绍兴市中考数学试卷及答案

合集下载

历年浙江省绍兴市中考数学试题(含答案)

历年浙江省绍兴市中考数学试题(含答案)

2016年绍兴市初中毕业生学业考试数 学卷I (选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选.均不给分) 1.-8的绝对值是A .8B .-8C D 2了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为A .3.386×108B .0.3386×109C .33.86×107D .3.386×1093.我国传统建筑中,窗框(如图1)的图案玲珑剔透、千变万化. 窗框一部分如图2,它是一个轴对称图形,其对称轴有 A .1条 B .2条 C .3条 D .4条4.如图是一个正方体,则它的表面展开图可以是5.一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6.投掷一次,朝上一A B C D 6是⊙O 的直径,点A ,C 在⊙O 上,⌒AB =⌒BC ,∠AOB =60º,则∠BDC 的 A .60º B .45º C .35º D .30º7.小敏不慎将一块平行四边形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的平行四边形玻璃,他带了两块碎玻璃,其编号应该是A.①,②B.①,④C.③,④D.②,③8.如图,在Rt△ABC中,∠B=90º,∠A=30º.以点A为圆心,BC长为半径画弧交AB 于点D,分别以点A,D为圆心,AB长为半径画弧,两弧交于点E,连接AE,DE,则∠A B9.抛物线)过点A(2y=O (l≤x≤3)有交点,则c的值不可能是A.4 B.6 C.8 D.1010.我国古代《易经》一书中记载,远古时期,人们通过在绳子上打结来记录数量,即“结绳计数”,如图,一位母亲在从右到左依次排列的绳子上打结,满七进一,用来记录孩子自出生后的天数.由图可知,孩子自出生后的天数是A.84 B.336C.510 D.1326卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11=_____________.12+ 2的解是___________ .13.如图12是它的截面图,垂直放置的脸盆与架子的交点为A,B,AB=40cm,脸盆的最低点C到AB的距离为l0cm,则该脸盆的半径为_____ cm.14.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠}②一次性购书超过100元但不超过200元,一律按原价打九折;③一次性购书超过200元,一律按原价打七折.小丽在这次活动中,两次购书总共付款229.4元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是_______ 元.15.如图,已知直线l:y=-x,双曲线y.在l上取一点A(a,-a)(a>0),过A 作x轴的垂线交双曲线于点B,过B作轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD.若原点O在正方形ABCD的对角线上且分这条对角线为1∶2的两条线段,则a的值为__________ .16.如图,矩形ABCD 中,AB =4,BC =2,E 是AB 的中点,直线l 平行于直线EC ,且直线l 与直线EC 之间的距离为2,点F 在矩形ABCD 边上,将矩形ABCD 沿直线EF 折叠,使点A 恰好落在直线l 上,则DF 的长为 __________ .三、解答题(本大题有8小题.第17 -ZO 小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤17.(1)5-(2-)º+-2.(2)=4. 18.为了解七年级学生上学期参加社会实践活动的情况,随机抽查A 市七年级部分学生参加社会实践活动的天数,并根据抽查结果制作了如下不完整的频数分布表和条形统计图.A 市七年级部分学生参加社会 A 市七年级部分学生参加社会 实践活动天数的频数分布表 实践活动天数的条形统计图根据以上信息,解答下列问题:(l)求出频数分布表中a 的值,并补全条形统计图.(2)A 市有七年级学生20 000人,请你估计该市七年级学生参加社会实践活动不少于5天的人数.19.根据卫生防疫部门要求,游泳池必须定期换水、清洗.某游泳池周五早上8:OO打开排水孑L开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m3)和开始排水后的时间t(h)之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少?(2)当2≤t≤3.5时,求Q关于t的函数表达式.20.如图1,某社会实践活动小组实地测量两岸互相平行的一段河的宽度,在河的南岸边点A处,测得河的北岸边点B在其北偏东450方向,然后向西走60m到达C点,测得点B在点C的北偏东60。

