专题11七年级数学下(人教版) 期末模拟(二)(解析版)

合集下载

人教版七年级数学下学期期末检测模拟试卷含答案解析

人教版七年级数学下学期期末检测模拟试卷含答案解析

第1页 共7页七年级数学科期末检测模拟试卷一、选择题(每小题3分,共42分)在下列各题的四个备选答案中,只有一个是正确的,请把你认为正确的答案的字母代号填写在下表相应题号的方格内.题 号 1 2 3 4 5 6 7 8 9 10 11 12 13 14 答 案1.方程1+2x =0的解是A .21=xB .21-=x C .x =2 D .x =-2 2. 不等式5-x >0的最大整数解是A. 2B. 3C. 4D. 53. 在下列图形中,为轴对称图形的是4. 已知⎩⎨⎧=-=12y x ,是方程ax +2y =5的一个解,则a 为A. 23-B. 23C. 32- D. 325.已知三角形的三边长分别为4、5、x ,则x 不可能是A .3B .5C .7D .9 6.正多边形的一个内角的度数为108°,则这个正多边形的边数为 A. 4 B. 5 C. 6 D. 7 7.若有理数m 、n 满足m -2n =4,2m -n =3, 则m +n 等于A .-1B .0C . 1D .2 8.如图1,若∠1=110°,∠2=135°,则∠3等于A .55°B .65°C .75°D .85°B.C.D.A.123图1图2AB CD1 2第2页 共7页9. 如图2,AC ⊥BC ,AB=10,BC=8,AC=6,若∠1=∠2,则点B 到AD 的距离是 A. 6B. 7C. 8D. 1010.如图3,在△ABC 中,AB =BC ,△A =30°,D 是AC 的中点,则△DBC 的度数为A .45°B .50°C .60°D .90°11.如图4,在△ABC 中,∠A =36°,∠B =72°,CD 平分∠ACB ,DE ∥AC ,则图中共有等腰三角形A. 2个B. 3个C. 4个D. 5个 12. 一种药品现在售价每盒52元,比原来降低了20%,则该药品的原售价是每盒 A .72元 B. 68元 C. 65元 D. 56元13. 用每分钟可抽30吨水的抽水机来抽污水管道里积存的污水,估计积存的污水不少于1200吨且不超过1500吨,设需要x 分钟才能将污水抽完,则x 的取值范围是A .x ≥40 B. x ≤50 C. 40<x <50 D. 40≤x ≤50 二、填空题(每小题3分,共12分)15. 在3a +4b =9中,若2b =6,则2a = . 16.不等式组⎩⎨⎧<->-31201x x 的解集是 .17.如图5,在△ABC 中,D 是BC 上一点,若BD =DC =AD ,则∠BAC = 度.18.如图6,在△ABC 中,AB =AC =5,∠A =60°,BD ⊥AC 于D ,点E 在BC 的延长线上,要使DE =DB ,则CE的长应等于 . 三、解答题(共46分)19. (本题满分9分,第(1)小题4分,第(2)小题5分) (1)解方程:1413632=--+x x ; (2)解方程组: ⎩⎨⎧⋅=-=-575,832x y y x 图6AC BDE图5ABCD ABCD E图4DC B A图3第3页 共7页20.(4分)图7.1、7.2均为4×4的正方形网格,每个小正方形的边长均为1.请分别在这两个图中各画出一个与四边形ABCD 成轴对称、顶点在格点上,且位置不同的四边形.21.(7分) A 、B 两地相距36千米. 甲从A 地出发步行到B 地,乙从B 地出发步行到A 地. 两人同时出发,4小时后相遇;6小时后,甲所余路程为乙所余路程的2倍.求甲、乙两人的步行速度.22.(8分)如图8,在△ABC 中,AB =AC ,AB 的垂直平分线分别交AB 、AC 于D 、E 两点,交BC 的延长线于点F .(1)若AB =12,BC =10,求△BCE 的周长; (2)当∠A =50°时,分别求∠EBC 、∠F 的度数.ACB图7.1BACB图7.2BADE BC 图8F24.(10分) 如图10,在△ABC中,∠ABC=60°,∠C=45°,AD是BC边上的高,∠ABC的角平分线BE交AD于F. 试找出图中所有的等腰三角形,并说明理由.AD EF图10第4页共7页第5页 共7页2015-2016学年度下学期海南省海口市七年级数学科期末检测模拟试卷参考答案及评分标准一、BCDAD BABCC DCBD二、15.-2 16. x <1 17. 90 18.25 三、19.(1)2(2x +3)-3(3x -1)=12(1分) (2)①×5+②×3,得 -11x =55 …(2分)4x +6-9x +3=12 …(2分) ∴ x =-5. …(3分)-5x =3 …(3分) 把x =-5代入②,得5y +35=5,x =-53 …(4分) ∴ y =-6. ∴ ⎩⎨⎧-=-=.6,5y x …(5分) 20.答案不唯一. 以下图形(图1、2、3、4)仅供参考. 画图正确. ……(4分)(注:每画一个图正确得2分,共4分.)21. 设甲的步行速度为x 千米/时,乙的步行速度为y 千米/时. …(1分)根据题意,得 ⎩⎨⎧-=-=+.)636(2636,364y x y x )( ………………(4分)解这个方程组,得 ⎩⎨⎧==.5,4y x 答:甲的步行速度为4千米/时,乙的步行速度为5千米/时. …(7分) 22.(1)∵ DE 是线段AB 的垂直平分线,∴ EB =EA ,∴ EB +EC = EA +EC =AC =12,∴ △BCE 的周长= EB +EC +BC =12+10=22. ………………(4分)图1 图2图4图3第6页 共7页(2)∵ AB =AC ,∴ ∠ABC =∠C =21(180°-∠A )= 21(180°-50°)= 65°. ∵ EB =EA ,∴ ∠ABE =∠A =50°.∴ ∠EBC =∠ABC -∠ABE =65°-50°=15°. ………………(6分) ∵ DF ⊥AB ,∴ ∠F =∠ADF -∠DBF =90°-65°=25°. ………(8分)23.(1)86,0.34 ………………(2分) (2)绘制折线统计图如图5所示; ………………(4分) (3)从折线统计图可以看出,随着实验次数的增加,摸出黄球的频率逐渐平稳; ………………(6分) (4)观察折线统计图可知,摸出黄球的频率逐渐稳定在0.34附近,故摸出黄球的机会约为34%. ………………(8分)24.等腰三角形有:(1)△ADC ,(2)△ABE ,(3)△BF A . ………………(3分) (1)∵ AD ⊥BC ,∠C =45°,∴ ∠CAD =∠C =45°.∴ DA =DC . 即△ADC 是等腰直角三角形. ………………(5分) (2)∵ ∠ABC =60°,∠C =45°,∴ ∠BAC =180°-∠ABC -∠C =180°-60°-45°=75°. ∵ BE 是∠ABC 的平分线,∴ ∠ABE =∠CBE =21∠ABC =30°, ∵ ∠BEA 是△EBC 的外角,∴ ∠BEA =∠CBE +∠C =30°+45°=75°, ∴ ∠BAC =∠BEA =75°,∴ BA =BE . 即△ABE 是等腰三角形. ………………(8分) (3)∵ AD ⊥BC ,∠ABC =60°, ∴ ∠BAD =90°-∠ABC =90°-60°=30° . ∵ BE 是∠ABC 的平分线, ∴ ∠ABE =∠CBE =21∠ABC =30°, ∴ ∠BAD =∠ABE =30°,AB C D EF实验次数0.38 0.36 0.34 0.32 0.30 0.28 0.26 0.24频率 图540 120 200 240 280 320 80 160 0 360 400∴F A=FB. 即△BF A是等腰三角形. ………………(10分) (注:用其它方法求解参照以上标准给分.)第7页共7页。

2020—2021年新人教版初中数学七年级下册期末模拟试卷及答案解析11.docx

2020—2021年新人教版初中数学七年级下册期末模拟试卷及答案解析11.docx

2017-2018学年七年级(下)期末数学试卷一、选择题(本大题共15小题,每小题2分,共30分,在每小题给出的四个选项中,只哟一项是符合题目要求的,请将相应的字母填入括号)1.(2分)(2015春•凉山州期末)在下列实数,3.14159265,,﹣8,,,1.103 030 030 003…(两个3之间依次多一个0),中,无理数有()A.3个B.4个C.5个D.6个考点:无理数.分析:根据有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定.解答:解:,3.14159265,﹣8,是有理数,,,1.103 030 030 003…(两个3之间依次多一个0),是无理数,故选:B.点评:本题考查的是无理数的概念,无理数就是无限不循环小数,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.(2分)(2015春•凉山州期末)下列判断:①1的立方根是±1;②只有正数才有平方根;③﹣4是﹣16的平方根;④()2的平方根是±正确的是()A.①B.②C.③D.④考点:立方根;平方根.分析:根据平方根、立方根的定义,即可解答.解答:解:①1的立方根是1,故错误;②只有正数才有平方根,错误,0也有平方根;③﹣16没有平方根,故错误;④()2的平方根是±,正确;故选:D.点评:本题考查平方根和立方根,解决本题的关键是熟记平方根和立方根的定义.3.(2分)(2015春•十堰期末)如图,下列条件:①∠1=∠3,②∠2=∠3,③∠4=∠5,④∠2+∠4=180°中,能判断直线l1∥l2的有()A.1个B.2个C.3个D.4个考点:平行线的判定.专题:计算题.分析:利用平行线的判定方法判断即可得到结果.解答:解:∵∠1=∠3,∴l1∥l2;∵∠4=∠5,∴l1∥l2;∵∠2+∠4=180°,∴l1∥l2,则能判断直线l1∥l2的有3个.故选C点评:此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.4.(2分)(2015春•凉山州期末)体育课上,老师测量小明跳远成绩的依据是()A.过直线上一点且垂直于这条直线的直线有且只有一条B.两点之间,线段最短C.垂线段最短D.两点确定一条直线考点:垂线段最短.分析:根据小明跳远成绩的测量方法可以得到依据是垂线段最短.解答:解:体育课上测量的跳远成绩是:落地时脚跟所在点到起跳线的距离,这是因为:垂线段最短.故选:C.点评:本题考查了垂线段最短在实际生活中的应用,要理解数学知识来源于实践,又作用于实践.5.(2分)(2015春•凉山州期末)下列数学表达式中:①﹣2<0,2x+3y>0,③x=2,④x2+2xy+y2,⑤x≠3,⑥x+1>2中,不等式有()A.1个B.2个C.3个D.4个考点:不等式的定义.分析:根据不等式的定义,不等号有<,>,≤,≥,≠,选出即可.解答:解:不等式是指不等号来连接不等关系的式子,如<,>,≤,≥,≠,则不等式有:①②⑤⑥.故选D点评:本题主要考查对不等式的意义的理解和掌握,能根据不等式的意义进行判断是解此题的关键.6.(2分)(2015春•凉山州期末)下列调查中,最适合采用抽样调查方式的是()A.值日老师调查各班学生的出勤情况B.调查凉山州中学生参加体育锻炼的时间C.了解某班女学生的身高情况D.了解全班同学的课外读书时间考点:全面调查与抽样调查.分析:对于精确度要求高的调查,事关重大的调查往往选用普查,不适合用抽样调查.解答:解;A、值班老师调查各班学生的出勤情况,一定要具体,所以要普查,故错误;B、调查凉山州中学生参加体育锻炼的时间,适合用抽样调查,故正确;C、了解某班女学生的身高情况,范围小,适合用全面调查,故错误;D、了解全班同学的课外读书时间,范围小,适合用全面调查,故错误;故选B.点评:本题考查的是普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.7.(2分)(2015春•凉山州期末)下列方程组中,是二元一次方程组的是()A.B.C.D.考点:二元一次方程组的定义.专题:计算题.分析:利用二元一次方程组的定义判断即可.解答:解:方程组中,是二元一次方程组的是.故选A.点评:此题考查了二元一次方程组的定义,熟练掌握二元一次方程组的定义是解本题的关键.8.(2分)(2015春•凉山州期末)下列四个命题中,真命题是()A.若一个角的两边分别平行于另一个角的两边,则这两个角相等B.如果两个角的和是180°,那么这两个角是邻补角C.在同一平面内,平行于同一条直线的两条直线互相平行D.在同一平面内,垂直于同一条直线的两条直线互相垂直考点:命题与定理.分析:根据两边分别平行的两个角相等或互补对A进行判断;根据邻补角的定义对B进行判断;根据平行线的判断方法对C、D进行判断.解答:解:A、若一个角的两边分别平行于另一个角的两边,则这两个角相等或互补,所以A选项为假命题;B、如果两个角的和是180°,且两个角有一条公共边,那么这两个角是邻补角,所以B选项为假命题;C、在同一平面内,平行于同一条直线的两条直线互相平行,所以C选项为真命题;D、在同一平面内,垂直于同一条直线的两条直线互相平行,所以D选项为假命题.故选C.点评:本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.(2分)下列各组图形,可以经过平移变换由一个图形得到另一个图形的是()A.B.C.D.考点:生活中的平移现象.分析:根据平移的性质,结合图形对选项进行一一分析,选出正确答案.解答:解:A、图形的形状和大小没有变化,符合平移的性质,属于平移得到;B、图形的大小发生变化,不符合平移的性质,不属于平移得到;C、图形的方向发生变化,不符合平移的性质,不属于平移得到;D、图形由轴对称得到,不属于平移得到.故选A.点评:本题考查平移的基本性质,平移不改变图形的形状、大小和方向.注意结合图形解题的思想.10.(2分)在平面直角坐标系中,点(﹣1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限考点:点的坐标.分析:应先判断出点的横纵坐标的符号,进而判断点所在的象限.解答:解:因为点(﹣1,m2+1),横坐标<0,纵坐标m2+1一定大于0,所以满足点在第二象限的条件.故选B.点评:解决本题的关键是记住平面直角坐标系中各个象限内点的符号,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).11.(2分)(2014•孝南区校级模拟)下列各式中,正确的是()A.=±4 B.±=4 C.=﹣3 D.=﹣4考点:二次根式的混合运算.专题:计算题.分析:根据算术平方根的定义对A进行判断;根据平方根的定义对B进行判断;根据立方根的定义对C进行判断;根据二次根式的性质对D进行判断.解答:解:A、原式=4,所以A选项错误;B、原式=±4,所以B选项错误;C、原式=﹣3=,所以C选项正确;D、原式=|﹣4|=4,所以D选项错误.故选:C.点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.12.(2分)如图是华联商厦某个月甲、乙、丙三种品牌彩电的销售量统计图,则甲、丙两种品牌彩电该月的销售量之和为()A.50台B.65台C.75台D.95台考点:条形统计图.专题:压轴题;图表型.分析:观察条形统计图可知甲品牌彩电销售45台,乙品牌彩电销售20台,丙品牌彩电销售30台.故甲、丙两品牌彩电销量之和为45+30=75(台).解答:解:甲、丙两品牌彩电销量之和为45+30=75(台).故选:C.点评:本题考查学生从图象中读取信息的能力.13.(2分)(2014•梅列区质检)在数轴上表示不等式组的解集,正确的是()A.B.C.D.考点:在数轴上表示不等式的解集.分析:本题可根据数轴的性质,实心圆点包括该点用“≥”,“≤”表示,空心圆圈不包括该点用“<”,“>”表示,大于向右,小于向左.解答:解:依题意得,数轴可表示为:故选:B.点评:本题考查不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.14.(2分)(2015春•凉山州期末)过A(﹣5,﹣4)和B(﹣5,4)两点的直线一定()A.垂直于x轴B.与x轴相交但不平行于x轴C.平行于x轴D.与x轴、y轴都不平行考点:坐标与图形性质.分析:根据平行于y轴的直线上两点的坐标特点解答.解答:解:∵A,B两点的横坐标相等,∴过这两点的直线一定平行于y轴,垂直于x轴.故选A.点评:此题考查坐标与图形问题,解答此题的关键是掌握平行于坐标轴的直线上的点的坐标的特点.15.(2分)在方程组中,若未知数x、y满足x+y>0,则m的取值范围应为()A.m<3 B.m>3 C.m<0 D.m>0考点:二元一次方程组的解;解一元一次不等式.分析:将方程组中两方程相加,便可得到关于x+y的方程,再根据x+y>0,即可求出m的取值范围.解答:解:,①+②得,(2x+y)+(x+2y)=(1﹣m)+2,即3x+3y=3﹣m,可得x+y=,∵x+y>0,∴>0,解得m<3,故选A.点评:此题考查的是二元一次方程组和不等式的性质,要注意x+y>0,则解出x,y关于m的式子,最终求出m的取值范围.二、填空题(本大题共7小题,每小题3分,共21分)16.(3分)(2015春•凉山州期末)在数轴上表示﹣的点离原点的距离是;的相反数是2﹣,绝对值是﹣2 .考点:实数与数轴;实数的性质.分析:根据相反数的概念求出相反数,比较和2的大小,确定的符号,根据绝对值的性质求出的绝对值.解答:解:在数轴上表示﹣的点离原点的距离是,的相反数是2﹣,∵>2,∴||=,故答案为:;2﹣;﹣2.点评:本题考查的是实数与数轴的关系、相反数的概念和绝对值的性质,正确理解相反数的概念和绝对值的性质:正数的绝对值是它本身、0的绝对值是0,负数的绝对值是它的相反数是解题的关键.17.(3分)(2015春•凉山州期末)(1)若式子在实数范围内有意义,则b的取值范围是b≥﹣5(2)如果=2.236,=7.071,那么0.0005的平方根是±0.02236 .考点:算术平方根;平方根.分析:(1)根据二次根式的定义可知被开方数必须为非负数,列不等式求解;(2)根据平方根的定义解答即可.解答:解:(1)根据题意得:b+5≥0,解得b≥﹣5;(2)因为=2.236,=7.071,所以0.0005的平方根是±0.02236;故答案为:b≥﹣5;±0.02236.点评:主要考查了二次根式的意义和性质和算术平方根,性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.18.(3分)(2015春•凉山州期末)当a= ﹣4 时,P(a+1,a+4)在y轴上,到x轴的距离是 3 .考点:点的坐标.分析:根据x轴上点的纵坐标为0列式求出a的值,再求出点P 的坐标,然后根据点到y轴的距离等于横坐标的长度解答.解答:解:∵P(a+1,a+4)在x轴上,∴a+4=0,解得a=﹣4,∴a+1=﹣4+1=﹣3,∴点P(﹣3,0),到y轴的距离是3.故答案为:﹣4,3.点评:本题考查了点的坐标,熟记x轴上点的纵坐标为0以及点到y轴的距离等于横坐标的长度是解题的关键.19.(3分)(2015春•凉山州期末)若关于x的方程ax+1=﹣x+2的解是正数,则a的取值范围是a>﹣1 .考点:解一元一次不等式;一元一次方程的解.分析:先求出方程的解,然后根据解是正数,列不等式求出a 的范围.解答:解:解得:x=,则有:>0,解得:a>﹣1.故答案为:a>﹣1.点评:本题考查了解一元一次方程和简单不等式的能力,解不等式要依据不等式的基本性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.20.(3分)(2015春•江西期末)化简:|a﹣b|﹣﹣= 0 (其中a>0,b<0)考点:二次根式的性质与化简.分析:利用a,b的符号得出a﹣b的符号,进而利用绝对值和二次根式的性质化简求出即可.解答:解:∵a>0,b<0,∴a﹣b>0,∴|a﹣b|﹣﹣=a﹣b﹣a+b=0.故答案为:0.点评:此题主要考查了二次根式的性质与化简,正确得出a﹣b 的符号是解题关键.21.(3分)(2015春•凉山州期末)如图,△DEF是由△ABC沿BC方向平移3个单位长度得到的,则点A与点D的距离等于 3 个单位长度.考点:平移的性质.分析:根据新图形与原图形各对应点的连线平行且相等即可得出答案.解答:解:∵△DEF是由△ABC沿BC方向平移3个单位长度得到的,∴点A与点D的距离等于3个单位长度.故答案为:3.点评:本题考查平移的性质,属于基础题,注意掌握连接平移前后各组对应点的线段平行且相等.22.(3分)(2015春•凉山州期末)将棱长为acm和bcm的两个正方体铁块熔化,制成一个大正方体铁块,这个大正方体铁块的棱长为.(不计损耗)考点:立方根.分析:根据熔化前后总体积不变,先求出两个正方体铝块的体积的和,再开立方即可.解答:解:∵这个大正方体的体积为a3+b3,∴这个大正方体的棱长=,故答案为;.点评:此题主要考查了利用立方根的定义解决实际问题,解决本题的关键是理解熔化前后总体积不变,需注意立方体的棱长应是体积的三次方根.三、解答题(本大题共6小题。

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套

人教版七年级数学下册期末测试题及答案解析共六套人教版七年级数学第二学期期末考试试卷(一)一、选择题(每题3分,计24分,请把各小题答案填到表格内)1.如下图,以下条件中,不能判定l1∥l2的是A.∠1=∠3.B.∠2=∠3.C.∠4=∠5.D.∠2+∠4=180°2.为了了解某市5万名初中毕业生的中考数学成绩,从中抽取500名学生的数学成绩进行统计分析,那么样本是C.被抽取500名学生的数学成绩3.___某月电话话费中的各项费用统计情形见以下图表,请你依照图表信息完成以下各题:项目月功能费基本话费长途话费短信费金额/元50 60 20 51)请将表格补充完整;2)请将条形统计图补充完整;3)扇形统计图中,表示短信费的扇形的圆心角是多少度?月功能费基本话费长途话费短信费金额/元50 60 20 5第23题图)4.___会期为2020年5月1日至2020年10月31日。

门票设个人票和团队票两大类。

个人一般票160元/张,学生优惠票100元/张;成人团队票120元/张,学生团队票50元/张。

1)若是2名教师、10名学生均购买个人票去参观世博会,请问一共要花多少元钱购买门票?个人票:2*160+10*100=1320元2)用方程组解决以下问题:若是某校共30名师生去参观世博会,并得知他们都是以团队形式购买门票,累计花去2200元,请问该校本次别离有多少名教师、多少名学生参观世博会?设教师人数为x,学生人数为y,则:x+y=30120x+50y=2200解得:x=10,y=20人教版七年级第二学期综合测试题(二)一、填空题:(每题3分,共15分)1.121的算术平方根是11,364=-61.2.若是1<x<2,化简│x-1│+│x-2│=2-x。

3.在△ABC中,已知两条边a=3,b=4,那么第三边c的取值范围是1<c<7.4.假设三角形三个内角度数的比为2:3:4,那么相应的外角比是3:2:1.5.已知两边相等的三角形一边等于5cm,另一边等于11cm,那么周长是27cm。

