到达点Q ,此时当P 在BC 上运动时,AP 最小,∴7BC =,4,3BQ QC ==在Rt ABQ 中,8,4AB BQ ==∴AQ == ∵1122ABC S AB CG AQ BC =⨯=⨯,∴BC AQ CG AB ⨯===,【点睛】本题考查了动点问题的函数图象,勾股定理,垂线段最短,从函数图象获取信息是解题的关键.23.(2023·新疆·统考中考真题)如图,在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,点E 是AD 上一动点,将ABE 沿BE 折叠得到A BE ',当点A '恰好落在EC 上时,DE 的长为______.3【分析】过点C 作CH AD ⊥交AD 的延长线于点H ,根据平行四边形的性质以及已知条件得出120,60ADC ABC HDC ∠=∠=︒∠=︒,进而求得,DH HC ,根据折叠的性质得出CB CE =,进而在Rt ECH △中,勾股定理即可求解.【详解】解:如图所示,过点C 作CH AD ⊥交AD 的延长线于点H ,∵在ABCD Y 中,6AB =,8BC =,120ABC ∠=︒,∴120,6068ADC ABC HDC CD AB AD CB ∠=∠=︒∠=︒====,,,∴1cos 32DH DC HDC DC =⨯∠==,在Rt ECH △中,HC =∵将ABE 沿BE 折叠得到A BE ',当点A '恰好落在EC 上时,∴AEB CEB ∠=∠又AD BC ∥∴EBC AEB ∠=∠∴EBC CEB ∠=∠∴8CE BC ==设ED x =,∴3EH x =+在Rt ECH △中,222EC EH HC =+∴()(22283x =++解得:3x =(负整数)3.【点睛】本题考查了折叠的性质,平行四边形的性质,解直角三角形,熟练掌握折叠的性质是解题的关键. 上,若AMN 是以点 【答案】()8,6M −或28,3M ⎛⎫− ⎪⎝⎭ 【分析】如图,由AMN 是以点N 为直角顶点的等腰直角三角形,可得N 在以AM 为直径的圆H 上,MN AN =,可得N 是圆H 与直线26y x =−−的交点,当,M B 重合时,符合题意,可得()8,6M −,当N 在AM的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,证明MNK NAJ ≌,设(),26N x x −−,可得MK NJ x ==−,266212KN AJ x x ==−−−=−−,而8KJ AB ==,则2128x x −−−=,再解方程可得答案.【详解】解:如图,∵AMN 是以点N 为直角顶点的等腰直角三角形,∴N 在以AM 为直径的圆H 上,MN AN =,∴N 是圆H 与直线26y x =−−的交点,当,M B 重合时,∵()8,6B −,则()4,3H −,∴4MH AH NH ===,符合题意,∴()8,6M −,当N 在AM 的上方时,如图,过N 作NJ y ⊥轴于J ,延长MB 交BJ 于K ,则90NJA MKN ∠=∠=︒,8JK AB ==,∴90NAJ ANJ ∠+∠=︒,∵AN MN =,90ANM ∠=︒,∴90MNK ANJ ∠+∠=︒,∴MNK NAJ ∠=∠,∴MNK NAJ ≌,设(),26N x x −−,∴MK NJ x ==−,266212KN AJ x x ==−−−=−−,而8KJ AB ==,∴2128x x −−−=, 解得:203x =−,则22263x −−=, ∴22202333CM CK MK =−=−=, ∴28,3M ⎛⎫− ⎪⎝⎭; 综上:()8,6M −或28,3M ⎛⎫− ⎪⎝⎭. 故答案为:()8,6M −或28,3M ⎛⎫− ⎪⎝⎭. 【点睛】本题考查的是坐标与图形,一次函数的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,圆周角定理的应用,难度较大,清晰的分类讨论是解本题的关键.【答案】392【分析】作出点()32C −,,作CD AB ⊥于点D ,交x 轴于点F ,此时BE DF +的最小值为CD 的长,利用解直角三角形求得1103F ⎛⎫ ⎪⎝⎭,,利用待定系数法求得直线CD 的解析式,联立即可求得点D 的坐标,过点D 作DG y ⊥轴于点G ,此时35BH DH +的最小值是5DG 的长,据此求解即可.【详解】解:∵直线123y x =−+与x 轴,y 轴分别交于A ,B 两点,∴()02B ,,()60A ,,作点B 关于x 轴的对称点()02B '−,,把点B '向右平移3个单位得到()32C −,,作CD AB ⊥于点D ,交x 轴于点F ,过点B '作B E CD '∥交x 轴于点E ,则四边形EFCB '是平行四边形, 此时,BE B E CF '==,∴BE DF CF DF CD +=+=有最小值,作CP x ⊥轴于点P ,则2CP =,3OP =,∵CFP AFD ∠=∠,∴FCP FAD ∠=∠,∴tan tan FCP FAD ∠=∠, ∴PF OB PC OA =,即226PF =, ∴23PF =,则1103F ⎛⎫ ⎪⎝⎭,, 设直线CD 的解析式为y kx b =+, 则321103k b k b +=−⎧⎪⎨+=⎪⎩,解得311k b =⎧⎨=−⎩,∴直线CD 的解析式为311y x =−,联立,311123y x y x =−⎧⎪⎨=−+⎪⎩,解得3910710x y ⎧=⎪⎪⎨⎪=⎪⎩, 即3971010D ⎛⎫ ⎪⎝⎭,;过点D 作DG y ⊥轴于点G ,直线423y x =−+与x 轴的交点为302Q ⎛⎫ ⎪⎝⎭,,则52BQ =, ∴332sin 552OQ OBQ BQ ∠===, ∴3sin 5HG BH GBH BH =∠=, ∴()3355555BH DH BH DH HG DH DG ⎛⎫+=+=+= ⎪⎝⎭,即35BH DH +的最小值是393955102DG =⨯=, 故答案为:392. 【点睛】本题考查了一次函数的应用,解直角三角形,利用轴对称求最短距离,解题的关键是灵活运用所学知识解决问题.三、解答题 26.(2023·重庆·统考中考真题)如图,ABC是边长为4的等边三角形,动点E ,F 分别以每秒1个单位长度的速度同时从点A 出发,点E 沿折线A B C →→方向运动,点F 沿折线A C B →→方向运动,当两者相遇时停止运动.设运动时间为t 秒,点E ,F 的距离为y .