浙江省绍兴市中考数学试卷含答案解析版

浙江省绍兴市中考数学试卷含答案解析版

2017年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)﹣5的相反数是( )A .15B .5C .﹣15D .﹣5 2.(4分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达立方米,其中数字用科学记数法可表示为( )A .15×1010B .×1012C .×1011D .×10123.(4分)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A .B .C .D .4.(4分)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( )A .17B .37C .47D .575.(4分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙 丙 丁 平均数(环)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( )A .甲B .乙C .丙D .丁6.(4分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.米B.米C.米D.米7.(4分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7° B.21°C.23°D.24°9.(4分)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.(4分)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)分解因式:x2y﹣y= .12.(5分)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为.13.(5分)如图,Rt△ABC的两个锐角顶点A,B在函数y=kk(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB 的长为.16.(5分)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是.三、解答题(本大题共8小题,共80分)17.(8分)(1)计算:(2√3﹣π)0+|4﹣3√2|﹣√18.(2)解不等式:4x+5≤2(x+1)18.(8分)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米19.(8分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.20.(8分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到,参考数据:tan20°≈,tan18°≈)21.(10分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.22.(12分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.23.(12分)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=°,β=°,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点D的坐标为(﹣3,4),点B在第四象限,点P是ABCD边上的一个动点.(1)若点P在边BC上,PD=CD,求点P的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1上,求点P的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y轴的交点,如图2,过点P作y 轴的平行线PM,过点G作x轴的平行线GM,它们相交于点M,将△PGM沿直线PG翻折,当点M的对应点落在坐标轴上时,求点P的坐标.(直接写出答案)2017年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)(2017绍兴)﹣5的相反数是( )A .15B .5C .﹣15D .﹣5 【考点】14:相反数.【分析】根据一个数的相反数就是在这个数前面添上“﹣”号,求解即可.【解答】解:﹣5的相反数是5,故选:B .【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.不要把相反数的意义与倒数的意义混淆.2.(4分)(2017绍兴)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已探明的可燃冰存储量达立方米,其中数字用科学记数法可表示为( )A .15×1010B .×1012C .×1011D .×1012【考点】1I :科学记数法—表示较大的数.【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【解答】解:=×1011,故选:C .【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.3.(4分)(2017绍兴)如图的几何体由五个相同的小正方体搭成,它的主视图是( )A .B .C .D .【考点】U2:简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看第一层是三个小正方形,第二层左边一个小正方形, 故选:A .【点评】本题考查了简答组合体的三视图,从正面看得到的图形是主视图.4.(4分)(2017绍兴)在一个不透明的袋子中装有4个红球和3个黑球,它们除颜色外其他均相同,从中任意摸出一个球,则摸出黑球的概率是( ) A .17 B .37 C .47 D .57【考点】X4:概率公式.【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【解答】解:∵在一个不透明的袋子中装有除颜色外其他均相同的4个红球和3个黑球,∴从中任意摸出一个球,则摸出黑球的概率是37. 故选B .【点评】本题考查概率的求法与运用,一般方法为:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=k k .5.(4分)(2017绍兴)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:甲乙丙丁平均数(环)方差根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲B.乙C.丙D.丁【考点】W7:方差;W2:加权平均数.【分析】利用平均数和方差的意义进行判断.【解答】解:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.【点评】本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.6.(4分)(2017绍兴)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为米,顶端距离地面米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,则小巷的宽度为()A.米B.米C.米D.米【考点】KU:勾股定理的应用.【分析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.【解答】解:在Rt△ACB中,∵∠ACB=90°,BC=米,AC=米,∴AB2=+=.在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=,∴BD2=,∵BD>0,∴BD=米,∴CD=BC+BD=+=米.故选C.【点评】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.7.(4分)(2017绍兴)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A. B.C.D.【考点】E6:函数的图象.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选:D.【点评】此题考查函数图象的应用,需注意容器粗细和水面高度变化的关联.8.(4分)(2017绍兴)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ACB=21°,则∠ECD的度数是()A.7° B.21°C.23°D.24°【考点】LB:矩形的性质;JA:平行线的性质.【分析】由矩形的性质得出∠D=90°,AB∥CD,AD∥BC,证出∠FEA=∠ECD,∠DAC=∠ACB=21°,由三角形的外角性质得出∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∠ACD=3x,在Rt△ACD中,由互余两角关系得出方程,解方程即可.【解答】解:∵四边形ABCD是矩形,∴∠D=90°,AB∥CD,AD∥BC,∴∠FEA=∠ECD,∠DAC=∠ACB=21°,∵∠ACF=∠AFC,∠FAE=∠FEA,∴∠ACF=2∠FEA,设∠ECD=x,则∠ACF=2x,∴∠ACD=3x,在Rt△ACD中,3x+21°=90°,解得:x=23°;故选:C.【点评】本题考查了矩形的性质、平行线的性质、直角三角形的性质、三角形的外角性质;熟练掌握矩形的性质和平行线的性质是解决问题的关键.9.(4分)(2017绍兴)矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+3【考点】H6:二次函数图象与几何变换.【分析】先由对称计算出C点的坐标,再根据平移规律求出新抛物线的解析式即可解题.【解答】解:∵矩形ABCD的两条对称轴为坐标轴,∴矩形ABCD关于坐标原点对称,∵A点C点是对角线上的两个点,∴A点、C点关于坐标原点对称,∴C点坐标为(﹣2,﹣1);∴抛物线由A点平移至C点,向左平移了4个单位,向下平移了2个单位;∵抛物线经过A点时,函数表达式为y=x2,∴抛物线经过C点时,函数表达式为y=(x+4)2﹣2=x2+8x+14,故选A.【点评】主要考查了函数图象的平移,抛物线与坐标轴的交点坐标的求法,要求熟练掌握平移的规律:左加右减,上加下减,并用规律求函数解析式.(2017绍兴)一块竹条编织物,先将其按如图所示绕直线MN翻转180°,(4分)10.再将它按逆时针方向旋转90°,所得的竹条编织物是()A.B.C.D.【考点】R9:利用旋转设计图案.【分析】根据轴对称和旋转的性质即可得到结论.【解答】解:先将其按如图所示绕直线MN翻转180°,再将它按逆时针方向旋转90°,所得的竹条编织物是B,故选B.【点评】本题考查了轴对称和旋转的性质,正确的识别图形是解题的关键.二、填空题(本大题共6小题,每小题5分,共30分)11.(5分)(2017绍兴)分解因式:x2y﹣y= y(x+1)(x﹣1).【考点】55:提公因式法与公式法的综合运用.【专题】44 :因式分解.【分析】观察原式x2y﹣y,找到公因式y后,提出公因式后发现x2﹣1符合平方差公式,利用平方差公式继续分解可得.【解答】解:x2y﹣y,=y(x2﹣1),=y(x+1)(x﹣1),故答案为:y(x+1)(x﹣1).【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.12.(5分)(2017绍兴)如图,一块含45°角的直角三角板,它的一个锐角顶点A在⊙O上,边AB,AC分别与⊙O交于点D,E,则∠DOE的度数为90°.【考点】M5:圆周角定理.【分析】直接根据圆周角定理即可得出结论.【解答】解:∵∠A=45°,∴∠DOE=2∠A=90°.故答案为:90°.【点评】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.13.(5分)(2017绍兴)如图,Rt△ABC的两个锐角顶点A,B在函数y=kk (x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为(4,1).【考点】G6:反比例函数图象上点的坐标特征.【分析】根据点A的坐标可以求得反比例函数的解析式和点B的横坐标,进而求得点B的坐标,本题得以解决.