人教版(七年级)初一下册数学期末模拟测试题及答案

人教版(七年级)初一下册数学期末模拟测试题及答案

人教版(七年级)初一下册数学期末模拟测试题及答案一、选择题1.如图,下列推理中正确的是( )A .∵∠1=∠4, ∴BC//ADB .∵∠2=∠3,∴AB//CDC .∵∠BCD+∠ADC=180°,∴AD//BCD .∵∠CBA+∠C=180°,∴BC//AD2.下列代数运算正确的是( ) A .x•x 6=x 6 B .(x 2)3=x 6 C .(x+2)2=x 2+4D .(2x )3=2x 3 3.已知∠1与∠2是同位角,则( ) A .∠1=∠2B .∠1>∠2C .∠1<∠2D .以上都有可能 4.一直尺与一缺了一角的等腰直角三角板如图摆放,若∠1=115°,则∠2的度数为( )A .65°B .70°C .75°D .80° 5.下列各式中,计算结果为x 2﹣1的是( )A .()21x -B .()(1)1x x -+-C .()(1)1x x +-D .()()12x x -+ 6.截止到3月26日0时,全球感染新型冠状病毒肺炎的人数已经突破380000人,“山川异域,风月同天”,携手抗“疫”,刻不容缓.将380000用科学记数法表示为( ) A .0.38×106B .3.8×106C .3.8×105D .38×104 7.能把一个三角形的面积分成相等的两部分的线是这个三角形的( )A .一条高B .一条中线C .一条角平分线D .一边上的中垂线 8.足球比赛中,每场比赛都要分出胜负每队胜1场得3分,负一场扣1分,某队在8场比赛中得到12分,若设该队胜的场数为x 负的场数为y ,则可列方程组为( )A .8312x y x y +=⎧⎨-=⎩B .8312x y x y -=⎧⎨-=⎩C .18312x y x y +=⎧⎨+=⎩D .8312x y x y -=⎧⎨+=⎩ 9.计算12x a a a a ⋅⋅=,则x 等于( )A .10B .9C .8D .4 10.如图所示,在平面直角坐标系中,有若干个横、纵坐标均为整数的点,按如下顺序依次排列为(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)根据这个规律,第2020个点的坐标为( )A .(46,4)B .(46,3)C .(45,4)D .(45,5)二、填空题11.若分解因式221(3)()x mx x x n +-=++,则m =__________. 12.已知关于x 的不等式组521{0x x a -≥-->无解,则a 的取值范围是________.13.若24x mx ++是完全平方式,则m =______.14.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________.15.计算:23()a =____________.16.若a m =2,a n =3,则a m +n 的值是_____.17.如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分别为6、7、8,四边形DHOG 面积为( )A .6B .7C .8D .918.有两个正方形,A B ,现将B 放在A 的内部得图甲,将,A B 并列放置后构造新的正方形得图乙.若图甲和图乙中阴影部分的面积分别为1和12,则正方形,A B 的边长之和为________.19.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.20.比较大小:π0_____2﹣1.(填“>”“<”或“=”)三、解答题21.解二元一次方程组:(1)523150x yx y=+⎧⎨+-=⎩(2)3()4()427x y x yx y+--=⎧⎨+=⎩22.因式分解:(1)a3﹣a;(2)4ab2﹣4a2b﹣b3;(3)a2(x﹣y)﹣9b2(x﹣y);(4)(y2﹣1)2+6 (1﹣y2)+9.23.第19届亚运会将于2022年在杭州举行,“丝绸细节”助力杭州打动世界.杭州丝绸公司为亚运会设计手工礼品,投入W元钱,若以2条领带和1条丝巾为一份礼品,则刚好可制作600份礼品;若以1条领带和3条丝巾为一份礼品,则刚好可制作400份礼品.(1)若24W=万元,求领带及丝巾的制作成本是多少?(2)若用W元钱全部用于制作领带,总共可以制作几条?(3)若用W元钱恰好能制作300份其他的礼品,可以选择a条领带和b条丝巾作为一份礼品(两种都要有),请求出所有可能的a、b的值.24.认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.(探究1):如图1,在ΔABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,通过分析发现∠BOC=90º+12∠A,(请补齐空白处......)理由如下:∵BO和CO分别是∠ABC和∠ACB的角平分线,∴∠1=12∠ABC,_________________,在ΔABC中,∠A+∠ABC+∠ACB=180º.∴∠1+∠2=12(∠ABC+∠ACB)=12(180º-∠A)=90º-12∠A,∴∠BOC=180º-(∠1+∠2)=180º-(________)=90º+12∠A . (探究2):如图2,已知O 是外角∠DBC 与外角∠ECB 的平分线BO 和CO 的交点,则∠BOC 与∠A 有怎样的关系?请说明理由.(应用):如图3,在RtΔAOB 中,∠AOB=90º,已知AB 不平行与CD ,AC 、BD 分别是∠BAO 和∠ABO 的角平分线,又CE 、DE 分别是∠ACD 和∠BDC 的角平分线,则∠E=_______;(拓展):如图4,直线MN 与直线PQ 相交于O ,∠MOQ=60º,点A 在射线OP 上运动,点B 在射线OM 上运动,延长BA 至G ,已知∠BAO 、∠OAG 的角平分线与∠BOQ 的角平分线及其延长线交于E 、F ,在ΔAEF 中,如果有一个角是另一个角的4倍,则∠ABO=______.25.阅读下列材料,学习完“代入消元法”和“加减消元法“解二元一次方程组后,善于思考的小铭在解方程组2534115x y x y +=⎧⎨+=⎩时,采用了一种“整体代换”的解法: 解:将方程②变形:4x +10y +y =5,即2(2x +5y )+y =5③.把方程①代入③得:2×3+y =5,∴y =﹣1①得x =4,所以,方程组的解为41x y =⎧⎨=-⎩. 请你解决以下问题:(1)模仿小铭的“整体代换”法解方程组3259419x y x y -=⎧⎨-=⎩. (2)已知x ,y 满足方程组22223212472836x xy y x xy y ⎧-+=⎨++=⎩,求x 2+4y 2﹣xy 的值. 26.已知m 2,3na a ==,求①m n a +的值; ②3m-2n a 的值27.已知a ,b ,c 是△ABC 的三边,若a ,b ,c 满足a 2+c 2=2ab +2bc -2b 2,请你判断△ABC 的形状,并说明理由.28.因式分解:(1)m 2﹣16;(2)x 2(2a ﹣b )﹣y 2(2a ﹣b );(3)y 2﹣6y +9;(4)x 4﹣8x 2y 2+16y 4.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据平行线的判定方法一一判断即可.【详解】A 、错误.由∠1=∠4应该推出AB ∥CD .B 、错误.由∠2=∠3,应该推出BC//AD .C 、正确.D 、错误.由∠CBA+∠C=180°,应该推出AB ∥CD ,故选:C .【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.2.B解析:B【分析】根据同底数幂的乘法,幂的乘方,完全平方公式,积的乘方运算判断即可.【详解】A .67=x x x ,故A 选项错误;B .()32236x x x ⨯==,故B 选项正确;C .22(2)44x x x +=++,故C 选项错误;D .3333(2)28x x x =⋅=,故D 选项错误.故选B .【点睛】本题考查整式的乘法公式,熟练掌握同底数幂的乘法,幂的乘方,完全平方公式和积的乘方是解题的关键.3.D解析:D【分析】根据同位角的定义和平行线的性质判断即可.【详解】解:∵只有两直线平行时,同位角才可能相等,∴当没有限定“两直线平行”时,已知∠1与∠2是同位角可以得出∠1=∠2或∠1>∠2或∠1<∠2,三种情况都有可能.故选:D .【点睛】本题考查了同位角的定义和平行线的性质,正确理解同位角的定义是解此题的关键,“两直线平行”这个前提条件易遗漏.4.B解析:B【分析】先将一缺了一角的等腰直角三角板补全,再由直尺为矩形,则两组对边分别平行,即可根据∠1求∠4的度数,即可求出∠4的对顶角的度数,再利用等角直角三角形的性质及三角形内角和求出∠2的对顶角,即可求∠2.【详解】解:如图,延BA,CD交于点E.∵直尺为矩形,两组对边分别平行∴∠1+∠4=180°,∠1=115°∴∠4=180°-∠1=180°-115°=65°∵∠EDA与∠4互为对顶角∴∠EDA=∠4=65°∵△EBC为等腰直角三角形∴∠E=45°∴在△EAD中,∠EAD=180°-∠E-∠EDA=180°-45°-65°=70°∵∠2与∠EAD互为对顶角∴∠2=∠EAD =70°故选:B.【点睛】此题主要考查平行线的性质,等腰直角三角形的性质,挖掘三角板条件中的隐含条件是解题关键.5.C解析:C【分析】运用多项式乘法法则对各个算式进行计算,再确定答案.【详解】解:A.原式=x2﹣2x+1,B.原式=﹣(x﹣1)2=﹣x2+2x﹣1;C.(x+1)(x﹣1)=x2﹣1;D.原式=x2+2x﹣x﹣2=x2+x﹣2;∴计算结果为x2﹣1的是C.故选:C.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.6.C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:380000=3.8×105.故选:C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.7.B解析:B【分析】根据三角形中线的性质作答即可.【详解】解:能把一个三角形的面积分成相等的两部分的线是这个三角形的一条中线.故选:B.【点睛】本题考查了三角形中线的性质,属于应知应会题型,熟知三角形的一条中线将三角形分成面积相等的两部分是解题的关键.8.A解析:A【分析】设这个队胜x场,负y场,根据在8场比赛中得到12分,列方程组即可.【详解】解:设这个队胜x场,负y场,根据题意,得8 312 x yx y+=⎧⎨-=⎩.故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组.9.A解析:A【解析】【分析】利用同底数幂的乘法即可求出答案,解:由题意可知:a2+x=a12,∴2+x=12,∴x=10,故选:A.【点睛】本题考查同底数幂的乘法,要注意是指数相加,底数不变.10.D解析:D【分析】以正方形最外边上的点为准考虑,点的总个数等于最右边下角的点横坐标的平方,且横坐标为奇数时最后一个点在x轴上,为偶数时,从x轴上的点开始排列,求出与2020最接近的平方数为2025,然后写出第2020个点的坐标即可.【详解】解:由图形可知,图中各点分别组成了正方形点阵,每个正方形点阵的整点数量依次为最右下角点横坐标的平方且当正方形最右下角点的横坐标为奇数时,这个点可以看做按照运动方向到达x轴,当正方形最右下角点的横坐标为偶数时,这个点可以看做按照运动方向离开x轴∵452=2025∴第2025个点在x轴上坐标为(45,0)则第2020个点在(45,5)故选:D.【点睛】本题为平面直角坐标系下的点坐标规律探究题,解答时除了注意点坐标的变化外,还要注意点的运动方向.二、填空题11.【分析】将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:,∴,解得:,故答案为:.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关解析:4将分解因式的结果式子展开,与原式各项对应,再计算字母的值即可.【详解】解:2(3)()(3)3x x n x n x n ++=+++, ∴3321n m n +=⎧⎨=-⎩, 解得:74n m =-⎧⎨=-⎩, 故答案为:4-.【点睛】此题考查因式分解,正确利用多项式乘多项式法则进行计算是解此题的关键.12.a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a≥3.【点睛】本题考查不等式组的解集.解析:a≥3【详解】解:解5-2x≥-1,得x≤3;解x -a >0,得x >a ,因为不等式组无解,所以a≥3.故答案为:a ≥3.【点睛】本题考查不等式组的解集.13.【分析】这里首末两项是x 和2这两个数的平方,那么中间一项为加上或减去x 和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去和2积的2倍,故,故答案为:.【点睛】本题是完全平方公【分析】这里首末两项是x 和2这两个数的平方,那么中间一项为加上或减去x 和2积的2倍,故m=±4.【详解】解:中间一项为加上或减去x 和2积的2倍,故4m =±,故答案为:4±.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式.注意积的2倍的符号,避免漏解.14.【分析】由是完全平方式,得到从而可得答案.【详解】解:方法一、方法二、由是完全平方式,则有两个相等的实数根,,故答案为:【点睛】本题考查的是完全平方式解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案.【详解】解:方法一、 ()2222281991881,x kx x kx x x x ++=++=±=±+18,kx x ∴=±18.k ∴=±方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.±【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.15..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.解析:6a -.【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236()=(1)()a a a .故答案为:6a -.【点睛】 此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.16.6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:am+n =am•an=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,解析:6【分析】逆运用同底数幂相乘,底数不变指数相加进行计算即可得解.【详解】解:a m+n=a m•a n=2×3=6.故答案为:6.【点睛】本题主要考查了逆运用同底数幂相乘,底数不变指数相加,掌握a m+n=a m•a n是解题的关键;17.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,S△ODH=S△OAH,∴S四边形AEOH+S四边形CGOF=S四边形DHOG+S四边形BFOE,∵S四边形AEOH=6,S四边形BFOE=7,S四边形CGOF=8,∴6+8=7+S四边形DHOG,解得S四边形DHOG=7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.18.5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:,由图乙得:,化简得,∴,∵a+b>0,∴a+b解析:5【分析】设正方形A ,B 的边长分别为a ,b ,根据图形构建方程组即可解决问题.【详解】解:设正方形A ,B 的边长分别为a ,b .由图甲得:2()1a b -=,由图乙得:22()()12+--=a b a b ,化简得6ab =,∴22()()412425+=-+=+=a b a b ab ,∵a +b >0,∴a +b =5,故答案为:5.【点睛】本题考查完全平方公式,正方形的面积等知识,解题的关键是学会利用参数,构建方程组解决问题,属于中考常考题型. 19.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b=4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b﹣1)(a+1﹣b+1)=(a+b)(a﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.20.>【分析】先求出π0=1,2-1=,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=,1>,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较解析:>【分析】先求出π0=1,2-1=12,再根据求出的结果比较即可.【详解】解:∵π0=1,2-1=12,1>12,∴π0>2-1,故答案为:>.【点睛】本题考查零指数幂和负指数幂,实数的大小比较.理解任意非零数的零次方等于1和熟记负指数幂的计算公式是解题关键.三、解答题21.(1)61xy=⎧⎨=⎩;(2)31xy=⎧⎨=⎩【分析】(1)用代入法解得即可;(2)将方程组去括号整理后,用加减法解答即可;【详解】解:(1) 523150x y x y =+⎧⎨+-=⎩①② 把方程①代入方程()253150y y ++-=解得1y =把1y =代入到①,得156x =+=所以方程组的解为:61x y =⎧⎨=⎩(2) 原方程组化简,得7427x y x y -+=⎧⎨+=⎩①②①×2+②,得1515y =解得y=1把y=1代入到②,得217x +=解得x=3所以方程组的解为:31x y =⎧⎨=⎩【点睛】本题考查了解二元一次方程组,解题的关键是熟记代入法和加减法解方程组的步骤,并根据方程选择合适方法解题.22.(1)a (a+1)(a ﹣1);(2)﹣b (2a ﹣b )2;(3)(x ﹣y )(a+3b )(a ﹣3b );(4)(y+2)2(y ﹣2)2【分析】(1)直接提取公因式a ,进而利用平方差公式分解因式得出答案;(2)直接提取公因式﹣b ,进而利用完全平方公式分解因式即可;(3)直接提取公因式(x ﹣y ),进而利用平方差公式分解因式得出答案;(4)直接利用完全平方公式分解因式,再利用平方差公式分解因式即可.【详解】解:(1)a 3﹣a=a (a 2﹣1)=a (a+1)(a ﹣1);(2)4ab 2﹣4a 2b ﹣b 3=﹣b (﹣4ab+4a 2+b 2)=﹣b (2a ﹣b )2;(3)a 2(x ﹣y )﹣9b 2(x ﹣y )=(x ﹣y )(a 2﹣9b 2)=(x ﹣y )(a+3b )(a ﹣3b );(4)(y 2﹣1)2+6(1﹣y 2)+9=(y 2﹣1)2﹣6 (y 2﹣1)+9=(y 2﹣1﹣3)2=(y+2)2(y ﹣2)2.【点睛】此题主要考查因式分解的几种方法:提公因式法,公式法等,能熟练运用是解题关键.23.(1)领带的制作成本是120元,丝巾的制作成本是160元;(2)可以制作2000条领带;(3)42a b =⎧⎨=⎩ 【分析】(1)设领带及丝巾的制作成本是x 元和y 元,根据题意列出方程组求解即可; (2)由600(2)W x y =+与400(3)W x y =+可得到43y x =,代入可得2000W x =,即可求得答案;(3)根据44600(2)300()33x x ax bx +=+即可表达出a 、b 的关系式即可解答. 【详解】解:(1)设领带及丝巾的制作成本是x 元和y 元, 则600(2)240000400(3)240000x y x y +=⎧⎨+=⎩解得:120160x y =⎧⎨=⎩答:领带的制作成本是120元,丝巾的制作成本是160元.(2)由题意可得:600(2)W x y =+,且400(3)W x y =+,∴600(2)400(3)x y x y +=+, 整理得:43y x =,代入 600(2)W x y =+ 可得:4600(2)20003W x x x =+=, ∴可以制作2000条领带.(3)由(2)可得:43y x =,∴44600(2)300()33x x ax bx +=+ 整理可得:3420a b +=∵a 、b 都为正整数, ∴42a b =⎧⎨=⎩【点睛】本题考查了二元一次方程组的综合应用,解题的关键是根据题意列出方程,并对已知条件进行适当的变形.24.【探究1】∠2=12∠ACB ,90º-12∠A ;【探究2】∠BOC =90°﹣12∠A ,理由见解析;【应用】22.5°;【拓展】45°或36°.【分析】【探究1】根据角平分线的定义可得∠1=12∠ABC ,∠2=12∠ACB ,根据三角形的内角和定理可得∠1+∠2=90º-12∠A ,再根据三角形的内角和定理即可得出结论; 【探究2】如图2,由三角形的外角性质和角平分线的定义可得∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ),然后再根据三角形的内角和定理即可得出结论; 【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得∠G 的度数,于是可得∠GCD+∠GDC 的度数,然后根据角平分线的定义和角的和差可得∠1+∠2的度数,再根据三角形的内角和定理即可求出结果;【拓展】根据角平分线的定义和平角的定义可得∠EAF=90°,然后分三种情况讨论:若∠EAF=4∠E ,则∠E=22.5°,根据角平分线的定义和三角形的外角性质可得∠ABO=2∠E ,于是可得结果;若∠EAF=4∠F ,则∠F=22.5°,由【探究2】的结论可求出∠ABO=135°,然后由三角形的外角性质即可判断此种情况不存在;若∠F=4∠E ,则∠E=18°,然后再由第一种情况的结论∠ABO=2∠E 即可求出结果,进而可得答案.【详解】解:【探究1】理由如下:∵BO 和CO 分别是∠ABC 和∠ACB 的角平分线,∴∠1=12∠ABC ,∠2=12∠ACB , 在ΔABC 中,∠A+∠ABC+∠ACB=180º. ∴∠1+∠2=12(∠ABC+∠ACB )=12(180º-∠A )=90º-12∠A , ∴∠BOC=180º-(∠1+∠2)=180º-(90º-12∠A )=90º+12∠A ;故答案为:∠2=12∠ACB ,90º-12∠A ;【探究2】∠BOC =90°﹣12∠A ;理由如下: 如图2,由三角形的外角性质和角平分线的定义,∠OBC =12(∠A +∠ACB ),∠OCB =12(∠A +∠ABC ), 在△BOC 中,∠BOC =180°﹣∠OBC ﹣∠OCB=180°﹣12(∠A +∠ACB )﹣12(∠A +∠ABC ), =180°﹣12(∠A +∠ACB +∠A +∠ABC ), =180°﹣12(180°+∠A ), =90°﹣12∠A ;【应用】延长AC 与BD ,设交点为G ,如图5,由【探究1】的结论可得:∠G=1901352O ︒+∠=︒, ∴∠GCD+∠GDC=45°, ∵CE 、DE 分别是∠ACD 和∠BDC 的角平分线,∴∠1=12∠ACD=()11802GCD ︒-∠,∠2=12∠BDC=()11802GDC ︒-∠, ∴∠1+∠2=()11802GCD ︒-∠+()11802GDC ︒-∠=()136045157.52︒-︒=︒, ∴()1801222.5E ∠=︒-∠+∠=︒;故答案为:22.5°;【拓展】如图4,∵AE 、AF 是∠BAO 和∠OAG 的角平分线,∴∠EAQ+∠FAQ=()111809022BAO GAO ∠+∠=⨯︒=︒, 即∠EAF=90°,在Rt △AEF 中,若∠EAF=4∠E ,则∠E=22.5°,∵∠EOQ=∠E+∠EAQ ,∠BOQ=2∠EOQ ,∠BAO=2∠EAQ ,∴∠BOQ=2∠E+∠BAO ,又∠BOQ=∠BAO+∠ABO ,∴∠ABO=2∠E=45°;若∠EAF=4∠F ,则∠F=22.5°,则由【探究2】知:19022.52F ABO ∠=︒-∠=︒,∴ ∠ABO=135°, ∵∠ABO <∠BOQ=60°,∴此种情况不存在;若∠F=4∠E ,则∠E=18°,由第一种情况可知:∠ABO=2∠E ,∴∠ABO=36°;综上,∠ABO=45°或36°;故答案为:45°或36°.【点睛】 本题主要考查了角平分线的定义、三角形的内角和定理、平角的定义和三角形的外角性质等知识,具有一定的综合性,熟练掌握上述知识、灵活应用整体思想是解题的关键.25.(1)32x y =⎧⎨=⎩;(2)15 【分析】(1)把9x ﹣4y =19变形为3x +2(3x ﹣2y )=19,再用整体代换的方法解题;(2)将原方程组变形为22223(4)2472(4)36x y xyx y xy⎧+-=⎨++=⎩①②这样的形式,再利用整体代换的方法解决.【详解】解:(1)解方程组325 9419 x yx y-=⎧⎨-=⎩①②把②变形为3x+2(3x﹣2y)=19,∵3x﹣2y=5,∴3x+10=19,∴x=3,把x=3代入3x﹣2y=5得y=2,即方程组的解为32 xy=⎧⎨=⎩;(2)原方程组变形为22223(4)247 2(4)36x y xyx y xy⎧+-=⎨++=⎩①②①+②×2得,7(x2+4y2)=119,∴x2+4y2=17,把x2+4y2=17代入②得xy=2∴x2+4y2﹣xy=17﹣2=15答:x2+4y2﹣xy的值是15.【点睛】本题考查了二元一次方程组的解法,属延伸拓展题,正确掌握整体代换的求解方法是解题的关键.26.①6;②8 9【解析】解:①②27.△ABC是等边三角形,理由见解析.【分析】运用完全平方公式将等式化简,可求a=b=c,则△ABC是等边三角形.【详解】解:△ABC是等边三角形,理由如下:∵a2+c2=2ab+2bc-2b2∴a2-2ab+ b2+ b2-2bc +c2=0∴(a-b)2+(b-c)2=0∴a-b=0,b-c=0,∴a=b,b=c,∴a=b=c∴△ABC是等边三角形.【点睛】本题考查了因式分解的应用,整式的混合运算,熟练运用完全平方公式解决问题是本题的关键.28.(1)(m+4)(m﹣4);(2)(2a﹣b)(x+y)(x﹣y);(3)(y﹣3)2;(4)(x+2y)2(x﹣2y)2【分析】(1)原式利用平方差公式因式分解即可;(2)原式提取公因式,再利用平方差公式因式分解即可;(3)原式利用完全平方公式因式分解即可;(4)原式利用完全平方公式,以及平方差公式因式分解即可.【详解】解:(1)原式=(m+4)(m﹣4);(2)原式=(2a﹣b)(x2﹣y2)=(2a﹣b)(x+y)(x﹣y);(3)原式=(y﹣3)2;(4)原式=(x2﹣4y2)2=(x+2y)2(x﹣2y)2.【点睛】此题考查的是因式分解,掌握利用提公因式法和公式法因式分解是解决此题的关键.。

人教版(七年级)初一下册数学期末模拟测试题及答案

人教版(七年级)初一下册数学期末模拟测试题及答案

人教版(七年级)初一下册数学期末模拟测试题及答案一、选择题1.如图,下列推理中正确的是()A.∵∠1=∠4,∴BC//AD B.∵∠2=∠3,∴AB//CDC.∵∠BCD+∠ADC=180°,∴AD//BC D.∵∠CBA+∠C=180°,∴BC//AD2.把多项式x2+ax+b分解因式,得(x+1)(x-3),则a、b的值分别是()A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3 D.a=2,b=-33.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x岁,小红今年y岁”,根据题意可列方程为()A.449x y yx y x-=+⎧⎨-=+⎩B.449x y yx y x-=+⎧⎨-=-⎩C.449x y yx y x-=-⎧⎨-=+⎩D.449x y yx y x-=-⎧⎨-=-⎩4.新冠病毒(2019﹣nCoV)是一种新的Sarbecovirus亚属的β冠状病毒,它是一类具有囊膜的正链单股RNA病毒,其遗传物质是所有RNA病毒中最大的,也是自然界广泛存在的一大类病毒.其粒子形状并不规则,直径约60﹣220nm,平均直径为100nm(纳米).1米=109纳米,100nm可以表示为()米.A.0.1×10﹣6B.10×10﹣8C.1×10﹣7D.1×10115.如果多项式x2+2x+k是完全平方式,则常数k的值为()A.1 B.-1 C.4 D.-46.已知点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,则M点的坐标为()A.(﹣1,﹣1).B.(﹣1,1)C.(1,1)D.(1,﹣1)7.下列各组数中,是二元一次方程5x﹣y=4的一个解的是()A.31xy=⎧⎨=⎩B.11xy=⎧⎨=⎩C.4xy=⎧⎨=⎩D.13xy=⎧⎨=⎩8.下列计算不正确的是()A.527a a a=B.623a a a÷=C.2222a a a+=D.(a2)4=a89.下列给出的线段长度不能与4cm,3cm能构成三角形的是()A.4cm B.3cm C.2cm D.1cm10.一天李师傅骑车上班途中因车发生故障,修车耽误了一段时间后继续骑行,按时赶到了单位,下图描述了他上班途中的情景,下列四种说法:李师傅上班处距他家2000米;李师傅路上耗时20分钟;修车后李师傅的速度是修车前的4倍;李师傅修车用了5分钟,其中错误的是()A .0个B .1个C .2个D .3个二、填空题11.若把代数式245x x --化为()2x m k -+的形式,其中m 、k 为常数,则m k +=______.12.如图,将边长为6cm 的正方形ABCD 先向下平移2cm ,再向左平移1cm ,得到正方形A 'B 'C 'D ',则这两个正方形重叠部分的面积为______cm 2.13.如图,点B 在线段AC 上(BC>AB ),在线段AC 同侧作正方形ABMN 及正方形BCEF ,连接AM 、ME 、EA 得到△AME .当AB=1时,△AME 的面积记为S 1;当AB=2时,△AME 的面积记为S 2;当AB=3时,△AME 的面积记为S 3;则S 2020﹣S 2019=_____.14.计算(﹣2xy )2的结果是_____.15.如图,若AB ∥CD ,∠C=60°,则∠A+∠E=_____度.16.如图,AD ⊥BC 于D ,那么图中以AD 为高的三角形有______个.17.如果a 2﹣b 2=﹣1,a+b=12,则a ﹣b=_______. 18.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km ,384000用科学记数法可表示为_______. 19.已知点m (3a -9,1-a ),将m 点向左平移3个单位长度后落在y 轴上,则a= __________ .20.甲乙两队进行篮球对抗赛,比赛规则规定每队胜一场得3分,平一场得1分,负一场得0分,两队一共比赛了10场,甲队保持不败,得分不低于24分,甲队至少胜了___________场.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+22.若x ,y 为任意有理数,比较6xy 与229x y +的大小.23.实验中学要为学校科技活动小组提供实验器材,计划购买A 型、B 型两种型号的放大镜.若购买100个A 型放大镜和150个B 型放大镜需用1500元;若购买120个A 型放大镜和160个B 型放大镜需用1720元.(1)求每个A 型放大镜和每个B 型放大镜各多少元;(2)学校决定购买A 型放大镜和B 型放大镜共75个,总费用不超过570元,那么最多可以购买多少个A 型放大镜?24.如图,网格中每个小正方形边长为1,△ABC 的顶点都在格点上.将△ABC 向左平移2格,再向上平移3格,得到△A ′B ′C ′. (1)请在图中画出平移后的△A ′B ′C ′; (2)画出平移后的△A ′B ′C ′的中线B ′D ′(3)若连接BB ′,CC ′,则这两条线段的关系是________ (4)△ABC 在整个平移过程中线段AB 扫过的面积为________(5)若△ABC 与△ABE 面积相等,则图中满足条件且异于点C 的格点E 共有______个 (注:格点指网格线的交点)25.如图,已知:点A C 、、B 不在同一条直线,AD BE .(1)求证:180B C A ∠+∠-∠=︒.(2)如图②,AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线,试探究C ∠与AQB ∠的数量关系;(3)如图③,在(2)的前提下,且有ACQB ,直线AQ BC 、交于点P ,QP PB ⊥,请直接写出::DAC ACB CBE ∠∠∠=______________.26.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.27.先化简,再求值:2(1)(3)(2)(2)x x x x x ---++-,其中x =﹣2.28.如图,在方格纸内将ABC ∆水平向右平移4个单位得到'''A B C ∆. (1)补全'''A B C ∆,利用网格点和直尺画图; (2)图中AC 与''A C 的位置关系是: ; (3)画出ABC ∆中AB 边上的中线CE ;(4)平移过程中,线段AC 扫过的面积是: .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据平行线的判定方法一一判断即可. 【详解】A 、错误.由∠1=∠4应该推出AB ∥CD . B 、错误.由∠2=∠3,应该推出BC//AD .C 、正确.D 、错误.由∠CBA+∠C=180°,应该推出AB ∥CD , 故选:C . 【点睛】本题考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考基础题.2.B解析:B 【解析】分析:根据整式的乘法,先还原多项式,然后对应求出a 、b 即可. 详解:(x+1)(x-3) =x 2-3x+x-3所以a=2,b=-3,故选B.点睛:此题主要考查了整式的乘法和因式分解的关系,利用它们之间的互逆运算的关系是解题关键.3.D解析:D【分析】根据题设老师今年x岁,小红今年y岁,根据题意列出方程组解答即可.【详解】解:老师今年x岁,小红今年y岁,可得:449x y yx y x,故选:D.【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.4.C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:100nm=100×10﹣9m=1×10﹣7m,故选:C.【点睛】本题是对科学记数法知识的考查,熟练掌握负指数幂知识是解决本题的关键.5.A解析:A【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是1,平方即可.【详解】解:∵2x=2×1•x,∴k=12=1,故选A.【点睛】本题考查了对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是解题的关键.解析:C【分析】直接利用角平分线上点的坐标特点得出2x﹣3=3﹣x,进而得出答案.【详解】解:∵点M(2x﹣3,3﹣x),在第一、三象限的角平分线上,∴2x﹣3=3﹣x,解得:x=2,故2x﹣3=1,3﹣x=1,则M点的坐标为:(1,1).故选:C.【点睛】此题主要考查了点的坐标,正确掌握横纵坐标的关系是解题关键.7.B解析:B【分析】把x与y的值代入方程检验即可.【详解】解:A、把31xy=⎧⎨=⎩代入得:左边=15﹣1=14,右边=4,∵左边≠右边,∴31xy=⎧⎨=⎩不是方程的解;B、把11xy=⎧⎨=⎩代入得:左边=5﹣1=4,右边=4,∵左边=右边,∴11xy=⎧⎨=⎩是方程的解;C、把4xy=⎧⎨=⎩代入得:左边=0﹣4=﹣4,右边=4,∵左边≠右边,∴4xy=⎧⎨=⎩不是方程的解;D、把13xy=⎧⎨=⎩代入得:左边=5﹣3=2,右边=4,∵左边≠右边,∴13xy=⎧⎨=⎩不是方程的解,故选:B.【点睛】本题主要考查了二元一次方程的解的知识点,准确代入求职是解题的关键.解析:B 【分析】根据同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 逐项判定即可 . 【详解】解:∵527a a a =,∴选项A 计算正确,不符合题意; ∵624a a a ÷=,∴选项B 计算不正确,符合题意; 2222a a a ,∴选项C 计算正确,不符合题意;428()a a =,∴选项D 计算正确,不符合题意;故选:B . 【点睛】此题主要考查了同底数幂的除法、 乘法, 合并同类项的方法, 以及幂的乘方与积的乘方的运算方法, 要熟练掌握 .9.D解析:D 【分析】根据三角形的三边关系:任意两边之和大于第三边,两边之差小于第三边,即可得答案. 【详解】解:设第三边为xcm ,根据三角形的三边关系:4343x -<<+, 解得:17x <<.故选项ABC 能构成三角形,D 选项1cm 不能构成三角形, 故选:D . 【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,两边之差小于第三边.10.B解析:B 【分析】观察图象,明确每一段行驶的路程、时间,即可做出判断. 【详解】由图可知,当时间为离家20分钟时,李师傅到达单位,所以说法一和说法二正确; 从出发到10分钟时,李师傅的速度为1000÷10=100(米∕分钟),在出发后15分钟到20分钟,李师傅的速度为(2000-1000)÷(20-15)=200(米∕秒),修车后李师傅的速度是修车前的2倍,所以说法三错误;在出发后10分钟到15分钟,李师傅修车用了15-10=5(分钟),所以说法四正确, 故选:B . 【点睛】此题考查了函数的图象,会从图象中提取有效信息,理解因变量与自变量的关系是解答的关键.二、填空题 11.-7 【解析】 【分析】利用配方法把变形为(x-2)-9,则可得到m 和k 的值,然后计算m+k 的值. 【详解】x −4x −5=x −4x+4−4−5 =(x −2) −9, 所以m=2,k=−9, 所以解析:-7 【解析】 【分析】利用配方法把245x x --变形为(x-2)2-9,则可得到m 和k 的值,然后计算m+k 的值. 【详解】x 2−4x−5=x 2−4x+4−4−5 =(x−2) 2−9, 所以m=2,k=−9, 所以m+k=2−9=−7. 故答案为:-7 【点睛】此题考查配方法的应用,解题关键在于掌握运算法则.12.20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积 【详解】 解:如图,向下平移2cm ,即AE=2,解析:20 【分析】如图,向下平移2cm ,即AE=2,再向左平移1cm ,即CF=1,由重叠部分为矩形的面积为DE•DF ,即可求两个正方形重叠部分的面积 【详解】解:如图,向下平移2cm ,即AE=2,则DE=AD-AE=6-2=4cm向左平移1cm ,即CF=1,则DF=DC-CF=6-1=5cm 则S 矩形DEB'F =DE•DF=4×5=20cm 2 故答案为20 【点睛】此题主要考查正方形的性质,平移的性质,关键在理解平移后,图形的位置变化.13.【分析】先连接BE ,则BE∥AM,利用△AME 的面积=△AMB 的面积即可得出 , ,即可得出Sn-Sn-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作 解析:40392【分析】先连接BE ,则BE ∥AM ,利用△AME 的面积=△AMB 的面积即可得出212n S n =,211122n S n n -=-+ ,即可得出S n -S n-1的值,再把n=2020代入即可得到答案 【详解】 如图,连接BE ,∵在线段AC 同侧作正方形ABMN 及正方形BCEF , ∴BE ∥AM ,∴△AME 与△AMB 同底等高,∴△AME 的面积=△AMB 的面积,∴当AB=n 时,△AME 的面积记为212n S n =, 221111(1)222n S n n n -=-=-+ ∴当n ≥2时,221111121()22222n n n S S n n n n ---=--+=-= , ∴S 2020﹣S 2019=220201403922⨯-= , 故答案为:40392. 【点睛】此题主要考查了三角形面积求法以及正方形的性质,根据已知得出正确图形,得出S 与n 的关系是解题关键. 14.4x2y2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy)2=4x2y2.故答案为:4x2y2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.解析:4x 2y 2.【分析】直接利用积的乘方运算法则计算得出答案.【详解】解:(﹣2xy )2=4x 2y 2.故答案为:4x 2y 2.【点睛】本题考查了积的乘方运算,正确掌握运算法则是解题的关键.15.60【解析】【分析】先由AB∥CD,求得∠C 的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E 的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于解析:60【解析】【分析】先由AB∥CD,求得∠C的度数,再根据三角形的外角等于与它不相邻的两内角之和可求∠A+∠E的度数.【详解】∵AB∥CD,∴∠C与它的同位角相等,根据三角形的外角等于与它不相邻的两内角之和,所以∠A+∠E=∠C=60度.故答案为60.【点睛】本题考查了平行线的性质,三角形的外角等于和它不相邻的两个内角的和. ①两直线平行同位角相等;②两直线平行内错角相等;③两直线平行同旁内角互补;④夹在两平行线间的平行线段相等.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.16.6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案解析:6【解析】试题分析:∵AD⊥BC于D,而图中有一边在直线CB上,且以A为顶点的三角形有△ABD、△ABE、△ABC、△ADE、△ADC、△AEC,共6个,∴以AD为高的三角形有6个.故答案为6.点睛:此题主要考查了三角形的高,三角形的高可以在三角形外,也可以在三角形内,所以确定三角形的高比较灵活.17.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a -b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a 2-b 2=(a+b)(a-b),a 2﹣b 2=﹣1,a+b=12, ∴a-b=-1÷12=-2, 故答案为-2. 18.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.19.4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y 轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与解析:4【分析】向左平移3个单位则横坐标减去3纵坐标不变,再根据y轴上点的横坐标为0即可得出答案.【详解】解:由题意得:3a-9-3=0,解得:a=4.故答案为4.【点睛】本题考查了坐标与图形变化-平移.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.同时考查了y轴上的点的坐标特征.20.7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x解析:7【分析】设甲队胜了x场,则平了(10-x)场,根据胜一场得3分,平一场得1分,负一场得0分,比赛10场,得分24分,列出不等式,求出x的最小整数解.【详解】设甲队胜了x场,则平了(10-x)场,由题意得,3x+(10-x)≥24,解得:x≥7,即甲队至少胜了7场.故答案是:7.【点睛】考查了一元一次不等式的应用,解答本题的关键是读懂题意,设出未知数,找出不等关系,列出不等式求解.三、解答题21.(1)374.(2)16x4−8x2+1.【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果; (2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.22.2296x y xy +≥【分析】根据题意直接利用作差法对两个代数式进行大小比较即可.【详解】解:∵x ,y 为任意有理数,22296(3)0x y xy x y +-=-≥,∴2296x y xy +≥.【点睛】本题考查整式加减,注意掌握利用作差法对两个代数式进行大小比较以及配方法的应用是解题的关键.23.(1)每个A 型放大镜和每个B 型放大镜分别为9元,4元;(2)最多可以购买54个A 型放大镜.【分析】(1)根据题意设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,列出方程组即可解决问题;(2)由题意设购买A 型放大镜a 个,列出不等式并进行分析求解即可解决问题.【详解】解:(1)设每个A 型放大镜和每个B 型放大镜分别为x 元,y 元,可得:10015015001201601720x y x y +⎧⎨+⎩==, 解得:94x y =⎧⎨=⎩. 答:每个A 型放大镜和每个B 型放大镜分别为9元,4元.(2)设购买A 型放大镜a 个,根据题意可得:94(75)570a a +⨯-≤,解得:54a ≤.答:最多可以购买54个A 型放大镜.【点睛】本题考查二元一次方程组的应用以及一元一次不等式的应用等知识,解题的关键是理解题意,列出方程组和不等式进行分析解答.24.(1)画图见解析;(2)画图见解析;(3)平行且相等;(4)12;(5)9【分析】(1)利用网格特点和平移的性质分别画出点A 、B 、C 的对应点A′、B′、C′即可得到△A′B′C′;(2)找出线段A′C′的中点E′,连接B′E′;(3)根据平移的性质求解;(4)由于线段AB 扫过的部分为平行四边形,则根据平行四边形的面积公式可求解. (5)根据同底等高面积相等可知共有9个点.【详解】(1)△A ′B ′C ′如图所示;(2)B ′D ′如图所示;(3)BB′∥CC′,BB′=CC′;(4)线段AB 扫过的面积=4×3=12;(5)有9个点.【点睛】本题考查了作图-平移变换:确定平移后图形的基本要素有两个:平移方向、平移距离.作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.25.(1)见详解;(2)2180C AQB ∠+∠=︒;(3)1:2:2【分析】(1)过点C 作CF AD ,则//BE CF ,再利用平行线的性质求解即可; (2)过点Q 作QM AD ,则//BE QM ,再利用平行线的性质以及角平分线的性质得出1()2AQE CBE CAD ∠=∠-∠,再结合(1)的结论即可得出答案; (3)由(2)的结论可得出12CAD CBE ∠=∠,又因为QP PB ⊥,因此180CBE CAD ∠+∠=︒,联立即可求出两角的度数,再结合(1)的结论可得出ACB ∠的度数,再求答案即可.【详解】解:(1)过点C 作CF AD ,则//BE CF ,∵//CF AD BE∴,180,ACF A BCF B ACF BCF C ∠=∠∠=︒-∠∠+∠=∠∴180180180B C A BCF C ACF C C ∠+∠-∠=︒-∠+∠-∠=-∠+∠=︒(2)过点Q 作QM AD ,则//BE QM ,∵QM AD ,//BE QM∴,AQM NAD BQM EBQ ∠=∠∠=∠∵AQ BQ 、分别为DAC EBC ∠∠、的平分线所在直线 ∴11,22NAD CAD EBQ CBE ∠=∠∠=∠ ∴1()2ABQ BQM AQM CBE CAD ∠=∠-∠=∠-∠ ∵180()1802C CBE AD AQB ∠=︒-∠-∠=︒-∠ ∴2180C AQB ∠+∠=︒(3)∵//AC QB ∴11,22AQB CAP CAD ACP PBQ CBE ∠=∠=∠∠=∠=∠ ∴11801802ACB ACP CBE ∠=︒-∠=︒-∠ ∵2180C AQB ∠+∠=︒∴12CAD CBE ∠=∠ ∵QP PB ⊥∴180CBE CAD ∠+∠=︒∴60,120CAD CBE ∠=︒∠=︒∴11801202ACB CBE ∠=︒-∠=︒ ∴::60:120:1201:2:2DAC ACB CBE ∠∠∠=︒︒︒=.故答案为:1:2:2.【点睛】本题考查的知识点有平行线的性质、角平分线的性质.解此题的关键是作出合适的辅助线,找准角与角之间的关系.26.110︒;(1)CPD αβ∠=∠+∠;理由见解析;(2)当点P 在B 、O 两点之间时,CPD αβ∠=∠-∠;当点P 在射线AM 上时,CPD βα∠=∠-∠.【分析】问题情境:理由平行于同一条直线的两条直线平行得到 PE ∥AB ∥CD ,通过平行线性质来求∠APC .(1)过点P 作PQ AD ,得到PQ AD BC 理由平行线的性质得到ADP DPQ ∠=∠,BCP CPQ ∠=∠,即可得到CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)分情况讨论当点P 在B 、O 两点之间,以及点P 在射线AM 上时,两种情况,然后构造平行线,利用两直线平行内错角相等,通过推理即可得到答案.【详解】解:问题情境:∵AB ∥CD ,PEAB∴PE ∥AB ∥CD , ∴∠A+∠APE=180°,∠C+∠CPE=180°,∵∠PAB=130°,∠PCD=120°,∴∠APE=50°,∠CPE=60°,∴∠APC=∠APE+∠CPE=50°+60°=110°;(1)CPD αβ∠=∠+∠过点P 作PQ AD .又因为AD BC ∥,所以PQ AD BC则ADP DPQ ∠=∠,BCP CPQ ∠=∠所以CPD DPQ CPQ ADP BCP αβ∠=∠+∠=∠+∠=∠+∠(2)情况1:如图所示,当点P 在B 、O 两点之间时过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠DPE-∠CPE=∠α-∠β情况2:如图所示,当点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE=∠ADP=∠α,∠CPE=∠BCP=∠β,∴∠CPD=∠CPE-∠DPE=∠β-∠α【点睛】本题主要借助辅助线构造平行线,利用平行线的性质进行推理.27.23x x +-;1-【分析】先通过整式的乘法及乘法公式对原式进行去括号,然后通过合并同类项进行计算即可化简原式,再将2x =-代入即可得解.【详解】解:原式222221343x x x x x x x =-+-++-=+-将2x =-代入,原式2(2)(2)34231=-+--=--=-.【点睛】本题主要考查了整式的混合运算,熟练掌握整式的乘法公式及合并同类项的运算方法是解决本题的关键.28.(1)图见详解;(2)平行且相等;(3)图见详解;(4)28.【分析】(1)根据图形平移的性质画出△A B C '''即可;(2)根据平移的性质可得出AC 与A C ''的关系;(3)先取AB 的中点E ,再连接CE 即可;(4)线段AC 扫过的面积为平行四边形AA C C ''的面积,根据平行四边形的底为4,高为7,可得线段AC 扫过的面积.【详解】解:(1)如图所示,△A B C '''即为所求;(2)由平移的性质可得,AC 与A C ''的关系是平行且相等;故答案为:平行且相等;(3)如图所示,线段CE 即为所求;(4)如图所示,连接AA ',CC ',则线段AC 扫过的面积为平行四边形AA C C ''的面积,由图可得,线段AC 扫过的面积4728=⨯=.故答案为:28.【点睛】本题主要考查了利用平移变换进行作图,作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.。