(1)请直接写出y 关于t 的函数表达式并注明自变量t 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,写出点E ,F 相距3个单位长度时t 的值.【答案】(1)当04t <≤时,y t =;当46t <≤时,122y t =−(2)图象见解析,当04t <≤时,y 随x 的增大而增大(3)t 的值为3或4.5【分析】(1)分两种情况:当04t <≤时,根据等边三角形的性质解答;当46t <≤时,利用周长减去2AE 即可;(2)在直角坐标系中描点连线即可;(3)利用3y =分别求解即可.【详解】(1)解:当04t <≤时,连接EF ,由题意得AE AF =,60A ∠=︒,∴AEF △是等边三角形,∴y t =;当46t <≤时,122y t =−;(2)函数图象如图:当04t <≤时,y 随t 的增大而增大;(3)当04t <≤时,3y =即3t =;当46t <≤时,3y =即1223t −=,解得 4.5t =,故t 的值为3或4.5.键. 27.(2023·辽宁大连·统考中考真题)如图1,在平面直角坐标系xOy 中,直线y x =与直线BC 相交于点A ,(),0P t 为线段OB 上一动点(不与点B 重合),过点P 作PD x ⊥轴交直线BC 于点D .OAB 与DPB 的重叠面积为S .S 关于t 的函数图象如图2所示.(1)OB 的长为_______________;OAB 的面积为_______________.(2)求S 关于t 的函数解析式,并直接写出自变量t 的取值范围.【答案】(1)4,83 (2)2218402331424443t t S t t t ⎧⎛⎫−+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪−+<≤ ⎪⎪⎝⎭⎩ 【分析】(1)根据函数图象即可求解.(2)根据(1)的结论,分403t ≤≤,443t <≤,根据OAB 与DPB 的重叠面积为S ,分别求解即可.【详解】(1)解:当0=t 时,P 点与O 重合,此时83ABO S S ==, 当4t =时,0S =,即P 点与B 点重合,∴4OB =,则()4,0B ,故答案为:4,83.(2)∵A 在y x =上,则45OAB ∠=︒设(),A a a , ∴1184223AOB S OB a a =⨯⨯=⨯⨯= ∴43a =,则44,33⎛⎫ ⎪⎝⎭A 当403t ≤≤时,如图所示,设DP 交OA 于点E ,∵45OAB ∠=︒,DP OB ⊥,则EP OP t == ∴28132S t =−当443t <≤时,如图所示,∵()4,0B ,44,33⎛⎫ ⎪⎝⎭A设直线AB 的解析式为y kx b =+, ∴404433k b k b +=⎧⎪⎨+=⎪⎩,解得:212b k =⎧⎪⎨=−⎪⎩, ∴直线AB 的解析式为122y x =−+,当0x =时,2y =,则()0,2C , ∴2OC =, ∵21tan 42DP OC CBO PD OB ∠====, ∵4BP t =−,则122DP t =−, ∴12DPB S S DP BP ==⨯()()222111144242244t t t t =⨯⨯−=−=−+, 综上所述:2218402331424443t t S t t t ⎧⎛⎫−+≤≤ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪−+<≤ ⎪⎪⎝⎭⎩. 【点睛】本题考查了正切的定义,动点问题的函数图象,一次函数与坐标轴交点问题,从函数图象获取信息是解题的关键.28.(2023·河北·统考中考真题)在平面直角坐标系中,设计了点的两种移动方式:从点(,)x y 移动到点(2,1)x y ++称为一次甲方式:从点(,)x y 移动到点(1,2)x y ++称为一次乙方式.例、点P 从原点O 出发连续移动2次;若都按甲方式,最终移动到点(4,2)M ;若都按乙方式,最终移动到点(2,4)N ;若按1次甲方式和1次乙方式,最终移动到点(3,3)E .(1)设直线1l 经过上例中的点,M N ,求1l 的解析式;并直接..写出将1l 向上平移9个单位长度得到的直线2l 的解析式;(2)点P 从原点O 出发连续移动10次,每次移动按甲方式或乙方式,最终移动到点(,)Q x y .其中,按甲方式移动了m 次.①用含m 的式子分别表示,x y ;②请说明:无论m 怎样变化,点Q 都在一条确定的直线上.设这条直线为3l ,在图中直接画出3l 的图象;(3)在(1)和(2)中的直线123,,l l l 上分别有一个动点,,A B C ,横坐标依次为,,a b c ,若A ,B ,C 三点始终在一条直线上,直接写出此时a ,b ,c 之间的关系式.【答案】(1)1l 的解析式为6y x =−+;2l 的解析式为15y x =−+;(2)①10,20x m y m =+=−;②3l的解析式为30y x =−+,图象见解析;(3)538a c b += 【分析】(1)根据待定系数法即可求出1l 的解析式,然后根据直线平移的规律:上加下减即可求出直线2l 的解析式;(2)①根据题意可得:点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ,再得出点()2,m m 按照乙方式移动()10m −次后得到的点的横坐标和纵坐标,即得结果;②由①的结果可得直线3l 的解析式,进而可画出函数图象;(3)先根据题意得出点A ,B ,C 的坐标,然后利用待定系数法求出直线AB 的解析式,再把点C 的坐标代入整理即可得出结果.【详解】(1)设1l 的解析式为y kx b =+,把(4,2)M 、(2,4)N 代入,得4224k b k b +=⎧⎨+=⎩,解得:16k b =−⎧⎨=⎩,∴1l 的解析式为6y x =−+;将1l 向上平移9个单位长度得到的直线2l 的解析式为15y x =−+;(2)①∵点P 按照甲方式移动了m 次,点P 从原点O 出发连续移动10次,∴点P 按照乙方式移动了()10m −次,∴点P 按照甲方式移动m 次后得到的点的坐标为()2,m m ;∴点()2,m m 按照乙方式移动()10m −次后得到的点的横坐标为21010m m m +−=+,纵坐标为()21020m m m +−=−,∴10,20x m y m =+=−;②由于102030x y m m +=++−=,∴直线3l 的解析式为30y x =−+;函数图象如图所示:。