【解答】解:∵点A(2,2)在函数y=kk(x>0)的图象上,∴2=k2,得k=4,∵在Rt△ABC中,AC∥x轴,AC=2,∴点B的横坐标是4,∴y=44=1,∴点B的坐标为(4,1),故答案为:(4,1).【点评】本题考查反比例函数图象上点的坐标特征,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用反比例函数的性质解答.14.(5分)(2017绍兴)如图为某城市部分街道示意图,四边形ABCD为正方形,点G在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→A→D→E→F.若小敏行走的路程为3100m,则小聪行走的路程为4600 m.【考点】LE:正方形的性质;KD:全等三角形的判定与性质;LD:矩形的判定与性质.【专题】1 :常规题型.【分析】连接CG,由正方形的对称性,易知AG=CG,由正方形的对角线互相平分一组对角,GE⊥DC,易得DE=GE.在矩形GECF中,EF=CG.要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【解答】解:连接GC,∵四边形ABCD为正方形,所以AD=DC,∠ADB=∠CDB=45°,∵∠CDB=45°,GE⊥DC,∴△DEG是等腰直角三角形,∴DE=GE.在△AGD和△GDC中,{kk=kk∠kkk=∠kkk kk=kk∴△AGD≌△GDC∴AG=CG在矩形GECF中,EF=CG,∴EF=AG.∵BA+AD+DE+EF﹣BA﹣AG﹣GE=AD=1500m.∵小敏共走了3100m,∴小聪行走的路程为3100+1500=4600(m)故答案为:4600【点评】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF,DE=GE.15.(5分)(2017绍兴)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ADB=60°,点D到AC的距离为2,则AB的长为2√3.【考点】N2:作图—基本作图;KF:角平分线的性质.【分析】如图,作DE⊥AC于E.首先证明BD=DE=2,在Rt△ABD中,解直角三角形即可解决问题.【解答】解:如图,作DE⊥AC于E.由题意AD平分∠BAC,∵DB⊥AB,DE⊥AC,∴DB=DE=2,在Rt△ADB中,∵∠B=90°,∠BDA=60°,BD=2,∴AB=BDtan60°=2√3,故答案为2√3【点评】本题考查作图﹣基本作图,角平分线的性质定理、锐角三角函数等知识,解题的关键是熟练掌握角平分线的性质定理,属于中考常考题型.16.(5分)(2017绍兴)如图,∠AOB=45°,点M,N在边OA上,OM=x,ON=x+4,点P是边OB上的点,若使点P,M,N构成等腰三角形的点P恰好有三个,则x 的值是x=0或x=4√2﹣4或4<x<4√2.【考点】KI:等腰三角形的判定.【分析】分三种情况讨论:先确定特殊位置时成立的x值,①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,构建腰长为4的等腰直角△OMC,和半径为4的⊙M,发现M在点D的位置时,满足条件;③如图3,根据等腰三角形三种情况的画法:分别以M、N为圆心,以MN为半径画弧,与OB的交点就是满足条件的点P,再以MN为底边的等腰三角形,通过画图发现,无论x取何值,以MN为底边的等腰三角形都存在一个,所以只要满足以MN为腰的三角形有两个即可.【解答】解:分三种情况:①如图1,当M与O重合时,即x=0时,点P恰好有三个;②如图2,以M为圆心,以4为半径画圆,当⊙M与OB相切时,设切点为C,⊙M与OA交于D,∴MC⊥OB,∵∠AOB=45°,∴△MCO是等腰直角三角形,∴MC=OC=4,∴OM=4√2,当M与D重合时,即x=OM﹣DM=4√2﹣4时,同理可知:点P恰好有三个;③如图3,取OM=4,以M为圆心,以OM为半径画圆,则⊙M与OB除了O外只有一个交点,此时x=4,即以∠PMN为顶角,MN为腰,符合条件的点P有一个,以N圆心,以MN为半径画圆,与直线OB相离,说明此时以∠PNM为顶角,以MN为腰,符合条件的点P不存在,还有一个是以NM为底边的符合条件的点P;点M沿OA运动,到M1时,发现⊙M1与直线OB有一个交点;∴当4<x<4√2时,圆M在移动过程中,则会与OB除了O外有两个交点,满足点P恰好有三个;综上所述,若使点P,M,N构成等腰三角形的点P恰好有三个,则x的值是:x=0或x=4√2﹣4或4<k<4√2.故答案为:x=0或x=4√2﹣4或4<k<4√2.【点评】本题考查了等腰三角形的判定,有难度,本题通过数形结合的思想解决问题,解题的关键是熟练掌握已知一边,作等腰三角形的画法.三、解答题(本大题共8小题,共80分)17.(8分)(2017绍兴)(1)计算:(2√3﹣π)0+|4﹣3√2|﹣√18.(2)解不等式:4x+5≤2(x+1)【考点】C6:解一元一次不等式;2C:实数的运算;6E:零指数幂.【分析】(1)原式利用零指数幂法则,绝对值的代数意义,以及二次根式性质计算即可得到结果;(2)去括号,移项,合并同类项,系数化成1即可求出不等式的解集.【解答】解:(1)原式=1+3√2−4−3√2=﹣3;(2)去括号,得4x+5≤2x+2移项合并同类项得,2x≤﹣3解得x≤−3 2.【点评】此题考查了实数的运算和一元一次不等式的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.18.(8分)(2017绍兴)某市规定了每月用水18立方米以内(含18立方米)和用水18立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18立方米,则应交水费多少元(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米【考点】FH:一次函数的应用.【分析】(1)根据函数图象上点的纵坐标,可得答案;(2)根据待定系数法,可得函数解析式,根据自变量与函数值得对应关系,可得答案.【解答】解:(1)由纵坐标看出,某月用水量为18立方米,则应交水费18元;(2)由81元>45元,得用水量超过18立方米,设函数解析式为y=kx+b (x≥18),∵直线经过点(18,45)(28,75),∴{18k+k=45,28k+k=75,解得{k=3k=−9∴函数的解析式为y=3x﹣9 (x≥18),当y=81时,3x﹣9=81,解得x=30,答:这个月用水量为30立方米.【点评】本题考查了一次函数的应用,利用待定系数法求出函数解析式是解题关键.19.(8分)(2017绍兴)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图2两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数.【考点】VC:条形统计图;V5:用样本估计总体;VB:扇形统计图.【分析】(1)根据B组的人数和所占的百分比即可求出总人数;利用总人数×%可得D组人数,可补全统计图.(2)利用总人数乘以对应的比例即可求解.【解答】解:(1)40÷25%=160(人)答:本次接受问卷调查的同学有160人;D组人数为:160×%=30(人)统计图补全如图:(2)800×20+40+60160=600(人)答:估计双休日参加体育锻炼时间在3小时以内(不含3小时)的人数为600人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.20.(8分)(2017绍兴)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口C测得教学楼顶部D的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠BCD的度数.(2)求教学楼的高BD.(结果精确到,参考数据:tan20°≈,tan18°≈)【考点】TA:解直角三角形的应用﹣仰角俯角问题.【专题】12 :应用题;554:等腰三角形与直角三角形.【分析】(1)过点C作CE与BD垂直,根据题意确定出所求角度数即可;(2)在直角三角形CBE中,利用锐角三角函数定义求出BE的长,在直角三角形CDE中,利用锐角三角函数定义求出DE的长,由BE+DE求出BD的长,即为教学楼的高.【解答】解:(1)过点C作CE⊥BD,则有∠DCE=18°,∠BCE=20°,∴∠BCD=∠DCE+∠BCE=18°+20°=38°;(2)由题意得:CE=AB=30m,在Rt△CBE中,BE=CEtan20°≈,在Rt△CDE中,DE=CDtan18°≈,∴教学楼的高BD=BE+DE=+≈,则教学楼的高约为.【点评】此题考查了解直角三角形的应用﹣仰角俯角问题,熟练掌握锐角三角函数定义是解本题的关键.21.(10分)(2017绍兴)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x为多少时,占地面积y最大(2)如图2,现要求在图中所示位置留2m宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m就行了.”请你通过计算,判断小敏的说法是否正确.【考点】HE:二次函数的应用.【分析】(1)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可;(2)根据题意用含x的代数式表示出饲养室的宽,由矩形的面积=长×宽计算,再根据二次函数的性质分析即可.【解答】解:(1)∵y=x 50−k2=﹣12(x﹣25)2+6252,∴当x=25时,占地面积最大,即饲养室长x为25m时,占地面积y最大;(2)∵y=x 50−(k−2)2=﹣12(x﹣26)2+338,∴当x=26时,占地面积最大,即饲养室长x为26m时,占地面积y最大;∵26﹣25=1≠2,∴小敏的说法不正确.【点评】此题主要考查了由实际问题列二次函数关系式以及二次函数的最值问题和一元二次方程的应用,同时也利用了矩形的性质,解题时首先正确了解题意,然后根据题意列出方程即可解决问题.22.(12分)(2017绍兴)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,①若AB=CD=1,AB∥CD,求对角线BD的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE的长.【考点】LO:四边形综合题.【分析】(1)①只要证明四边形ABCD是正方形即可解决问题;②只要证明△ABD≌△CBD,即可解决问题;(2)若EF⊥BC,则AE≠EF,BF≠EF,推出四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE 是等腰直角四边形,②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,分别求解即可;【解答】解:(1)①∵AB=AC=1,AB∥CD,∴S四边形ABCD是平行四边形,∵AB=BC,∴四边形ABCD是菱形,∵∠ABC=90°,∴四边形ABCD是正方形,∴BD=AC=√12+12=√2.(2)如图1中,连接AC、BD.∵AB=BC,AC⊥BD,∴∠ABD=∠CBD,∵BD=BD,∴△ABD≌△CBD,∴AD=CD.(2)若EF⊥BC,则AE≠EF,BF≠EF,∴四边形ABFE表示等腰直角四边形,不符合条件.若EF与BC不垂直,①当AE=AB时,如图2中,此时四边形ABFE是等腰直角四边形,∴AE=AB=5.②当BF=AB时,如图3中,此时四边形ABFE是等腰直角四边形,∴BF=AB=5,∵DE∥BF,∴DE:BF=PD:PB=1:2,∴DE=,∴AE=9﹣=,综上所述,满足条件的AE的长为5或.【点评】本题考查四边形综合题、正方形的判定和性质、全等三角形的判定和性质、等腰直角四边形的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.23.(12分)(2017绍兴)已知△ABC,AB=AC,D为直线BC上一点,E为直线AC 上一点,AD=AE,设∠BAD=α,∠CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ABC=60°,∠ADE=70°,那么α=20 °,β=10 °,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式若存在,求出这个关系式(求出一个即可);若不存在,说明理由.【考点】KY:三角形综合题.【分析】(1)①先利用等腰三角形的性质求出∠DAE,进而求出∠BAD,即可得出。