部编数学七年级下册专题11平面直角坐标系中利用点的坐标变化规律探究问题(解析版)含答案

部编数学七年级下册专题11平面直角坐标系中利用点的坐标变化规律探究问题(解析版)含答案

专题11 平面直角坐标系中利用点的坐标变化规律探究问题(解析版)第一部分典例精析类型一点的运动规律探究(1)沿坐标轴运动的点的坐标规律探究1.(2022•丛台区开学)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,1),(3,0),(3,﹣1)…,根据这个规律探索可得,第10个点的坐标为 ,第55个点的坐标为 .思路引领:从图中可以看出横坐标为1的有一个点,横坐标为2的有2个点,横坐标为3的有3个点,…依此类推横坐标为n的有n个点.题目要求写出第10个点和第55个点的坐标,我们可以通过加法计算算出第10个点和第50个点分别位于第几列第几行,然后对应得出坐标规律,将行列数代入规律式.解:在横坐标上,第一列有一个点,第二列有2个点…第n列有n个点,并且奇数列点数对称而偶数列点数y轴上方比下方多一个,∵1+2+3+4=10,1+2+3+…+10=55,∴第10个点在第4列自下而上第4行,所以奇数列的坐标为(n,n−12)(n,n−12−1)…(n,1−n2);偶数列的坐标为(n,n2)(n,n2−1)…(n,1−n2),由加法推算可得到第55个点位于第10列自下而上第10行.代入上式得第10个点的坐标为(4,2),第55个点的坐标为(10,5),故答案为:(4,2),(10,5).总结提升:本题是对点的变化规律的考查,观察得到横坐标相等的点的个数与横坐标相同是解题的关键,还要注意横坐标为奇数和偶数时的排列顺序不同.2.(2022•麻城市校级模拟)如图,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒π2个单位长度,则第2022秒时,点P的坐标是 .思路引领:计算P点运动过程中走一个半圆所用的时间,根据规律即可求得第2022秒P点位置.解:由题意可知,点P运动一个半圆所用的时间为:π÷π2=2(秒),∵2022=1011×2,∴2022秒时,P在第1011个半圆的最末尾处,∴点P的坐标为(2022,0).故答案为:(2022,0).总结提升:本题主要考查的是坐标系中的规律探究问题,找出运动规律的同时也要考虑坐标系位置是解题的关键.3.(2021春•洛龙区期中)在平面直角坐标系中,一只蚂蚁从原点O出发,按“向上→向右→向下→向右”的方向依次不断移动,每次移动1个单位长度,其移动路线如图所示,第一次移动到点A1,第二次移动到点A2,…,第n次移动到点A n,则点A2021的坐标是( )A.(1010,0)B.(1010,1)C.(1009,0)D.(1009,1)思路引领:观察图形可知,A4,A8,…都在x轴上,求出OA4,OA8,…OA4n的长度,然后写出坐标即可;根据以上规律写出点A4n的坐标即可求出点A2020的坐标,则A2021点的坐标即可求出.解:由图可知,A4,A8,…都在x轴上,蚂蚁每次移动1个单位,∴OA4=2,OA8=4,…OA4n=2n,∴点A4n的坐标为(2n,0),∴点A2020的坐标为(1010,0),∴A2021(1010,1),故选:B.总结提升:本题主要考查了点的变化规律,仔细观察图形,确定出点A 4n 都在x 轴上是解题的关键.(2)绕定点呈“回”字形运动的点的坐标变化规律4.如图是一回形图,其回形通道的宽和OB 的长均为1, 回形线与射线OA 交于A 1,A 2,A 3,….若从O点到A 1点的回形线为第1圈(长为7),从A 1点到A 2点的回形线为第2圈,…,依此类推.则第10圈的长为 .思路引领:如图,以点O 为原心,建立平面直角坐标系,则A 1,A 2,A 3,…的坐标分别为(-1,0),(-2,0),(-3,0),…,A 10的坐标为(-10,0),然后大致描出第10圈的形状,很轻松求出第10圈的长.解:观察图形发现:第一圈的长是2(1+2)+1=7;第二圈的长是2(3+4)+1=15;第三圈的长是2(5+6)+1=23;则第n 圈的长是2(2n-1+2n )+1=8n-1.当n=10时,原式=80-1=79.故答案为79.题眼直击:坐标表示图形,规律探究.总结提升:依次计算第一圈长,第二圈长,……,探究这几个数的一般规律性,然后应用规律求出第10圈.5.(2022•金凤区校级二模)如图,在平面直角坐标系中,从点P 1(﹣1,0),P 2(﹣1,﹣1),P 3(1,﹣1),P 4(1,1),P 5(﹣2,1),P 6(﹣2,﹣2),…依次扩展下去,则P 2022的坐标为 .思路引领:根据题意可得到规律,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),再根据规律求解即可.解:根据题意可得到规律,P1(﹣1,0),P2(﹣1,﹣1),P3(1,﹣1),P4(1,1),P5(﹣2,1),P6(﹣2,﹣2),P7(2,﹣2),P8(2,2),P12(3,3),P16(4,4),...,P4n(n,n),P4n+1(﹣n﹣1,n),P4n+2(﹣n﹣1,﹣n﹣1),P4n+3(n+1,﹣n﹣1),∵2022=4×505+2,∴P2022(﹣506,﹣506),故答案为:(﹣506,﹣506).总结提升:本题主要考查规律型:点的坐标,读懂题意,找出点的坐标规律是解答此题的关键.类型二图形变换的点的坐标规律探究6.(2018春•兴城市期末)如图,在平面直角坐标系中,第一次将三角形OAB变换成三角形OA1B1,第二次将三角形OA1B1换成三角形OA2B2,第三次将三角形OA2B2换成三角形OA3B3,……,若A(﹣3,1),A1(﹣3,2),A2(﹣3,4),A3(﹣3,8),点B(0,2),B1(0,4),B2(0,6),B3(0,8),按这样的规律,将三角形OAB进行2018次变换,得到三角形OA2018B2018,则A2018的坐标是 .思路引领:探究规律后利用规律即可解决问题;解:∵A 1(﹣3,2),A 2 (﹣3,4),A 3(﹣3,8);∴A 点横坐标为﹣3,纵坐标依次为:2,22,23,…得出:A n (﹣3,2n ),∴n =2018时,A 2018(﹣3,22018),故答案为(﹣3,22018)总结提升:此题主要考查了规律型:点的坐标,根据题意得出A ,B 点横纵坐标变化规律是解题关键.7.12.如图,在直角坐标系中,第一次将三角形OAB 变换成三角形OA 1B 1第二次将OA 1B 1变换成三角形OA 2B 2,第三次将三角形OA 2B 2变换成三角形OA 3B 3,已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),B(2,0),B 1(4,0),B 2(8,0),B 3(16,0).(1)求三角形OAB 的面积;(2)写出三角形OA 4B 4的各个顶点的坐标;(3)按此图形变化规律,你能写出三角形OA n B n 的面积与三角形OAB 的面积的大小关系吗?解:(1)S 三角形OAB =12×2×3=3;(2)根据图示知O 的坐标是(0,0);已知A(1,3),A 1(2,3),A 2(4,3),A 3(8,3),对于A 1,A 2…A n 坐标找规律比较从而发现A n 的横坐标为2n ,而纵坐标都是3;同理B 1,B 2…B n 也一样找规律,规律为B n 的横坐标为2n +1,纵坐标为0.由上规律可知:A 4的坐标是(16,3),B 4的坐标是(32,0);综上所述,O(0,0),A 4(16,3),B 4(32,0);(3)根据规律,后一个三角形的底边是前一个三角形底边的2倍,高相等都是4,所以OB n =2n +1,S 三角形OA n B n =12×2n +1×3=3×2n =2n S 三角形OAB ,即S 三角形A n B n =2n S 三角形OAB 。

2022—2023年人教版七年级数学下册期末模拟考试【加答案】

2022—2023年人教版七年级数学下册期末模拟考试【加答案】

2022—2023年人教版七年级数学下册期末模拟考试【加答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知两个有理数a ,b ,如果ab <0且a+b >0,那么( )A .a >0,b >0B .a <0,b >0C .a 、b 同号D .a 、b 异号,且正数的绝对值较大2.如图,在OAB 和OCD 中,,,,40OA OB OC OD OA OC AOB COD ==>∠=∠=︒,连接,AC BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠.其中正确的个数为( ).A .4B .3C .2D .13.已知x+y =﹣5,xy =3,则x 2+y 2=( )A .25B .﹣25C .19D .﹣194.如图,已知△ABC ,AB <BC ,用尺规作图的方法在BC 上取一点P ,使得PA+PC =BC ,则下列选项正确的是( )A .B .C .D .5.如图,有一块含有30°角的直角三角形板的两个顶点放在直尺的对边上.如果∠2=44°,那么∠1的度数是( )A .14°B .15°C .16°D .17°6.下列解方程去分母正确的是( )A .由1132x x --=,得2x ﹣1=3﹣3xB .由2124x x --=-,得2x ﹣2﹣x =﹣4 C .由135y y -=,得2y-15=3y D .由1123y y +=+,得3(y+1)=2y+6 7.如图,△ABC 的面积为3,BD :DC =2:1,E 是AC 的中点,AD 与BE 相交于点P ,那么四边形PDCE 的面积为( )A .13B .710C .35D .1320 8.计算()22b a a -⨯的结果为( ) A .bB .b -C . abD .b a 9.已知23a b =(a ≠0,b ≠0),下列变形错误的是( ) A .23a b = B .2a=3b C .32b a = D .3a=2b 10.下列判断正确的是( )A .任意掷一枚质地均匀的硬币10次,一定有5次正面向上B .天气预报说“明天的降水概率为40%”,表示明天有40%的时间都在降雨C .“篮球队员在罚球线上投篮一次,投中”为随机事件D .“a 是实数,|a|≥0”是不可能事件二、填空题(本大题共6小题,每小题3分,共18分)1.已知(a +1)2+|b +5|=b +5,且|2a -b -1|=1,则ab =___________.2.珠江流域某江段江水流向经过B 、C 、D 三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=__________度.3.如图,AB ∥CD ,则∠1+∠3—∠2的度数等于 __________.4.若()2320m n -++=,则m+2n 的值是________.5.有三个互不相等的整数a,b,c ,如果abc=4,那么a+b+c=__________6.已知一组从小到大排列的数据:2,5,x ,y ,2x ,11的平均数与中位数都是7,则这组数据的众数是________. 三、解答题(本大题共6小题,共72分)1.解方程:(1)()1236365x x --=+ (2)0.80.950.30.20.520.3x x x ++-=+2.已知方程组351ax by x cy +=⎧⎨-=⎩,甲正确地解得23x y =⎧⎨=⎩,而乙粗心地把C 看错了,得36x y =⎧⎨=⎩,试求出a ,b ,c 的值.3.如图1,BC ⊥AF 于点C ,∠A +∠1=90°.(1)求证:AB∥DE;(2)如图2,点P从点A出发,沿线段AF运动到点F停止,连接PB,PE.则∠ABP,∠DEP,∠BPE三个角之间具有怎样的数量关系(不考虑点P与点A,D,C重合的情况).并说明理由.4.尺规作图:校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P.(不写画图过程,保留作图痕迹)5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A 型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.(1)求A型空调和B型空调每台各需多少元;(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B 型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、B3、C4、B5、C6、D7、B8、A9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、2或4.2、203、180°4、-15、-1或-46、5三、解答题(本大题共6小题,共72分)1、(1)209-;(2)13x=.2、a=3,b=﹣1,c=3.3、(1)略(2)∠BPE=∠DEP﹣∠ABP,略.4、略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)A型空调和B型空调每台各需9000元、6000元;(2)共有三种采购方案,方案一:采购A型空调10台,B型空调20台,方案二:采购A型空调11台,B型空调19台,案三:采购A型空调12台,B型空调18台;(3)采购A型空调10台,B型空调20台可使总费用最低,最低费用是210000元.。

(完整版)人教版七年级数学下册期末模拟试卷及答案

(完整版)人教版七年级数学下册期末模拟试卷及答案

(完整版)人教版七年级数学下册期末模拟试卷及答案一、选择题1.小红问老师的年龄有多大时,老师说:“我像你这么大时,你才4岁,等你像我这么大时,我就49岁了,设老师今年x 岁,小红今年y 岁”,根据题意可列方程为( )A .449x y y x y x -=+⎧⎨-=+⎩B .449x y y x y x -=+⎧⎨-=-⎩C .449x y y x y x -=-⎧⎨-=+⎩D .449x y y x y x -=-⎧⎨-=-⎩2.下列方程中,是二元一次方程的是( ) A .x ﹣y 2=1B .2x ﹣y =1C .11y x+= D .xy ﹣1=03.将一副三角板(含30°、45°的直角三角形)摆放成如图所示,图中∠1的度数是( )A .90°B .120°C .135°D .150°4.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是( )A .22()()a b a b a b +-=-B .222()a b a b -=-C .2()b a b ab b -=-D .2()ab b b a b -=- 5.将下列三条线段首尾相连,能构成三角形的是( )A .1,2,3B .2,3,6C .3,4,5D .4,5,96.已知关于x ,y 的方程x 2m ﹣n ﹣2+4y m+n +1=6是二元一次方程,则m ,n 的值为( ) A .m =1,n =-1B .m =-1,n =1C .14m ,n 33==- D .14,33m n =-=7.已知a 、b 、c 是△ABC 的三条边长,化简|a +b -c|-|c -a -b|的结果为( ) A .2a +2b -2c B .2a +2bC .2cD .08.如图,△ABC 的面积是12,点D 、E 、F 、G 分别是BC 、AD 、BE 、CE 的中点,则△AFG 的面积是( )A .4.5B .5C .5.5D .6 9.七边形的内角和是( )A .360°B .540°C .720°D .900°10.下列调查中,适宜采用全面调查方式的是( ) A .考察南通市民的环保意识 B .了解全国七年级学生的实力情况 C .检查一批灯泡的使用寿命 D .检查一枚用于发射卫星的运载火箭的各零部件二、填空题11.分解因式:29a -=__________.12.若二次三项式x 2+kx+81是一个完全平方式,则k 的值是 ________. 13.已知一个多边形的每个外角都是24°,此多边形是_________边形. 14.已知23x y +=,用含x 的代数式表示y =________.15.计算:23()a =____________.16.小明在将一个多边形的内角逐个相加时,把其中一个内角多加了一次,错误地得到内角和为840°,则这个多边形的边数是___________. 17.()a b -+(__________) =22a b -.18.如图,1∠、2∠、3∠、4∠是五边形ABCDE 的4个外角,若120A ∠=︒,则1234∠+∠+∠+∠=_______°.19.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________. 20.若a +b =4,a ﹣b =1,则(a +1)2﹣(b ﹣1)2的值为_____.三、解答题21.计算:(1)2201(2)3()3----÷- (2)22(21)(21)x x -+22.计算: (1)(y 3)3÷y 6; (2)2021()(3)2π--+-.23.解方程组:41 325 x yx y+=⎧⎨-=⎩.24.若规定acbd=a﹣b+c﹣3d,计算:223223xy xx---2574xy xxy-+-+的值,其中x=2,y=﹣1.25.(问题背景)(1)如图1的图形我们把它称为“8字形”,请说理证明∠A+∠B=∠C+∠D(简单应用)(2)如图2,AP、CP分别平分∠BAD、∠BCD,若∠ABC=28°,∠ADC=20°,求∠P的度数(可直接使用问题(1)中的结论)(问题探究)(3)如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,若∠A=30°,∠C=18°,则∠P的度数为(拓展延伸)(4)在图4中,若设∠C =x ,∠B =y ,∠CAP =14∠CAB ,∠CDP =14∠CDB ,试问∠P 与∠C 、∠B 之间的数量关系为 (用x 、y 表示∠P )(5)在图5中,BP 平分∠ABC ,DP 平分∠ADC 的外角∠ADE ,猜想∠P 与∠A 、∠C 的关系,直接写出结论 .26.如图,△ABC 中,AE 是△ABC 的角平分线,AD 是BC 边上的高. (1)若∠B =35°,∠C =75°,求∠DAE 的度数;(2)若∠B =m °,∠C =n °,(m <n ),则∠DAE = °(直接用m 、n 表示).27.如图,已知ABC 中,,AD AE 分别是ABC 的高和角平分线.若44B ∠=︒,12DAE ∠=︒,求C ∠的度数.28.计算:(1)0201711(2)(1)()2--+--;(2)()()()3243652a a a +-•-【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据题设老师今年x 岁,小红今年y 岁,根据题意列出方程组解答即可. 【详解】解:老师今年x 岁,小红今年y 岁,可得:449x y y xyx,故选:D . 【点睛】此题考查了二元一次方程组的应用和理解题意能力,关键是知道年龄差是不变的量从而可列方程求解.2.B解析:B 【解析】 【分析】根据二元一次方程的定义:含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.据此逐一判断即可得. 【详解】解:A .x-y 2=1不是二元一次方程; B .2x-y=1是二元一次方程;C .1x+y =1不是二元一次方程; D .xy-1=0不是二元一次方程; 故选B . 【点睛】本题考查二元一次方程的定义,解题的关键是掌握含有两个未知数,并且含有未知数的项的次数都是1,像这样的整式方程叫做二元一次方程.3.B解析:B 【详解】解:根据题意得:∠1=180°-60°=120°.【点睛】本题考查直角三角板中的角度的计算,难度不大.4.A解析:A 【分析】根据长方形的面积=长⨯宽,分别表示出甲乙两个图形的面积,即可得到答案. 【详解】解:()()=S a b a b +-甲,()()2222==S a a b b a b a ab ab b a b -+-=-+--乙.所以()()a b a b +-22=a b - 故选A . 【点睛】本题考查平方差公式,难度不大,通过计算两个图形的面积即可顺利解题.5.C解析:C 【分析】构成三角形的三边应满足:任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形,根据该定则,就可判断选项正误. 【详解】解:A 选项:1+2=3,两边之和没有大于第三边,∴无法组成三角形; B 选项:2+3<6,两边之和没有大于第三边,∴无法组成三角形;C 选项:3+4>5,两边之和大于第三边,且满足两边之差小于第三边,∴可以组成三角形;D 选项:4+5=9,两边之和没有大于第三边,∴无法组成三角形, 故选:C . 【点睛】本题主要考察了三角形的三边关系定则:在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,只有同时满足以上的两个条件,才能构成三角形.6.A解析:A 【分析】根据二元一次方程的概念列出关于m 、n 的方程组,解之即可. 【详解】∵关于x ,y 的方程x 2m ﹣n ﹣2+4y m +n +1=6是二元一次方程, ∴22111m n m n --=⎧⎨++=⎩即230m n m n -=⎧⎨+=⎩,解得:11m n =⎧⎨=-⎩, 故选:A .本题考查了二元一次方程的定义、解二元一次方程组,理解二元一次方程的定义,熟练掌握二元一次方程组的解法是解答的关键.7.D解析:D【解析】试题解析:∵a、b、c为△ABC的三条边长,∴a+b-c>0,c-a-b<0,∴原式=a+b-c+(c-a-b)=0.故选D.考点:三角形三边关系.8.A解析:A【解析】试题分析:∵点D,E,F,G分别是BC,AD,BE,CE的中点,∴AD是△ABC的中线,BE是△ABD的中线,CF是△ACD的中线,AF是△ABE的中线,AG 是△ACE的中线,∴△AEF的面积=×△ABE的面积=×△ABD的面积=×△ABC的面积=,同理可得△AEG的面积=,△BCE的面积=×△ABC的面积=6,又∵FG是△BCE的中位线,∴△EFG的面积=×△BCE的面积=,∴△AFG的面积是×3=,故选A.考点:三角形中位线定理;三角形的面积.9.D解析:D【分析】n边形的内角和是(n﹣2)•180°,把多边形的边数代入公式,就得到多边形的内角和.【详解】(7﹣2)×180°=900°.故选D.【点睛】本题考查了多边形的内角和与外角和定理,解决本题的关键是正确运用多边形的内角和公式,是需要熟记的内容.10.D解析:D 【分析】调查方式的选择需要将全面调查的局限性和抽样调查的必要性结合起来,具体问题具体分析,全面调查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择全面调查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,全面调查就受到限制,这时就应选择抽样调查. 【详解】解:A 、考察南通市民的环保意识,人数较多,不适合全面调查; B 、了解全国七年级学生的实力情况,人数较多,不适合全面调查; C 、检查一批灯泡的使用寿命,数量较多,且具有破坏性,不适合全面调查; D 、检查一枚用于发射卫星的运载火箭的各零部件,较为严格,必须采用全面调查, 故选D. 【点睛】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果和普查得到的调查结果比较近似.二、填空题11.【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a2-32,符合平方差公式的特点 解析:()()33a a +-【解析】试题分析:本题考查实数范围内的因式分解,因式分解的步骤为:一提公因式;二看公式.在实数范围内进行因式分解的式子的结果一般要分到出现无理数为止.先把式子写成a 2-32,符合平方差公式的特点,再利用平方差公式分解因式. a 2-9=a 2-32=(a+3)(a-3). 故答案为(a+3)(a-3). 考点:因式分解-运用公式法.12.【分析】由是完全平方式,得到从而可得答案. 【详解】 解:方法一、方法二、 由是完全平方式, 则有两个相等的实数根, ,故答案为: 【点睛】本题考查的是完全平方式 解析:18±【分析】由281x kx ++是完全平方式,得到()22819,x kx x ++=±从而可得答案. 【详解】 解:方法一、()2222281991881,x kx x kx x x x ++=++=±=±+ 18,kx x ∴=±18.k ∴=± 方法二、由281x kx ++是完全平方式,则2810x kx ++=有两个相等的实数根,240,b ac ∴=-=1,,81,a b k c ===241810,k ∴-⨯⨯=2481k ∴=⨯,18.k ∴=±故答案为:18.± 【点睛】本题考查的是完全平方式的特点,掌握完全平方式的特点,特别是积的二倍项的特点是解题的关键.13.十五 【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°24=15故答案:十五【点睛】此题主解析:十五【分析】任何多边形的外角和是360°,用外角和除以每个外角的度数即可得到边数.【详解】多边形的外角和是360°,每个外角的度数是24°360°÷24=15故答案:十五【点睛】此题主要考查了多边形的外角和,关键是掌握任何多边形的外角和都是360°,已知每个外角度数就可以求出多边形边数.14.y=3-2x【解析】移项得:y=3-2x.故答案是:y=3-2x.解析:y=3-2x【解析】+=23x y移项得:y=3-2x.故答案是:y=3-2x.15..【分析】直接根据积的乘方运算法则进行计算即可.【详解】.故答案为:.【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.-.解析:6a【分析】直接根据积的乘方运算法则进行计算即可.【详解】233236a a a.()=(1)()-.故答案为:6a【点睛】此题主要考查了积的乘方,熟练掌握运算法则是解答此题的关键.16.6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边解析:6【分析】设这个多边形的边数是n,重复计算的内角的度数是x,根据多边形的内角和公式(n﹣2)•180°可知,多边形的内角度数是180°的倍数,然后利用数的整除性进行求解【详解】解:设这个多边形的边数是n,重复计算的内角的度数是x,则(n﹣2)•180°=840°﹣x,n=6…120°,∴这个多边形的边数是6,故答案为:6.【点睛】本题考查了多边形的内角和公式,正确理解多边形角的大小的特点,以及多边形的内角和定理是解决本题的关键.17.【分析】根据平方差公式即可求出答案.【详解】解:,故答案为:.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.解析:a b--【分析】根据平方差公式即可求出答案.【详解】解:()2222()()a b a b a b a b -+--==---,故答案为:a b --.【点睛】本题考查了平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型. 18.【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边解析:300【详解】解:由题意得,∠A 的外角=180°-∠A=60°,又∵多边形的外角和为360°,∴∠1+∠2+∠3+∠4=360°-∠A 的外角=300°.故答案为:300.【点睛】本题考查多边形外角性质,补角定义.19.【分析】首先求得方程的解,然后将代入到方程中,即可求得.【详解】解:,移项,得,合并同类项,得,系数化为1,得,∵两方程同解,那么将代入方程,得,移项,得,系数化为1,得.故 解析:12【分析】首先求得方程23x x =-的解x ,然后将x 代入到方程4232x m x -=+中,即可求得m .【详解】解:23x x =-,移项,得23x x -=-,合并同类项,得3x -=-,系数化为1,得=3x ,∵两方程同解,那么将=3x 代入方程4232x m x -=+,得12211m -=,移项,得21m -=-,系数化为1,得12m =. 故12m =. 【点睛】 本题考查含有参数的一元一次方程同解问题,难度不大,真正理解方程的解的含义是顺利解题的关键.20.12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a +b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b解析:12【分析】对所求代数式运用平方差公式进行因式分解,然后整体代入求值.【详解】解:∵a+b =4,a ﹣b =1,∴(a+1)2﹣(b ﹣1)2=(a+1+b ﹣1)(a+1﹣b+1)=(a+b )(a ﹣b+2)=4×(1+2)=12.故答案是:12.【点睛】本题考查了公式法分解因式,属于基础题,熟练掌握平方差公式的结构特征即可解答.三、解答题21.(1)374-.(2)16x 4−8x 2+1. 【分析】(1)原式利用负整数指数幂,零指数幂、平方的计算法则得到1914--÷,再计算即可得到结果;(2)原式逆用积的乘方运算法则变形,再利用平方差公式及完全平方公式化简即可得到结果.【详解】(1)2201(2)3()3----÷-= 1914--÷=374-. (2)原式=[(2x−1)(2x +1)]2=(4x 2−1)2=16x 4−8x 2+1.【点睛】本题考查零指数幂、负整数指数幂 、平方差公式及完全平方公式,熟练掌握运算法则是解本题的关键.22.(1)y 3;(2)12.【分析】(1)先计算幂的乘方,然后计算同底数幂除法;(2)分别利用负整数指数幂、零次幂、乘方计算,然后合并.【详解】解:(1)原式=y 9÷y 6=y 3;(2)原式=4﹣1+9=12.【点睛】本题考查了整式的运算与实数的运算,熟练运用公式是解题的关键.23.11717x y ⎧=⎪⎪⎨⎪=-⎪⎩【分析】直接利用加减消元法解方程组即可.【详解】41325x y x y +=⎧⎨-=⎩①②由+2⨯①②得:7x=11, 解得117x =,把117x=代入方程①得:17y=-,故原方程组的解为:11717 xy⎧=⎪⎪⎨⎪=-⎪⎩.【点睛】本题考查了解二元一次方程组,熟练掌握加减消元法解二元一次方程组是解本题的关键. 24.﹣5x2﹣4xy+18,6.【分析】将原式利用题中的新定义化简得到最简结果,把x与y的值代入计算即可求值.【详解】原式=(3xy﹣2x2)﹣(﹣5xy+x2)+(﹣2x2﹣3)﹣3(﹣7+4xy)=3xy﹣2x2+5xy﹣x2﹣2x2﹣3+21﹣12xy=﹣5x2﹣4xy+18,当x=2,y=﹣1时,原式=﹣20+8+18=6.【点睛】本题考查了整式的混合运算—化简求值,熟练掌握运算法则是解题的关键.25.(1)证明见解析;(2)24°;(3)24°;(4)∠P=34x+14y;(5)∠P=180()2A C︒-∠+∠【分析】(1)根据三角形内角和为180°,对顶角相等,即可证得∠A+∠B=∠C+∠D(2)由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②,将两个式子相加,已知AP、CP分别平分∠BAD、∠BCD,可得∠BAP=∠PAD,∠BCP=∠PCD,可证得∠P=12(∠ABC+∠ADC),即可求出∠P度数.(3)已知直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,可得∠1=∠2,∠3=∠4,由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1,∠A+∠4=∠P+∠2,两式相加即可求出∠P的度数.(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB,34∠CAB+∠P=∠B+34∠CDB,第一个式子乘以3,得到的式子减去第二个式子即可得出用x、y表示∠P(5)延长AB交DP于点F,标注出∠1,∠2,∠3,∠4,由(1)的结论得:∠A+2∠1=∠C+180°-2∠3,其中根据对顶角相等,三角形内角和,以及外角的性质即可得到∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P,代入∠A+2∠1=∠C+180°-2∠3,即可得出∠P与∠A、∠C的关系.【详解】(1)如图1,∠A+∠B+∠AOB=∠C+∠D+∠COD=180°∵∠AOB=∠COD∴∠A+∠B=∠C+∠D(2)∵AP、CP分别平分∠BAD、∠BCD∴∠BAP=∠PAD,∠BCP=∠PCD,由(1)的结论得:∠BCP+∠P=∠BAP+∠ABC①,∠PAD+∠P=∠PCD+∠ADC②①+②,得2∠P+∠PAD+∠BCP=∠BAP+∠ABC +∠PCD+∠ADC∴∠P=12(∠ABC+∠ADC)∴∠ABC=28°,∠ADC=20°∴∠P=12(28°+20°)∴∠P=24°故答案为:24°(3)∵如图3,直线BP平分∠ABC的外角∠FBC,DP平分∠ADC的外角∠ADE,∴∠1=∠2,∠3=∠4由(1)的结论得:∠C+180°-∠3=∠P+180°-∠1①,∠A+∠4=∠P+∠2②①+②,得∠C+180°-∠3+∠A+∠4=∠P+180°-∠1+∠P+∠2∴30°+18°=2∠P∴∠P=24°故答案为:24°(4)由(1)的结论得:14∠CAB+∠C=∠P+14∠CDB①,34∠CAB+∠P=∠B+34∠CDB②①×3,得34∠CAB+3∠C=3∠P+34∠CDB③②-③,得∠P-3x=y-3∠P∴∠P=34x+14y故答案为:∠P=34x+14y(5)如图5所示,延长AB交DP于点F由(1)的结论得:∠A+2∠1=∠C+180°-2∠3∵∠1=∠PBF=180°-∠BFP-∠P=180°-(∠A+∠3)-∠P ∴∠A+360°-2∠A-2∠3-2∠P=∠C+180°-2∠3解得:∠P=180()2A C︒-∠+∠故答案为:∠P=180()2A C︒-∠+∠【点睛】本题是考查了角平分线性质及三角形内角和定理,对顶角相等,三角形任一外角等于不相邻的两个内角和等知识点,本题是典型的拓展延伸题,一般第一问得出基本结论,后面的问题将基本结论作为解题基础,进行拓展延伸.26.(1)20°;(2)11 22 n m-【分析】(1)根据∠DAE=∠EAC﹣∠DAC,求出∠EAC,∠DAC即可.(2)计算方法与(1)相同.【详解】解:(1)∵∠B=35°,∠C=75°,∴∠BAC=180°﹣35°﹣75°=70°,∵AE平分∠BAC,∴∠CAE=12∠CAB=35°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣75°=15°,∴∠DAE=∠EAC﹣∠DAC=35°﹣15°=20°.(2)∵∠B=m°,∠C=n°,∴∠BAC=180°﹣m°﹣n°,∵AE平分∠BAC,∴∠CAE=12∠CAB=90°﹣(12m)°﹣(12n)°,∵AD⊥BC,∴∠ADC=90°,∴∠DAC=90°﹣n°,∴∠DAE=∠EAC﹣∠DAC=(12n﹣12m)°,故答案为:(12n﹣12m).【点睛】本题考查三角形内角和定理角平分线的定义,三角形的高的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.27.68︒【分析】根据已知首先求得∠BAD的度数,进而可以求得∠BAE,而∠CAE=∠BAE,在△ACD中利用内角和为180°,即可求得∠C.【详解】解:∵AD是△ABC的高,∠B=44︒,∴∠ADB=∠ADC =90︒,在△ABD 中,∠BAD=180︒-90︒-44︒=46︒,又∵ AE 平分∠BAC ,∠DAE=12︒,∴∠CAE=∠BAE=46︒-12︒=34︒,而∠CAD=∠CAE-∠DAE=34︒-12︒=22︒,在△ACD 中,∠C=180︒-90︒-22︒=68︒.故答案为68︒.【点睛】本题考查三角形中角度的计算,难度一般,熟记三角形内角和为180°是解题的关键.28.(1)-2(2)12a【分析】(1)根据零指数幂和负指数幂的运算法则进行化简即可求解;(2)根据幂的运算法则即可求解.【详解】(1)0201711(2)(1)()2--+-- =1-1-2=-2(2)()()()3243652a a a +-•- =()126654a a a+•-=121254a a -=12a .【点睛】 此题主要考查实数与幂的运算,解题的关键是熟知其运算法则.。