初中数学动点题型汇总

初中数学动点题型汇总

初中数学动点集一、线段和、差中的动点(一)利用垂线段最短的性质解决最大(小)值的问题1.如下图所示,△ABC 是以AB 为斜边的直角三角形,AC=4,BC=3,P 为AB 上的一动点,且PE⊥AC 于E,PF ⊥BC 于F,则线段EF 长度的最小值是。

2.如图所示,在菱形ABCD 中,过A 作AE⊥BC 于E,P 为AB 上一动点,已知135 AB BE ,EC=8,则线段PE 的长度最小值为。

3.如图所示,等边△ABC 的边长为1,D、E 两点分别在边AB、AC 上,CE=DE,则线段CE 的最小值为。

4.如右图所示,点A 的坐标为(0,22-),点B 在直线y=x 上运动,当线段AB 最短时,点B 的坐标为。

5.在平面直角坐标系xoy中,直线y=2x+m与y轴交于点A,与直线y=-x+4交于点B(3,n),p为直线y=-x+4上一动点。

(1)求m,n的值(2)当线段AP最短时,求点p的坐标。

2。

6.已知直线a∥b,且a与b之间的距离为4,点A到直线a的距离为2,点B到直线b的距离为3,AB=30试在直线a上找一点M,在直线b上找一点N,满足MN⊥a且AM+MN+NB的值最短,则此时AM+NB=。

(二)利用三点共线的特征解决最大(小)值的问题1.如图所示,四边形ABCD是正方形,边长是4,E是BC上一点,且BE=1,P是对角线AC上任意一点,则PE+PB的最小值是。

2.如图所示,点P是边长为1的菱形ABCD对角线AC上的一个动点,M、N分别是AB,BC边上的中点,PM+PN 的最小值是。

3.如图所示,在△ABC中,∠C=90°,AC=4,BC=2,点A、C分别在x轴、y轴上,当点A在x轴上运动时,点C随之在y轴上运动,在运动过程中,点B到原点的最大距离是。