2020年浙江省绍兴市中考数学试题及参考答案(word解析版)

2020年浙江省绍兴市中考数学试题及参考答案(word解析版)

2020年浙江省绍兴市中考数学试题及参考答案与解析(满分150分,考试时间120分钟)卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,2-,2中,为负数的是()A.2 B.0 C.2-D.22.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为()A.100.20210⨯B.92.0210⨯C.820.210⨯D.82.0210⨯3.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是() A.B.C.D.4.如图,点A,B,C,D,E均在O上,15BAC∠=︒,30CED∠=︒,则BOD∠的度数为()A.45︒B.60︒C.75︒D.90︒5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.10cmC.8cm D.3.2cm6.如图,小球从A入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E出口落出的概率是()A.12B.13C.14D.167.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为( ) A .4B .5C .6D .78.如图,点O 为矩形ABCD 的对称中心,点E 从点A 出发沿AB 向点B 运动,移动到点B 停止,延长EO 交CD 于点F ,则四边形AECF 形状的变化依次为( ) A .平行四边形→正方形→平行四边形→矩形 B .平行四边形→菱形→平行四边形→矩形 C .平行四边形→正方形→菱形→矩形 D .平行四边形→菱形→正方形→矩形9.如图,等腰直角三角形ABC 中,90ABC ∠=︒,BA BC =,将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP ,连结CP ,过点A 作AH CP ⊥交CP 的延长线于点H ,连结AP ,则PAH ∠的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120km B .140kmC .160kmD .180km卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:21x -= .12.若关于x ,y 的二元一次方程组2,0x y A +=⎧⎨=⎩的解为1,1,x y =⎧⎨=⎩则多项式A 可以是 (写出一个即可).13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为 .14.如图,已知边长为2的等边三角形ABC 中,分别以点A ,C 为圆心,m 为半径作弧,两弧交于点D ,连结BD .若BD 的长为23,则m 的值为 .15.有两种消费券:A 券,满60元减20元,B 券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A 券,小聪有一张B 券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是 元.16.将两条邻边长分别为2,1的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号). ①2,②1,③21-,④3,⑤3. 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程) 17.(8分)(1)计算:202084cos 45(1)-︒+-. (2)化简:2()(2)x y x x y +-+.18.(8分)如图,点E 是ABCD 的边CD 的中点,连结AE 并延长,交BC 的延长线于点F . (1)若AD 的长为2,求CF 的长.(2)若90BAF ∠=︒,试添加一个条件,并写出F ∠的度数.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表. 4月份生产的羽毛球重量统计表(1)求表中m 的值及图中B 组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只?20.(8分)我国传统的计重工具--秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据.x (厘米)1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50组别重量x (克) 数量(只)A 5.0x <mB5.0 5.1x < 400 C5.1 5.2x <550 D5.2x30(1)在上表x,y的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E,H可分别沿等长的立柱AB,DC上下移动,AF EF FG m===.1(1)若移动滑块使AE EF∠的度数和棚宽BC的长.=,求AFE(2)当AFE∠由60︒变为74︒时,问棚宽BC是增加还是减少?增加或减少了多少?(结果精确到0.1m,参考数据:3 1.73︒≈≈,sin370.60︒≈,tan370.75)︒≈,cos370.8022.(12分)问题:如图,在ABD=.在BD的延长∆中,BA BD线上取点E,C,作AECB∠=︒,45∠=︒,∆,使EA ECBAE=.若90求DAC∠的度数.答案:45DAC∠=︒.思考:(1)如果把以上“问题”中的条件“45∠=︒”去掉,其余B条件不变,那么DAC∠的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“45∠=︒”,B∠=︒”改为“BAE nBAE∠=︒”去掉,再将“90其余条件不变,求DAC∠的度数.23.(12分)如图1,排球场长为18m,宽为9m,网高为2.24m,队员站在底线O点处发球,球从点O的正上方1.9m的C点发出,运动路线是抛物线的一部分,当球运动到最高点A时,高度为2.88m,即 2.88OB m=,以直线OB为x轴,直线OC为y轴,建立平面直角坐标系,=,这时水平距离7BA m如图2.(1)若球向正前方运动(即x轴垂直于底线),求球运动的高度()x m之间的函数关y m与水平距离()系式(不必写出x取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P(如图1,点P距底线1m,边线0.5)m,问发球点O在底线上的哪个位置?(参考数据:2取1.4)24.(14分)如图1,矩形DEFG 中,2DG =,3DE =,Rt ABC ∆中,90ACB ∠=︒,2CA CB ==,FG ,BC 的延长线相交于点O ,且FG BC ⊥,2OG =,4OC =.将ABC ∆绕点O 逆时针旋转(0180)αα︒<︒得到△A B C '''.(1)当30α=︒时,求点C '到直线OF 的距离. (2)在图1中,取A B ''的中点P ,连结C P ',如图2.①当C P '与矩形DEFG 的一条边平行时,求点C '到直线DE 的距离.②当线段A P '与矩形DEFG 的边有且只有一个交点时,求该交点到直线DG 的距离的取值范围.参考答案与解析卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.实数2,0,2-( )A .2B .0C .2-D 【知识考点】实数【思路分析】根据负数定义可得答案.【解答过程】解:实数2,0,2-中,为负数的是2-, 故选:C .【总结归纳】此题主要考查了实数,关键是掌握负数定义.2.某自动控制器的芯片,可植入2020000000粒晶体管,这个数字2020000000用科学记数法可表示为( ) A .100.20210⨯B .92.0210⨯C .820.210⨯D .82.0210⨯【知识考点】科学记数法-表示较大的数【思路分析】科学记数法的表示形式为10na<,n为整数.确定n的值时,a⨯的形式,其中1||10要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答过程】解:9=⨯,2020000000 2.0210故选:B.【总结归纳】此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.3.将如图的七巧板的其中几块,拼成一个多边形,为中心对称图形的是()A.B.C.D.【知识考点】多边形;中心对称图形;七巧板【思路分析】根据中心对称的定义,结合所给图形即可作出判断.【解答过程】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、不是中心对称图形,故本选项不符合题意;D、是中心对称图形,故本选项符合题意.故选:D.【总结归纳】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180︒后能够重合.4.如图,点A,B,C,D,E均在O上,15∠=︒,则BODCED∠的度数为()BAC∠=︒,30A.45︒B.60︒C.75︒D.90︒【知识考点】圆周角定理;圆心角、弧、弦的关系【思路分析】首先连接BE,由圆周角定理即可得BEC∠的度数,然后由∠的度数,继而求得BED圆周角定理,求得BOD∠的度数.【解答过程】解:连接BE,15BEC BAC ∠=∠=︒,30CED ∠=︒, 45BED BEC CED ∴∠=∠+∠=︒,290BOD BED ∴∠=∠=︒.故选:D .【总结归纳】此题考查了圆周角定理.注意准确作出辅助线是解此题的关键.5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:5,且三角板的一边长为8cm .则投影三角板的对应边长为( )A .20cmB .10cmC .8cmD .3.2cm【知识考点】相似三角形的应用;中心投影【思路分析】根据对应边的比等于相似比列式进行计算即可得解. 【解答过程】解:设投影三角尺的对应边长为xcm , 三角尺与投影三角尺相似, 8:2:5x ∴=,解得20x =. 故选:A .【总结归纳】本题主要考查相似三角形的应用.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题. 6.如图,小球从A 入口往下落,在每个交叉口都有向左或向右两种可能,且可能性相等.则小球从E 出口落出的概率是( )A .12B .13C .14D .16【知识考点】概率公式【思路分析】根据“在每个交叉口都有向左或向右两种可能,且可能性相等”可知在点B、C、D 处都是等可能情况,从而得到在四个出口E、F、G、H也都是等可能情况,然后概率的意义列式即可得解.【解答过程】解:由图可知,在每个交叉口都有向左或向右两种可能,且可能性相等,小球最终落出的点共有E、F、G、H四个,所以小球从E出口落出的概率是:14;故选:C.【总结归纳】本题考查了概率的求法,读懂题目信息,得出所给的图形的对称性以及可能性相等是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比.7.长度分别为2,3,3,4的四根细木棒首尾相连,围成一个三角形(木棒允许连接,但不允许折断),得到的三角形的最长边长为()A.4 B.5 C.6 D.7【知识考点】三角形三边关系【思路分析】利用三角形的三边关系列举出所围成三角形的不同情况,通过比较得到结论.【解答过程】解:①长度分别为5、3、4,能构成三角形,且最长边为5;②长度分别为2、6、4,不能构成三角形;③长度分别为2、7、3,不能构成三角形;综上所述,得到三角形的最长边长为5.故选:B.【总结归纳】本题考查了三角形的三边关系,利用了三角形中三边的关系求解.注意分类讨论,不重不漏.8.如图,点O为矩形ABCD的对称中心,点E从点A出发沿AB向点B运动,移动到点B停止,延长EO交CD于点F,则四边形AECF形状的变化依次为()A.平行四边形→正方形→平行四边形→矩形B.平行四边形→菱形→平行四边形→矩形C.平行四边形→正方形→菱形→矩形D.平行四边形→菱形→正方形→矩形【知识考点】矩形的性质;菱形的性质;正方形的性质;全等三角形的判定与性质;平行四边形的判定与性质;中心对称【思路分析】根据对称中心的定义,根据矩形的性质,可得四边形AECF形状的变化情况.【解答过程】解:观察图形可知,四边形AECF形状的变化依次为平行四边形→菱形→平行四边形→矩形.故选:B.【总结归纳】考查了中心对称,矩形的性质,平行四边形的判定与性质,菱形的性质,根据EF与AC的位置关系即可求解.9.如图,等腰直角三角形ABC 中,90ABC ∠=︒,BA BC =,将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP ,连结CP ,过点A 作AH CP ⊥交CP 的延长线于点H ,连结AP ,则PAH ∠的度数( )A .随着θ的增大而增大B .随着θ的增大而减小C .不变D .随着θ的增大,先增大后减小【知识考点】旋转的性质;等腰直角三角形;三角形的外角性质【思路分析】由旋转的性质可得BC BP BA ==,由等腰三角形的性质和三角形内接和定理可求135BPC BPA CPA ∠+∠=︒=∠,由外角的性质可求1359045PAH ∠=︒-︒=︒,即可求解.【解答过程】解:将BC 绕点B 顺时针旋转(090)θθ︒<<︒,得到BP , BC BP BA ∴==,BCP BPC ∴∠=∠,BPA BAP ∠=∠,180CBP BCP BPC ∠+∠+∠=︒,180ABP BAP BPA ∠+∠+∠=︒,90ABP CBP ∠+∠=︒,135BPC BPA CPA ∴∠+∠=︒=∠, 135CPA AHC PAH ∠=∠+∠=︒,1359045PAH ∴∠=︒-︒=︒,PAH ∴∠的度数是定值,故选:C .【总结归纳】本题考查了旋转的性质,等腰三角形的性质,三角形的外角性质,灵活运用这些性质解决问题是本题的关键.10.同型号的甲、乙两辆车加满气体燃料后均可行驶210km ,它们各自单独行驶并返回的最远距离是105km .现在它们都从A 地出发,行驶途中停下来从甲车的气体燃料桶抽一些气体燃料注入乙车的气体燃料桶,然后甲车再行驶返回A 地,而乙车继续行驶,到B 地后再行驶返回A 地.则B 地最远可距离A 地( ) A .120kmB .140kmC .160kmD .180km【知识考点】二元一次方程组的应用【思路分析】设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,根据题意得关于x 和y 的二元一次方程组,求解即可.【解答过程】解:设甲行驶到C 地时返回,到达A 地燃料用完,乙行驶到B 地再返回A 地时燃料用完,如图:设AB xkm =,AC ykm =,根据题意得:222102210x y x y x +=⨯⎧⎨-+=⎩, 解得:14070x y =⎧⎨=⎩.∴乙在C 地时加注行驶70km 的燃料,则AB 的最大长度是140km .故选:B .