数学人教版七年级下册数学期末模拟考试试卷及答案

数学人教版七年级下册数学期末模拟考试试卷及答案

数学人教版七年级下册数学期末模拟考试试卷及答案一、选择题1.已知关于x ,y 的方程组03210ax by ax by +=⎧⎨-=⎩的解为21x y =⎧⎨=-⎩,则a ,b 的值是( ) A .12a b =⎧⎨=⎩ B .21a b =⎧⎨=⎩ C .12a b =-⎧⎨=-⎩ D .21a b =⎧⎨=-⎩2.把多项式228x -分解因式,结果正确的是( )A .22(8)x -B .22(2)x -C .D .42()x x x- 3.a 5可以等于( )A .(﹣a )2•(﹣a )3B .(﹣a )•(﹣a )4C .(﹣a 2)•a 3D .(﹣a 3)•(﹣a 2) 4.下列从左到右的变形,是因式分解的是( ) A .()()23x 3x 9x -+=- B .()()()()y 1y 33y y 1+-=-+C .()24yz 2y z z 2y 2z zy z -+=-+D .228x 8x 22(2x 1)-+-=--5.将下列三条线段首尾相连,能构成三角形的是( ) A .1,2,3B .2,3,6C .3,4,5D .4,5,9 6.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 7.如图,下列条件:13241804523623∠=∠∠+∠=∠=∠∠=∠∠=∠+∠①,②,③,④,⑤中能判断直线12l l 的有( )A .5个B .4个C .3个D .2个 8.若一个多边形的每个内角都等于与它相邻外角的2倍,则它的边数为( ) A .4B .5C .6D .8 9.七边形的内角和是( )A .360°B .540°C .720°D .900° 10.若关于x 的一元一次不等式组202x m x m -<⎧⎨+>⎩无解,则m 的取值范围是( )A .23m ≤B .23m <C .23m ≥D .23m > 二、填空题11.不等式1x 2x 123>+-的非负整数解是______. 12.若24x mx ++是完全平方式,则m =______. 13.如果42x -与231x mx ++的乘积中不含x 2项,则m=______________.14.实数x ,y 满足方程组2728x y x y +=⎧⎨+=⎩,则x +y =_____. 15.一艘船从A 港驶向B 港的航向是北偏东25°,则该船返回时的航向应该是_______.16.已知x 2+2kx +9是完全平方式,则常数k 的值是____________.17.1111111111112018201920182019202020182019202020182019⎛⎫⎛⎫⎛⎫⎛⎫--++----+ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭________.18.计算:x (x ﹣2)=_____19.若方程4x ﹣1=3x +1和2m +x =1的解相同,则m 的值为_____.20.已知x 2a +y b ﹣1=3是关于x 、y 的二元一次方程,则ab =_____.三、解答题21.(类比学习)小明同学类比除法240÷16=15的竖式计算,想到对二次三项式x 2+3x +2进行因式分解的方法:15162401 6 8080 0 2221322222 0x x x x x x x x +++++++ 即(x 2+3x +2)÷(x +1)=x +2,所以x 2+3x +2=(x +1)(x +2).(初步应用)小明看到了这样一道被墨水污染的因式分解题:x 2+□x +6=(x +2)(x +☆),(其中□、☆代表两个被污染的系数),他列出了下列竖式:22262 (2)62 0x x x x x x x x +++++-++☆☆☆得出□=___________,☆=_________.(深入研究)小明用这种方法对多项式x2+2x2-x-2进行因式分解,进行到了:x3+2x2-x-2=(x+2)(*).(*代表一个多项式),请你利用前面的方法,列出竖式,将多项式x3+2x2-x-2因式分解.22.如图,大圆的半径为r,直径AB上方两个半圆的直径均为r,下方两个半圆的直径分别为a,b.(1)求直径AB上方阴影部分的面积S1;(2)用含a,b的代数式表示直径AB下方阴影部分的面积S2=;(3)设a=r+c,b=r﹣c(c>0),那么()(A)S2=S1;(B)S2>S1;(C)S2<S1;(D)S2与S1的大小关系不确定;(4)请对你在第(3)小题中所作的判断说明理由.23.己知关于,x y的方程组4325x y ax y a-=-⎧⎨+=-⎩,(1)请用a的代数式表示y;(2)若,x y互为相反数,求a的值.24.先化简,再求值:(a-1)(2a+1)+(1+a)(1-a),其中a=2.25.疫情初期,武汉物资告急,全国一心,各地纷纷运送物资到武汉。

人教版新人教版七年级数学第二学期期末模拟考试卷及答案(二)

人教版新人教版七年级数学第二学期期末模拟考试卷及答案(二)

.人教版七年级数学第二学期期末模拟考试卷及答案(二)(测试时间:100分钟,总分100分)一、选择题.仔细选一选:(每小题2分,计20分,)1、在同一平面内,直线n m 、相交于点O ,且n l //,则直线l 和m 的关系是( )A 、平行B 、相交C 、重合D 、以上都有可能 2、如图1,下列说法一定正确的是( )A 、∠1和∠4是同位角B 、∠2和∠3是内错角C 、∠3和∠4是同旁内角D 、∠5和∠6是同位角3.不等式组⎩⎨⎧+-0201 x x 的解集是( )A、12 x - B、1 x C、x 2- D、无解 [ 图1 ] 4.“a 的2倍减去b 的差不大于-3”用不等式可表示为( ). (A)2a -b <-3(B)2(a -b)<-3(C)2a -b ≤-3(D)2(a -b)≤-35.如图,天平右盘中的每个砝码的质量都是1g ,则物体A 的质量m(g)的取值范围在数轴上可表示为( ).6.足球比赛的记分为:胜一场得3分,平一场得1分,负一场得0分,一队打了14场比赛,负5场,共得19分,那么这个队胜了( ) (A)3场(B)4场(C)5场(D)6场7.用加减法解方程组⎩⎨⎧=-=+823132y x y x 时,要使两个方程中同一未知数的系数相等或相反,有以下四种变形的结果:①⎩⎨⎧=-=+846196y x y x ②⎩⎨⎧=-=+869164y x y x ③⎩⎨⎧-=+-=+1646396y x y x ④⎩⎨⎧=-=+2469264y x y x其中变形正确的是………………………………………………………………()A.①②B.③④C.①③D.②④ 8.“数轴上的点并不都表示有理数,如图中数轴上的点P”,这种说明问题的方式体现的 数学思想方法叫做( ).(A )代入法(B )换元法(C )数形结合(D )分类讨论9.现用甲、乙两种运输车将46吨抗旱物资运往灾区,甲种运输车载重5吨,乙种运输车载重4吨,安排车辆不超过10辆,则甲种运输车至少应安排…………………………( )A .4辆B .5辆C .6辆D .7辆 10.某课外兴趣小组为了解所在地区老年人的健康状况,分别作了四种不同的抽样调查.你认为抽样比较合理的是( ). A .在公园调查了1000名老年人的健康状况 B .在医院调查了1000名老年人的健康状况 C .调查了10名老年邻居的健康状况D .利用派出所的户籍网随机调查了该地区10%的老年人的健康状况 二、填空题.细心填一填:(每空3分,计30分) 11,(天津)已知点P 在第二象限,且到x 轴的距离是2,到y 轴的距离是3,则点P 的坐标为____.12、在同一平面内,两条直线有 种位置关系,分别是 ,如果两条直线a 、b 不相交,那么这两条直线的位置关系一定是 ,记作 。

人教版七年级第二学期期末复习模拟测试题(含答案)

人教版七年级第二学期期末复习模拟测试题(含答案)

人教版七年级第二学期期末复习模拟测试题(含答案)一、选择题 (每题3分,共30分)1. 如图,∠1与∠2是对顶角的是( )2.A. B. C. D. 2.在平面直角坐标系内,点A (-1,2)所在的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限 3. 下列方程属于二元一次方程的是( )A .x -2y=3z B.3y +x=1 C .xy=5 D.4x +y=y+2 4.不等式的解集是( )A .x >3 B.x <3 C .x >2 D.x <2 5.如图,若m ∥n ,∠1=105°,则∠2 = ( ) A.75° B.105° C .95°D.60°6 .下列各数中:3.1415926,38,-0.303003…,-π,25,71-,无理数个数为( )A .2B .3C .4D . 5 7.下列调查中,适合全面调查的是( ) A.对拉林河水质情况的调查 B.对某班45名同学身高的情况调查 C.对灯泡厂的灯泡质量情况的调查D.对中秋节期间市场的月饼质量的情况调查 8. 已知方程组的解x ,y 满足3y+x ≥0,则的取值范围是( )A .≥- B.≥C.≥1D.-≤19. 为了丰富学生课外小组活动,培养学生动手操作能力,老师让学生把5m 长的5题图21n m彩绳截成2m 或1m 的彩绳用来做手工编织,在不造成浪费的前提下,你有几种不同的截法( )A.1B.2C.3D.4 10.下列命题是真命题的是( ) A .有公共顶点且互补的角是邻补角 B .两个无理数的和是无理数C .两条直线被第三条直线所截,内错角相等D.在同一平面内,垂直于同一条直线的两条直线互相平行 二、填空题(每题3分,共30分) 11.的平方根是 。

12.已知点A (x ,x -5)在第一象限,则x 的取值范围是 。

13.已知是二元一次方程2mx -3y +1=0的解,则m= 。

2011-2012学年七年级下册数学期末考试模拟卷(二)人教版(含答案)

2011-2012学年七年级下册数学期末考试模拟卷(二)人教版(含答案)

一.单选题(本大题共 6小题,每小题3分,共18分)1.如图,已知AB ∥CD ,BC 平分∠ABE ,∠C =34°,则∠BED 的度数是( ) E DC BAA .17°B .34°C .56°D .68°3.若点 P (a ,a -2)在第四象限,则a 的取值范围是( )A .-2<a <0B .0<a <2C .a >2D .a <04.二元一次方程x -2y =1有无数多个解,下列四组值中不是..该方程的解的( ) A .012x y =⎧⎪⎨=-⎪⎩ B .11x y =⎧⎨=⎩ C .10x y =⎧⎨=⎩ D .11x y =-⎧⎨=-⎩5.如果a >b ,c <0,那么下列不等式成立的是( ) A .a +c >b +c B . c -a >c -b C .ac >bc D .a b c c > 6.要调查城区九年级8000名学生了解禁毒知识的情况,下列调查方式最合适的是( )A .在某校九年级选取50名女生B .在某校九年级选取50名男生C .在某校九年级选取50名学生D .在城区8 000名九年级学生中随机选取50名学生二.填空题(本大题共 9小题,每小题3分,共27分)7.如图,直线AB 、CD 相交于点O ,OT ⊥AB 于O ,CE ∥AB 交CD 于点C ,若∠ECO =30°,则∠DOT =___________________.OT E DCB A8.在平面直角坐标系中,已知点A (-4,0)、B (0,2),现将线段AB 向右平移,使A 与坐标原点O 重合,则B 平移后的坐标是____________.9.如果等腰三角形两边长是6cm 和3cm ,那么它的周长是____________.10.已知三角形三边长分别为2、x 、13,若x 为正整数 则这样的三角形个数为___________.11.一个正多边形,它的每一个外角都是45°,则该正多边形是___________.12.若关于x ,y 的二元一次方程组3133x y a x y +=+⎧⎨+=⎩的解满足x +y <2,则a 的取值范围为______.13.若不等式组5300x x m -≥⎧⎨-≥⎩有实数解,则实数m 的取值范围是__________. 14.某宾馆在重新装修后,准备在大厅主楼梯上铺设某种红色地毯,已知这种地毯每平方米售价30元,主楼梯宽2米,其侧面如图所示,则购买地毯至少需要__________元.5.8m 2.6m15.如图,三角形纸片ABC 中,∠A =105°,∠B =45°,将纸片的一角折叠,使点C 落在△ABC 内,如果∠1=40°,那么∠2=__________.21C B A三.解答题(本大题共 8小题,共55分)16. (本小题5分)解方程组⎩⎨⎧=-+--=-51)2(2)1(22y x y x17. (本小题5分)解不等式组35151812x x -⎧⎨-⎩>≤,并把它的解集在数轴上表示出来,求不等式组的整数解.18. (本小题8分)如图,长方形OABC 中,O 为坐标系的原点,A 、C 两点的坐标分别为(3,0)、(0,5),点B 在第一象限.(1)写出点B 的坐标;(2)若过点C 的直线CD 交AB 边于点D ,且把长方形OABC 的周长分为1:3两部分,求出点D 的坐标;(3)如果将(2)中的线段CD 向下平移2个单位,得到线段C ´D ´,试计算四边形OAD ´C ´的面积.yx 54321321O A BC19. (本小题7分)如图,AD 为△ABC 的中线,BE 为△ABD 的中线.(1)若∠ABE =20°,∠BAD =40°,求∠BED 的度数;(2)若△ABC 的面积为60,BD =10,则点E 到BC 边的距离是多少?AB C DE20. (本小题8分)某城市规定:出租车起步价允许行驶的最远路程为3千米,超过3千米的部分按每千米另收费.甲说:“我乘这种出租车走了11千米,付了17元;”乙说:“我乘这种出租车走了23千米,付了35元” .请你算一算这种出租车的起步价是多少元?以及超过3千米后,每千米的车费是多少元?21. (本小题7分)某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A 、B 两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A 种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B 种造型需甲种花卉5盆,乙种花卉9盆.(1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;(2)若搭配一个A 种造型的成本是200元,搭配一个B 种造型的成本是360元,试说明(1)中哪种方案成本最低,最低成本是多少元?22. (本小题7分)如图,已知BD ⊥AC ,EF ⊥AC ,D 、F 为垂足,G 是AB 上一点,且∠l=∠2.判断∠AGD 和∠ABC 的数量关系?并说明你的理由.23. (本小题8分)某校为了了解九年级学生体育测试成绩情况,抽查了一部分学生的体育测试成绩,甲、乙、丙三位同学将抽查出的学生的测试成绩按A 、B 、C 、D 四个等级进行统计,并将统计结果绘制成如下统计图(如图),其中测试成绩在90~100分为A 级,75~89分为B 级, 60~74分为C 级,60分以下为D 级.甲同学计算出成绩为C 的频率是0.2,乙同学计算出成绩为A 、B 、C 的频率之和为0.96,丙同学计算出成绩为A 的频数与成绩为B的频数之比为7:12.结合统计图回答下列问题:成绩(等级)(1)这次抽查了多少人?(2)若该校九年级学生共有500人,请你估计这次体育测试成绩为A级和B级的学生共有多少人?1.【解题思路】因为AB ∥CD ,所以∠ABC=∠C=34°,因为BC 平分∠ABE ,所以∠ABC=∠CBE=34°,∠BED=∠CBE+∠C=68°【答案】D2.【解题思路】根据三角形的稳定性,最少加上一根木条,就可以构成三角形,从而使这个木架不变形【答案】B3.【解题思路】在第四象限的点的符号是(+,-),所以020a a ⎧⎨-⎩><,解得0<a <2 【答案】B4.【解题思路】二元一次方程的解符合二元一次方程,把A 、B 、C 、D 四个选项代入得,B 选项不符合,所以B 不是二元一次方程的解【答案】B5.【解题思路】根据不等式的基本性质1,不等式的两边同时加上或者减去同一个整式,不等式的符号不变,A 正确;根据不等式的基本性质1和基本性质3,-a <-b ,c-a <c-b ,B 选项错误;根据不等式的基本性质3,ac <bc ,C 不正确;根据不等式的基本性质3,ab c c<,D 错误【答案】A6.【解题思路】抽查的时候要注意样本的代表性和广泛性,选择D 选项【答案】D7.【解题思路】因为CE ∥AB ,所以∠DOB=∠ECO=30°;因为OT ⊥AB ,所以∠DOT=90°-30°=60°【答案】60°8.【解题思路】点A 与原点O 重合,说明A 点向右平移了4个单位,对应的B 点也向右平移4个单位,B 点的坐标为(4, 2)【答案】(4,2)9.【解题思路】如果腰长为6cm ,底为3cm 的话,周长为6+6+3=15cm ;如果腰长为3cm ,底边长为6cm 的话,构不成三角形,所以周长只有一个,为15cm【答案】15cm10.【解题思路】根据三角形三边关系,两边之和大于第三边,两边之差小于第三边,可以得到11<x <15,因为x 为正整数,所以x=12,13,14,共有这样的三角形3个【答案】311.【解题思路】因为多边形外角和是360°,360÷45=8,所以该多边形是正八边形【答案】八边形12.【解题思路】3133x y a x y +=+⎧⎨+=⎩①②,①+②得,4x+4y=4+a ,x+y=1+4a ,因为x +y <2,所以1+4a <2,a <4 【答案】a <413.【解题思路】5300x x m -≥⎧⎨-≥⎩①②解不等式①得,x ≤53,解不等式②得,x ≥m ,因为不等式组有实数解,根据“大小小大中间找”,可以得到m ≤53 【答案】m ≤5314.【解题思路】经过平移,地毯水平方向的长度都可以平移到5.8m 长的线段上;地毯竖直方向的长度可以平移到2.6m 长的线段上,所以地毯总长为2.6m+5.8m=8.4m ,面积是8.4×2=16.8(m 2),购买地毯至少需要16.8×30=504(元)【答案】50415.【解题思路】F 21CBA如图,在△ABC 中,∠C=180°-105°-45°=30°,在△CEF 中,∠CEF+∠CFE=180°-∠C=150°,在四边形ABEF 中,∠1+∠2=360°-∠A-∠B-∠CEF-∠CFE=360°-300°=60°,∠2=60°-40°=20°【答案】20°16.【解题思路】本题考察二元一次方程组的解法,其基本思想是消元,基本方法是代入消元和加减消元,对于一些特殊形式的题目可以运用整体代入等思想进而整体消元。

最新人教版七年级第二学期下册期末模拟数学试卷(答案)

最新人教版七年级第二学期下册期末模拟数学试卷(答案)