4.如图1所示,F,E分别是正方形ABCD的边CD、DA上两个动点(不与C、D、A重合),满足DF=AE。

直线BE、AF相交于点G,则有BE=AF,BE⊥AF;如图2所示,F,E分别是正方形ABCD的边CD、DA延长线上的两个动点(不与D、A重合),依然有BE=AF,BE⊥AF;若在上述的图1与图2中,正方形ABCD的边长为4,随着动点F、E的移动,线段DG的长也随之变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

动点问题专题训练1、如图,已知ABC △中,10AB AC ==厘米,8BC =厘米,点D 为AB 的中点. (1)如果点P 在线段BC 上以3厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.①若点Q 的运动速度与点P 的运动速度相等,经过1秒后,BPD △与CQP △是否全等,请说明理由; ②若点Q 的运动速度与点P 的运动速度不相等,当点Q 的运动速度为多少时,能够使BPD △与CQP △全等? (2)若点Q 以②中的运动速度从点C 出发,点P 以原来的运动速度从点B 同时出发,都逆时针沿ABC △三边运动,求经过多长时间点P 与点Q 第一次在ABC △的哪条边上相遇?解:(1)①∵1t =秒, ∴313BP CQ ==⨯=厘米,∵10AB =厘米,点D 为AB 的中点, ∴5BD =厘米. 又∵厘米,∴835PC =-=厘米8PC BC BP BC =-=,, ∴PC BD =. 又∵AB AC =, ∴B C ∠=∠,∴BPD CQP △≌△. ············································································· (4分) ②∵P Q v v ≠, ∴BP CQ ≠,又∵BPD CQP △≌△,B C ∠=∠,则45BP PC CQ BD ====,, ∴点P ,点Q 运动的时间433BP t ==秒, ∴515443Q CQ v t ===厘米/秒. ·································································· (7分) (2)设经过x 秒后点P 与点Q 第一次相遇, 由题意,得1532104x x =+⨯,解得803x =秒. ∴点P 共运动了803803⨯=厘米.∵8022824=⨯+,∴点P 、点Q 在AB 边上相遇,∴经过803秒点P 与点Q 第一次在边AB 上相遇. ········································· (12分) 2、直线364y x =-+与坐标轴分别交于A B 、两点,动点P Q 、同时从O 点出发,同时到达A 点,运动停止.点Q 沿线段OA 运动,速度为每秒1个单位长度,点P 沿路线O →B →A 运动.(1)直接写出A B 、两点的坐标;(2)设点Q 的运动时间为t 秒,OPQ △的面积为S ,求出S 与t 之间的函数关系式;(3)当485S =时,求出点P 的坐标,并直接写出以点O P Q 、、为顶点的平行四边形的第四个顶点M 的坐标.解(1)A (8,0)B (0,6) ··············· 1分 (2)86OA OB ==, 10AB ∴=点Q 由O 到A 的时间是881=(秒)∴点P 的速度是61028+=(单位/秒) ·1分 当P 在线段OB 上运动(或03t ≤≤)时,2OQ t OP t ==,2S t = ·········································································································· 1分当P 在线段BA 上运动(或38t <≤)时,6102162OQ t AP t t ==+-=-,, 如图,作PD OA ⊥于点D ,由PD AP BO AB =,得4865tPD -=, ······························ 1分 21324255S OQ PD t t ∴=⨯=-+ ······································································· 1分(自变量取值范围写对给1分,否则不给分.)(3)82455P ⎛⎫ ⎪⎝⎭, ···························································································· 1分12382412241224555555I M M 2⎛⎫⎛⎫⎛⎫-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,, ···················································· 3分3如图,在平面直角坐标系中,直线l :y =-2x -8分别与x 轴,y 轴相交于A ,B 两点,点P (0,k )是y 轴的负半轴上的一个动点,以P 为圆心,3为半径作⊙P .(1)连结PA ,若PA =PB ,试判断⊙P 与x 轴的位置关系,并说明理由; (2)当k 为何值时,以⊙P 与直线l 的两个交点和圆心P 为顶点的三角形是正三角形?解:(1)⊙P 与x 轴相切.∵直线y =-2x -8与x 轴交于A (4,0),与y 轴交于B (0,-8), ∴OA =4,OB =8. 由题意,OP =-k , ∴PB =P A =8+k .在Rt △AOP 中,k 2+42=(8+k )2, ∴k =-3,∴OP 等于⊙P 的半径, ∴⊙P 与x 轴相切.(2)设⊙P 与直线l 交于C ,D 两点,连结PC ,PD 当圆心P在线段OB 上时,作PE ⊥CD 于E .∵△PCD 为正三角形,∴DE =12CD =32,PD =3, ∴PE =332. ∵∠AOB =∠PEB =90°, ∠ABO =∠PBE , ∴△AOB ∽△PEB ,∴3342,=45AO PE AB PB PB=即,∴315,2 PB=∴31582PO BO PB=-=-,∴315(0,8)2P-,∴31582k=-.