【总结归纳】本题考查了二元一次方程组在行程问题中的应用,理清题中的数量关系正确列出方程组是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分) 11.分解因式:21x -= . 【知识考点】因式分解-运用公式法【思路分析】分解因式21x -中,可知是2项式,没有公因式,用平方差公式分解即可. 【解答过程】解:21(1)(1)x x x -=+-. 故答案为:(1)(1)x x +-.【总结归纳】本题考查了因式分解-运用公式法,熟练掌握平方差公式的结构特点是解题的关键. 12.若关于x ,y 的二元一次方程组2,0x y A +=⎧⎨=⎩的解为1,1,x y =⎧⎨=⎩则多项式A 可以是 (写出一个即可).【知识考点】二元一次方程组的解【思路分析】根据方程组的解的定义,为11x y =⎧⎨=⎩应该满足所写方程组的每一个方程.因此,可以围绕为11x y =⎧⎨=⎩列一组算式,然后用x ,y 代换即可.【解答过程】解:关于x ,y 的二元一次方程组20x y A +=⎧⎨=⎩的解为11x y =⎧⎨=⎩,而110-=,∴多项式A 可以是答案不唯一,如x y -.故答案为:答案不唯一,如x y -.【总结归纳】考查了二元一次方程组的解,本题是开放题,注意方程组的解的定义.13.如图1,直角三角形纸片的一条直角边长为2,剪四块这样的直角三角形纸片,把它们按图2放入一个边长为3的正方形中(纸片在结合部分不重叠无缝隙),则图2中阴影部分面积为 .【知识考点】正方形的性质【思路分析】根据题意和图形,可以得到直角三角形的一条直角边的长和斜边的长,从而可以得到直角三角形的另一条直角边长,再根据图形,可知阴影部分的面积是四个直角三角形的面积,然后代入数据计算即可.【解答过程】解:由题意可得,直角三角形的斜边长为3,一条直角边长为2,=,4=故答案为:【总结归纳】本题考查正方形的性质、勾股定理、三角形的面积,解答本题的关键是明确题意,利用数形结合的思想解答.14.如图,已知边长为2的等边三角形ABC中,分别以点A,C为圆心,m为半径作弧,两弧交于点D,连结BD.若BD的长为m的值为.【知识考点】勾股定理;等边三角形的性质【思路分析】由作图知,点D在AC的垂直平分线上,得到点B在AC的垂直平分线上,求得BD垂直平分AC,设垂足为E,得到BE,当点D、B在AC的两侧时,如图,当点D、B在AC的同侧时,如图,解直角三角形即可得到结论.【解答过程】解:由作图知,点D在AC的垂直平分线上,ABC∆是等边三角形,∴点B在AC的垂直平分线上,∴垂直平分AC,BD设垂足为E,==,2AC AB∴=BE当点D、B在AC的两侧时,如图,2BD=∴=,BE DE∴==,AD AB2∴=;2m当点D、B在AC的同侧时,如图,BD'=∴'=D E∴',AD∴=m综上所述,m的值为2或故答案为:2或【总结归纳】本题考查了勾股定理,等边三角形的性质,线段垂直平分线的性质.正确的作出图形是解题的关键.15.有两种消费券:A券,满60元减20元,B券,满90元减30元,即一次购物大于等于60元、90元,付款时分别减20元、30元.小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,则所购商品的标价是元.【知识考点】一元一次方程的应用【思路分析】可设所购商品的标价是x元,根据小敏有一张A券,小聪有一张B券,他们都购了一件标价相同的商品,各自付款,若能用券时用券,这样两人共付款150元,分①所购商品的标价小于90元;②所购商品的标价大于90元;列出方程即可求解.【解答过程】解:设所购商品的标价是x元,则①所购商品的标价小于90元,20150x x -+=,解得85x =;②所购商品的标价大于90元, 2030150x x -+-=,解得100x =.故所购商品的标价是100或85元. 故答案为:100或85.【总结归纳】考查了一元一次方程的应用,属于商品销售问题,注意分两种情况进行讨论求解.161的矩形纸片剪成四个等腰三角形纸片(无余纸片),各种剪法剪出的等腰三角形中,其中一个等腰三角形的腰长可以是下列数中的 (填序号).,②11 【知识考点】三角形三边关系;矩形的性质;等腰三角形的性质【思路分析】首先作出图形,再根据矩形的性质和等腰三角形的判定即可求解. 【解答过程】解:如图所示:,②11 故答案为:①②③④.【总结归纳】考查了矩形的性质,等腰三角形的判定与性质,根据题意作出图形是解题的关键. 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(120204cos 45(1)︒+-. (2)化简:2()(2)x y x x y +-+.【知识考点】特殊角的三角函数值;实数的运算;完全平方公式;单项式乘多项式【思路分析】(1)直接利用特殊角的三角函数值以及二次根式的性质分别化简得出答案; (2)直接利用完全平方公式以及单项式乘以多项式运算法则计算得出答案. 【解答过程】解:(1)原式41=+1=1=;(2)2()(2)x y x x y +-+22222x xy y x xy =++-- 2y =.【总结归纳】此题主要考查了实数运算以及完全平方公式以及单项式乘以多项式运算,正确掌握相关运算法则是解题关键.18.(8分)如图,点E 是ABCD 的边CD 的中点,连结AE 并延长,交BC 的延长线于点F . (1)若AD 的长为2,求CF 的长.(2)若90BAF ∠=︒,试添加一个条件,并写出F ∠的度数.【知识考点】平行四边形的性质;全等三角形的判定与性质【思路分析】(1)由平行四边形的性质得出//AD CF ,则DAE CFE ∠=∠,ADE FCE ∠=∠,由点E 是CD 的中点,得出DE CE =,由AAS 证得ADE FCE ∆≅∆,即可得出结果;(2)添加一个条件当60B ∠=︒时,由直角三角形的性质即可得出结果(答案不唯一). 【解答过程】解:(1)四边形ABCD 是平行四边形, //AD CF ∴,DAE CFE ∴∠=∠,ADE FCE ∠=∠,点E 是CD 的中点, DE CE ∴=,在ADE ∆和FCE ∆中,DAE CFEADE FCE DE CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,()ADE FCE AAS ∴∆≅∆, 2CF AD ∴==;(2)90BAF ∠=︒,添加一个条件:当60B ∠=︒时,906030F ∠=︒-︒=︒(答案不唯一).【总结归纳】本题考查了平行四边形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识,熟练掌握全等三角形的判定与性质是解题的关键.19.(8分)一只羽毛球的重量合格标准是5.0克~5.2克(含5.0克,不含5.2克),某厂对4月份生产的羽毛球重量进行抽样检验,并将所得数据绘制成如图统计图表. 4月份生产的羽毛球重量统计表(1)求表中m 的值及图中B 组扇形的圆心角的度数.(2)问这些抽样检验的羽毛球中,合格率是多少?如果购得4月份生产的羽毛球10筒(每筒12只),估计所购得的羽毛球中,非合格品的羽毛球有多少只? 【知识考点】用样本估计总体;频数(率)分布表;扇形统计图【思路分析】(1)图表中“C 组”的频数为550只,占抽查总数的55%,可求出抽查总数,进而求出“A 组”的频数,即m 的值;求出“B 组”所占总数的百分比,即可求出相应的圆心角的度数; (2)计算“B 组”“ C 组”的频率的和即为合格率,求出“不合格”所占的百分比,即可求出不合格的数量.【解答过程】解:(1)55055%1000÷=(只),10004005503020---=(只) 即:20m =, 4003601441000︒⨯=︒, 答:表中m 的值为20,图中B 组扇形的圆心角的度数为144︒; (2)40055095095%100010001000+==, 1210(195%)1205%6⨯⨯-=⨯=(只),答:这次抽样检验的合格率是95%,所购得的羽毛球中,非合格品的羽毛球有6只.【总结归纳】考查统计表、扇形统计图的意义和制作方法,理解图表中的数量和数量之间的关系,是正确计算的前提.20.(8分)我国传统的计重工具--秤的应用,方便了人们的生活.如图1,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的重量.称重时,若秤杆上秤砣到秤纽的水平距离为x (厘米)时,秤钩所挂物重为y (斤),则y 是x 的一次函数.下表中为若干次称重时所记录的一些数据.x (厘米)1 2 4 7 11 12 y (斤)0.751.001.502.753.253.50(1)在上表x ,y 的数据中,发现有一对数据记录错误.在图2中,通过描点的方法,观察判断哪一对是错误的?(2)根据(1)的发现,问秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是多少?组别重量x (克) 数量(只)A 5.0x <mB5.0 5.1x < 400 C5.1 5.2x < 550 D5.2x30【知识考点】一次函数的应用【思路分析】(1)利用描点法画出图形即可判断.(2)设函数关系式为y kx b =+,利用待定系数法解决问题即可. 【解答过程】解:(1)观察图象可知:7x =, 2.75y =这组数据错误.(2)设y kx b =+,把1x =,0.75y =,2x =,1y =代入可得0.7521k b k b +=⎧⎨+=⎩,解得1412k b ⎧=⎪⎪⎨⎪=⎪⎩,1142y x ∴=+, 当16x =时, 4.5y =,答:秤杆上秤砣到秤纽的水平距离为16厘米时,秤钩所挂物重是4.5斤.【总结归纳】本题考查一次函数的应用,待定系数法等知识,解题的关键是理解题意,灵活运用所学知识解决问题.21.(10分)如图1为搭建在地面上的遮阳棚,图2、图3是遮阳棚支架的示意图.遮阳棚支架由相同的菱形和相同的等腰三角形构成,滑块E ,H 可分别沿等长的立柱AB ,DC 上下移动, 1AF EF FG m ===.(1)若移动滑块使AE EF =,求AFE ∠的度数和棚宽BC 的长.(2)当AFE ∠由60︒变为74︒时,问棚宽BC 是增加还是减少?增加或减少了多少?(结果精确到0.1m 1.73≈,sin370.60︒≈,cos370.80︒≈,tan370.75)︒≈ 【知识考点】菱形的性质;等腰三角形的性质;解直角三角形的应用【思路分析】(1)根据等边三角形的性质得到60AFE ∠=︒,连接MF 并延长交AE 于K ,则2FM FK =,求得FK ==,于是得到结论; (2)解直角三角形即可得到结论. 【解答过程】解:(1)1AE EF AF ===,AEF ∴∆是等边三角形,60AFE ∴∠=︒,连接MF 并延长交AE 于K ,则2FM FK =,AEF ∆是等边三角形,12AK ∴=,FK ∴==,2FM FK ∴=4 6.92 6.9()BC FM m ∴==≈≈;(2)74AFE ∠=︒, 37AFK ∴∠=︒,cos370.80KF AF ∴=︒≈, 2 1.60FM FK ∴==,4 6.40 6.92BC FM ∴==<, 6.92 6.400.520.5-=≈,答:当AFE ∠由60︒变为74︒时,棚宽BC 是减少了,减少了0.5m .【总结归纳】本题考查了解直角三角形的应用,菱形的性质,等边三角形的性质,正确的理解题意是解题的关键.22.(12分)问题:如图,在ABD ∆中,BA BD =.在BD 的延长线上取点E ,C ,作AEC ∆,使EA EC =.若90BAE ∠=︒,45B ∠=︒,求DAC ∠的度数. 答案:45DAC ∠=︒.思考:(1)如果把以上“问题”中的条件“45B ∠=︒”去掉,其余条件不变,那么DAC ∠的度数会改变吗?说明理由.(2)如果把以上“问题”中的条件“45B ∠=︒”去掉,再将“90BAE ∠=︒”改为“BAE n ∠=︒”,其余条件不变,求DAC ∠的度数. 【知识考点】等腰三角形的性质【思路分析】(1)根据等腰三角形的性质得到2AED C ∠=∠,①求得9090(45)45DAE BAD C C ∠=︒-∠=︒-︒+∠=︒-∠,②由①,②即可得到结论;(2)设ABC m ∠=︒,根据三角形的内角和定理和等腰三角形的性质即可得到结论. 【解答过程】解:(1)DAC ∠的度数不会改变; EA EC =,2AED C ∴∠=∠,① 90BAE ∠=︒,1[180(902)]452BAD C C ∴∠=︒-︒-∠=︒+∠,9090(45)45DAE BAD C C ∴∠=︒-∠=︒-︒+∠=︒-∠,②由①,②得,45DAC DAE CAE ∠=∠+∠=︒; (2)设ABC m ∠=︒,则11(180)9022BAD m m ∠=︒-︒=︒-︒,180AEB n m ∠=︒-︒-︒,1902DAE n BAD n m ∴∠=︒-∠=︒-︒+︒,EA EC =,11190222CAE AEB n m ∴∠=∠=︒-︒-︒,111190902222DAC DAE CAE n m n m n ∴∠=∠+∠=︒-︒+︒+︒-︒-︒=︒.【总结归纳】本题考查了等腰三角形的性质,三角形的内角和定理,正确的识别图形是解题的关键. 23.(12分)如图1,排球场长为18m ,宽为9m ,网高为2.24m ,队员站在底线O 点处发球,球从点O 的正上方1.9m 的C 点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m ,即 2.88BA m =,这时水平距离7OB m =,以直线OB 为x 轴,直线OC 为y 轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x 轴垂直于底线),求球运动的高度()y m 与水平距离()x m 之间的函数关系式(不必写出x 取值范围).并判断这次发球能否过网?是否出界?说明理由.(2)若球过网后的落点是对方场地①号位内的点P (如图1,点P 距底线1m ,边线0.5)m ,问发球点O 取1.4)【知识考点】二次函数的应用【思路分析】(1)求出抛物线表达式;再确定9x =和18x =时,对应函数的值即可求解;(2)当0y =时,21(7) 2.88050y x =--+=,解得:19x =或5-(舍去5)-,求出8.4PQ ==,即可求解.【解答过程】解:(1)设抛物线的表达式为:2(7) 2.88y a x =-+, 将0x =, 1.9y =代入上式并解得:150a =-, 故抛物线的表达式为:21(7) 2.8850y x =--+; 当9x =时,21(7) 2.88 2.8 2.2450y x =--+=>, 当18x =时,21(7) 2.880.64050y x =--+=>, 故这次发球过网,但是出界了;(2)如图,分别过点作底线、边线的平行线PQ 、OQ 交于点Q ,在Rt OPQ ∆中,18117OQ =-=, 当0y =时,21(7) 2.88050y x =--+=,解得:19x =或5-(舍去5)-, 19OP ∴=,而17OQ =,故8.4PQ ==, 98.40.50.1--=,∴发球点O 在底线上且距右边线0.1米处.【总结归纳】本题考查的是二次函数综合运用,关键是弄清楚题意,明确变量的代表的实际意义.。