最新人教版七年级第二学期下册期末模拟数学试卷(答案)一、选择题:每小题2分,共24分1.若﹣=,则m的值为()A.﹣B.C.D.﹣2.一组数据中的最小值是33,最大值是103,若取组距为9.则组数为()A.7 B.8 C.9 D.7或8均可3.在平面直角坐标系中,点M(a,b)的坐标满足(a﹣3)2+=0,则点M在()A.第一象限B.第二象限C.第三象限D.第四象限4.若m=﹣3,则估计m值的所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<55.如果两个二元一次方程3x﹣5y=6和x+y=﹣6有一组公共解,则这组公共解是()A.B.C.D.6.下列命题中,正确的是()A.若ac2<bc2,则a<b B.若ab<c,则a<C.若a﹣b>a,则b>0 D.若ab>0,则a>0,b>07.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3 对B.4 对C.5 对D.6 对8.在平面直角坐标系中,将点P先向左平移2个单位长度,再向下平移3个单位长度后的对应点的坐标为P(﹣1,3),则点P的坐标为()A.(2,3)B.(﹣2,﹣3)C.(2,5)D.(1,6)9.已知y=kx+b,当x=0时,y=﹣1;当x=时,y=2,那么当x=﹣时,y的值为()A.﹣2 B.﹣3 C.﹣4 D.210.甲商贩从一个农贸市场买西瓜,他上午买了30千克,价格为每千克a元,下午他又买了20千克价格为每千克b元后来他以每千克元的价格把西瓜全部卖给了乙,结果发现赔了钱,这是因为()A.a<b B.a>b C.a≥b D.a≤b11.如图,∠1=50°,直线a平移后得到直线b,则∠2﹣∠3=()A.l30°B.120°C.100°D.80°12.已知实数a,m满足a>m,若方程组的解x,y满足y>x时,有a>3,则m的取值范国是()A.m<3 B.m≤3 C.m=3 D.m≥3二、填空题:(每小题3分,共18分)13.(3分)若x<y,且(m﹣2)x>(m﹣2)y,则m的取值范围是.14.(3分)在频数分布直方图中,各个小组的频数比为2:5:6:3,则对应的小长方形的高的比为.15.(3分)若点A(a,b)在第三象限,则点B(﹣a+1,3b﹣2)在第象限.16.(3分)已知是二元一次方程组的解,则a+b的平方根为.17.(3分)方程组的解是.18.(3分)已知三个非负数a,b,c满足2a+b﹣3c=2,3a+2b﹣c=5.若m=3a+b﹣5c,则m的最小值为.三、解谷题:本大题共7小题,共58分解谷应写出文字说明、演算步盟或证明过程19.(6分)解方程组20.(7分)解不等式组,请结合题意填空,完成本题的解答:(1)解不等式①,得.(2)解不等式②,得;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为.21.(8分)为促进学生多样化发展,某校组织了课后服务活动,设置了体育类、艺术类,文学类及其它类社团(要求人人参与,每人只能选择一类)为了解学生喜爱哪类社团活动,学校做了一次抽样调查,根据收集到的数据,绘制成如下两幅不完整的条形统计图和扇形统计图(如图①、图②)如下,请根据国中所给的信息,解答下列问题:(1)此次共调查了多少人?(2)求艺术类在扇形统计图中所占的四心角的度数;(3)将条形统计图补充完整;(4)如果该校有学生2200人,那么在全校学生中,喜受文学类和其它类两个社团的学生共有多少人?22.(7分)如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.23.(10分)进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?24.(10分)若点P (x ,y )的坐标满足方程组(1)求点P 的坐标(用含m ,n 的式子表示);(2)若点P 在第四象限,且符合要求的整数m 只有两个,求n 的取值范围;(3)若点P 到x 轴的距离为5,到y 轴的距离为4,求m ,n 的值(直接写出结果即可). 25.(10分)在平面直角坐标系中,点A ,B ,C 的坐标分别为(a ,0),(2,﹣4),(c ,0),且a ,c 满足方程(2a ﹣4)x c ﹣4+y =0为二元一次方程.(1)求A ,C 的坐标.(2)若点D 为y 轴正半轴上的一个动点.①如图1,∠AOD +∠ADO +∠DAO =180°,当AD ∥BC 时,∠ADO 与∠ACB 的平分线交于点P ,求∠P 的度数;②如图2,连接BD ,交x 轴于点E .若S △ADE ≤S △BCE 成立.设动点D 的坐标为(0,d ),求d 的取值范围.参考答案一、选择题1.若﹣=,则m的值为()A.﹣B.C.D.﹣解:∵﹣=,∴=,∴﹣m=∴m=﹣故选:D.2.一组数据中的最小值是33,最大值是103,若取组距为9.则组数为()A.7 B.8 C.9 D.7或8均可解:一组数据中的最小值是33,最大值是103,它们的差是103﹣33=70,已知组距为9,由于70÷9=7,故可以分成8组.故选:B.3.在平面直角坐标系中,点M(a,b)的坐标满足(a﹣3)2+=0,则点M在()A.第一象限B.第二象限C.第三象限D.第四象限解:∵(a﹣3)2+=0,∴a=3,b=2,∴点M(3,2),故点M在第一象限.故选:A.4.若m=﹣3,则估计m值的所在的范围是()A.1<m<2 B.2<m<3 C.3<m<4 D.4<m<5解:∵36<42<49∴6<<7∴3<﹣3<4即3<m<4故选:C.5.如果两个二元一次方程3x﹣5y=6和x+y=﹣6有一组公共解,则这组公共解是()A.B.C.D.解:由题意可知:,解得:,故选:C.6.下列命题中,正确的是()A.若ac2<bc2,则a<b B.若ab<c,则a<C.若a﹣b>a,则b>0 D.若ab>0,则a>0,b>0解:A、若ac2<bc2,则a<b,正确;B、若ab<c,则a<,错误;C、若a﹣b>a,则b<0,故错误;D、若ab>0,则a>0,b>0或a<0,b<0,故错误,故选:A.7.如图,BE平分∠ABC,DE∥BC,图中相等的角共有()A.3 对B.4 对C.5 对D.6 对解:∵DE∥BC,∴∠DEB=∠EBC,∠ADE=∠ABC,∠AED=∠ACB,又∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠DBE=∠DEB.所以图中相等的角共有5对.故选:C.8.在平面直角坐标系中,将点P先向左平移2个单位长度,再向下平移3个单位长度后的对应点的坐标为P(﹣1,3),则点P的坐标为()A.(2,3)B.(﹣2,﹣3)C.(2,5)D.(1,6)解:设点P的坐标为(x,y),由题意,得:x﹣2=﹣1,y﹣3=3,求得x=1,y=6,所以点P的坐标为(1,6).故选:D.9.已知y=kx+b,当x=0时,y=﹣1;当x=时,y=2,那么当x=﹣时,y的值为()A.﹣2 B.﹣3 C.﹣4 D.2解:根据题意得:,解得:,∴y=6x﹣1,当x=﹣时,y=﹣3﹣1=﹣4,故选:C.10.甲商贩从一个农贸市场买西瓜,他上午买了30千克,价格为每千克a元,下午他又买了20千克价格为每千克b元后来他以每千克元的价格把西瓜全部卖给了乙,结果发现赔了钱,这是因为()A.a<b B.a>b C.a≥b D.a≤b解:根据题意得,他买西瓜每斤平均价是,以每斤元的价格卖完后,结果发现自己赔了钱,则>,解之得,a>b.所以赔钱的原因是a>b.故选:B.11.如图,∠1=50°,直线a平移后得到直线b,则∠2﹣∠3=()A.l30°B.120°C.100°D.80°解:如图.∵直线a平移后得到直线b,∴a∥b,∴∠1+∠ABO=180°,∵∠1=50°,∴∠ABO=130°,∵∠3=∠BOC,∠2=∠BOC+∠ABO,∴∠2﹣∠3=∠2﹣∠BOC=∠ABO=130°.故选:A.12.已知实数a,m满足a>m,若方程组的解x,y满足y>x时,有a>3,则m的取值范国是()A.m<3 B.m≤3 C.m=3 D.m≥3解:解方程组得:∵y>x∴2a﹣2>a+1∴a>3又∵a,m满足a>m∴m≤3故选:B.二、填空题:(本大题共6小题,每小题3分,共18分)13.(3分)若x<y,且(m﹣2)x>(m﹣2)y,则m的取值范围是m<2 .解:∵若x<y,且(m﹣2)x>(m﹣2)y,∴m﹣2<0,则m<2;故答案为m<2.14.(3分)在频数分布直方图中,各个小组的频数比为2:5:6:3,则对应的小长方形的高的比为2:5:6:3 .解:∵在一个调查过程中,将所有数据分成四组,各个小组的频数比为2:5:6:3,∴画频数分布直方图时对应的小长方形的高的比为2:5:6:3,故答案为:2:5:6:3,15.(3分)若点A(a,b)在第三象限,则点B(﹣a+1,3b﹣2)在第四象限.解:由点(a,b)在第三象限,得a<0,b<0.﹣a>0,﹣a+1>0,3b﹣2<0,点(﹣a+1,3b﹣2)在第四象限,故答案为:四.16.(3分)已知是二元一次方程组的解,则a+b的平方根为±3 .解:把代入二元一次方程组得,①+②得:4a=8,解得a=2,把a=2代入②得:b=7,则a+b=9,9的平方根为±3,故答案为:±317.(3分)方程组的解是.解:,②﹣①得a+b=1④,③﹣①得4a+b=10⑤,联立得,解得,把a=3,b=﹣2代入①得c=﹣5.故原方程组的解为.18.(3分)已知三个非负数a,b,c满足2a+b﹣3c=2,3a+2b﹣c=5.若m=3a+b﹣5c,则m的最小值为1.解:∵由已知条件得,解得,∴m=3c+1,∵,则,解得≤c≤.故m的最小值为1.三、解谷题:本大题共7小题,共58分解谷应写出文字说明、演算步盟或证明过程19.(6分)解方程组解:方程组整理得:,①×4+②×5得:38x=19,解得:x=,把x=代入①得:y=﹣3,则方程组的解为.20.(7分)解不等式组,请结合题意填空,完成本题的解答:(1)解不等式①,得x>﹣2 .(2)解不等式②,得x<4 ;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为﹣2<x<4 .解:(1)解不等式①,得x>﹣2.(2)解不等式②,得x<4;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为﹣2<x<4.故答案为:x>﹣2,x<4,﹣2<x<4.21.(8分)为促进学生多样化发展,某校组织了课后服务活动,设置了体育类、艺术类,文学类及其它类社团(要求人人参与,每人只能选择一类)为了解学生喜爱哪类社团活动,学校做了一次抽样调查,根据收集到的数据,绘制成如下两幅不完整的条形统计图和扇形统计图(如图①、图②)如下,请根据国中所给的信息,解答下列问题:(1)此次共调查了多少人?(2)求艺术类在扇形统计图中所占的四心角的度数;(3)将条形统计图补充完整;(4)如果该校有学生2200人,那么在全校学生中,喜受文学类和其它类两个社团的学生共有多少人?解:(1)80÷40%=200(人),即此次共调查了200人;(2)360°×=72°,即艺术类在扇形统计图中所占的圆心角的度数是72°;(3)选择文学类的学生有:200×30%=60(人),选择其他类的学生有:200﹣80﹣40﹣60=20(人),补全的条形统计图如右图所示;(4)2200×=880(人),答:在全校学生中,喜受文学类和其它类两个社团的学生共有880人.22.(7分)如图1,AB∥CD,E是射线FD上的一点,∠ABC=140°,∠CDF=40°(1)试说明BC∥EF;(2)若∠BAE=110°,连接BD,如图2.若BD∥AE,则BD是否平分∠ABC,请说明理由.(1)证明:∵AB∥CD,∴∠ABC+∠BCD=180°,∵∠ABC=140°,∴∠BCD=40°,∵∠CDF=40°,∴∠BCD=∠CDF,∴BC∥EF.(2)解:结论:BD平分∠ABC.理由:∵AE∥BD,∴∠BAE+∠ABD=180°,∵∠BAE=110°,∴∠ABD=70°,∵∠ABC=140°,∴∠ABD=∠DBC=70°,∴BD平分∠ABC.23.(10分)进入六月以来,西瓜出现热卖.佳佳水果超市用760元购进甲、乙两个品种的西瓜,销售完共获利360元,其进价和售价如表:(1)求佳佳水果超市购进甲、乙两个品种的西瓜各多少千克?(2)由于销售较好,该超市决定,按进价再购进甲,乙两个品种西瓜,购进乙品种西瓜的重量不变,购进甲品种西瓜的重量是原来的2倍,甲品种西瓜按原价销售,乙品种西瓜让利销售.若两个品种的西瓜售完获利不少于560元,问乙品种西瓜最低售价为多少元?解:(1)设佳佳水果超市购进甲品种西瓜x千克,购进乙品种西瓜y千克,依题意,得:,解得:.答:佳佳水果超市购进甲品种西瓜300千克,购进乙品种西瓜200千克.(2)设乙品种西瓜的售价为m元/千克,依题意,得:300×2×(2.4﹣1.6)+200×(m ﹣1.4)≥560, 解得:m ≥1.8.答:乙品种西瓜最低售价为1.8元/千克.24.(10分)若点P (x ,y )的坐标满足方程组(1)求点P 的坐标(用含m ,n 的式子表示);(2)若点P 在第四象限,且符合要求的整数m 只有两个,求n 的取值范围;(3)若点P 到x 轴的距离为5,到y 轴的距离为4,求m ,n 的值(直接写出结果即可).解:(1)∵解方程组方程组得:, ∴P (2m ﹣6,m ﹣n );(2)∵点P 在第四象限,且符合要求的整数只有两个,由,得3<m <n∴5<n ≤6(3)∵点P 到x 轴的距离为5,到y 轴的距离为4 ∴|m ﹣n |=5,|2m ﹣6|=4解得:或或或25.(10分)在平面直角坐标系中,点A ,B ,C 的坐标分别为(a ,0),(2,﹣4),(c ,0),且a ,c 满足方程(2a ﹣4)x c ﹣4+y =0为二元一次方程.(1)求A ,C 的坐标.(2)若点D 为y 轴正半轴上的一个动点.①如图1,∠AOD +∠ADO +∠DAO =180°,当AD ∥BC 时,∠ADO 与∠ACB 的平分线交于点P ,求∠P 的度数;②如图2,连接BD ,交x 轴于点E .若S △ADE ≤S △BCE 成立.设动点D 的坐标为(0,d ),求d 的取值范围.解:(1)由题意得,2a﹣4≠0,c﹣4=1,a2﹣3=1,解得,a=﹣2,c=5,则点A的坐标为(﹣2,0),点C的坐标为(5,0);(2)①作PH∥AD,∵AD∥BC,∴PH∥BC,∵∠AOD=90°,∴∠ADO+∠OAD=90°,∵AD∥BC,∴∠BCA=∠OAD,∴∠ADO+∠BCA=90°,∵∠ADO与∠BCA的平分线交于P点,∴∠ADP=∠ADO,∠BCP=∠BCA,∴∠ADP+∠BCP=45°,∵PH∥AD,PH∥B C,∴∠HPD=∠ADP,∠HPC=∠BCP,∴∠DPC=∠HPD+∠HPC=∠ADP+∠BCP=45°;②连接AB,交y轴于F,∵S△ADE ≤S△BCE,∴S△ADE +S△ABE≤S△BCE+S△ABE,即S△ABD≤S△ABC,∵A(﹣2,0),B(2,﹣4),C(5,0),∴S△ABC=×(2+5)×4=14,点F的坐标为(0,﹣2),则S△ABD=×(2+d)×2+×(2+d)×2=4+2d,由题意得,4+2d≤14,解得,d≤5,∵点D为y轴正半轴上的一个动点,∴0<d≤5.最新七年级下册数学期末考试题【答案】一、选择题(本题共10个小题,每小题3分,共30分)1. 在下列四个图案中,不能用平移变换来分析其形成过程的是( )2.在平面直角坐标系中,点P (1,﹣5)在( ) A .第一象限B .第二象限C .第三象限D .第四象限3. 正方形的面积为6,则正方形的边长为( ) A .2B .6C .2D .44. 下列调查中,最适宜采用普查方式的是( ) A .对我市初中学生视力状况的调查B .对“五一”期间居民旅游出行方式的调查C .旅客上高铁前的安全检查D .检查某批次手机电池的使用寿命 5. 如图,从位置P 到直线公路MN 有四条小道,其中路程最短的是( )(第5题)A .P AB .PBC .PCD .PD6. 若b a >,则下列不等式一定正确的是( ) A .b a 33<B .mb ma >C .1--1--b a >D .1212+>+ba 7. 如图,直线c 与直线a 相交于点A ,与直线b 相交于点B ,∠1=130°,∠2=60°.要使直线a ∥b ,需将直线a 绕点A 按顺时针方向至少旋转( )B.C.D.A.(第7题)A .10°B .20°C .60°D .130°8. 一般地,在平面直角坐标系中,任何一个二元一次方程的解可以看成是一个点的坐标,那么,以二元一次方程的解为坐标的点的全体叫做这个二元一次方程的图象.根据作图我们发现:任何一个二元一次方程的图象都是一条直线.根据这个结论,如图,如果一个点的坐标可以用来表示关于x 、y 的二元一次方程组{222111c y b x a cy b x a =+=+的解,那么这个点是( ) A .MB .NC .ED .F9. 我们定义一个关于实数a ,b 的新运算,规定:a ※b =4a -3b .例如:5※6=4×5 -3×6.若m 满足m ※2<0,且m ※(﹣8)>0,则m 的取值范围是( ) A .m <23B .m >-2C .-6<m <23 D .23<m <2 10. 如图,在平面直角坐标系中,一动点从原点O 出发,沿着箭头所示方向,每次移动一个单位,依次得到点P 1(0,1);P 2(1,1);P 3(1,0);P 4(1,﹣1);P 5(2,﹣1);P 6(2,0)……,则点P 2019的坐标是( )A. (672,0)B. (673, 1)C. (672,﹣1)D.(673,0)(第8题) (第10题) 二、填空题(本题共8个小题,每小题3分,共24分)11.的相反数是 .12. 将方程3x ﹣2y ﹣6=0变形为用含x 的式子表示y ,则y = .13. 如图,将三个数2、5、18 表示在数轴上,则被图中表示的解集包含的数是 .14. 如图,把一条直的等宽纸带折叠,∠a 的度数为 .15. 某校开展捐书活动,七(1)班同学积极参与,现将捐书数量绘制成频数分布直方图(如图所示),如果捐书数量在3.5﹣4.5组别的人数占总人数的30%,那么捐书数量在4.5﹣5.5组别的人数是 .(13题) (14题) (15题) 16. 历代数学家称《九章算术》为“算经之首”.书中有这样一道题的记载,译文为:今有5只雀、6只燕,分别聚集在一起称重,称得雀重,燕轻.若将一只雀、一只燕交换位置,则重量相等;将5只雀、6只燕放在一起称量,则总重量为1斤.问雀、燕每1只各重多少斤?若设雀每只重x 斤,燕每只重y 斤,则可列方程组为 . 17. 已知是二元一次方程组的解,则2m +n 的值为 .18.已知,如图, AB ∥CD ,∠ABE =40°,若CF 平分∠ECD ,且满足CF ∥BE ,则∠ECD 的度数为 . (第18题) 三、解答题(本题共7个小题,共66分) 19.解方程组和不等式组(每小题5分,共10分)(1)解方程组{336-51643==+y x y x .(2)解不等式组{421-3235<≥+x x x ,并把解集表示在数轴上.20.(7分) 完成下面的证明.如图,已知AB ∥CD ∥EF, 写出∠A ,∠C,∠AFC 的关系并说明理由.解:∠AFC= . 理由如下:∵AB ∥EF (已知), ∴∠A = (两直线平行,内错角相等). ∵CD ∥EF (已知),∴∠C = ( ). ∵∠AFC = - , ∴∠AFC= (等量代换).21. (8分)如图,△ABC 的顶点坐标分别为A (-2,1),B (-3,-2),C (1,-2).把△ABC 向上平移4个单位长度,再向右平移3个单位长度,得到△A ′B ′C ′. (1)在图中画出△A ′B ′C ′,并写出点A ′,B ′,C ′的坐标; (2)连接A ′C 和A ′A ,求三角形AA ′C 的面积.22.(9分)共享经济与我们的生活息息相关,其中,共享单车的使用给我们的生活带来了很多便利,但在使用过程中出现一些不文明现象.某市记者为了解“使用共享单车时的不文明行为”,随机抽查了该市部分市民,并对调查结果进行了整理,绘制了如下两幅尚不完整的统计图表(每个市民仅持有一种观点).调查结果分组统计表 调查结果扇形图请根据以上信息,解答下列问题:(1)填空: a = ; b = ; m = ; (2)求扇形图中B 组所在扇形的圆心角度数;(3)若该市约有100万人,请你估计其中持有D 组观点的市民人数.23. (9分)为提高学生综合素质,亲近自然,励志青春,某学校组织学生举行“远足研学”活动,先以每小时6千米的速度走平路,后又以每小时3千米的速度上坡,共用了3小时;原路返回时,以每小时5千米的速度下坡,又以每小时4千米的速度走平路,共用了4小时,问平路和坡路各有多远.24. (11分)已知:a 是﹣27的立方根,1-2b =3,)(4-3-3-1=c .(1)a = ,b = ,c = ;A25%BC30%D20%Em %(2)求c a b --的平方根; (3)若关于x 的不等式组{tb x acx <>- 无解,求t 的取值范围.25.( 12分)小明家需要用钢管做防盗窗,按设计要求,需要粗细相同且长为0.8m ,2.5m 的钢管分别为100根,32根,并要求这些用料不能是焊接而成的.现钢材市场的这种规格的钢管每根为6m .(1)试问一根6m 长的钢管有哪些裁剪方法呢?请填写下空(余料作废). 方法①:当只裁剪长为0.8m 的用料时,最多可剪 根;方法②:当先剪下1根2.5m 的用料时,余下部分最多能剪0.8m 长的用料 根; 方法③:当先剪下2根2.5m 的用料时,余下部分最多能剪0.8m 长的用料 根; (2)分别用(1)中的方法②和方法③各裁剪多少根6m 长的钢管,才能刚好得到所需要的相应数量的材料?(3)试探究:除(2)中方案外,在(1)中还有哪两种方法联合,所需要6m 长的钢管与(2)中根数相同?七年级数学期末参考答案及评分标准一、二、三、解答题 19. (1) ⎩⎨⎧=-=+33651643y x y x解: ①×3,得:9x+12y=48 ③②×2,得:10x-12y=66 ④ ③+④得19x =114,解得:x =6 ……………3分 将x =6代入①,解得y=-21……………4分 ∴方程组的解为:⎪⎩⎪⎨⎧-==216y x ……………5分(2)⎪⎩⎪⎨⎧-≥+②<①4213235x x x解:解不等式①,得x ≥-1.① ②解不等式②,得x <3. ……………4分把不等式①和②的解集在数轴上表示出来,∴不等式组的解集为-1≤x <3 ……………5分 20.(每空1分)解:∠AFC= ∠A —∠C . 理由如下: ∵AB ∥EF (已知), ∴∠A = ∠AFE (两直线平行,内错角相等). ∵CD ∥EF (已知),∴∠C = ∠CFE ( 两直线平行,内错角相等 ).∵∠AFC = ∠AFE - ∠CFE ,∴∠AFC= ∠A —∠C (等量代换). ×(2)360°×(1-25%-30%-20%-15%)=36°;……………5分 (3)100×20%=20(万人)答:持有D 组观点的市民人数大约为20万人. ……………7分 (4)略(合理即可)……………9分23.解:设平路有x 千米,坡路有y 千米. ……………1分由题意可知 ⎪⎩⎪⎨⎧=+=+454336y x y x …………5分 C ’解得⎪⎩⎪⎨⎧==35344y x ……………8分 答:平路有344千米,坡路有35千米.……………9分 24. (1)a = —3 ,b = 5 ,c = 1 ;……………3分(2)把a =-3,b =5,c=1代入原式=5-(-3)-1=7 ……………6分则7的 平方根为±7 ……………8分 (3)a =-3,b =5,c=1代入,得:⎩⎨⎧--tx x <>53,由不等式组无解,得t+5≤-3, 即 t ≤-8 ……………11分25.解:(1)7,4,1.……………3分(2)设用方法②剪x 根,方法③裁剪y 根6m 长的钢管, 由题意,得,解得:.答:用方法②剪24根,方法③裁剪4根6m 长的钢管;……………8分 (3)设方法①裁剪m 根,方法③裁剪n 根6m 长的钢管, 由题意,得,解得:,∴m +n =28. ∵x +y =24+4=28,∴m +n =x +y .……………10分设方法①裁剪a 根,方法②裁剪b 根6m 长的钢管,由题意,得,解得:无意义. ∴方法①与方法③联合,所需要6m 长的钢管与(2)中根数相同.……………12分最新人教版七年级数学下册期末考试试题【答案】一、选择题(本大题共12小题,每小题3分,共36分。