当圆心P在线段OB延长线上时,同理可得P(0,-3152-8),∴k=-3152-8,∴当k=3152-8或k=-3152-8时,以⊙P与直线l的两个交点和圆心P为顶点的三角形是正三角形.4(09哈尔滨)如图1,在平面直角坐标系中,点O是坐标原点,四边形ABCO 是菱形,点A的坐标为(-3,4),点C在x轴的正半轴上,直线AC交y轴于点M,AB边交y轴于点H.(1)求直线AC的解析式;(2)连接BM,如图2,动点P从点A出发,沿折线ABC方向以2个单位/秒的速度向终点C匀速运动,设△PMB的面积为S(S≠0),点P的运动时间为t秒,求S与t之间的函数关系式(要求写出自变量t的取值范围);(3)在(2)的条件下,当t为何值时,∠MPB与∠BCO互为余角,并求此时直线OP与直线AC所夹锐角的正切值.解:5在Rt△ABC中,∠C=90°,AC = 3,AB = 5.点P从点C出发沿CA以每秒1个单位长的速度向点A 匀速运动,到达点A后立刻以原来的速度沿AC返回;点Q从点A出发沿AB以每秒1个单位长的速度向点B匀速运动.伴随着P、Q的运动,DE保持垂直平分B EPQ ,且交PQ 于点D ,交折线QB -BC -CP 于点E .点P 、Q 同时出发,当点Q 到达点B 时停止运动,点P 也随之停止.设点P 、Q 运动的时间是t 秒(t >0).(1)当t = 2时,AP = ,点Q 到AC 的距离是 ; (2)在点P 从C 向A 运动的过程中,求△APQ 的面积S 与t 的函数关系式;(不必写出t 的取值范围)(3)在点E 从B 向C 运动的过程中,四边形QBED 能否成为直角梯形?若能,求t 的值.若不能,请说明理由; (4)当DE 经过点C 时,请直接..写出t 的值.解:(1)1,85;(2)作QF ⊥AC 于点F ,如图3, AQ = CP = t ,∴3AP t =-. 由△AQF ∽△ABC,4BC ==, 得45QF t =.∴45QF t =. ∴14(3)25S t t =-⋅,即22655S t t =-+.(3)能.①当DE ∥QB 时,如图4.∵DE ⊥PQ ,∴PQ ⊥QB ,四边形QBED 是直角梯形. 此时∠AQP =90°. 由△APQ ∽△ABC ,得AQ AP AC AB =, 即335t t -=. 解得98t =. ②如图5,当PQ ∥BC 时,DE ⊥BC ,四边形QBED 是直角梯形. 此时∠APQ =90°. 由△AQP ∽△ABC ,得AQ APAB AC=, 即353t t -=. 解得158t =.(4)52t =或4514t =. ①点P 由C 向A 运动,DE 经过点C .连接QC ,作QG ⊥BC 于点G ,如图6.PC t =,222QC QG CG =+2234[(5)][4(5)]55t t =-+--.由22PC QC =,得22234[(5)][4(5)]55t t t =-+--,解得52t =.②点P 由A 向C 运动,DE 经过点C ,如图7.P图4P图522234(6)[(5)][4(5)]55t t t -=-+--,4514t =】6如图,在Rt ABC △中,9060ACB B ∠=∠=°,°,2BC =.点O 是AC 的中点,过点O 的直线l 从与AC 重合的位置开始,绕点O 作逆时针旋转,交AB 边于点D .过点C 作CE AB ∥交直线l 于点E ,设直线l 的旋转角为α.(1)①当α= 度时,四边形EDBC 是等腰梯形,此时AD 的长为 ;②当α= 度时,四边形EDBC 是直角梯形,此时AD 的长为 ;(2)当90α=°时,判断四边形EDBC 是否为菱形,并说明理由.解(1)①30,1;②60,1.5; ……………………4分 (2)当∠α=900时,四边形EDBC 是菱形. ∵∠α=∠ACB=900,∴BC //ED .∵CE //AB , ∴四边形EDBC 是平行四边形. ……………………6分 在Rt △ABC 中,∠ACB =900,∠B =600,BC =2,∴∠A =300.∴AB =4,AC 3. ∴AO =12AC 3……………………8分 在Rt △AOD 中,∠A =300,∴AD =2. ∴BD =2. ∴BD =BC .又∵四边形EDBC 是平行四边形,∴四边形EDBC 是菱形 ……………………10分7如图,在梯形ABCD 中,354245AD BC AD DC AB B ====︒∥,,,,∠.动点M 从B 点出发沿线段BC 以每秒2个单位长度的速度向终点C 运动;动点N 同时从C 点出发沿线段CD 以每秒1个单位长度的速度向终点D 运动.设运动的时间为t 秒. (1)求BC 的长.(2)当MN AB ∥时,求t 的值.(3)试探究:t 为何值时,MNC △为等腰三角形. O E CDA α lOCA (备用图)A D CB MN解:(1)如图①,过A 、D 分别作AK BC ⊥于K ,DH BC ⊥于H ,则四边形ADHK 是矩形∴3KH AD ==.················································································ 1分 在Rt ABK △中,sin 4542AK AB =︒==.2cos 454242BK AB =︒== ·························································· 2分 在Rt CDH △中,由勾股定理得,3HC ==∴43310BC BK KH HC =++=++= ················································· 3分(2)如图②,过D 作DG AB ∥交BC 于G 点,则四边形ADGB 是平行四边形∵MN AB ∥ ∴MN DG ∥ ∴3BG AD == ∴1037GC =-= ············································································· 4分 由题意知,当M 、N 运动到t 秒时,102CN t CM t ==-,. ∵DG MN ∥∴NMC DGC =∠∠ 又C C =∠∠∴MNC GDC △∽△∴CN CMCD CG =··················································································· 5分 即10257t t -= 解得,5017t = ···················································································· 6分(3)分三种情况讨论:①当NC MC =时,如图③,即102t t =- ∴103t = ·························································································· 7分 (图①) A D C B K H (图②) A D C B G MNADNAD N②当MN NC =时,如图④,过N 作NE MC ⊥于E 解法一:由等腰三角形三线合一性质得()11102522EC MC t t ==-=- 在Rt CEN △中,5cos EC tc NC t -==又在Rt DHC △中,3cos 5CH c CD ==∴535t t -=解得258t = ······················································································· 8分解法二:∵90C C DHC NEC =∠=∠=︒∠∠, ∴NEC DHC △∽△∴NC ECDC HC =即553t t -= ∴258t = ·························································································· 8分③当MN MC =时,如图⑤,过M 作MF CN ⊥于F 点.1122FC NC t ==解法一:(方法同②中解法一)132cos 1025tFC C MC t ===- 解得6017t =解法二:∵90C C MFC DHC =∠=∠=︒∠∠, ∴MFC DHC △∽△ ∴FC MCHC DC =即1102235tt-=∴6017t =综上所述,当103t =、258t =或6017t =时,MNC △为等腰三角形 ··············· 9分(图⑤)A DCBH N MF8如图1,在等腰梯形ABCD 中,AD BC ∥,E 是AB 的中点,过点E 作EF BC ∥交CD 于点F .46AB BC ==,,60B =︒∠. (1)求点E 到BC 的距离;(2)点P 为线段EF 上的一个动点,过P 作PM EF ⊥交BC 于点M ,过M 作MN AB ∥交折线ADC 于点N ,连结PN ,设EP x =. ①当点N 在线段AD 上时(如图2),PMN △的形状是否发生改变?若不变,求出PMN △的周长;若改变,请说明理由; ②当点N 在线段DC 上时(如图3),是否存在点P ,使PMN △为等腰三角形?若存在,请求出所有满足要求的x 的值;若不存在,请说明理由.A D E BF C图4(备用)ADE BF C图5(备用)A D E BF C图1 图2A D EBF C PNM 图3A D EBFCPN M(第25题)解(1)如图1,过点E 作EG BC ⊥于点G . 1分∵E 为AB 的中点,∴122BE AB ==.在Rt EBG △中,60B =︒∠,∴30BEG =︒∠. ············ 2分∴112BG BE EG ====, 即点E 到BC····································· 3分(2)①当点N 在线段AD 上运动时,PMN △的形状不发生改变. ∵PM EF EG EF ⊥⊥,,∴PM EG ∥. ∵EF BC ∥,∴EP GM =,PM EG ==同理4MN AB ==. ·················································································· 4分 如图2,过点P 作PH MN ⊥于H ,∵MN AB ∥, ∴6030NMC B PMH ==︒=︒∠∠,∠.∴122PH PM == ∴3cos302MH PM =︒=.则35422NH MN MH =-=-=.在Rt PNH △中,PN === ∴PMN △的周长=4PM PN MN ++=. ······································· 6分 ②当点N 在线段DC 上运动时,PMN △的形状发生改变,但MNC △恒为等边三角形.当PM PN =时,如图3,作PR MN ⊥于R ,则MR NR =.类似①,32MR =. ∴23MN MR ==.··················································································· 7分 ∵MNC △是等边三角形,∴3MC MN ==.此时,6132x EP GM BC BG MC ===--=--=. ··································· 8分图3A D E BFCPN M图4A D EBF CPM N 图5A D EBF (P ) CMN GGRG图1A D E BF CG图2A D EBF CPNMG H当MP MN =时,如图4,这时3MC MN MP ===.此时,61353x EP GM ===-=-.当NP NM =时,如图5,30NPM PMN ==︒∠∠.则120PMN =︒∠,又60MNC =︒∠, ∴180PNM MNC +=︒∠∠.因此点P 与F 重合,PMC △为直角三角形. ∴tan301MC PM =︒=.此时,6114x EP GM ===--=.综上所述,当2x =或4或(53时,PMN △为等腰三角形. ···················· 10分9如图①,正方形 ABCD 中,点A 、B 的坐标分别为(0,10),(8,4), 点C 在第一象限.动点P 在正方形 ABCD 的边上,从点A 出发沿A →B →C →D 匀速运动,同时动点Q 以相同速度在x 轴正半轴上运动,当P 点到达D 点时,两点同时停止运动,设运动的时间为t 秒.