2022年浙江省绍兴市中考数学试卷和答案

2022年浙江省绍兴市中考数学试卷和答案

2022年浙江省绍兴市中考数学试卷和答案一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)实数﹣6的相反数是()A.B.C.﹣6D.62.(4分)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×104 3.(4分)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(4分)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A.B.C.D.5.(4分)下列计算正确的是()A.(a2+ab)÷a=a+b B.a2•a=a2C.(a+b)2=a2+b2D.(a3)2=a56.(4分)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°7.(4分)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是()A.0,4B.1,5C.1,﹣5D.﹣1,5 8.(4分)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC =60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1B.2C.3D.49.(4分)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>0 10.(4分)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10D.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)分解因式:x2+x=.12.(5分)关于x的不等式3x﹣2>x的解集是.13.(5分)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是.14.(5分)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是.15.(5分)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是.16.(5分)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE=DE,CE⊥DE时,BE的长是.三、答案题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.答案需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.18.(8分)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息答案下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长(小时)学生人数(人)A0<x≤0.515B0.5<x≤1mC1<x≤1.5nD 1.5<x≤25(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5<x≤1.5的共有多少人.19.(8分)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.20.(8分)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标杆(称为“表”)和一把呈南北方向水平固定摆放的与标杆垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)21.(10分)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.22.(12分)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE平分∠BAC交BC于点E.P是边BC上的动点(不与B,C 重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.23.(12分)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.24.(14分)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.答案一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.【知识点】相反数.【答案】解:﹣6的相反数是6,故选:D.2.【知识点】科学记数法—表示较大的数.【答案】解:320000=3.2×105,故选:B.3.【知识点】简单组合体的三视图.【答案】解:由图可得,题目中图形的主视图是,故选:B.4.【知识点】概率公式.【答案】解:∵总共有4个球,其中红球有3个,摸到每个球的可能性都相等,∴摸到红球的概率P=,故选:A.5.【知识点】整式的除法;同底数幂的乘法;幂的乘方与积的乘方;完全平方公式.【答案】解:A选项,原式=a2÷a+ab÷a=a+b,故该选项符合题意;B选项,原式=a3,故该选项不符合题意;C选项,原式=a2+2ab+b2,故该选项不符合题意;D选项,原式=a6,故该选项不符合题意;故选:A.6.【知识点】直角三角形的性质;平行线的性质.【答案】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.7.【知识点】二次函数的性质;根的判别式.【答案】解:∵抛物线y=x2+mx的对称轴为直线x=2,∴﹣=2,解得m=﹣4,∴方程x2+mx=5可以写成x2﹣4x=5,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,故选:D.8.【知识点】正方形的判定;平行四边形的判定与性质;菱形的判定;矩形的判定.【答案】解:连接AC,MN,且令AC,MN,BD相交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,只要OM=ON,那么四边形MENF就是平行四边形,∵点E,F是BD上的动点,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,OM=ON,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,OM=ON,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C.9.【知识点】一次函数图象上点的坐标特征.【答案】解:∵直线y=﹣2x+3,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A 不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意;故选:D.10.【知识点】相似三角形的性质;矩形的性质.【答案】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+7=15;如图3所示:此时两个直角三角形的斜边长为6和7;故选:A.二、填空题(本大题有6小题,每小题5分,共30分)11.【知识点】因式分解﹣提公因式法.【答案】解:x2+x=x(x+1).故答案为:x(x+1).12.【知识点】解一元一次不等式.【答案】解:∵3x﹣2>x,∴3x﹣x>2,即2x>2,解得x>1,故答案为:x>1.13.【知识点】一元一次方程的应用.【答案】解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.14.【知识点】作图—基本作图;三角形内角和定理;等腰三角形的判定与性质.【答案】解:如图,点D即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,∴∠ACB=180°﹣40°﹣80°=60°,由作图可知:AC=AD,∴∠ACD=∠ADC=×(180°﹣80°)=50°,∴∠BCD=∠ACB﹣∠ACD=60°﹣50°=10°;由作图可知:AC=AD′,∴∠ACD′=∠AD′C,∵∠ACD′+∠AD′C=∠BAC=80°,∴∠AD′C=40°,∴∠BCD′=180°﹣∠ABC﹣∠AD′C=180°﹣40°﹣40°=100°.综上所述:∠BCD的度数是10°或100°.故答案为:10°或100°.15.【知识点】反比例函数系数k的几何意义;平移的性质;反比例函数的图象.【答案】解:过点F作FG⊥x轴,DQ⊥x轴,FH⊥y轴,根据题意可知,AC=OE=BD,设AC=OE=BD=a,∴四边形ACEO的面积为4a,∵F为DE的中点,FG⊥x轴,DQ⊥x轴,∴FG为△EDQ的中位线,∴FG=DQ=2,EG=EQ=,∴四边形HFGO的面积为2(a+),∴k=4a=2(a+),解得:a=,∴k=6.故答案为:6.16.【知识点】相似三角形的判定与性质;解直角三角形;等腰直角三角形.【答案】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10﹣2k,∵CE2=CT2+TE2=(CD)2,∴(3k)2+(10﹣2k)2=[•]2,整理得4k2﹣25k+25=0,∴(k﹣5)(4k﹣5)=0,∴k=5和,∴BE=BT+ET=k+10﹣2k=10﹣k=5或,故答案为:5或.三、答案题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.答案需写出必要的文字说明、演算步骤或证明过程)17.【知识点】特殊角的三角函数值;实数的运算;零指数幂;二次根式的性质与化简;解二元一次方程组.【答案】解:(1)原式=6×+1﹣2==1;(2),①+②得:3x=6,解得x=2,把x=2代入②,得:y=0,∴原方程组的解是.18.【知识点】扇形统计图;用样本估计总体.【答案】解:(1)被调查总人数:15÷15%=100(人),∴m=100×60%=60(人),n=100﹣15﹣60﹣5=20(人),答:m为60,n为20;(2)∵当0.5<x≤1.5时,在被调查的100人中有60+20=80(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5<x≤1.5的共有800×=640(人),答:估计共有640人.19.【知识点】一次函数的应用.【答案】解:(1)函数的图象如图所示:根据图象可知:选择函数y=kx+b,将(0,1),(1,2)代入,得解得∴函数表达式为:y=x+1(0≤x≤5);(2)当y=5时,x+1=5,∴x=4.答:当水位高度达到5米时,进水用时x为4小时.20.【知识点】解直角三角形的应用.【答案】解:(1)∵∠ADC=84°,∠ABC=37°,∴∠BAD=∠ADC﹣∠ABC=47°,答:∠BAD的度数是47°.(2)在Rt△ABC中,,∴.在Rt△ADC中,,∵BD=4,∴,∴,∴AC≈3.3(米),答:表AC的长是3.3米.21.【知识点】切线的性质;平行线的判定与性质;圆心角、弧、弦的关系;圆周角定理.【答案】(1)解:连结OA,如图:∵∠ACB=20°,∴∠AOD=40°,∴==;(2)证明:∵OA=OD,∴∠OAD=∠ODA,∵AB切⊙O于点A,∴OA⊥AB,∵∠B=90°,∴OA∥BC,∴∠OAD=∠ADB,∴∠ADB=∠ODA,∴AD平分∠BDO.22.【知识点】三角形综合题.【答案】解:(1)∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,P与E重合,∴D在AB边上,AC=AD,∴∠ACD=∠ADC=(180°﹣∠BAC)÷2=65°,∴α=∠ACB﹣∠ACD=25°;答:α的度数为25°;(2)①当点P在线段BE上时,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°﹣α,又∵∠ADC+∠BAD=∠B+∠BCD,∠BAD=β,∠B=40°,∴(90°﹣α)+β=40°+α,∴2α﹣β=50°,②如图2,当点P在线段CE上时,延长AD交BC于点F,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°﹣α,又∵∠ADC=∠AFC+∠BCD,∠AFC=∠ABC+∠BAD,∴∠ADC=∠ABC+∠BAD+∠BCD=40°+β+α,∴90°﹣α=40°+α+β,∴2α+β=50°;综上所述,当点P在线段BE上时,2α﹣β=50°;当点P在线段CE上时,2α+β=50°.23.【知识点】二次函数的最值;待定系数法求二次函数解析式.【答案】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.24.【知识点】四边形综合题.【答案】解:(1)∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°.由对称性知∠BEM=45°,∴∠AEM=90°.(2)如图2,∵AB=6,AD=8,∴BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=,得EN=,∴DE=EN=.∵BM=AB=CD,MN=AD=BC,∴Rt△BMN≌Rt△DCB(HL),∴∠DBC=∠BNM,∴MN∥BD.(3)如图3,当E在边AD上时,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∴△BCM≌△CED(AAS),∴DE=MC=.如图4,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8﹣.∵∠BMC=∠CNE=∠BCD=90°,∴△BMC∽△CNE,∴,∴EN=,∴DE=EN=.综上所述,DE的长为或.。