(完整版)人教版七年级数学下册期末模拟试卷及答案

(完整版)人教版七年级数学下册期末模拟试卷及答案

(完整版)人教版七年级数学下册期末模拟试卷及答案一、选择题1.12-等于( )A .2-B .12C .1D .12-2.若a =-0.32,b =-3-2,c =21()2--,d =01()3-,则它们的大小关系是( )A .a <b <c <dB .a <d <c <bC .b <a <d <cD .c <a <d <b3.以下列各组线段为边,能组成三角形的是( )A .2cm 、2cm 、4cmB .2cm 、6cm 、3cmC .8cm 、6cm 、3cmD .11cm 、4cm 、6cm4.如图,在五边形ABCDE 中,A B E α∠+∠+∠=,DP 、CP 分别平分EDC ∠、BCD ∠,则P ∠的度教是( )A .1902α- B .1902α︒+C .12αD .15402α︒-5.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多a cm ,则正方形的面积与长方形的面积的差为 ( )A .a 2B .12a 2C .13a 2 D .14a 2 6.要使(4x ﹣a )(x+1)的积中不含有x 的一次项,则a 等于( ) A .﹣4 B .2C .3D .47.下列运算正确的是( )A .a 2+a 2=a 4B .(﹣b 2)3=﹣b 6C .2x •2x 2=2x 3D .(m ﹣n )2=m 2﹣n 2 8.若(2x+3y)(mx-ny)=9y 2-4x 2,则m 、n 的值为 ( )A .m=2,n=3B .m=-2,n=-3C .m=2,n=-3D .m=-2,n=3 9.如图,将四边形纸片ABCD 沿MN 折叠,若∠1+∠2=130°,则∠B +∠C =( )A.115°B.130°C.135°D.150°10.如图,将△ABC纸片沿DE折叠,点A的对应点为A’,若∠B=60°,∠C=80°,则∠1+∠2等于( )A.40°B.60°C.80°D.140°二、填空题11.若a m=5,a n=3,则a m+n=_____________.12.若x+3y-4=0,则2x•8y=_________.13.如图,图(1)的正方形的周长与图(2)的长方形的周长相等,且长方形的长比宽多acm,则正方形的面积与长方形的面积的差为_____(用含有字母a的代数式表示).14.如图,∠1、∠2是△ABC的外角,已知∠1+∠2=260°,求∠A的度数是______.15.学校计划购买A和B两种品牌的足球,已知一个A品牌足球60元,一个B品牌足球75元.学校准备将1500元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有_________种.16.某校七年级社会实践小组去商场调查商品的销售情况,了解到该商场以每件80元的价格购进某品牌衬衫500件,并以每件120元的价格销售400件.该商场准备采取促销措施,将剩下的衬衫降价销售,每件衬衫至多降价______元,销售完这批衬衫才能达到盈利45%的预期目标.17.如图,四边形ABCD中,E、F、G、H依次是各边中点,O是形内一点,若四边形AEOH、四边形BFOE、四边形CGOF的面积分别为6、7、8,四边形DHOG面积为()A.6 B.7 C.8 D.918.如果a2﹣b2=﹣1,a+b=12,则a﹣b=_______.19.我国开展的月球探测工程(即“嫦娥工程”)为人类和平使用月球作出了新的贡献.地球与月球之间的平均距离大约为384000km,384000用科学记数法可表示为_______.20.若2m=3,2n=5,则2m+n=______.三、解答题21.先化简,再求值:(3x+2)(3x-2)-5x(x+1)-(x-1)2,其中x2-x-10=0.22.阅读理解并解答:为了求1+2+22+23+24+…+22009的值.可令S=1+2+22+23+24+…+22009则2S=2+22+23+24+…+22009+22010因此2S﹣S=(2+22+23+24+…+22009+22010)﹣(1+22+23+24+…+22009)=22010﹣1所以S=22010﹣1即1+2+22+23+24+…+22009=22010﹣1请依照此法,求:1+5+52+53+54+…+52020的值.23.如图1是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成一个“回形”正方形(如图2)(1)观察图2请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(2)根据(1)中的结论,若x+y=5,x•y=94,则x﹣y=;(3)拓展应用:若(2019﹣m)2+(m﹣2020)2=15,求(2019﹣m)(m﹣2020)的值.24.如图,直线MN∥GH,直线l1分别交直线MN、GH于A、B两点,直线l2分别交直线MN、GH于C、D两点,且直线l1、l2交于点E,点P是直线l2上不同于C、D、E点的动点.(1)如图①,当点P 在线段CE 上时,请直写出∠NAP 、∠HBP 、∠APB 之间的数量关系: ;(2)如图②,当点P 在线段DE 上时,(1)中的∠NAP 、∠HBP 、∠APB 之间的数量关系还成立吗?如果成立,请说明成立的理由;如果不成立,请写出这三个角之间的数量关系,并说明理由.(3)如果点P 在直线l 2上且在C 、D 两点外侧运动时,其他条件不变,请直接写出∠NAP 、∠HBP 、∠APB 之间的数量关系 . 25.计算: (1)2a (a ﹣2a 2); (2)a 7+a ﹣(a 2)3; (3)(3a +2b )(2b ﹣3a ); (4)(m ﹣n )2﹣2m (m ﹣n ). 26.已知8m a =,2n a = .(1)填空:m n a += ; m n a -=__________. (2)求m 与n 的数量关系.27.某公司有A 、B 两种型号的商品需运出,这两种商品的体积和质量如表所示:体积(m 3/件) 质量(吨/件) A 两种型号 0.8 0.5 B 两种型号21(1)已知一批商品有A 、B 两种型号,体积一共是20m 3,质量一共是10.5吨,求A 、B 两种型号商品各有几件;(2)物流公司现有可供使用的货车每辆额定载重3.5吨,容积为6m 3,其收费方式有以下两种:按车收费:每辆车运输货物到目的地收费900元; 按吨收费:每吨货物运输到目的地收费300元.要将(1)中的商品一次或分批运输到目的地,该公司应如何选择运送方式,使所付运费最少,并求出该方式下的运费是多少元.28.分解因式:(1)3222x x y xy -+; (2)2296(1)(1)x x y y -+++;(3)()214(1)mm m -+-.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意直接根据负指数幂的运算法则进行分析计算即可. 【详解】 解: 12-=12. 故选:B. 【点睛】本题考查负指数幂的运算,熟练掌握负指数幂的运算法则是解题的关键.2.C解析:C 【分析】直接利用负整数指数幂的性质和零指数幂的性质分别化简比较即可求解. 【详解】∵2090.3.0a =-=-,2193b =--=-,2142c -⎛⎫=-= ⎪⎝⎭,0113d ⎛⎫-= ⎪⎝⎭=, ∴它们的大小关系是:b <a <d <c 故选:C 【点睛】本题考查负整数指数幂的性质、零指数幂的性质及有理数大小比较,正确化简各数是解题的关键.3.C解析:C 【分析】根据三角形三条边的关系计算即可,三角形任意两边之和大于第三边,任意两边之差小于第三边. 【详解】A. ∵2+2=4,∴ 2cm 、2cm 、4cm 不能组成三角形,故不符合题意;B. ∵2+3<6,∴2cm 、6cm 、3cm 不能组成三角形,故不符合题意;C. ∵3+6>8,∴8cm 、6cm 、3cm 能组成三角形,故符合题意;D. ∵4+6<11,∴11cm 、4cm 、6cm 不能组成三角形,故不符合题意; 故选C. 【点睛】本题考查了三角形三条边的关系,熟练掌握三角形三条边的关系是解答本题的关键.4.A解析:A 【分析】根据五边形的内角和等于540°,由∠A+∠B+∠E=α,可求∠BCD+∠CDE 的度数,再根据角平分线的定义可得∠PDC 与∠PCD 的角度和,进一步求得∠P 的度数. 【详解】∵五边形的内角和等于540°,∠A+∠B+∠E=α, ∴∠BCD+∠CDE=540°-α,∵∠BCD 、∠CDE 的平分线在五边形内相交于点O ,∴∠PDC+∠PCD=12(∠BCD+∠CDE )=270°-12α, ∴∠P=180°-(270°-12α)=12α-90°.故选:A . 【点睛】此题考查多边形的内角和公式,角平分线的定义,熟记公式是解题的关键.注意整体思想的运用.5.D解析:D 【分析】设长方形的宽为x cm ,则长为(x +a )cm ,可得正方形的边长为22x a+;求出两个图形面积然后做差即可. 【详解】解:设长方形的宽为x cm ,则长为(x +a )cm , 则正方形的边长为()2242x a x x a⨯+++=; 正方形的面积为222244224x a x a x ax a ++++=, 长方形的面积为()2x x a x ax +=+,二者面积之差为()222244144x ax a x ax a ++-+=,故选:D . 【点睛】本题考查了整式的混合运算,设出长方形的宽,然后表示出正方形和长方形的面积表达式是解题的关键.6.D解析:D 【分析】先运用多项式的乘法法则计算,再合并同类项,因积中不含x 的一次项,所以让一次项的系数等于0,得a 的等式,再求解. 【详解】解:(4x-a )(x+1), =4x 2+4x-ax-a , =4x 2+(4-a )x-a , ∵积中不含x 的一次项, ∴4-a=0, 解得a=4. 故选D . 【点睛】本题考查了多项式乘多项式法则,注意当要求多项式中不含有哪一项时,应让这一项的系数为0.7.B解析:B 【分析】根据合并同类项法则、幂的乘方法则、单项式乘单项式法则和完全平方公式法则解答即可. 【详解】A 、a 2+a 2=2a 2,故本选项错误;B 、(﹣b 2)3=﹣b 6,故本选项正确;C 、2x •2x 2=4x 3,故本选项错误;D 、(m ﹣n )2=m 2﹣2mn +n 2,故本选项错误. 故选:B . 【点睛】本题考查了整式的运算,合并同类项、幂的乘方、单项式乘单项式和完全平方公式,熟练掌握运算法则是解题的关键.8.B解析:B 【解析】【分析】先把等式左边利用多项式乘多项式的法则展开并整理,根据对应项系数相等列出等式,求解即可. 【详解】解:将(2x+3y)(mx-ny)展开,得2mx 2-2nxy+3mxy-3ny 2, 根据题意可得2mx 2-2nxy+3mxy-3ny 2=9y 2-4x 2,根据多项式相等,则对应项及其系数相等,可得2m=-4,-3n=9, 解得m=-2,n=-3 故选B . 【点睛】本题是一道有关多项式乘法的题目,明确多项式的乘法法则是解题的关键.9.A解析:A 【分析】先根据∠1+∠2=130°得出∠AMN +∠DNM 的度数,再由四边形内角和定理即可得出结论. 【详解】解:∵∠1+∠2=130°,∴∠AMN +∠DNM =3601302︒︒-=115°.∵∠A +∠D +(∠AMN +∠DNM )=360°,∠A +∠D +(∠B +∠C )=360°, ∴∠B +∠C =∠AMN +∠DNM =115°. 故选:A . 【点睛】本题考查了翻折变换和多边形的内角和,熟知图形翻折不变性的性质和四边形的内角和公式是解答此题的关键.10.C解析:C 【分析】根据平角定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠,再利用三角形的内角和定理进行转换,得34140B C ∠+∠=∠+∠=︒从而解题. 【详解】解:根据平角的定义和折叠的性质,得123602(34)∠+∠=︒-∠+∠.又34180A ∠+∠+∠=︒,180A B C ∠+∠+∠=︒, 346080140B C ∴∠+∠=∠+∠=︒+︒=︒,∴123602(34)360214080∠+∠=︒-∠+∠=︒-⨯︒=︒, 故选:C . 【点睛】此题综合运用了平角的定义、折叠的性质和三角形的内角和定理.二、填空题 11.15 【分析】根据幂的运算公式即可求解. 【详解】 ∵am=5,an=3,∴am+n= am×an=5×3=15 故答案为:15. 【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运解析:15 【分析】根据幂的运算公式即可求解. 【详解】 ∵a m =5,a n =3, ∴a m +n = a m ×a n =5×3=15 故答案为:15. 【点睛】此题主要考查幂的运算,解题的关键是熟知同底数幂的逆运算.12.16 【分析】根据幂的运算公式变形,再代入x+3y=4即可求解. 【详解】 ∵x+3y -4=0 ∴x+3y=4∴2x•8y=2x•(23)y =2x+3y =24=16. 故答案为:16. 【点睛】解析:16【分析】根据幂的运算公式变形,再代入x+3y=4即可求解. 【详解】 ∵x +3y -4=0 ∴x +3y=4∴2x •8y =2x •(23)y =2x+3y =24=16. 故答案为:16. 【点睛】此题主要考查幂的运算,解题的关键是熟知幂的运算公式.13.【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差. 【详解】 解:设长方解析:24a【分析】设长方形的宽为xcm ,根据“图(1)的正方形的周长与图(2)的长方形的周长相等”求得正方形的边长,最后由长方形与正方形的面积公式计算正方形的面积与长方形的面积的差. 【详解】解:设长方形的宽为xcm ,则长方形的长为(x +a )cm , ∵图(1)的正方形的周长与图(2)的长方形的周长相等, ∴正方形的边长为:2()242x a x x a+++=, ∴正方形的面积与长方形的面积的差为:22()2x a x x a +⎛⎫-+ ⎪⎝⎭222444x ax a x ax ++=--=24a . 故答案为:24a .【点睛】本题主要考查了列代数式,整式的混合运算,关键是读懂题意,正确列出代数式.14.80° 【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,解析:80°【分析】先根据三角形外角性质得出∠A+∠ACB+∠A+∠ABC=260°,再根据三角形内角和定理得出∠A+∠ACB+∠ABC=180°,即得.【详解】解:∵∠1、∠2是△ABC的外角,∠1+∠2=260°,∴∠A+∠ACB+∠A+∠ABC=260°,∵∠A+∠ACB+∠ABC=180°,∴∠A=80°,故答案为:80°.【点睛】本题考查了三角形内角和定理和三角形外角性质的应用,能根据三角形的外角性质得∠A+∠ACB+∠A+∠ABC=260°是解题关键.15.4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,解析:4【分析】设购买x个A品牌足球,y个B品牌足球,根据总价=单价×数量,即可得出关于x,y的二元一次方程,结合x,y均为正整数,即可得出各进货方案,此题得解.【详解】解:设购买x个A品牌足球,y个B品牌足球,依题意,得:60x+75y=1500,解得:y=20−45 x.∵x,y均为正整数,∴x是5的倍数,∴516xy=⎧⎨=⎩,1012xy=⎧⎨=⎩,158xy=⎧⎨=⎩,204xy=⎧⎨=⎩∴共有4种购买方案.故答案为:4.【点睛】本题考查了二元一次方程的应用,找准等量关系,正确列出二元一次方程是解题的关键.16.【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120解析:20【分析】设每件衬衫降价x元,正好达到预期目标,根据销售收入-成本=利润,即可得出关于x的一元一次方程,解之即可得出结论.【详解】解:设每件衬衫降价x元,正好达到预期目标,根据题意得:120×400+(120-x)×(500-400)-80×500=80×500×45%,解得:x=20.答:每件衬衫降价10元,正好达到预期目标.【点睛】本题考查了一元一次方程的应用,找准等量关系,正确列出一元一次方程是解题的关键.17.B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE和△BOE等底等高,所以S△OAE=S△OBE,同理可证,S△OBF=S△OCF,S△ODG=S△OCG,解析:B【解析】连接OC,OB,OA,OD,∵E、F、G、H依次是各边中点,∴△AOE 和△BOE 等底等高,所以S △OAE =S △OBE ,同理可证,S △OBF =S △OCF ,S △ODG =S △OCG ,S △ODH =S △OAH ,∴S 四边形AEOH +S 四边形CGOF =S 四边形DHOG +S 四边形BFOE ,∵S 四边形AEOH =6,S 四边形BFOE =7,S 四边形CGOF =8,∴6+8=7+S 四边形DHOG ,解得S 四边形DHOG =7.故答案为7.点睛:本题考查了三角形的面积.解决本题的关键将各个四边形划分,充分利用给出的中点这个条件,证得三角形的面积相等,进而证得结论.18.-2【分析】根据平方差公式进行解题即可【详解】∵a2-b2=(a+b)(a-b),a2﹣b2=﹣1,a+b=,∴a-b=-1÷=-2,故答案为-2.解析:-2【分析】根据平方差公式进行解题即可【详解】∵a 2-b 2=(a+b)(a-b),a 2﹣b 2=﹣1,a+b=12, ∴a-b=-1÷12=-2, 故答案为-2.19.【分析】根据科学记数法,把一个大于10的数表示成的形式,使用的是科学记数法,即可表示出来.【详解】解:∵,故答案为.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌 解析:53.8410⨯【分析】根据科学记数法,把一个大于10的数表示成10n a ⨯的形式()110a ≤<,使用的是科学记数法,即可表示出来.【详解】解:∵5384000=3.8410⨯,故答案为53.8410⨯.【点睛】本题目考查的是科学记数法,难度不大,是中考的常考题型,熟练掌握其转化方法是顺利解题的关键.20.15【分析】根据同底数幂的乘法逆运算法则可得,进一步即可求出答案.【详解】解:.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关解析:15【分析】根据同底数幂的乘法逆运算法则可得222m n m n +=⋅,进一步即可求出答案.【详解】解:2223515m n m n +=⋅=⨯=.故答案为:15.【点睛】本题考查了同底数幂的乘法法则的逆用,属于常考题型,熟练掌握同底数幂的乘法法则是关键.三、解答题21.3x 2-3x -5,25【分析】原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,最后一项利用完全平方公式展开,去括号合并得到最简结果,将已知的方程变形后代入即可求值.【详解】原式=()222945521x x x x x -----+=222945521x x x x x ----+-=2335x x --,当2100x x =--,即210x x =-时,原式=()235310525x x -=⨯-=-【点睛】本题考查整式的混合运算-化简求值,涉及的知识点有:完全平方公式、平方差公式、去括号法则及合并同类项法则,熟练掌握以上公式及法则是解题的关键.22.2021 514-【分析】根据题目信息,设S=1+5+52+53+…+52020,求出5S,然后相减计算即可得解.【详解】解:设S=1+5+52+53+ (52020)则5S=5+52+53+54 (52021)两式相减得:5S﹣S=4S=52021﹣1,则202151.4S-=∴1+5+52+53+54+…+52020的值为2021514-.【点睛】本题考查了有理数的乘方,读懂题目信息,理解求和的运算方法是解题的关键.23.(1)(a+b)2-(a-b)2=4ab;(2)±4;(3)-7【分析】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2,图1的面积和图2中白色部分的面积相等即可求解.(2)由(1)知,(x+y)2-(x-y)2=4xy,将x+y=5,x•y=94代入(x+y)2-(x-y)2=4xy,即可求得x-y的值(3)因为(2019﹣m)+(m﹣2020)=-1,等号两边同时平方,已知(2019﹣m)2+(m﹣2020)2=15,即可求解.【详解】(1)由图可知,图1的面积为4ab,图2中白色部分的面积为(a+b)2-(b-a)2=(a+b)2-(a-b)2∵图1的面积和图2中白色部分的面积相等∴(a+b)2-(a-b)2=4ab故答案为:(a+b)2-(a-b)2=4ab(2)由(1)知,(x+y)2-(x-y)2=4xy∵x+y=5,x•y=9 4∴52-(x-y)2=4×9 4∴(x-y)2=16∴x-y=±4故答案为:±4(3)∵(2019﹣m)+(m﹣2020)=-1∴[(2019﹣m)+(m﹣2020)]2=1∴(2019﹣m)2+2(2019﹣m)(m﹣2020)+ (m﹣2020)2=1∵(2019﹣m)2+(m﹣2020)2=15∴2(2019﹣m)(m﹣2020)=1-15=-14∴(2019﹣m)(m﹣2020)=-7故答案为:-7【点睛】本题考查了完全平方公式的几何背景,运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.24.(1)∠APB=∠NAP+∠HBP;(2)见解析;(3)∠HBP=∠NAP+∠APB【分析】(1)过P点作PQ∥GH,根据平行线的性质即可求解;(2)过P点作PQ∥GH,根据平行线的性质即可求解;(3)根据平行线的性质和三角形外角的性质即可求解.【详解】解:(1)如图①,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ=∠NAP,∠BPQ=∠HBP,∵∠APB=∠APQ+∠BPQ,∴∠APB=∠NAP+∠HBP,故答案为:∠APB=∠NAP+∠HBP;(2)如图②,过P点作PQ∥GH,∵MN∥GH,∴MN∥PQ∥GH,∴∠APQ+∠NAP=180°,∠BPQ+∠HBP=180°,∵∠APB=∠APQ+∠BPQ,∴∠APB=(180°﹣∠NAP)+(180°﹣∠HBP)=360°﹣(∠NAP+∠HBP);(3)如备用图,∵MN∥GH,∴∠PEN=∠HBP,∵∠PEN=∠NAP+∠APB,∴∠HBP=∠NAP+∠APB.故答案为:∠HBP=∠NAP+∠APB.【点睛】此题考查了平行公理的推论:平行于同一条直线的两直线平行,以及平行线的性质:两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补,熟记定理是解题的关键.25.(1)2a 2﹣4a 3;(2)a 7+a ﹣a 6;(3)4b 2﹣9a 2;(4)n 2﹣m 2【分析】(1)由题意根据单项式乘以多项式法则求出即可;(2)根据题意先算乘方,再合并同类项即可;(3)由题意直接根据平方差公式求出即可;(4)由题意先根据完全平方公式和单项式乘以多项式进行计算,再合并同类项即可.【详解】解:(1)2a (a ﹣2a 2)=2a 2﹣4a 3;(2)a 7+a ﹣(a 2)3=a 7+a ﹣a 6;(3)(3a +2b )(2b ﹣3a )=4b 2﹣9a 2;(4)(m ﹣n )2﹣2m (m ﹣n )=m 2﹣2mn +n 2﹣2m 2+2mn=n 2﹣m 2.【点睛】本题考查整式的混合运算,乘法公式等知识点,能正确根据整式的运算法则进行化简是解此题的关键.26.(1)16;4;(2)m=3n ;【分析】(1)利用a m +n =a m ⋅a n 和a m -n =a m ÷a n 进行计算;(2)利用23=8再结合同底数幂的运算法则进行分析计算.【详解】(1)m n a +=a m ×a n =16;m n a -=a m ÷a n =4;(2)∵,∴∴【点睛】本题考察了同底数幂的运算法则,熟练掌握同底数幂的运算法则是解题的关键.27.(1)A种商品有5件,B种商品有8件;(2)先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元【分析】(1)设A、B两种型号商品各有x件和y件,根据体积一共是20m3,质量一共是10.5吨列出方程组再解即可;(2)分别计算出①按车收费的费用,②按吨收费的费用,③两种方式混合用的花费,进而可得答案.【详解】解:(1)设A、B两种型号商品各有x件和y件,由题意得,0.8220 0.510.5x yx y+=⎧⎨+=⎩,解得:58 xy=⎧⎨=⎩,答:A、B两种型号商品各有5件、8件;(2)①按车收费:10.5÷3.5=3(辆),但车辆的容积为:6×3=18<20,所以3辆车不够,需要4辆车,此时运费为:4×900=3600元;②按吨收费:300×10.5=3150元,③先用3辆车运送A商品5件,B商品7件,共18m3,按车付费3×900=2700(元).剩余1件B型产品,再运送,按吨付费300×1=300(元).共需付2700+300=3000(元).∵3000<3150<3600,∴先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.答:先按车收费用3辆车运送18m3,再按吨收费运送1件B型产品,运费最少为3000元.【点睛】本题考查二元一次方程组的应用,关键是正确理解题意,找出题中的等量关系.28.(1)x(x-y)2;(2)(3x-y-1)2;(3)(m-1)(m+2)(m-2).【分析】(1)首先提公因式x,然后利用完全平方公式即可分解;(2)根据完全平方公式进行因式分解即可;(3)首先提公因式(m-1)然后利用平方差公式即可分解.【详解】解:(1)原式=x(x2-2xy+y2)=x(x-y)2;(2)原式=(3x)2-2×(3x)(y+1)+(y+1)2=(3x-y-1)2;(3)原式=(m-1)(m2-4)=(m-1)(m+2)(m-2).【点睛】本题考查了用提公因式法和公式法进行因式分解,将式子分解彻底是解题关键.。

人教版七年级下学期数学期末模拟试题及解析

人教版七年级下学期数学期末模拟试题及解析