(1)当P 点在边AB 上运动时,点Q 的横坐标x (长度单位)关于运动时间t (秒)的函数图象如图②所示,请写出点Q 开始运动时的坐标及点P 运动速度;(2)求正方形边长及顶点C 的坐标;(3)在(1)中当t 为何值时,△OPQ 的面积最大,并求此时P 点的坐标; (4)如果点P 、Q 保持原速度不变,当点P 沿A →B →C →D 匀速运动时,OP 与PQ 能否相等,若能,写出所有符合条件的t 的值;若不能,请说明理由.解:(1)Q (1,0) ······················································································· 1分 点P 运动速度每秒钟1个单位长度. ·········································································································· 2分 (2) 过点B 作BF ⊥y 轴于点F ,BE ⊥x 轴于点E ,则BF =8,4OF BE ==. ∴1046AF =-=.在Rt △AFB 中,228610AB + 3分 过点C 作CG ⊥x 轴于点G ,与FB 的延长线交于点H . ∵90,ABC AB BC ∠=︒= ∴△ABF ≌△BCH .A CDM Py∴6,8BH AF CH BF ====. ∴8614,8412OG FH CG ==+==+=.∴所求C 点的坐标为(14,12). 4分 (3) 过点P 作PM ⊥y 轴于点M ,PN ⊥x 轴于点N , 则△APM ∽△ABF . ∴AP AM MP AB AF BF ==. 1068t AM MP∴==. ∴3455AM t PM t ==,. ∴3410,55PN OM t ON PM t ==-==.设△OPQ 的面积为S (平方单位)∴213473(10)(1)5251010S t t t t =⨯-+=+-(0≤t ≤10) ················································· 5分说明:未注明自变量的取值范围不扣分.∵310a =-<0 ∴当474710362()10t =-=⨯-时, △OPQ 的面积最大. ························· 6分 此时P 的坐标为(9415,5310) . ····································································· 7分 (4) 当 53t =或29513t =时, OP 与PQ 相等. ················································· 9分10数学课上,张老师出示了问题:如图1,四边形ABCD 是正方形,点E是边BC 的中点.90AEF ∠=,且EF 交正方形外角DCG ∠的平行线CF 于点F ,求证:AE =EF .经过思考,小明展示了一种正确的解题思路:取AB 的中点M ,连接ME ,则AM =EC ,易证AME ECF △≌△,所以AE EF =.在此基础上,同学们作了进一步的研究:(1)小颖提出:如图2,如果把“点E 是边BC 的中点”改为“点E 是边BC 上(除B ,C 外)的任意一点”,其它条件不变,那么结论“AE =EF ”仍然成立,你认为小颖的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由;(2)小华提出:如图3,点E 是BC 的延长线上(除C 点外)的任意一点,其他条件不变,结论“AE =EF ”仍然成立.你认为小华的观点正确吗?如果正确,写出证明过程;如果不正确,请说明理由.ADFC GB图1ADFC G B 图2ADFC GE B图3解:(1)正确. (1分)证明:在AB 上取一点M ,使AM EC =,连接ME . (2分)BM BE ∴=.45BME ∴∠=°,135AME ∴∠=°.CF 是外角平分线,45DCF ∴∠=°,135ECF ∴∠=°.AME ECF ∴∠=∠.90AEB BAE ∠+∠=°,90AEB CEF ∠+∠=°, ∴BAE CEF ∠=∠.AME BCF ∴△≌△(ASA ). ··································································· (5分) AE EF ∴=. ························································································· (6分) (2)正确. ····················································· (7分) 证明:在BA 的延长线上取一点N . 使AN CE =,连接NE . ··································· (8分) BN BE ∴=. 45N PCE ∴∠=∠=°. 四边形ABCD 是正方形, AD BE ∴∥.DAE BEA ∴∠=∠. NAE CEF ∴∠=∠.ANE ECF ∴△≌△(ASA ). ································································· (10分) AE EF ∴=. ······················································································· (11分) 11已知一个直角三角形纸片OAB ,其中9024AOB OA OB ∠===°,,.如图,将该纸片放置在平面直角坐标系中,折叠该纸片,折痕与边OB 交于点C ,与边AB 交于点D .(Ⅰ)若折叠后使点B 与点A 重合,求点C(Ⅱ)若折叠后点B 落在边OA 上的点为B ',设OB x '=,OC y =,试写出y 关于x 的函数解析式,并确定y 的取值范围;(Ⅲ)若折叠后点B 落在边OA 上的点为B ',且使B D OB '∥,求此时点C 的坐标.AD F C GE B M A DF C GE B N解(Ⅰ)如图①,折叠后点B 与点A 重合, 则ACD BCD △≌△.