2017-2018学年人教版高中数学必修一教材用书word文件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[答案](1)C(2)B
[类题通法]
判断元素与集合间关系的方法
判断一个对象是否为某个集合的元素,就是判断这个对象是否具有这个集合的元素具有的共同特征.如果一个对象是某个集合的元素,那么这个对象必具有这个集合的元素的共同特征.
解:(1)“著名的数学家”无明确的标准,对于某个人是否“著名”无法客观地判断,因此“著名的数学家”不能构成一个集合.(2)与(1)类似,也不能构成集合.(3)任给一个实数x,可以明确地判断是不是“不超过20的非负数”,即“0≤x≤20”与“x>20或x<0”两者必居其一,且仅居其一,故“不超过20的非负数”能构成集合.(4)类似于(3),也能构成集合.(5)“一些点”无明确的标准,对于某个点是否在“一些点”中无法确定,因此“直角坐标平面内第一象限的一些点”不能构成集合.
2.集合元素的特性
集合元素的特性:确定性、互异性、无序性.
[化解疑难]
对集合中元素特性的理解
(1)确定性:作为一个集合的元素必须是明确的,不能确定的对象不能构成集合.也就是说,给定一个集合,任何一个对象是不是这个集合的元素是确定的.
(2)互异性:对于给定的集合,其中的元素一定是不同的,相同的对象归入同一个集合时只能算作集合的一个元素.
A.2B.3
C.4D.5
(2)判断下列说法是否正确,并说明理由.
①某个公司里所有的年轻人组成一个集合;
②由1, , , , 组成的集合有五个元素;
③由a,b,c组成的集合与由b,a,c组成的集合是同一个集合.
[解](1)选A“接近于0的数”“比较小的正整数”标准不明确,即元素不确定,所以①②不是集合.同样,“ 的近似值”也不明确精确到什么程度,因此很难判定一个数,比如2是不是它的近似值,所以⑤也不是一个集合.③④能构成集合.
通常用小写拉丁字母a,b,c,…表示
集合
把一些元素组成的总体叫做集合(简称为集)
通常用大写拉丁字母A,B,C,…表示
[化解疑难]
准确认识集合的含义
(1)集合的概念是一种描述性说明,因为集合是数学中最原始的、不加定义的概念,这与我们初中学过的点、直线等概念一样,都是用描述性语言表述的.
(2)集合含义中的“元素”所指的范围非常广泛,现实生活中我们看到的、听到的、闻到的、触摸到的、想到的各种各样的事物或一些抽象的符号等,都可以看作“对象”,即集合中的元素.
提示:员工、点、整数解、实数根、较胖的同学.
问题2:你能确定上述实例的研究对象吗?
提示:(1)(2)(3)(4)的研究对象可以确定.
问题3:上述哪些实例的研究对象不能确定?为什么?
提示:(5)的研究对象不能确定,因为“较胖”这个标准不明确,故无法确定.
[导入新知]
元素与集合的概念
定义
表示
元素
一般地,我们把研究对象统称为元素
[化解疑难]
1.对“∈”和“∉”的理解
(1)符号“∈”“∉”刻画的是元素与集合之间的关系.对于一个元素a与一个集合A而言,只有“a∈A”与“a∉A”这两种结果.
(2)“∈”和“∉”具有方向性,左边是元素,右边是集合,形如R∈0是错误的.
2.常用数集关系网
集合的基本概念
[例1](1)下列各组对象:①接近于0的数的全体;②比较小的正整数的全体;③平面上到点A的距离等于1的点的全体;④正三角形的全体;⑤ 的近似值的全体.其中能构成集合的组数是()
1.1 集__合
1.1.1集合的含义与表示
第一课时 集合的含义
集合的概念
[提出问题]
观察下列实例:
(1)某公司的所有员工;
(2)平面内到定点O的距离等于定长d的所有的点;
(3)不等式组 的整数解;
(4)方程x2-5x+6=0的实数根;
(5)某中学所有较胖的同学.
问题1:上述实例中的研究对象各是什么?
(2)关注点:利用集合的含义判断一组对象能否组成一个集合,应注意集合中元素的特性,即确定性、互异性和无序性.
[活学活用]
判断下列每组对象能否构成一个集合.
(1)著名的数学家;
(2)某校2017年在校的所有高个子同学;
(3)不超过20的非负数;
(4)方程x2-9=0在实数范围内的解;
(5)平面直角坐标系内第一象限的一些点.
提示:不是.高一年级这个集合中没有高二(3)班这个元素.
[导入新知]
1.元素与集合的关系
(1)如果a是集合A的元素,就说a属于集合A,记作a∈A.
(2)如果a不是集合A中的元素,就说a不属于集合A,记作a∉A.
2.常用的数集及其记法
常用的数集
自然数集
正整数集
整数集
有理数集
实数集
记法
Nபைடு நூலகம்
N*或N+
Z
Q
R
(2)①不正确.因为“年轻人”没有确定的标准,对象不具有确定性,所以不能组成集合.
②不正确.由于 = , = ,由集合中元素的互异性知,这个集合是由1, , 这三个元素组成的.
③正确.集合中的元素相同,只是次序不同,但它们仍表示同一个集合.
[类题通法]
判断一组对象能否组成集合的标准及其关注点
(1)标准:判断一组对象能否组成集合,关键看该组对象是否满足确定性,如果此组对象满足确定性,就可以组成集合;否则,不能组成集合.
(3)无序性:对于给定的集合,其中的元素是不考虑顺序的.如由1,2,3构成的集与3,2,1构成的集合是同一个集合.
元素与集合的关系及常用数集的记法
[提出问题]
某中学2017年高一年级20个班构成一个集合.
问题1:高一(6)班、高一(16)班是这个集合中的元素吗?
提示:是这个集合的元素.
问题2:高二(3)班是这个集合中的元素吗?为什么?
元素与集合的关系
[例2](1)设集合A只含有一个元素a,则下列各式正确的是()
A.0∈AB.a∉A
C.a∈AD.a=A
(2)下列所给关系正确的个数是()
①π∈R;② ∉Q;③0∈N*;④|-4|∉N*.
A.1B.2
C.3D.4
[解析](1)由元素与集合的关系可知,a∈A.
(2)①π∈R显然是正确的;② 是无理数,而Q表示有理数集,∴ ∉Q,正确;③N*表示不含0的自然数集,∴0∉N*,③错误;④|-4|=4∈N*,④错误,所以①②是正确的.
元素的特性及集合相等
[提出问题]
问题1:“知识点一”中的实例(3)组成的集合的元素是什么?
提示:2,3.
问题2:“知识点一”中的实例(4)组成的集合的元素是什么?
提示:2,3.
问题3:“知识点一”中的实例(3)与实例(4)组成的集合有什么关系?
提示:相等.
[导入新知]
1.集合相等
只要构成两个集合的元素是一样的,我们就称这两个集合相等.
相关文档
最新文档