人教版七年级下学期数学期末模拟试题及解析一、选择题:(共12小题,每小题3分,共36分)1.(3分)在下列实数中,无理数是()A.5B.0C.D.2.(3分)4的算术平方根是()A.±2B.2C.﹣2D.3.(3分)下列调查中,最适合采用抽样调查的是()A.对某地区现有的16名百岁以上老人睡眠时间的调查B.对“神舟十一号”运载火箭发射前零部件质量情况的调查C.对某校七年级三班学生视力情况的调查D.对株洲市民与长沙市民是否了解“株洲南雅实验中学高复班”的调查4.(3分)已知△ABC中,AB=7,BC=5,那么边AC的长可能是()A.12B.6C.2D.15.(3分)已知一个二元一次方程组的解是,则这个方程组可以是()A.B.C.D.6.(3分)已知P(x,y)在第四象限,且x2=4,|y|=7,则点P的坐标是()A.(2,﹣7)B.(﹣4,7)C.(4,﹣7)D.(﹣2,7)7.(3分)若x<y,且(a+5)x<(a+5)y,则a的取值范围是()A.a>﹣5B.a>0C.a<﹣5D.a>58.(3分)若一个多边形的内角和等于外角和的2倍,则这个多边形的边数为()A.8B.6C.5D.49.(3分)如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S△ABC =8cm2,则S阴影等于()A.4cm2B.2cm2C.1cm2D.6cm210.(3分)如图,在△ABC中,∠A=50°,∠B=∠C,点D,E,F分别在边BC,CA,AB上,且满足BF=CD,BD=CE,∠BFD=30°,则∠FDE的度数为()A.75°B.80°C.65°D.95°11.(3分)我国古代《算法统宗》里有这样一首诗:“我问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空.”诗中后两句的意思是:如果每一间客房住7人,那么有7人无房住;如果每一间客房住9人,那么就空出一间客房.设该店有客房x间、房客y人,下列方程组中正确的是()A.B.C.D.12.(3分)已知x=1是不等式(x﹣5)(ax﹣2)>0的解,且x=2不是这个不等式的解,则实数a的取值范围是()A.a>1B.1<a<2C.1<a≤2D.1≤a<2二、填空题(共6小题,每小题3分,共18分)13.(3分)在平面直角坐标系内,把点P(﹣5,﹣2)先向左平移2个单位长度,再向上平移3个单位长度后得到的点的坐标是.14.(3分)在△ABC中,若∠A:∠B:∠C=3:5:7,则该三角形是三角形.(填“锐角”“直角”或“钝角”)15.(3分)若关于x,y的方程组的解满足x+y=﹣6.则m的值为.16.(3分)如图,AD是△ABC的高,BE是△ABC的角平分线,BE,AD相交于点F,已知∠BAD=42°,则∠BFD=度.17.(3分)若关于x的不等式组的整数解共有3个,则a的取值范围为.18.(3分)两个完全相同的正五边形都有一边在直线l上,且有一个公共顶点O,其摆放方式如图所示,则∠AOB等于度.三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.(6分)计算:20.(6分)解一元一次不等式组:,并将解集在数轴上表示出来21.(8分)某校有1200名学生,为了解全校学生的上学方式,该校数学兴趣小组在全校随机抽取了m名学生进行抽样调查,整理样本数据,得到下列图表(频数分布表中部分划记被污染渍盖住):(1)m=;(2)求扇形统计图中,乘私家车部分对应的圆心角的度数;(3)请估计该校1200名学生中,选择骑车和步行上学的一共有多少人?22.(8分)如图,AD是△ABC的角平分线,∠B=45°,点E在BC延长线上且EH⊥AD于H.(1)若∠BAD=30°,求∠ACE的度数.(2)若∠ACB=85°,求∠E的度数.23.(9分)第一届中非经贸博览会于2019年6月27日至29日在长沙举办,为了抓住商机,某服装店决定购进甲、乙两种文化衫进行销售,若购进甲种文化衫6件,乙种文化衫5件,需要1400元;若购进甲种文化衫3件,乙种文化衫6件,需要1050元.(1)求购进甲、乙两种文化衫每件各需多少元?(2)若该服装店决定用不超过6100元的资金购进这两种服装共50件,且用于购买甲种文化衫的资金不低于购买乙种文化衫的资金,那么该商店共有哪几种进货方案?24.(9分)如图,四边形ABCD中,AB=BC=2CD,AB∥CD,∠C=90°,E是BC的中点,AE与BD相交于点F,连接DE(1)求证:△ABE≌△BCD;(2)判断线段AE与BD的数量关系及位置关系,并说明理由;(3)若CD=1,试求△AED的面积.25.(10分)定义:给定两个不等式组P和Q,若不等式组P的任意一个解,都是不等式组Q的一个解,则称不等式组P为不等式组Q的“子集”.例如:不等式组:M:是:N:的“子集”.(1)若不等式组:A:,B:,则其中不等式组是不等式组M:的“子集”(填A或B);(2)若关于x的不等式组是不等式组的“子集”,则a的取值范围是;(3)已知a,b,c,d为互不相等的整数,其中a<b,c<d,下列三个不等式组:A:a ≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,求a ﹣b+c﹣d的值;(4)已知不等式组M:有解,且N:1<x≤3是不等式组的“子集”,则满足条件的有序整数对(m,n)共有多少个?26.(10分)平面直角坐标系xOy中,A(0,a),B(b,0)分别在y轴正半轴和x轴负半轴上,C在第二象限,满足:AC=AB,∠BAC=90°.已知.(1)求A,B的坐标;(2)求点C的坐标及△ABC的面积;(3)已知D是x轴的正半轴上一点,OD>OB,E在第一象限,AE=AD,∠EAD=90°,连接CE交y轴于点P.①求证:PC=PE.②在点D的移动过程中,给出以下两个结论:(i)的值不变;(ii)的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.参考答案与试题解析一、选择题:(共12小题,每小题3分,共36分)1.【分析】由于无理数就是无限不循环小数.初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.由此即可判定选择项.【解答】解:A、5是有理数,故选项错误;B、0是有理数,故选项错误;C、是无理数,故选项正确;D、是有理数,故选项错误.故选:C.【点评】此题主要考查无理数的概念,同时要理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.2.【分析】根据开方运算,可得一个数的算术平方根.【解答】解:4的算术平方根是2,故选:B.【点评】本题考查了算术平方根,注意一个正数只有一个算术平方根.3.【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.【解答】解:A、对某地区现有的16名百岁以上老人睡眠时间的调查适合全面调查;B、对“神舟十一号”运载火箭发射前零部件质量情况的调查适合全面调查;C、对某校七年级三班学生视力情况的调查适合全面调查;D、对株洲市民与长沙市民是否了解“株洲南雅实验中学高复班”的调查适合抽样调查;故选:D.【点评】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查,事关重大的调查往往选用普查.4.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边.三角形的两边差小于第三边可得AC的取值范围,再解即可.【解答】解:根据三角形的三边关系定理可得:7﹣5<AC<7+5,即2<AC<12,故选:B.【点评】此题主要考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.5.【分析】把x与y的值代入方程组检验即可.【解答】解:A、方程组不是二元一次方程组,不符合题意;B、,①﹣②得:3y=﹣4,解得:y=﹣,把y=﹣代入①得:x=﹣,不符合题意;C、,把①代入②得:2x﹣x=﹣3,解得:x=﹣3,把x=﹣3代入①得:y=﹣6,不符合题意;D、,①+②得:3x=﹣3,解得:x=﹣1,把x=﹣1代入①得:y=﹣2,符合题意,故选:D.【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.【分析】根据第四象限内点的横坐标是负数,纵坐标是正数分别求出x、y的值,然后写出点P的坐标即可.【解答】解:∵P(x,y)在第四象限,且x2=4,|y|=7,∴x=2,y=﹣7,∴点P的坐标为(2,﹣7).故选:A.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).7.【分析】不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变,直接根据不等式的基本性质即可得出结论.【解答】解:∵x<y,且(a+5)x<(a+5)y,∴a+5>0,即a>﹣5.故选:A.【点评】本题考查的是不等式的性质,熟知不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变是解答此题的关键.8.【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【解答】解:设这个多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6.故选:B.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.9.【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【解答】解:∵点E是AD的中点,∴S△ABE=S△ABD,S△ACE=S△ADC,∴S△ABE+S△ACE=S△ABC=×8=4,∴S△BCE=S△ABC=×8=4,∵点F是CE的中点,∴S△BEF=S△BCE=×4=2.故选:B.【点评】本题考查了三角形的面积,主要利用了三角形的中线把三角形分成两个面积相等的三角形,原理为等底等高的三角形的面积相等.10.【分析】由∠B=∠C,∠A=50°,利用三角形内角和为180°得∠B=65°,∠FDB=85°,再由BF=CD,BD=CE,利用SAS得到△BDF≌△CED,利用全等三角形对应角相等得到∠BFD=∠CDE,利用三角形内角和即可得证.【解答】解:∵∠B=∠C,∠A=50°∴∠B=∠C=×(180°﹣50°)=65°,∵∠BFD=30°,∠BFD+∠B+∠FDB=180°∴∠FDB=85°在△BDF和△CED中,,∴△BDF≌△CED(SAS),∴∠BFD=∠CDE=30°,又∵∠FDE+∠FDB+∠CDE=180°,∴∠FDE=180°﹣30°﹣85°=65°.故选:C.【点评】此题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解本题的关键.11.【分析】设该店有客房x间,房客y人;根据题意一房七客多七客,一房九客一房空得出方程组即可.【解答】解:设该店有客房x间,房客y人;根据题意得:,故选:A.【点评】本题考查了二元一次方程组的应用;根据题意得出方程组是解决问题的关键.12.【分析】根据x=1是不等式(x﹣5)(ax﹣2)>0的解,且x=2不是这个不等式的解,列出不等式,求出解集,即可解答.【解答】解:∵x=1是不等式(x﹣5)(ax﹣2)>0的解,∴(1﹣5)(a﹣2)>0,解得:a<2,∵x=2不是这个不等式的解,∴(2﹣5)(2a﹣2)≤0,解得:a≥1,∴1≤a<2,故选:D.【点评】本题考查了不等式组的解集,解决本题的关键是求不等式组的解集.二、填空题(共6小题,每小题3分,共18分)13.【分析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减可得答案.【解答】解:把点P(﹣5,﹣2)先向左平移2个单位长度,再向上平移3个单位长度后得到的点的坐标是(﹣5﹣2,﹣2+3),即(﹣7,1),故答案为:(﹣7,1).【点评】此题主要考查了坐标与图形的变化﹣﹣平移,关键是掌握点的坐标的变化规律.14.【分析】可设∠A=3x,∠B=5x,∠C=7x,利用三角形内角和为180°可列出方程,可求得x的值,从而可求得三个角的大小,则可判定出三角形的形状.【解答】解:∵∠A:∠B:∠C=3:5:7,∴可设∠A=3x,∠B=5x,∠C=7x,由三角形内角和定理可得:3x+5x+7x=180,解得x=12,∴∠A=3×12°=36°,∠B=5×12°=60°,∠C=7×12°=84°,∴△ABC为锐角三角形,故答案为:锐角.【点评】本题主要考查三角形内角和定理,掌握三角形内角和为180°是解题的关键,注意方程思想的应用.15.【分析】方程组消去m得到y与x的方程,与已知方程联立求出x与y的值,即可求出m的值.【解答】解:,①×5﹣②得:5y+9x﹣2=0,即9x+5y=2,联立得:,①×9﹣②得:4y=﹣56,解得:y=﹣14,把y=﹣14代入①得:x=8,则m=y+2x=﹣14+16=2,故答案为:2【点评】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.16.【分析】根据高线的定义可得∠ADB=90°,然后根据∠BAD=42°,求出∠ABC的度数,再根据角平分线的定义求出∠FBD,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∵AD是高线,∴∠ADB=90°∵∠BAD=42°,∴∠ABC=48°,∵BE是角平分线,∴∠FBD=24°,在△FBD中,∠BFD=180°﹣90°﹣24°=66°.故答案为:66.【点评】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.17.【分析】先把a当作已知表示出不等式组的解集,再根据不等式组有3个整数解即可求出a的取值范围.【解答】解:,∵由①得,x≥a;由②得,x<2,∴不等式组的解集为:a≤x<2,∵不等式组有3个整数解,∴这三个整数解是:﹣1,0,1,∴﹣2<a≤﹣1.故答案为:﹣2<a≤﹣1.【点评】本题考查的是一元一次不等式组的整数解,先根据题意题用a表示出不等式组的解集是解答此题的关键.18.【分析】根据多边形的内角和,可得∠1,∠2,∠3,∠4,根据等腰三角形的内角和,可得∠7,根据角的和差,可得答案.【解答】解:如图,由正五边形的内角和,得∠1=∠2=∠3=∠4=108°,∠5=∠6=180°﹣108°=72°,∠7=180°﹣72°﹣72°=36°.∠AOB=360°﹣108°﹣108°﹣36°=108°,故答案为:108.【点评】本题考查了多边形的内角与外角,利用多边形的内角和得出每个内角是解题关键.三、解答题(第19、20题每题6分,第21、22题每题8分,第23、24题每题9分,第25、26题每题10分,共66分)19.【分析】直接利用绝对值的性质以及立方根的性质分别化简得出答案.【解答】解:原式=4+2﹣+﹣2=4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.20.【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:解不等式3x+2>x,得:x>﹣1,解不等式3(x﹣1)≤2x﹣1,得:x≤2,则不等式组的解集为﹣1<x≤2,将不等式组的解集表示在数轴上如下:【点评】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.【分析】(1)m=15÷15%=100;(2)乘私家车部分对应的圆心角的度数360°×(1﹣6%﹣15%﹣29%﹣30%)=72°;(3)选择骑车和步行上学的人数1200×(15%+29%)=528(人);【解答】解:(1)15÷15%=100,即m=100,故答案为100;(2)360°×(1﹣6%﹣15%﹣29%﹣30%)=72°,答:乘私家车部分对应的圆心角的度数72°;(3)1200×(15%+29%)=528(人)答:估计该校1200名学生中,选择骑车和步行上学的一共有528人.【点评】本题考查了扇形统计图的综合运用.读懂统计图,从统计图和统计表中得到必要的信息是解决问题的关键.22.【分析】(1)由角平分线的定义得∠BAC=2∠BAD=60°,再由三角形的内角和计算即可;(2)由三角形的内角和以及角平分线的定义得∠CAD=25°,再由三角形的内角和计算得∠ADC=70°,在△ADH中,由EH⊥AD即可求出∠E的度数.【解答】解:∵AD是△ABC的角平分线∴∠BAD=∠CAD=∠BAC(1)∵∠BAD=30°∴∠BAC=2∠BAD=60°∵∠B=45°∴∠ACE=∠B+∠BAC=45°+60°=105°(2)∵∠ACB=85°,∠B=45°,且∠ACB+∠B+∠BAC=180°∴∠BAC=50°∴∠CAD=25°∵∠ACB+∠CAD+∠ADC=180°∴∠ADC=70°∵EH⊥AD∴∠E+∠ADC=90°∴∠E=90°﹣70°=20°.【点评】本题考查了三角形的内角和定理,角平分线的定义,高线的定义,熟记概念与定理并准确识图是解题的关键.23.【分析】(1)设购进甲种文化衫每件需x元,购进乙种文化衫每件需y元,根据“若购进甲种文化衫6件,乙种文化衫5件,需要1400元;若购进甲种文化衫3件,乙种文化衫6件,需要1050元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购进甲种文化衫m件,则购进乙种文化衫(50﹣m)件,根据购买资金不超过6100元且用于购买甲种文化衫的资金不低于购买乙种文化衫的资金,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数即可得出各进货方案.【解答】解:(1)设购进甲种文化衫每件需x元,购进乙种文化衫每件需y元,依题意,得:,解得:.答:购进甲种文化衫每件需150元,购进乙种文化衫每件需100元.(2)设购进甲种文化衫m件,则购进乙种文化衫(50﹣m)件,依题意,得:,解得:20≤m≤22.∵m为正整数,∴m=20,21,22,∴该商店共有3种进货方案,方案1:购进甲种文化衫20件,乙种文化衫30件;方案2:购进甲种文化衫21件,乙种文化衫29件;方案3:购进甲种文化衫22件,乙种文化衫28件.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组.24.【分析】(1)由平行线的性质得出∠ABE+∠C=180°,得出∠ABE=90°=∠C,再证出BE=CD,由SAS证明△ABE≌△BCD即可;(2)由全等三角形的性质得出AE=BD,证出∠ABF+∠BAE=90°,得出∠AFB=90°,即可得出结论;(3)由全等三角形的性质得出BE=CD=1,求出CE=BC﹣BE=1,得出CE=CD,△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积,即可得出答案.【解答】(1)证明:∵AB∥CD,∴∠ABE+∠C=180°,∵∠C=90°,∴∠ABE=90°=∠C,∵E是BC的中点,∴BC=2BE,∵BC=2CD,∴BE=CD,在△ABE和△BCD中,,∴△ABE≌△BCD(SAS);(2)解:AE=BD,AE⊥BD,理由如下:由(1)得:△ABE≌△BCD,∴AE=BD,∵∠BAE=∠CBD,∠ABF+∠CBD=90°,∴∠ABF+∠BAE=90°,∴∠AFB=90°,∴AE⊥BD;(3)解:∵△ABE≌△BCD,∴BE=CD=1,∵AB=BC=2CD=2,∴CE=BC﹣BE=1,∴CE=CD,∴△AED的面积=梯形ABCD的面积﹣△ABE的面积﹣△CDE的面积=(1+2)×2﹣×2×1﹣×1×1=.【点评】本题考查了全等三角形的判定与性质、直角三角形的性质、梯形面积公式以及三角形面积公式等知识;证明三角形全等是解题的关键.25.【分析】(1)求出不等式组A与B的解集,利用题中的新定义判断即可(2)根据“子集”的定义确定出a的范围即可;(3)根据“子集”的定义确定出各自的值,代入原式计算即可求出值;(4)根据“子集”的定义确定出所求即可.【解答】解:(1)A:的解集为3<x<6,B:的解集为x>1,M:的解集为x>2,则不等式组A是不等式组M的子集;(2)∵关于x的不等式组是不等式组的“子集”,∴a≥2;(3)∵a,b,c,d为互不相等的整数,其中a<b,c<d,A:a≤x≤b,B:c≤x≤d,C:1<x<6满足:A是B的“子集”且B是C的“子集”,∴a=3,b=4,c=2,d=5,则a﹣b+c﹣d=3﹣4+2﹣5=﹣4;(4)不等式组M整理得:,由不等式组有解得到<,即≤x<,∵N:1<x≤3是不等式组的“子集”,∴≤1,>3,即m≤2,n>9,∴满足条件的有序整数对(m,n)无数个.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能求出不等式组的解集是解此题的关键.26.【分析】(1)由偶次方和算术平方根的性质得出a+2b=0,b+2=0,解得:b=﹣2,a =﹣2b=4,即可得出答案;(2)作CM⊥OP于M,证明△ACM≌△BAO,得出AM=OB=2,CM=OA=4,求出OM=AM+OA=6,得出点C的坐标为(﹣4,6);由勾股定理得出AC2=AM2+CM2=22+42=20,由三角形面积公式即可得出答案;(3)①作EN⊥OP于N,由(2)得:△ACM≌△BAO,得出CM=OA,同理:△AEN ≌△DAO,得出EN=OA,因此CM=EN,再证明△PCM≌△PEN,即可得出结论;②(i)当∠CAE=90°时,∠BAD=90°,C、A、D共线,由直角三角形的性质得出P A=CE=PC,则∠ACE=∠CAP,得出∠ACE=∠OAD,=1,(i)不正确;(ii)由①得:△ACM≌△BAO,△AEN≌△DAO,△PCM≌△PEN,得出△ACE的面积=△ABD的面积,由PC=PE得出△P AE的面积=△ACE的面积,得出=即可.【解答】(1)解:∵.∴a+2b=0,b+2=0,解得:b=﹣2,a=﹣2b=4,∴A(0,4),B(﹣2,0);(2)解:作CM⊥OP于M,如图1所示:则∠CMA=∠AOB=90°,∵∠BAC=90°,∴∠ACM+∠CAM=∠BAO+∠CAM=90°,∴∠ACM=∠BAO,在△ACM和△BAO中,,∴△ACM≌△BAO(AAS),∴AM=OB=2,CM=OA=4,∴OM=AM+OA=6,∴点C的坐标为(﹣4,6);∵AC=AB,∠BAC=90°.∴AC2=AM2+CM2=22+42=20,∴△ABC的面积=AC2=×20=10;(3)①证明:作EN⊥OP于N,如图2所示:由(2)得:△ACM≌△BAO(AAS),∴CM=OA,同理:△AEN≌△DAO(AAS),∴EN=OA,∴CM=EN,在△PCM和△PEN中,,∴△PCM≌△PEN(AAS),∴PC=PE.②解:(i)的值改变;理由如下:当∠CAE=90°时,∠BAD=90°,C、A、D共线,∵PC=PE,∴P A=CE=PC,则∠ACE=∠CAP,∵∠CAP=∠OAD,∴∠ACE=∠OAD,=1;∴(i)不正确;(ii)的值不变;理由如下:由①得:△ACM≌△BAO,△AEN≌△DAO,△PCM≌△PEN,∴△ACE的面积=△ABD的面积,∵PC=PE,∴△P AE的面积=△ACE的面积,∴=,∴的值不变为.【点评】本题是三角形综合题目,考查了坐标与图形性质、偶次方和算术平方根的性质、全等三角形的判定与性质、勾股定理、三角形面积等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键.一、七年级数学易错题1.一只跳蚤在第一象限及x 、y 轴上跳动,第一次它从原点跳到(0,1),然后按图中箭头所示方向跳动(0,0)0,11,()()1,)0(1→→→→……,每次跳一个单位长度,则第2020次跳到点( )A .(7,45)B .(6,44)C .(5,45)D .(4,44)【解析】 【分析】根据跳蚤运动的速度确定:(0,1)用的次数是21(1)次,到(0,2)是第8(24)´次,到(0,3)是第29(3)次,到(0,4)是第24(46)´次,到(0,5)是第225(5)次,到(0,6)是第48(68)´次,依此类推,到(0,45)是第2025次,后退5次可得2020次所对应的坐标. 【详解】解:跳蚤运动的速度是每秒运动一个单位长度,(0,1)用的次数是21(1)次,到(0,2)是第8(24)´次,到(0,3)是第29(3)次,到(0,4)是第24(46)´次,到(0,5)是第225(5)次,到(0,6)第48(68)´次,依此类推,到(0,45)是第2025次. 2025142020--=,故第2020次时跳蚤所在位置的坐标是(4,44). 故选:D . 【点睛】此题主要考查了数字变化规律,解决本题的关键是正确读懂题意,能够正确确定点运动的顺序,确定运动的距离,从而可以得到到达每个点所用的时间.2.如图所示,A (﹣,0)、B (0,1)分别为x 轴、y 轴上的点,△ABC 为等边三角形,点P (3,a )在第一象限内,且满足2S △ABP =S △ABC ,则a 的值为( )A .B .C .D .2【答案】C 【解析】 【分析】过P 点作PD ⊥x 轴,垂足为D ,根据A (,0)、B (0,1)求OA 、OB ,利用勾股定理求AB ,可得△ABC 的面积,利用S △ABP =S △AOB +S 梯形BODP ﹣S △ADP ,列方程求a .过P点作PD⊥x轴,垂足为D,由A(,0)、B(0,1),得OA,OB=1.∵△ABC为等边三角形,由勾股定理,得AB2,∴S△ABC.又∵S△ABP=S△AOB+S梯形BODP﹣S△ADP(1+a)×3(3)×a=由2S△ABP=S△ABC,得:,∴a.故选C.【点睛】本题考查了坐标与图形,点的坐标与线段长的关系,不规则三角形面积的表示方法及等边三角形的性质和勾股定理.3.如图,AB⊥AC,CD、BE分别是△ABC的角平分线,AG∥BC,AG⊥BG,下列结论:①∠BAG =2∠ABF;②BA平分∠CBG;③∠ABG=∠ACB;④∠CFB=135°,其中正确的结论有()个A.1 B.2 C.3 D.4【答案】C【解析】【分析】由已知条件可知∠ABC+∠ACB=90°,又因为CD、BE分别是△ABC的角平分线,所以得到∠FBC+∠FCB=45°,所以求出∠CFB=135°;有平行线的性质可得到:∠ABG=∠ACB,∠BAG=2∠ABF.所以可知选项①③④正确.【详解】∵AB⊥AC.∴∠BAC =90°,∵∠BAC+∠ABC+∠ACB =180°, ∴∠ABC+∠ACB =90°∵CD 、BE 分别是△ABC 的角平分线, ∴2∠FBC+2∠FCB =90° ∴∠FBC+∠FCB =45° ∴∠BFC =135°故④正确. ∵AG ∥BC , ∴∠BAG =∠ABC ∵∠ABC =2∠ABF∴∠BAG =2∠ABF 故①正确. ∵AB ⊥AC ,∴∠ABC+∠ACB =90°, ∵AG ⊥BG , ∴∠ABG+∠GAB =90° ∵∠BAG =∠ABC , ∴∠ABG =∠ACB 故③正确. 故选C . 【点睛】本题考查了等腰三角形的判定与性质,平行线的性质.掌握相关的判定定理和性质定理是解题的关键.4.已知方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .12x y =⎧⎨=⎩B .34x y =⎧⎨=⎩C .10103x y =⎧⎪⎨=⎪⎩D .510x y =⎧⎨=⎩【答案】D 【解析】 【分析】 将方程组变形,设32,55x ym n ==,结合题意得出m=3,n=4,即可求出x ,y 的值. 【详解】解:方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可以变形为:方程组11122232··5532··55xy a b c x y a b c ⎧+=⎪⎪⎨⎪+=⎪⎩设32,55x ym n ==, 则方程组可变为111222····a m b n c a m b n c +=⎧⎨+=⎩,∵方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,∴方程组111222····a m b n c a m b n c +=⎧⎨+=⎩的解是34m n =⎧⎨=⎩,∴323,455x y ==,解得:x=5,y=10, 故选:D . 【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程成立的未知数的值.弄清题意是解本题的关键.5.如图所示,在平面直角坐标系中,有若干个点按如下规律排列:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),…,则第100个点的横坐标为( )A .12B .13C .14D .15【答案】C 【解析】 【分析】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数),结合图形找出部分a n 的值,根据数值的变化找出变化规律“a n =n ”,再罗列出部分S n 的值,根据数值的变化找出变化规律()12n n n S +=,依次变化规律解不等式()11002n n +≥即可得出结论.【详解】设横坐标为n 的点的个数为a n ,横坐标≤n 的点的个数为S n (n 为正整数), 观察,发现规律:a 1=1,a 2=2,a 3=3,…, ∴a n =n .S 1=a 1=1,S 2=a 1+a 2=3,S 3=a 1+a 2+a 3=6,…, ∴S n =1+2+…+n =()12n n +. 当100≤S n ,即100≤()12n n +,解得:n ≤(舍去),或n ≥.∵142113<<, 故选:C . 【点睛】本题考查了规律型中得点的坐标的变化,解题的关键是根据点的坐标的找出变化规律“()12n n n S +=”.6.为了传承中华文化,激发学生的爱国情怀,提高学生的文学素养,某学校初二(8)班举办了“乐知杯古诗词”大赛.现有小璟、小桦、小花三位同学进入了最后冠军的角逐.决赛共分为六轮,规定:每轮分别决出第1,2,3名(不并列),对应名次的得分都分别为a ,b ,c(a>b>c 且a ,b ,c 均为正整数);选手最后得分为各轮得分之和,得分最高者为冠军.下表是三位选手在每轮比赛中的部分得分情况,根据题中所给信息,下列说法正确的是()A.小璟可能有一轮比赛获得第二名B.小桦有三轮比赛获得第三名C.小花可能有一轮比赛获得第一名D.每轮比赛第一名得分a 为5【答案】D【解析】【分析】先根据三人总得分共26+11+11=48,可得每一轮的得分a+b+c =8,再根据小桦的等分能够得出c=1,进而可得到第一二两轮的具体排名,然后在对a、b的值分情况讨论,然后再逐个排除即可求得a,b的值,从而求解即可【详解】解:∵三人总得分共26+11+11=48,∴每一轮的得分a+b+c=48÷6=8,则对于小桦来说,小桦剩余的第一、三、四轮的总分是11-8=3分,又∵a>b>c且a,b,c均为正整数,∴c≥1,∴小桦第一、三、四轮的得分均为1分,且c=1,∴小花第一、二、四轮的得分均为b,∵a+b+c=8,c=1,∴a+b =7,又∵a>b>c且a,b,c均为正整数,∴b=2时,a=5,或b=3时a=4,当b=2,a=5时,则小花剩余第三、五、六轮的总分是:11-2×3=5(分)结合小桦这几轮的得分情况可知,小花这三轮的得分分别是2,1,2,此时小璟这三轮的得分分别是5,5,5,则小璟六轮的具体得分分别是:5,1,5,5,5,5,共26分,符合题意当b=3,a=4时,则小花剩余第三、五、六轮的总分是:11-3×3=2(分)<3分,不符合综上所述,a=5,b=2,c=1,(D 正确)小璟有五轮得第一名,一轮得第三名;(A 错误)小桦有一轮得第一名,一轮得第二名,四轮得第三名;(B 错误) 小花有五轮得第二名,一轮得第三名(C 错误) 故选:D 【点睛】本题考查了合情推理的问题,考查了推理论证能力,考查了化归与转化思想,审清题意是正确解题的关键,属于中档题.7.已知关于x ,y 的方程组35,4522x y ax by -=⎧⎨+=-⎩和234,8x y ax by +=-⎧⎨-=⎩有相同解,则a ,b 的值分别为( ) A .2-,3 B .2,3C .2-,3-D .2,3-【答案】B 【解析】 【分析】将两个方程组中的3x-y=5与2x+3y=-4组合成新的方程组求出x 及y ,代入另两个方程得到关于a 与b 的方程组,解方程组求解即可. 【详解】 由题意解方程组35234x y x y -=⎧⎨+=-⎩,解得12x y =⎧⎨=-⎩,将12x y =⎧⎨=-⎩代入4522ax by +=-及ax-by=8中,得到4102228a b a b -=-⎧⎨+=⎩,解得23a b =⎧⎨=⎩, 故选:B. 【点睛】此题考查特殊法解方程组,由两个方程组的解相同,故将含有相同字母的方程重新组合进行求解,由此解决问题.8.如图,在平面直角坐标系中,点,A C 在x 轴上,点C 的坐标为(1,0),2AC -=.将Rt ABC ∆先绕点C 顺时针旋转90°,再向右平移3个单位长度,则变换后点A 的对应点坐标是( )A .(1,2)-B .(4,2)-C .(3,2)D .(2,2)【答案】D 【解析】 【分析】先求出A 点绕点C 顺时针旋转90°后所得到的的坐标A ',再求出A '向右平移3个单位长度后得到的坐标A '',A ''即为变换后点A 的对应点坐标. 【详解】将Rt ABC ∆先绕点C 顺时针旋转90°,得到点坐标为A '(-1,2),再向右平移3个单位长度,则A '点的纵坐标不变,横坐标加上3个单位长度,故变换后点A 的对应点坐标是A ''(2,2). 【点睛】本题考察点的坐标的变换及平移.9.“若方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩的解是34x y =⎧⎨=⎩,则方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是( )A .48x y =⎧⎨=⎩B .912x y =⎧⎨=⎩C .1520x y =⎧⎨=⎩D .9585x y ⎧=⎪⎪⎨⎪=⎪⎩【答案】D 【解析】 ∵方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩ 的解是34x y =⎧⎨=⎩,∴111222985985a b c a b c +=⎧⎨+=⎩,两边都除以5得:。