设点C 的坐标为()()00m m >,. 则4BC OB OC m =-=-. 于是4AC BC m ==-.在Rt AOC △中,由勾股定理,得222AC OC OA =+, 即()22242m m -=+,解得32m =. ∴点C 的坐标为302⎛⎫⎪⎝⎭,. ··················································································· 4分(Ⅱ)如图②,折叠后点B 落在OA 边上的点为B ',则B CD BCD '△≌△. 由题设OB x OC y '==,, 则4B C BC OB OC y '==-=-,在Rt B OC '△中,由勾股定理,得222B C OC OB ''=+.()2224y y x ∴-=+,即2128y x =-+ ···························································································· 6分 由点B '在边OA 上,有02x ≤≤,∴ 解析式2128y x =-+()02x ≤≤为所求.∴ 当02x ≤≤时,y 随x 的增大而减小,y ∴的取值范围为322y ≤≤. ····································································· 7分 (Ⅲ)如图③,折叠后点B 落在OA 边上的点为B '',且B D OB ''∥. 则OCB CB D ''''∠=∠. 又CBD CB D OCB CBD ''''∠=∠∴∠=∠,,有CB BA ''∥. Rt Rt COB BOA ''∴△∽△. 有OB OCOA OB''=,得2OC OB ''=. ·································································· 9分 在Rt B OC ''△中,设()00OB x x ''=>,则02OC x =. 由(Ⅱ)的结论,得2001228x x =-+,解得000808x x x =-±>∴=-+,∴点C的坐标为()016. ··································································· 10分12问题解决 如图(1),将正方形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C ,D 重合),压平后得到折痕MN .当12CE CD =时,求AMBN 的值.类比归纳在图(1)中,若13CE CD =,则AM BN 的值等于 ;若14CE CD =,则AMBN 的值等于 ;若1CE CD n =(n 为整数),则AMBN的值等于 .(用含n 的式子表示) 联系拓广 如图(2),将矩形纸片ABCD 折叠,使点B 落在CD 边上一点E (不与点C D,重合),压平后得到折痕MN ,设()111AB CE m BC m CD n =>=,,则AMBN的值等于 .(用含m n ,的式子表示)解:方法一:如图(1-1),连接BM EM BE ,,.方法指导: 为了求得AM BN 的值,可先求BN 、AM 的长,不妨设:AB =2 图(2) N AB C D EF M 图(1)AB C D E FM NN 图(1-1)A BCEF M由题设,得四边形ABNM 和四边形FENM 关于直线MN 对称.∴MN 垂直平分BE .∴BM EM BN EN ==,. ···································· 1分 ∵四边形ABCD 是正方形,∴902A D C AB BC CD DA ∠=∠=∠=====°,. ∵112CE CE DE CD =∴==,.设BN x =,则NE x =,2NC x =-.在Rt CNE △中,222NE CN CE =+.∴()22221x x =-+.解得54x =,即54BN =. ········································· 3分 在Rt ABM △和在Rt DEM △中,222AM AB BM +=, 222DM DE EM +=,∴2222AM AB DM DE +=+. ····························································· 5分设AM y =,则2DM y =-,∴()2222221y y +=-+.解得14y =,即14AM =. ····································································· 6分∴15AM BN =.····················································································· 7分 方法二:同方法一,54BN =. ································································ 3分如图(1-2),过点N 做NG CD ∥,交AD 于点G ,连接BE .∵AD BC ∥,∴四边形GDCN 是平行四边形. ∴NG CD BC ==.同理,四边形ABNG 也是平行四边形.∴54AG BN ==. ∵90MN BE EBC BNM ⊥∴∠+∠=,°. 90NG BC MNG BNM EBC MNG ⊥∴∠+∠=∴∠=∠,°,. 在BCE △与NGM △中90EBC MNG BC NG C NGM ∠=∠⎧⎪=⎨⎪∠=∠=⎩,,°.∴BCE NGM EC MG =△≌△,. ························· 5分∵114AM AG MG AM =--=5,=.4 ····················································· 6分 N 图(1-2)A B C DE FM G。

相关文档
最新文档