2023浙江省绍兴市中考数学真题试卷和答案

2023浙江省绍兴市中考数学真题试卷和答案

2023年浙江省绍兴市中考数学真题卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1. 计算23-的结果是( )A. 1- B. 3- C. 1D. 32. 据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是( )A. 727.410⨯ B. 82.7410⨯ C. 90.27410⨯ D. 92.7410⨯3. 由8个相同的立方体搭成的几何体如图所示,则它的主视图是( )A. B. C. D.4. 下列计算正确的是( )A 623a a a ÷= B. ()52a a-=- C. ()()2111a a a +-=- D. 22(1)1a a +=+5. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( )A.25B.35C.27D.576. 《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A. 5352x y x y +=⎧⎨+=⎩ B. 5352x y x y +=⎧⎨+=⎩ C. 5352x y x y =+⎧⎨=+⎩ D. 5253x y x y =+⎧⎨=+⎩7. 在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是().A. ()2,1m n --B. ()2,1m n -+C. ()2,1m n +-D. ()2,1m n ++8. 如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是( )A. 菱形→平行四边形→矩形→平行四边形→菱形B 菱形→正方形→平行四边形→菱形→平行四边形C. 平行四边形→矩形→平行四边形→菱形→平行四边形D. 平行四边形→菱形→正方形→平行四边形→菱形9. 已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是( )A. B. C.D.10. 如图,在ABC 中,D 是边BC 上点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出().的A. AFE △的面积B. BDF V 的面积C. BCN △的面积D. DCE △的面积卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:m 2﹣3m =__________.12. 如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.13. 方程3911x x x =++解是________.14. 如图,在菱形ABCD 中,40DAB ∠=︒,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.15. 如图,在平面直角坐标系xOy 中,函数ky x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.的16. 在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)计算:0(1)π--+-(2)解不等式:324x x ->+.18. 某校兴趣小组通过调查,形成了如下调查报告(不完整).调查目的1.了解本校初中生最喜爱球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式随机抽样调查调查对象部分初中生调查内容你最喜爱的一个球类运动项目(必选)A .篮球B .乒乓球C .足球D .排球E .羽毛球的调查结果建议……结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请你向该校提一条合理建议.19. 图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos320.85,tan 320.62︒≈︒≈︒≈)20. 一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离.21. 如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.22. 如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.23. 已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象的顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.24. 在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 的长.数学卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分,请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分1. 计算23-的结果是( )A. 1- B. 3- C. 1D. 3【答案】A 【解析】【分析】根据有理数的减法法则进行计算即可.【详解】解:231-=-,故选:A .【点睛】本题主要考查了有理数的减法,解题的关键是掌握有理数的减法计算法则.减去一个数等于加上它的相反数.2. 据报道,2023年“五一”假期全国国内旅游出游合计274000000人次.数字274000000用科学记数法表示是( )A. 727.410⨯ B. 82.7410⨯ C. 90.27410⨯ D. 92.7410⨯【答案】B 【解析】【分析】科学记数法的表现形式为10n a ⨯的形式,其中1||10,a n ≤<为整数,确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同,由此进行求解即可得到答案.【详解】解:8274000000 2.7410=⨯,故选B .【点睛】本题主要考查了科学记数法,解题的关键在于能够熟练掌握科学记数法的定义.3. 由8个相同的立方体搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【答案】D 【解析】【分析】找到从正面看所得到图形即可,注意所有的看到的棱都应表现在主视图中.【详解】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,故选:D .【点睛】本题考查了三视图的知识,要求同学们掌握主视图是从物体的正面看得到的视图.4. 下列计算正确的是( )A. 623a a a ÷= B. ()52a a-=- C. ()()2111a a a +-=- D. 22(1)1a a +=+【答案】C 【解析】【分析】根据同底数幂相除法则判断选项A ;根据幂的乘方法则判断选项B ;根据平方差公式判断选项C ;根据完全平方公式判断选项D 即可.【详解】解:A. 6243a a a a ÷=≠,原计算错误,不符合题意;B. ()5210a a a -=-≠-,原计算错误,不符合题意;C. ()()2111a a a +-=-,原计算正确,符合题意;D. 222(1)211a a a a +=++≠+,原计算错误,不符合题意;故选:C.【点睛】本题考查了同底数幂相除法则、幂的乘方法则、平方差公式、完全平方公式等知识,熟练掌握各运算法则是解答本题的关键.5. 在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是( )A.25B.35C.27D.57【答案】C 【解析】【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出的1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.6. 《九章算术》中有一题:“今有大器五、小器一容三斛;大器一、小器五容二斛.问大、小器各容几何?”译文:今有大容器5个,小容器1个,总容量为3斛(斛:古代容是单位);大容器1个,小容器5个,总容暴为2斛.问大容器、小容器的容量各是多少斛?设大容器的容量为x 斛,小容器的容量为y 斛,则可列方程组是( )A. 5352x y x y +=⎧⎨+=⎩ B. 5352x y x y +=⎧⎨+=⎩ C. 5352x y x y =+⎧⎨=+⎩ D. 5253x y x y =+⎧⎨=+⎩【答案】B 【解析】【分析】设大容器的容积为x 斛,小容器的容积为y 斛,根据“大容器5个,小容器1个,总容量为3斛;大容器1个,小容器5个,总容量为2斛”即可得出关于x 、y 的二元一次方程组.【详解】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩.故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,根据数量关系列出关于x 、y 的二元一次方程组是解题的关键.7. 在平面直角坐标系中,将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是( )A. ()2,1m n -- B. ()2,1m n -+ C. ()2,1m n +- D. ()2,1m n ++【答案】D 【解析】【分析】把(),m n 横坐标加2,纵坐标加1即可得出结果.【详解】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++.故选:D .【点睛】本题考查点的平移中坐标的变换,把(),a b 向上(或向下)平移h 个单位,对应的纵坐标加上(或减去)h ,,把(),a b 向右上(或向左)平移n 个单位,对应的横坐标加上(或减去)n .掌握平移规律是解题的关键.8. 如图,在矩形ABCD 中,O 为对角线BD 的中点,60ABD ∠=︒.动点E 在线段OB 上,动点F 在线段OD 上,点,E F 同时从点O 出发,分别向终点,B D 运动,且始终保持OE OF =.点E 关于,AD AB 的对称点为12,E E ;点F 关于,BC CD 的对称点为12,F F .在整个过程中,四边形1212E E F F 形状的变化依次是( )A. 菱形→平行四边形→矩形→平行四边形→菱形B. 菱形→正方形→平行四边形→菱形→平行四边形C. 平行四边形→矩形→平行四边形→菱形→平行四边形D. 平行四边形→菱形→正方形→平行四边形→菱形【答案】A【解析】【分析】根据题意,分别证明四边形1212E E F F 菱形,平行四边形,矩形,即可求解.【详解】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB=∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒是∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E EF =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD中,2,AB AD ==,连接AE ,AO ,∵602ABO BO AB ∠=︒==,,∴ABO 等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,是∴AE ==,根据对称性可得1AE AE ==,∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A .【点睛】本题考查了菱形的性质与判定,平行四边形的性质与判定,矩形的性质与判定,勾股定理与勾股定理的逆定理,轴对称的性质,含30度角的直角三角形的性质,熟练掌握以上知识是解题的关键.9. 已知点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,则这个函数图象可能是( )A. B. C.D.【答案】B【解析】【分析】点()()()4,2,2,,2,M a N a P a ---在同一个函数图象上,可得N 、P 关于y 轴对称,当0x <时,y 随x 的增大而增大,即可得出答案.【详解】解:∵()()2,,2,N a P a -,∴得N 、P 关于y 轴对称,∴选项A 、C 错误,∵()()4,2,2,M a N a ---在同一个函数图象上,∴当0x <时,y 随x 的增大而增大,∴选项D 错误,选项B 正确.故选:B .【点睛】此题考查了函数的图象.注意掌握排除法在选择题中的应用是解此题的关键.10. 如图,在ABC 中,D 是边BC 上的点(不与点,B C 重合).过点D 作DE AB ∥交AC 于点E ;过点D 作DF AC ∥交AB 于点F .N 是线段BF 上的点,2BN NF =;M 是线段DE 上的点,2DM ME =.