【3套试卷】新人教版七年级第二学期下册期末模拟数学试卷及答案

【3套试卷】新人教版七年级第二学期下册期末模拟数学试卷及答案

新人教版七年级第二学期下册期末模拟数学试卷及答案一、选择题:(每小题4分,共48分)1.4的平方根是()A.2 B.﹣2 C.±2 D.±42.在0,,0.1,π,这些数中,无理数的个数为()A.1个B.2个C.3个D.4个3.点P(﹣3,4)到x轴的距离是()A.﹣3 B.3 C.4 D.54.图中∠1的对顶角是()A.∠2 B.∠3 C.∠4 D.∠55.已知a<b,则下列不等式中不正确的是()A.5a<5b B.a+5<b+5 C.a﹣5<b﹣5 D.﹣5a<﹣5b 6.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测7.下列命题是真命题的个数是()①两点确定一条直线②两点之间,线段最短③对顶角相等④内错角相等A.1 B.2 C.3 D.48. +1在下列哪两个连续自然数之间()A.5 和6 B.4 和5 C.3 和4 D.2和39.如图,直线AB∥CD,EF⊥AB,垂足为O,FG与CD相交于点M,若∠DMG=43°,则∠EFG为( )A .133°B .137°C .143°D .147°10.綦江区某学校25位同学在植树节这天共种了50棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x 人,女生有y 人,根据题意.列方程组正确的是( )A .B .C .D .11.若方程组的解满足x +y =0,则a 的值为( ) A .﹣1B .1C .0D .无法确定12.若关于x 的不等式组有且仅有2个整数解,则a 的取值范围是( )A .3≤a ≤4B .3≤a <4C .3<a ≤4D .2≤a <4二、填空题:(每小题4分,共24分)13.= .14.在平面直角坐标系中,点(3,﹣5)在第 象限.15.把命题“同角的余角相等”改写成“如果…那么…”的形式 . 16.一个正数的平方根为3x +3与x ﹣7,则这个数是 .17.若不等式组解集为1<x <2,则(a +2)(b ﹣1)值为 .18.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4,…,这样依次得点A 1,A 2,A 3…,A n ,…若点A 1的坐标为(3,1),则点A 2019的坐标为 .三、解答题:(本大题2个小题,每小题10分,共20分)19.(10分)(1)解方程组(2)解不等式20.(10分)如图,把△ABC向右平移2个单位长度,再向上平移3个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)求△A′B′C′面积.四、解答题(本大题共5个小题,每小题10分,共50分)21.(10分)解不等式组,并把解集在数轴上表示出来.22.(10分)如图:已知AB∥CD,∠1=∠2,∠DFE=105°.求∠DBC的度数.23.(10分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m,n的值;(3)扇形统计图中,求出艺术类读物所在扇形的圆心角的度数;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校应购买其他类读物多少册?24.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a=,b=;(2)如果,其中a、b为有理数,求a+2b的值.25.(10分)某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元(1)求甲、乙两种机器每台各多少万元?(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案?五、解答题:(本大题1个小题,共8分)26.(8分)如图1,已知直线PQ∥MN,点A在直线PQ上,点C、D在直线MN上,连接AC、AD,∠PAC=50°,∠ADC=30°,AE平分∠PAD,CE平分∠ACD,AE与CE相交于E.(1)求∠AEC 的度数;(2)若将图1中的线段AD 沿MN 向右平移到A 1D 1如图2所示位置,此时A 1E 平分∠AA 1D 1,CE 平分∠ACD 1,A 1E 与CE 相交于E ,∠PAC =50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.参考答案一、选择题1.4的平方根是()A.2 B.﹣2 C.±2 D.±4解:∵(±2)2=4∴4的平方根是:±2.故选:C.2.在0,,0.1,π,这些数中,无理数的个数为()A.1个B.2个C.3个D.4个解:0,,0.1是有理数,π,是无理数.所以无理数的个数为2个.故选:B.3.点P(﹣3,4)到x轴的距离是()A.﹣3 B.3 C.4 D.5解:∵|4|=4,∴点P(﹣3,4)到x轴距离为4.故选:C.4.图中∠1的对顶角是()A.∠2 B.∠3 C.∠4 D.∠5解:由图形可知,∠1的对顶角是∠3.故选:B.5.已知a<b,则下列不等式中不正确的是()A.5a<5b B.a+5<b+5 C.a﹣5<b﹣5 D.﹣5a<﹣5b解:∵a<b,∴5a<5b,故选项A不合题意;a+5<b+5,故选项B不合题意;a﹣5<b﹣5,故选项C不合题意;﹣5a>﹣5b,故选项D符合题意.故选:D.6.PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠的一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测解:A、选项样本容量不够大,5天太少,故A选项错误.B、选项的时间没有代表性,集中一个月没有普遍性,故B选项错误;C、选项的时间没有代表性,集中春节7天没有普遍性选项一年四季各随机选中一个星期也是样本容量不够大,故C选项错误.D、样本正好合适,故D选项正确.故选:D.7.下列命题是真命题的个数是()①两点确定一条直线②两点之间,线段最短③对顶角相等④内错角相等A.1 B.2 C.3 D.4解:①两点确定一条直线,正确,是真命题;②两点之间,线段最短,正确,是真命题;③对顶角相等,正确,是真命题;④两直线平行,内错角相等,故错误,是假命题,真命题有3个,故选:C.8. +1在下列哪两个连续自然数之间()A.5 和6 B.4 和5 C.3 和4 D.2和3解:∵2<<3,∴3<+1<4,∴+1在3和4之间.故选:C.9.如图,直线AB∥CD,EF⊥AB,垂足为O,FG与CD相交于点M,若∠DMG=43°,则∠EFG 为()A.133°B.137°C.143°D.147°解:过点F作FH∥AB,∵AB∥CD,∴AB∥FH∥CD,∴∠EFH=∠EOB,∠DMG=∠HFG,∵EF⊥AB,∠DMG=43°,∴∠EFG=∠EFH+∠MFH=∠EOB+∠DMG=90°+43°=133°.故选:A.10.綦江区某学校25位同学在植树节这天共种了50棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意.列方程组正确的是()A.B.C.D.解:设男生有x人,女生有y人,根据题意得,.故选:D.11.若方程组的解满足x+y=0,则a的值为()A.﹣1 B.1 C.0 D.无法确定解:方程组两方程相加得:4(x+y)=2+2a,即x+y=(1+a),由x+y=0,得到(1+a)=0,解得:a=﹣1.故选:A.12.若关于x的不等式组有且仅有2个整数解,则a的取值范围是()A.3≤a≤4 B.3≤a<4 C.3<a≤4 D.2≤a<4解:解不等式6x+2>3x+5得:x>1,解不等式x﹣a≤0得:x≤a,∵不等式组有且仅有2个整数解,∴不等式组的解为:1<x≤a,且两个整数解为:2,3,∴3≤a<4,即a的取值范围为:3≤a<4,故选:B.二、填空题:(本大题6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上.= 1 .13.故答案为:1.14.在平面直角坐标系中,点(3,﹣5)在第四象限.解:∵点P(3,﹣5)的横坐标是正数,纵坐标是负数,∴点P在平面直角坐标系的第四象限.故答案填:四.15.把命题“同角的余角相等”改写成“如果…那么…”的形式如果两个角是同一个角的余角,那么这两个角相等.解:根据命题的特点,可以改写为:“如果两个角是同一个角的余角,那么这两个角相等”,故答案为:如果两个角是同一个角的余角,那么这两个角相等.16.一个正数的平方根为3x+3与x﹣7,则这个数是36 .解:根据题意得:3x+3+x﹣7=0,解得:x=1,即3x+3=6,则这个正数为62=36,故答案为:3617.若不等式组解集为1<x<2,则(a+2)(b﹣1)值为 6 .解:,解①得:x>﹣2a+3,解②得:x<b+,则不等式组的解集是:﹣2a+3<x<b+,根据题意得:﹣2a+3=1且b+=2,解得:a=1,b=3,则原式=6.故答案为:6.18.在平面直角坐标系xOy中,对于点P(x,y),我们把点P′(﹣y+1,x+1)叫做点P的伴随点.已知点A1的伴随点为A2,点A2的伴随点为A3,点A3的伴随点为A4,…,这样依次得点A1,A2,A3…,A n,…若点A1的坐标为(3,1),则点A2019的坐标为(﹣3,1).解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(﹣3,1).故答案为:(﹣3,1).三、解答题:(本大题2个小题,每小题10分,共20分)解答时每小题必须写出必要的演算过程或推理步骤,并将解答过程书写在答题卡中对应的位置上.19.(10分)(1)解方程组(2)解不等式解:(1)由①+②,得5x=5,解得x=1,把x=1代入方程①解得y=1,∴该方程组的解为:;(2)去分母,得2(x+4)﹣3(3x﹣1)>6,去括号,得2x+8﹣9x+3>6,移项、合并同类项,得﹣7x>﹣5,化系数为1,得x<,∴该不等式的解集为:x<20.(10分)如图,把△ABC向右平移2个单位长度,再向上平移3个单位长度,得到△A′B′C′.(1)在图中画出△A′B′C′,并写出点A′、B′、C′的坐标;(2)求△A′B′C′面积.【解答】解:(1)如图所示:△A′B′C′即为所求;点A′、B′、C′的坐标分别是:(0,4)(﹣1,1)(3,1);(2)△A′B′C′的面积为6.四、解答题(本大题共5个小题,每小题10分,共50分)解答时每小题必须写出必要的演算过程或推理步骤,并将解答过程书写在答题卡中对应的位置上.21.(10分)解不等式组,并把解集在数轴上表示出来.【解答】解:,由不等式①,得x>1,由不等式②,得x≤2,解集在数轴上表示为:故原不等式组的解集为:1<x≤2.22.(10分)如图:已知AB∥CD,∠1=∠2,∠DFE=105°.求∠DBC的度数.解:∵AB∥CD,∴∠2=∠3,又∵∠1=∠2,∴∠1=∠3,∴FE∥BC,∴∠DBC=∠DFE=105°.23.(10分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了多少名同学;(2)条形统计图中,m,n的值;(3)扇形统计图中,求出艺术类读物所在扇形的圆心角的度数;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校应购买其他类读物多少册?解:(1)由题意可得,本次调查的学生有:70÷35%=200(名),答:一共调查了200名学生;(2)n=200×30%=60,m=200﹣70﹣60﹣30=40,即m的值是40,n的值是60;(3)由题意可得,艺术类读物所在扇形的圆心角的度数是:360°×=72°,答:艺术类读物所在扇形的圆心角的度数是72°;(4)由题意可得,学校应购买其他类读物:6000×=900(册),答:学校应购买其他类读物900册.24.(10分)我们知道:任意一个有理数与无理数的和为无理数,任意一个不为零的有理数与一个无理数的积为无理数,而零与无理数的积为零.由此可得:如果ax+b=0,其中a、b为有理数,x为无理数,那么a=0且b=0.运用上述知识,解决下列问题:(1)如果,其中a、b为有理数,那么a= 2 ,b=﹣3 ;(2)如果,其中a、b为有理数,求a+2b的值.解:(1)2,﹣3;(2)整理,得(a+b)+(2a﹣b﹣5)=0.∵a、b为有理数,∴解得∴a+2b=﹣.25.(10分)某工厂为了扩大生产,决定购买6台机器用于生产零件,现有甲、乙两种机器可供选择.其中甲型机器每日生产零件106个,乙型机器每日生产零件60个,经调査,购买3台甲型机器和2台乙型机器共需要31万元,购买一台甲型机器比购买一台乙型机器多2万元(1)求甲、乙两种机器每台各多少万元?(2)如果工厂期买机器的预算资金不超过34万元,那么你认为该工厂有哪几种购买方案?(3)在(2)的条件下,如果要求该工厂购进的6台机器的日产量能力不能低于380个,那么为了节约资金.应该选择哪种方案?解:(1)设甲种机器每台x万元,乙种机器每台y万元.由题意,解得,答:甲种机器每台7万元,乙种机器每台5万元.(2)设购买甲种机器a 台,乙种机器(6﹣a )台. 由题意7a +5(6﹣a )≤34, 解得a ≤2, ∵a 是整数,a ≥0 ∴a =0或1或2, ∴有三种购买方案,①购买甲种机器0台,乙种机器6台, ②购买甲种机器1台,乙种机器5台, ③购买甲种机器2台,乙种机器4台,(3)①费用6×5=30万元,日产量能力360个, ②费用7+5×5=32万元,日产量能力406个, ③费用为2×7+4×5=34万元,日产量能力452个, 综上所述,购买甲种机器1台,乙种机器5台满足条件.五、解答题:(本大题1个小题,共8分)解答时每小题必须写出必要的演算过程或推理步骤,并将解答过程书写在答题卡对应的位置上.26.(8分)如图1,已知直线PQ ∥MN ,点A 在直线PQ 上,点C 、D 在直线MN 上,连接AC 、AD ,∠PAC =50°,∠ADC =30°,AE 平分∠PAD ,CE 平分∠ACD ,AE 与CE 相交于E .(1)求∠AEC 的度数;(2)若将图1中的线段AD 沿MN 向右平移到A 1D 1如图2所示位置,此时A 1E 平分∠AA 1D 1,CE 平分∠ACD 1,A 1E 与CE 相交于E ,∠PAC =50°,∠A 1D 1C =30°,求∠A 1EC 的度数.(3)若将图1中的线段AD 沿MN 向左平移到A 1D 1如图3所示位置,其他条件与(2)相同,求此时∠A 1EC 的度数.解:(1)如图1所示:∵直线PQ ∥MN ,∠ADC =30°, ∴∠ADC =∠QAD =30°, ∴∠PAD =150°,∵∠PAC =50°,AE 平分∠PAD , ∴∠PAE =75°, ∴∠CAE =25°,可得∠PAC =∠ACN =50°, ∵CE 平分∠ACD , ∴∠ECA =25°,∴∠AEC =180°﹣25°﹣25°=130°;(2)如图2所示:∵∠A 1D 1C =30°,线段AD 沿MN 向右平移到A 1D 1,PQ ∥MN , ∴∠QA 1D 1=30°, ∴∠PA 1D 1=150°, ∵A 1E 平分∠AA 1D 1, ∴∠PA 1E =∠EA 1D 1=75°, ∵∠PAC =50°,PQ ∥MN , ∴∠CAQ =130°,∠ACN =50°, ∵CE 平分∠ACD 1,∴∠ACE =25°,∴∠CEA 1=360°﹣25°﹣130°﹣75°=130°;(3)如图3所示:过点E 作FE ∥PQ ,∵∠A 1D 1C =30°,线段AD 沿MN 向左平移到A 1D 1,PQ ∥MN , ∴∠QA 1D 1=30°, ∵A 1E 平分∠AA 1D 1, ∴∠QA 1E =∠2=15°, ∵∠PAC =50°,PQ ∥MN , ∴∠ACN =50°, ∵CE 平分∠ACD 1,∴∠ACE =∠ECN =∠1=25°,∴∠CEA 1=∠1+∠2=15°+25°=40°.新七年级下学期期末考试数学试题(含答案)一、选择题(每小题3分,共30分)1.下列图形中,为轴对称图形的是()A.B.C.D.2.下面运算结果为a6的是()A.a3+a3B.a8÷a2C.a2•a3D.(﹣a2)33.2019年3月16日成都市龙泉驿区第三十三届桃花节正式拉开序幕,桃花花粉的直径约为0.00005m,数据”0.00005”可用科学记数法表示为()A.50×10﹣5B.0.5×10﹣4C.5×l0﹣4D.5×10﹣54.在下列事件中,是必然事件的是()A.买一张电影票,座位号一定是偶数B.随时打开电视机,正在播新闻C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨5.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE6.如图,在△ABC中,DC=2BD,若△ABD的面积为2平方厘米,则△ABC的面积为()平方厘米.A.18 B.12 C.9 D.67.如图,∠1=38°,如果CD∥BE,那么∠B的度数为()A.142°B.162°C.62°D.52°8.已知(x+2)(x+3)=x2+mx+6,则m的值是()A.﹣1 B.1 C.5 D.﹣59.如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为26cm,则△ABC 的周长为()A.32 B.29 C.38 D.3610.小李计划通过社会实践活动赚钱买一本标价43元的书,他以每千克1.1元的价格从批发市场购进若干千克西瓜到交大路子云市场上去销售,在销售了40千克之后,余下的打七五折全部售完.销售金额y(元)与售出西瓜的千克数x(千克)之间的关系如图所示.下列结论正确的是()A.降价后西瓜的单价为2元/千克B.小李一共进了50千克西瓜C.小李这次社会实践活动赚的钱可以买到43元的书D.降价前的单价比降价后的单价多0.6元二、填空题(本大题共4个小题,每小题4分,共16分)11.等腰三角形的一个底角为35°,则顶角的度数是度.12.若关于x的多项式x2+3x+m是一个完全平方式,则常数m=.13.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;由表格中y与t的关系可知,当汽车行驶小时,油箱的剩余油量为28升.14.如图,在Rt△ABC中,∠C=90°,以点A为圆心,适当的长度为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于MN的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若∠B=50°,则∠CDA=度.三、解答题(本大题共6个小题,共54分)15.计算(1)(﹣1)2019+(π﹣3.14)0﹣(﹣)﹣2(2)(﹣3ab3)22a2b÷(6a3b4)16.先化简再求值:[(a+b)(a﹣b)+(a+b)2﹣(2a﹣b)(a+6b)]÷3b,其中a=﹣1,b =﹣2.17.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.18.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.19.A袋中有5张除上面写的数据以外其他完全相同的卡片,分别写有1cm、2cm、3cm、4cm、5cm.A袋外面另有两张卡片,上面分别写有3m和5cm.现随机从A袋中取出一张卡片,与A袋外面这两张卡片放在一起,以卡片上的数据分别作为三条线段的长度,回答下列问题:(1)写出组合成的三条线段的长度的所有可能的结果;(2)求出这三条线段能组成三角形的概率;(3)求这三条线段能组成等腰三角形的概率.20.如图.已知∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAB+∠DAE的度数;(3)请问线段CE、BF、DE之间有什么数量关系?请说明理由.B卷(100分)一、填空题(本大题共5个小题,每小题4分,共20分)21.已知2m=4,2n=16,则m+n=.22.已知x2﹣x﹣1=0,则x3﹣2x2+3=.23如图,在△ABC中,AD平分∠BAC交BC于点D,点M,N分别是AD和AB上的动点,当S=12,AC=8时,BM+MN的最小值等于.△ABC24.如图,已知四边形ABCD中,AB=12厘米,BC=8厘米,CD=14厘米,∠B=∠C,点E 为线段AB的中点.如果点P在线段BC上以3厘米秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.当点Q的运动速度为厘米/秒时,能够使△BPE与以C、P、Q三点所构成的三角形全等.25.如图,已知在等边三角形ABC中,点P为边AB的中点,点D、E分别为边AC、BC上的点,∠APD+∠BPE=60°.点F、H分别在线段BC、AC上.连接PH、PF、HF.若PD⊥PF 且PD=PF,HP⊥EP.连接DE,则=,∠PHF=度.二、解答题(共30分)26若我们规定三角表示为abc;方框表示为:(x m+y n).例如:÷=1×19×3÷(24+31)=3.请根据这个规定解答下列问题:(1)计算:÷=(2)代数式:+为完全平方式,则常数k=(3)当x为何值时,代数式﹣有最小值,最小值是多少?27高铁的开通,给大家出行带来了极大的方便,五一期间,小张和小李到剑门关风景区游玩,小张乘私家车从成都东站出发0.5小时后,小李乘坐高铁从成都东站出发,先到广元站,然后转乘出租车到剑门关风景区(换车时间忽略不计),两人恰好同时到达剑门关风景区,他们离开成都的距离y(千米)与时间t(小时)的关系如图所示,请结合图象解决下面问题:(1)小李乘坐高铁的平均速度是千米/小时;(2)小张乘的私家车平均速度是小李乘的高铁平均速度的,小张乘的私家车平均速度是小李乘的出租车的平均速度的1倍,求a,b的值.(3)求线段AB所表示的y与t的关系式.28已知,如图AD为△ABC的中线,分别以AB和AC为一边在△ABC的外部作等腰三角形ABE 和等腰三角形ACF,且AE=AB,AF=AC,连接EF,∠EAF+∠BAC=180°(1)如图1,若∠ABE=63°,∠BAC=45°,求∠FAC的度数;(2)如图1请探究线段EF和线段AD有何数量关系?并证明你的结论;(3)如图2,设EF交AB于点G,交AC于点R,延长FC,EB交于点M,若点G为线段EF 的中点,且∠BAE=70°,请探究∠ACB和∠CAF的数量关系,并证明你的结论.参考答案与试题解析A卷(100分)一.选择题(共10小题)1.下列图形中,为轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念对各选项分析判断即可得解.【解答】解:A、是轴对称图形,故本选项正确;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:A.2.下面运算结果为a6的是()A.a3+a3B.a8÷a2C.a2•a3D.(﹣a2)3【分析】根据合并同类项法则、同底数幂的除法、同底数幂的乘法及幂的乘方逐一计算即可判断.【解答】解:A、a3+a3=2a3,此选项不符合题意;B、a8÷a2=a6,此选项符合题意;C、a2•a3=a5,此选项不符合题意;D、(﹣a2)3=﹣a6,此选项不符合题意;故选:B.3.2019年3月16日成都市龙泉驿区第三十三届桃花节正式拉开序幕,桃花花粉的直径约为0.00005m,数据”0.00005”可用科学记数法表示为()A.50×10﹣5B.0.5×10﹣4C.5×l0﹣4D.5×10﹣5【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00005=5×10﹣5.故选:D.4.在下列事件中,是必然事件的是()A.买一张电影票,座位号一定是偶数B.随时打开电视机,正在播新闻C.通常情况下,抛出的篮球会下落D.阴天就一定会下雨【分析】根据事件发生的可能性大小判断相应事件的类型即可.【解答】解:A是随机事件,故A不符合题意;B、是随机事件,故B不符合题意;C、是必然事件,故C符合题意;D、是随机事件,故D不符合题意;故选:C.5.如图,已知点B、E、C、F在一条直线上,∠A=∠D,∠B=∠DFE,添加以下条件,不能判定△ABC≌△DFE的是()A.BE=CF B.AB=DF C.∠ACB=∠DEF D.AC=DE【分析】根据全等三角形的判定方法对各选项进行判断.【解答】解:∵∠A=∠D,∠B=∠DFE,∴当BE=CF时,即BC=EF,△ABC≌△DFE(AAS);当AB=DF时,即BC=EF,△ABC≌△DFE(ASA);当AC=DE时,即BC=EF,△ABC≌△DFE(AAS).故选:C.6.如图,在△ABC中,DC=2BD,若△ABD的面积为2平方厘米,则△ABC的面积为()平方厘米.A.18 B.12 C.9 D.6 【分析】利用等高模型解决问题即可.【解答】解:∵DC=2BD,∴BC=2CD,∴S△ABC=3S△ABD=2×3=6,故选:D.7.如图,∠1=38°,如果CD∥BE,那么∠B的度数为()A.142°B.162°C.62°D.52°【分析】利用平行线的性质即可解决问题.【解答】解:∵CD∥BE,∴∠2=∠B,∵∠2=180°﹣∠1=142°,∴∠B=142°,故选:A.8.已知(x+2)(x+3)=x2+mx+6,则m的值是()A.﹣1 B.1 C.5 D.﹣5 【分析】先根据多项式乘以多项式法则展开,合并后即可得出答案.【解答】解:(x+2)(x+3)=x2+3x+2x+6=x2+5x+6,∵(x+2)(x+3)=x2+mx+6,∴m=5,故选:C.9.如图,在△ABC中,DE是边AC的垂直平分线,AE=5cm,△ABD的周长为26cm,则△ABC 的周长为()A.32 B.29 C.38 D.36【分析】根据线段的垂直平分线的性质得到DA=DC,AC=2AE=10,根据三角形的周长公式计算,得到答案.【解答】解:∵DE是边AC的垂直平分线,∴DA=DC,AC=2AE=10,∵△ABD的周长为26,∴AB+BD+AD=AB+BD+CD=AB+BC=26,∴△ABC的周长=AB+BC+AC=26+10=36(cm),故选:D.10.小李计划通过社会实践活动赚钱买一本标价43元的书,他以每千克1.1元的价格从批发市场购进若干千克西瓜到交大路子云市场上去销售,在销售了40千克之后,余下的打七五折全部售完.销售金额y(元)与售出西瓜的千克数x(千克)之间的关系如图所示.下列结论正确的是()A.降价后西瓜的单价为2元/千克B.小李一共进了50千克西瓜C.小李这次社会实践活动赚的钱可以买到43元的书D.降价前的单价比降价后的单价多0.6元【分析】根据“单价=总价÷数量”求出降价前的单价,即可得出降价后的单价;根据“数量=总价÷单价”求出降价后的数量即可;用总销售金额减去成本即可得出利润.【解答】解:降价前西瓜的单价为:80÷40=2(元/千克),故选项A不合题意;降价后售出西瓜的数量为:(110﹣80)÷1.5=20(千克),40+20=60(千克),即小李一共进了60千克西瓜,故选项B不合题意;110﹣60×1.1=44(元),小李这次社会实践活动赚的钱为44元,可以买到43元的书,故选项C符合题意;降价后西瓜的单价为:2×0.75=1.5(元/千克),2﹣1.5=0.5(元),即降价前的单价比降价后的单价多0.5元,故选项D不合题意.故选:C.二.填空题(共4小题)11.等腰三角形的一个底角为35°,则顶角的度数是110 度.【分析】根据三角形内角和定理即可解决问题;【解答】解:∵等腰三角形的一个底角为35°,∴这个等腰三角形的顶角的度数=180°﹣35°﹣35°=110°,故答案为110.12.若关于x的多项式x2+3x+m是一个完全平方式,则常数m=.【分析】根据完全平方公式即可求出答案.【解答】解:∵(x+)2=x2+3x+,∴m=,故答案为:13.某汽车生产厂对其生产的A型汽车进行油耗试验:匀速行驶的汽车在行驶过程中,油箱的剩余油量y(升)与行驶时间(小时)之间的关系如下表;由表格中y与t的关系可知,当汽车行驶9 小时,油箱的剩余油量为28升.【分析】由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少8L,据此可得y与t的关系式.【解答】解:由题意可得:y=100﹣8t,当y=28时,28=100﹣8t解得:t=9.故答案为:9.14.如图,在Rt△ABC中,∠C=90°,以点A为圆心,适当的长度为半径画弧,分别交AC、AB于点M、N,再分别以M、N为圆心,以大于MN的长度为半径画弧,两弧交于点O,作射线AO交BC于点D,若∠B=50°,则∠CDA=70 度.【分析】根据∠CDA=∠DAB+∠B,只要求出∠DAB即可.【解答】解:∵∠C=90°,∠B=50°,∴∠CAB=90°﹣50°=40°,∵AD平分∠CAB,∴∠DAB=∠CAB=20°,∴∠CDA=∠DAB+∠B=70°,故答案为70.三.解答题(共6小题)15.计算(1)(﹣1)2019+(π﹣3.14)0﹣(﹣)﹣2(2)(﹣3ab3)22a2b÷(6a3b4)【分析】(1)直接利用零指数幂的性质以及负指数幂的性质分别化简得出答案;(2)直接利用整式的乘除运算法则计算得出答案.【解答】解:(1)原式=﹣1+1﹣4=﹣4;(2)原式=9a2b6×2a2b÷(6a3b4)=18a4b7÷(6a3b4)=3ab3.16.先化简再求值:[(a+b)(a﹣b)+(a+b)2﹣(2a﹣b)(a+6b)]÷3b,其中a=﹣1,b =﹣2.【分析】先算括号内的乘法,合并同类项,算除法,最后代入求出即可.【解答】解:原式=[a2﹣b2+a2﹣2ab+b2﹣2a2﹣12ab+ab+6b2]÷3b=[6b2﹣13ab]÷3b=2b﹣a,当a=﹣1,b=﹣2时,原式=﹣4+=﹣.17.如图,在正方形网格上有一个△ABC.(1)画△ABC关于直线MN的对称图形(不写画法);(2)若网格上的每个小正方形的边长为1,求△ABC的面积.【分析】(1)根据网格结构找出点A、B、C关于MN的对称点A′、B′、C′的位置,然后顺次连接即可;(2)利用△ABC所在的矩形的面积减去四周三个小直角三角形的面积,列式计算即可得解.【解答】解:(1)△ABC关于直线MN的对称图形如图所示;(2)△ABC的面积=4×5﹣×1×4﹣×1×4﹣×5×3,=20﹣2﹣2﹣7.5,=8.5.18.已知:如图,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.【分析】根据相等的和差得到BC=EF,证得△ABC≌△DEF,根据全等三角形的性质即可得到结论.【解答】证明:∵BE=CF,∴BE+EC=CF+EC,即:BC=EF,在△ABC与△DEF中,,∴△ABC≌△DEF,∴∠A=∠D.19.A袋中有5张除上面写的数据以外其他完全相同的卡片,分别写有1cm、2cm、3cm、4cm、5cm.A袋外面另有两张卡片,上面分别写有3m和5cm.现随机从A袋中取出一张卡片,与A袋外面这两张卡片放在一起,以卡片上的数据分别作为三条线段的长度,回答下列问题:(1)写出组合成的三条线段的长度的所有可能的结果;(2)求出这三条线段能组成三角形的概率;(3)求这三条线段能组成等腰三角形的概率.【分析】先利用列举法展示所有5种可能的结果数,再分别根据三角形三边的关系、等腰三角形的判定找出2个事件的结果数,然后根据概率公式计算即可.【解答】解:(1)共有5种可能的结果数,它们是:1,3,5;2,3,5;3,3,5;4,3,5;5,3,5;(1)这三条线段能构成一个三角形的结果数为3,所以这三条线段能构成一个三角形的概率=;(2)这三条线段能构成等腰三角形的结果数2,所以这三条线段能构成等腰三角形的概率是.20.如图.已知∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.(1)求证:△ABC≌△ADE;(2)求∠FAB+∠DAE的度数;(3)请问线段CE、BF、DE之间有什么数量关系?请说明理由.【分析】(1)易证∠BAC=∠DAE,由SAS证得△BAC≌△DAE;(2)由等腰直角三角形得出∠E=45°,由△BAC≌△DAE,得出∠CAB=∠DAE,∠BCA=∠E=45°,则∠FAB+∠DAE=∠FAB+∠CAB=∠FAC,证出∠FAC=45°,即可得出结果;(3)延长BF到G,使得FG=FB,连接AG,易证∠ABF=∠G,由△BAC≌△DAE,得出AB =AD,∠CBA=∠EDA,CB=ED,则AG=AD,∠ABF=∠CDA,推出∠G=∠CDA,由AAS证得△CGA≌△CDA得出CG=CD,通过等量代换即可得出结论.【解答】(1)证明:∵∠BAD=∠CAE=90°,∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,∴∠BAC=∠DAE,在△BAC和△DAE中,,∴△BAC≌△DAE(SAS);(2)解:∵∠CAE=90°,AC=AE,∴∠E=45°,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级下册期末模拟(二)一.选择题(共10小题)1.下列不等式的变形不正确的是()A.若a>b,则a+3>b+3 B.若﹣a>﹣b则a<b:C.若x<y,则x>﹣2y D.若﹣2x>a,则x a【解析】解:A.若a>b,不等式两边同时加上3得:a+3>b+3,即A项正确,B.若﹣a>﹣b,不等式两边同时乘以﹣1得:a<b,即B项正确,C.若x<y,不等式两边同时乘以﹣2得:x>﹣2y,即C项正确,D.若﹣2x>a,不等式两边同时乘以得:x,即D项错误,故选:D.【点睛】本题考查了不等式的性质,正确掌握不等式的性质是解题的关键.2.实数a、b在数轴上的对应点的位置如图所示,则正确的结论是()A.b>﹣2 B.﹣b<0 C.﹣a>b D.a>﹣b【解析】解:由图可得b在﹣2的左边,故b<﹣2,从而A、B错;又由图可得﹣2<﹣a<﹣1,故﹣a>b,故选:C.【点睛】本题考查了数轴上实数大小的比较,以及相反数的定义;3.如图在一块长为12m,宽为6m的长方形草地上,有一条弯曲的柏油小路(小路任何地方的水平宽度都是2m)则空白部分表示的草地面积是()A.70 B.60 C.48 D.18【解析】解:草地面积=矩形面积﹣小路面积=12×6﹣2×6=60(m2).故选:B.【点睛】此题考查生活中的平移现象,化曲为直是解决此题的关键思路.4.如图,已知a∥b,小明把三角板的直角顶点放在直线b上,若∠1=35°,则∠2的度数为()A.65°B.120°C.125°D.145°【解析】解:如图所示,∵∠1=35°,∠ACB=90°,∴∠ACD=125°,∵a∥b,∴∠AEB=∠ACD=125°,∴由图可得∠2=∠AEB=125°,故选:C.【点睛】本题考查了平行线的性质,直角三角形的性质,熟记性质并准确识图是解题的关键.5.已知点A(m+1,﹣2)和点B(3,m﹣1),若直线AB∥x轴,则m的值为()A.﹣1 B.﹣4 C.2 D.3【解析】解:∵点A(m+1,﹣2)和点B(3,m﹣1),且直线AB∥x轴,∴﹣2=m﹣1∴m=﹣1故选:A.【点睛】此题主要考查了平行于x轴的坐标特点.6.已知关于x的不等式2x﹣a≤0的正整数解恰好为1,2,3,则a的取值范围是()A.a≥6B.6≤a<8 C.6<a≤8D.6≤a≤8【解析】解:解不等式2x﹣a≤0,得:x a,∵不等式2x﹣a≤0的正整数解是1,2,3,∴3a<4,解得:6≤a<8,故选:B.【点睛】本题考查了一元一次不等式的整数解,正确解出不等式的解集,正确确定a的范围是解决本题的关键.解不等式时要用到不等式的基本性质.7.估计(2)•的值应在()A.3和4之间B.4和5之间C.5和6之间D.6和7之间【解析】解:(2)•=22,∵2<23,∴4<22<5.故选:B.【点睛】此题主要考查了估算无理数的大小,正确进行二次根式的运算是解题关键.8.在去年植树节时,甲班比乙班多种了100棵树.今年植树时,甲班比去年多种了10%,乙班比去年多种了12%,结果甲班比乙班还是多种100树棵.设甲班去年植树x棵,乙去年植树y棵,则下列方程组中正确的是()A.B.C.D.【解析】解:根据甲班去年植树棵数﹣乙班去年植树棵数=100棵,得方程x﹣y=100;根据甲班今年植树棵数﹣乙班今年植树棵数=100棵,得方程110%x﹣112%y=100.可列方程组为.故选:D.【点睛】根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.本题需注意甲班比去年多种10%,实际是去年的110%;乙班比去年多种12%,实际是去年的112%.9.如图在平面直角坐标系中,若干个半径为2个单位长度,圆心角为60°的扇形组成一条连续的曲线,点P 从原点O出发,沿这条曲线向右上下起伏运动,点在直线上的速度为每秒2个单位长度,点在弧线上的速度为每秒个单位长度,则2019秒时,点P的坐标是()A.(2017,0)B.(2017,)C.(2018,0)D.(2019,)【解析】解:设第n秒运动到P n(n为自然数)点,观察,发现规律:P1(1,),P2(2,0),P3(3,),P4(4,0),P5(5,),…,∴P4n+1(4n+1,),P4n+2(4n+2,0),P4n+3(4n+3,),P4n+4(4n+4,0),∵2019=4×504+3,∴P2019为(2019,),故选:D.【点睛】本题主要考查了规律型中的点的坐标,解题的关键是找出变化规律“P4n+1(4n+1,),P4n+2(4n+2,0),P4n+3(4n+3,),P4n+4(4n+4,0)”.本题属于中档题,难度不大,解决该题型题目时,根据运动的规律找出点的坐标,根据坐标的变化找出坐标变化的规律是关键.10.为倡导绿色发展,避免浪费能源,某市准备对居民用电量采用阶梯收费的方法,计划实施三档的阶梯电价:第一档、第二档和第三档的电价分别覆盖全市居民家庭的80%,15%和5%.为了合理确定各档之间的界限,相关部门在该市随机调查了20000户居民6月份的用电量(单位:kw・h),并将收集的样本数据进行排序整理(排序样本),绘制了如下频数分布直方图(每段用电量均含最小值,不含最大值).根据统计数据,下面有四个推断:①抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平②在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于500③月用电量小于160kw・h的该市居民家庭按第一档电价交费,月用电量不小于310kw・h的该市居民家庭按第三档电价交费④该市居民家庭月用电量的中间水平(50%的用户)为110kw•h其中合理的是()A.①②③B.①②④C.①③④D.②③④【解析】解:由题意可得,抽样调查6月份的用电量,是因为6月份的用电量在一年12个月的用电量中处于中等偏上水平,故①合理,在调查的20000户居民中,6月份的用电量的最大值与最小值的差小于510﹣10=500,故②合理,第一档用户数量为:20000×80%=16000户,由1108+8533+6359=16000,故月用电量小于160kw・h的该市居民家庭按第一档电价交费,第三档用户数量为:20000×5%=1000户,由151+181+232+436=1000,故月用电量不小于310kw・h的该市居民家庭按第三档电价交费,故③合理,该市居民家庭月用电量的中间水平(50%的用户)为大于等于110kw•h,小于160kw•h,故④不合理,故选:A.【点睛】本题考查频数分布直方图,解答本题的关键是明确题意,利用数形结合的思想解答.二.填空题(共8小题)11.在实数,﹣(﹣1),,,313113113,中,无理数有2个.【解析】解:在所列实数中,无理数有,这2个,故答案为:2.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.12.象棋是一项益智游戏,如图,已知表示棋子“車”的点的坐标为(﹣2,1),棋子“炮”的点的坐标为(1,3),则表示棋子“馬”的点的坐标为(4,3).【解析】解:根据题意可建立如图所示坐标系:则表示棋子“馬”的点的坐标为(4,3),故答案为:(4,3).【点睛】此题主要考查了坐标确定位置,正确得出原点的位置是解题关键.13.为了了解荆州市2017年3.6万名考生的数学中考成绩,从中抽取了200名考生的成绩进行统计,在这个问题中,下列说法:①这3.6万名考生的数学中考成绩的全体是总体;②每个考生数学中考成绩是个体;③从中抽取的200名考生的数学中考成绩是总体的一个样本;④样本容量是200.其中说法正确的有(填序号)①②③④【解析】解:①这3.6万名考生的数学中考成绩的全体是总体,正确;②每个考生数学中考成绩是个体,正确;③从中抽取的200名考生的数学中考成绩是总体的一个样本,正确;④样本容量是200,正确;故答案为:①②③④.【点睛】本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.14.在某市举办的青少年校园足球比赛中,比赛规则是:胜一场积3分,平一场积1分;负一场积0分.某校足球队共比赛9场,以负1场的成绩夺得了冠军,已知该校足球队最后的积分不少于21分,则该校足球队获胜的场次最少是7场.【解析】解:设该校足球队获胜x场,则平了(9﹣1﹣x)场,根据题意得:3x+(9﹣1﹣x)≥21,解得:x.∵x为整数,∴x的最小值为7.故答案为:7.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.15.如图,长方形ABCD中放置9个形状、大小都相同的小长方形,相关数据图中所示,则图中阴影部分的面积为18(平方单位).【解析】解:设小长方形的长为x,宽为y,依题意有,解得,9×(4+1×3)﹣5×1×9=9×7﹣45=63﹣45=18.即:图中阴影部分的面积为18.故答案是:18.【点睛】此题主要考查了二元一次方程组的应用,此题是一个信息题目,要求学生会根据图示找出数量关系,根据图示可以列出两个方程,联立求出小长方形的长和宽.16.已知关于x的不等式组只有2个整数解,则a的取值范围是﹣1≤a<0.【解析】解:解不等式x﹣a>0得:x>a,解不等式5﹣2x>1得:x<2,∵不等式组只有2个整数解,∴不等式组的解为:a<x<2,且两个整数解为:0,1,∴﹣1≤a<0,即a的取值范围为:﹣1≤a<0,故答案为:﹣1≤a<0.【点睛】本题考查一元一次不等式组的整数解,正确掌握解一元一次不等式组的方法是解题的关键.17.我们用[m]表示不大于m的最大整数,如:[2]=2,[4.1]=4,[3.99]=3.(1)1;(2)若,则x的取值范围是9≤x<16.【解析】解:(1)∵[m]表示不大于m的最大整数,∴1;(2)∵,∴6≤37,解得9≤x<16.故x的取值范围是9≤x<16.故答案为:9≤x<16.【点睛】本题结合新定义考查估算无理数的大小的知识,比较新颖,注意仔细地审题理解新定义的含义.18.将一张长方形纸片按如图所示的方式折叠,BD、BE为折痕,若∠ABE=20°,则∠DBC为70度.【解析】解:根据翻折的性质可知,∠ABE=∠A′BE,∠DBC=∠DBC′,又∵∠ABE+∠A′BE+∠DBC+∠DBC′=180°,∴∠ABE+∠DBC=90°,又∵∠ABE=20°,∴∠DBC=70°.故答案为:70.【点睛】此题考查了角的计算,根据翻折变换的性质,得出三角形折叠以后的图形和原图形全等,对应的角相等,得出∠ABE=∠A′BE,∠DBC=∠DBC′是解题的关键.三.解答题(共7小题)19.计算:2||﹣(﹣1)2017+2.【解析】解:2||﹣(﹣1)2017+2=2(﹣1)+2=3 3【点睛】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.20.解下列方程组或者不等式组(并把解集在数轴上表示出来)(1);(2).【解析】解:(1)整理得①+②×4得:23x=46,即x=2,把x=2代入②得:y=3,则方程组的解为.(2)由①,得x≤﹣3,由②,得x,所以不等式组的解集是:空集.不等式组的解集在数轴上表示为:.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法;也考查了解一元一次不等式组.熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21.如图,AD∥BC,∠EAD=∠C,∠FEC=∠BAE,∠EFC=50°(1)求证:AE∥CD;(2)求∠B的度数.【解析】(1)证明:∵AD∥BC,∴∠D+∠C=180°,∵∠EAD=∠C,∴∠EAD+∠D=180°,∴AE∥CD;(2)∵AE∥CD,∴∠AEB=∠C,∵∠FEC=∠BAE,∴∠B=∠EFC=50°.【点睛】考查了平行线的判定和性质,三角形内角和定理,解题的关键是证明AE∥CD.22.课堂上老师讲解了比较和的方法,观察发现11﹣10=15﹣14=1,于是比较这两个数的倒数:因为,所以,则有.请你设计一种方法比较与的大小.【解析】解:∵()2=8+23=11+2,()2=6+25=11+2,∴11+211+2,∴()2<()2,∵0,0,∴.【点睛】此题主要考查了实数比较大小,正确应用完全平方公式是解题关键.23.某中学在今年4月23日的“世界读书日”开展“人人喜爱阅读,争当阅读能手”活动,同学们积极响应,涌现出大批的阅读能手.为了激励同学们的阅读热情,养成每天阅读的好习惯,学校对阅读能手进行了奖励表彰,计划用2700元来购买甲、乙、丙三种书籍共100本作为奖品,已知甲、乙、丙三种书的价格比为2:2:3,甲种书每本20元.(1)求出乙、丙两种书的每本各多少元?(2)若学校购买甲种书的数量是乙种书的1.5倍,恰好用完计划资金,求甲、乙、丙三种书各买了多少本?(3)在活动中,同学们表现优秀,学校决定提升奖励档次,增加了245元的购书款,在购买书籍总数不变的情况下,求丙种书最多可以买多少本?(4)七(1)班阅读氛围浓厚,同伴之间交换书籍共享阅读,已知甲种书籍共270页,小明同学阅读甲种书籍每天21页,阅读5天后,发现同伴比他看得快,为了和同伴及时交换书籍,接下来小明每天多读了a 页(20<a<40),结果再用了b天读完,求小明读完整本书共用了多少天?【解析】解:(1)因为甲、乙、丙三种书的价格比为2:2:3,甲种书每本20 元.所以乙、丙每本分别是20元、30元;(2)设乙买了x本,丙买了y本,则甲买了1.5x本,根据题意得,解得,则甲是1.5x=1.5×12=18,答:甲乙丙三种书分别购买了18本、12本、70本;(3)设丙种书可以买m本,则20(100﹣m)+30m≤2945,解得m≤94.5,因为m是正整数,所以m最大值是94本.(4)∵21×5+(21+a)b≥270,∴b,∵20<a<40,∴b,∴b=3、4,所以共用了8天、或9天.【点睛】本题考查一元一次方程和一元一次不等式的应用.确定数量关系和不等量关系是解答关键.24.2015年10月17日是我国第二个“扶贫日”,某校学生会干部对学生倡导的“扶贫”自愿捐款活动进行抽样调查,得到一组学生捐款情况的数据,对学校部分捐款人数进行调查和分组统计后,将数据整理成如图所示的统计图,(图中信息不完整),已知A、B两组捐款人数的比为1:5.被调查的捐款人数分组统计表:请结合以上信息解答下列问题:(1)求a的值和参与调查的总人数;(2)补全“被调查的捐款人数分组统计图1”并计算扇形B的圆心角度数;(3)已知该校有学生2200人,请估计捐款数不少于30元的学生人数有多少人?【解析】解:(1)依题意有a:100=1:5,解得:a=20,调查的样本容量是:(20+100)÷(1﹣8%﹣28%﹣40%)=500.(2)C类的人数是:500×40%=200(人).扇形B的圆心角度数为:360°=72°;(3)捐数值不少于30元的学生人数是:2200×(28%+8%)=792(人).答:捐数值不少于30元的学生约有792人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.感知:如图①,若AB∥CD,点P在AB、CD内部,则∠P、∠A、∠C满足的数量关系是∠P=∠A+∠C;.探究:如图②,若AB∥CD,点P在AB、CD外部,则∠APC、∠A、∠C满足的数量关系是∠APC=∠A﹣∠C.请补全以下证明过程:证明:如图③,过点P作PQ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C应用:(1)如图④,为北斗七星的位置图,如图⑤,将北斗七星分别标为A、B、C、D、E、F、G,其中B、C、D三点在一条直线上,AB∥EF,则∠B、∠D、∠E满足的数量关系是∠B+∠D﹣∠E=180°.(2)如图⑥,在(1)问的条件下,延长AB到点M,延长FE到点N,过点B和点E分别作射线BP和EP,交于点P,使得BD平分∠MBP,EN平分∠DEP,若∠MBD=25°,则∠D﹣∠P=75°.【解析】解:感知:如图①,过点P作PQ∥AB∴∠A=∠APQ,∵AB∥CD,PQ∥AB∴PQ∥CD,∴∠C=∠QPC,∴∠APQ+∠QPC=∠A+∠C,∠APC=∠A+∠C.故答案为∠P=∠A+∠C;探究:证明:如图③,过点P作PQ∥AB∴∠A=∠APQ∵AB∥CD,PQ∥AB∴PQ∥CD∴∠C=∠CPQ∵∠APC=∠APQ﹣∠CPQ∴∠APC=∠A﹣∠C.故答案为:∠APC=∠A﹣∠C,∠APQ,PQ,∠CPQ,∠APQ,∠CPQ,∠A﹣∠C.应用:(1)如图⑤,过点D作DH∥EF,∴∠HDE=∠E,∵AB∥EF,DH∥EF∴AB∥DH,∴∠B+∠BDH=180°,即∠BDH=180°﹣∠B,∴∠HDE+∠BDH=∠E+180°﹣∠B,即∠BDE+∠B﹣∠E=180°,故答案为∠D+∠B﹣∠E=180°,(2)如图⑥,过点P作PH∥EF,∴∠EPH=∠NEP,∵AB∥EF,PH∥EF,∴AB∥PH,∴∠MBP+∠BPH=180°,∵BD平分∠MBP,∠MBD=25°,∠MBP=2∠MBD=2×25°=50°,∠BPH=180°﹣50°=130°,∵EN平分∠DEP,∴∠NEP=∠DEN∴∠BPE=∠BPH﹣∠EPH=∠BPH﹣∠NEP=∠BPH﹣∠DEN=130°﹣(180°﹣∠DEF)=∠DEF﹣50°由①∠D+∠ABD﹣∠DEF=180°,∵∠MBD=25°,∴∠ABD=155°,∴∠D+∠155°﹣∠DEF=180°,∴∠DEF=∠D﹣25°∴∠BPE=∠DEF﹣50°=∠D﹣25°﹣50°=∠D﹣75°∠D﹣∠BPE=75°即∠D﹣∠P=75°,故答案75.【点睛】本题考查了角平分线的性质与平行线的性质,正确运用角平分线与平行线的性质是解题的关键.。

相关文档
最新文档