若已知CMN 的面积,则一定能求出( )A. AFE △的面积B. BDF V 的面积C. BCN △的面积D. DCE △的面积【答案】D 【解析】【分析】如图所示,连接ND ,证明FBD EDC ∽,得出FB FD ED EC=,由已知得出NF BF ME DE =,则FD NF EC ME=,又NFD MEC ∠=∠,则NFD MEC ∽,进而得出MCD NDB ∠=∠,可得MC ND ∥,结合题意得出1122EMC DMC MNC S S S == ,即可求解.【详解】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FBFDED EC =.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==,∴NF BFME DE =.∴FD NFEC ME =.又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD∠=∠∴MCD NDB ∠=∠.∴MC ND ∥.∴MNC MDC S S = .∵2DM ME =,∴1122EMC DMC MNC S S S == .故选:D .【点睛】本题考查了相似三角形的性质与判定,证明MC ND ∥是解题的关键.卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分)11. 因式分解:m 2﹣3m =__________.【答案】()3m m -【解析】【分析】题中二项式中各项都含有公因式m ,利用提公因式法因式分解即可得到答案.【详解】解:()233m m m m -=-,故答案为:()3m m -.【点睛】本题考查整式运算中的因式分解,熟练掌握因式分解的方法技巧是解决问题的关键.12. 如图,四边形ABCD 内接于圆O ,若100D ∠=︒,则B ∠的度数是________.【答案】80︒##80度【解析】【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于O ,∴180B D Ð+а=,∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=.故答案为:80︒.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.13. 方程3911x x x =++的解是________.【答案】3x =【解析】【分析】先去分母,左右两边同时乘以()1x +,再根据解一元一次方程的方法和步骤进行解答,最后进行检验即可.【详解】解:去分母,得:39x =,化系数为1,得:3x =.检验:当3x =时,10x +≠,∴3x =是原分式方程的解.故答案为:3x =.【点睛】本题主要考查了解分式方程,解题的关键是掌握解分式方程的方法和步骤,正确找出最简公分母,注意解分式方程要进行检验.14. 如图,在菱形ABCD 中,40DAB ∠=︒,连接AC ,以点A 为圆心,AC 长为半径作弧,交直线AD 于点E ,连接CE ,则AEC ∠的度数是________.【答案】10︒或80︒【解析】【分析】根据题意画出图形,结合菱形的性质可得1202CAD DAB ∠=∠=︒,再进行分类讨论:当点E 在点A 上方时,当点E 在点A 下方时,即可进行解答.【详解】解:∵四边形ABCD 为菱形,40DAB ∠=︒,∴1202CAD DAB ∠=∠=︒,连接CE ,①当点E 在点A 上方时,如图1E ,∵1AC AE =,120CAE ∠=︒,∴()1118020802AE C ∠=︒-︒=︒,②当点E 在点A 下方时,如图2E ,∵1AC AE =,120CAE ∠=︒,∴211102AE C CAE ∠=∠=︒,故答案为:10︒或80︒.【点睛】本题主要考查了菱形的性质,等腰三角形的性质,三角形的内角和以及三角形的外角定理,解题的关键是掌握菱形的对角线平分内角;等腰三角形两底角相等,三角形的内角和为180︒;三角形的一个外角等于与它不相邻的两个内角之和.15. 如图,在平面直角坐标系xOy 中,函数k y x=(k 为大于0的常数,0x >)图象上的两点()()1122,,,A x y B x y ,满足212x x =.ABC 的边AC x ∥轴,边∥BC y 轴,若OAB 的面积为6,则ABC 的面积是________.【答案】2【解析】【分析】过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,利用6AFO ABO BOE FABEO S S S S k =++=+ 五边形,AFOD FABEO ADEB ADEB S S S k S =+=+矩形五边形梯形梯形,得到6ADEB S =梯形,结合梯形的面积公式解得11=8x y ,再由三角形面积公式计算2112111111111()()22224ABC S AC BC x x y y x y x y =×=-×-=×=,即可解答.【详解】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,6AFO ABO BOE FABEO S S S S k =++=+ 五边形AFOD FABEO ADEB ADEBS S S k S =+=+矩形五边形梯形梯形6ADEB S ∴=梯形2121()()62y y x x +-∴= 212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +-+-∴=11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BC x x y y x y x y =×=-×-=×===故答案为:2.【点睛】本题考查反比例函数中k 的几何意义,是重要考点,掌握相关知识是解题关键.16. 在平面直角坐标系xOy 中,一个图形上的点都在一边平行于x 轴的矩形内部(包括边界),这些矩形中面积最小的矩形称为该图形的关联矩形.例如:如图,函数()2(2)03y x x =-≤≤的图象(抛物线中的实线部分),它的关联矩形为矩形OABC .若二次函数()21034y x bx c x =++≤≤图象的关联矩形恰好也是矩形OABC ,则b =________.【答案】712或2512-【解析】【分析】根据题意求得点()3,0A ,()3,4B ,()0,4C,根据题意分两种情况,待定系数法求解析式即可求解.【详解】由()2(2)03y x x =-≤≤,当0x =时,4y =,∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤,∴019344c b c =⎧⎪⎨⨯++=⎪⎩解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤,∴419304c b c =⎧⎪⎨⨯++=⎪⎩解得:2512b =-综上所述,712b =或2512b =-,故答案为:712或2512-.【点睛】本题考查了待定系数法求抛物线解析式,理解新定义,最小矩形的限制条件是解题的关键.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17. (1)计算:0(1)π--+-(2)解不等式:324x x ->+.【答案】(1)1;(2)3x >【解析】【分析】(1)根据零指数幂的性质、二次根式的化简、绝对值的性质依次解答;(2)先移项,再合并同类项,最后化系数为1即可解答.【详解】解:(1)原式1=-+1=.(2)移项得36x x ->,即26x >,∴3x >.∴原不等式的解是3x >.【点睛】本题考查实数的混合运算、零指数幂、二次根式的化简和解一元一次不等式等知识,是基础考点,掌握相关知识是解题关键.18. 某校兴趣小组通过调查,形成了如下调查报告(不完整).调查目的1.了解本校初中生最喜爱的球类运动项目2.给学校提出更合理地配置体育运动器材和场地的建议调查方式随机抽样调查调查对象部分初中生调查内容你最喜爱的一个球类运动项目(必选)A .篮球B .乒乓球C .足球D .排球E .羽毛球调查结果建议……结合调查信息,回答下列问题:(1)本次调查共抽查了多少名学生?(2)估计该校900名初中生中最喜爱篮球项目的人数.(3)假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100 (2)360(3)答案不唯一,见解析【解析】【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.【小问1详解】被抽查学生数:3030%100÷=,答:本次调查共抽查了100名学生.【小问2详解】被抽查的100人中最喜爱羽毛球的人数为:1005%5⨯=,∴被抽查的100人中最喜爱篮球的人数为:100301015540----=,∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.【小问3详解】答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.19. 图1是某款篮球架,图2是其示意图,立柱OA 垂直地面OB ,支架CD 与OA 交于点A ,支架CG CD ⊥交OA 于点G ,支架DE 平行地面OB ,篮筺EF 与支架DE 在同一直线上, 2.5OA =米,0.8AD =米,32AGC ∠=︒.(1)求GAC ∠的度数.(2)某运动员准备给篮筐挂上篮网,如果他站在発子上,最高可以把篮网挂到离地面3米处,那么他能挂上篮网吗?请通过计算说明理由.(参考数据:sin 320.53,cos320.85,tan 320.62︒≈︒≈︒≈)【答案】(1)58︒(2)该运动员能挂上篮网,理由见解析【解析】【分析】(1)根据直角三角形的两个锐角互余即可求解;(2)延长,OA ED 交于点M ,根据题意得出32ADM ∠=︒,解Rt ADM △,求得AM ,根据OM OA AM =+与3比较即可求解.【小问1详解】解:∵CG CD ⊥,∴90ACG ∠=︒,∵32AGC ∠=︒,∴903258GAC ∠=︒-︒=︒.【小问2详解】该运动员能挂上篮网,理由如下.如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥,∴90DMA ∠=︒,又∵58DAM GAC ∠=∠=︒,∴32ADM ∠=︒,在Rt ADM △中,sin 320.80.530.424AM AD =︒≈⨯=,∴ 2.50.424 2.9243OM OA AM =+=+=<,∴该运动员能挂上篮网.【点睛】本题考查了解直角三角形的应用,直角三角形的两个锐角互余,熟练掌握三角函数的定义是解题的关键.20. 一条笔直的路上依次有,,M P N 三地,其中,M N 两地相距1000米.甲、乙两机器人分别从,M N 两地同时出发,去目的地,N M ,匀速而行.图中,OA BC 分别表示甲、乙机器人离M 地的距离y (米)与行走时间x (分钟)的函数关系图象.(1)求OA 所在直线的表达式.(2)出发后甲机器人行走多少时间,与乙机器人相遇?(3)甲机器人到P 地后,再经过1分钟乙机器人也到P 地,求,P M 两地间的距离.【答案】(1)200y x =(2)出发后甲机器人行走103分钟,与乙机器人相遇 (3),P M 两地间的距离为600米【解析】【分析】(1)利用待定系数法即可求解;(2)利用待定系数法求出BC 所在直线的表达式,再列方程组求出交点坐标,即可;(3)列出方程即可解决.【小问1详解】∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =.【小问2详解】设BC 所在直线的表达式为y kx b =+,∵()()0,1000,10,0B C ,∴10000,010,b k b =+⎧⎨=+⎩解得100,1000k b =-⎧⎨=⎩.∴1001000y x =-+.甲、乙机器人相遇时,即2001001000x x =-+,解得103x =,∴出发后甲机器人行走103分钟,与乙机器人相遇.【小问3详解】设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.【点睛】本题考查了一次函数的图象与性质,用待定系数法可求出函数表达式,要利用方程组的解,求出两个函数的交点坐标,充分应用数形结合思想是解题的关键.21. 如图,AB 是O 的直径,C 是O 上一点,过点C 作O 的切线CD ,交AB 的延长线于点D ,过点A 作AE CD ⊥于点E .(1)若25EAC ∠=︒,求ACD ∠的度数.(2)若2,1OB BD ==,求CE 的长.【答案】(1)115︒(2)CE =【解析】【分析】(1)根据三角形的外角的性质,ACD AEC EAC ∠=∠+∠即可求解.(2)根据CD 是O 的切线,可得90OCD ∠=︒,在Rt OCD △中,勾股定理求得CD ,根据OC AE ∥,可得CDODCE OA =,进而即可求解.【小问1详解】解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.【小问2详解】∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD ==.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CDODCE OA =32=,∴CE =.【点睛】本题考查了三角形外角的性质,切线的性质,勾股定理,平行线分线段成比例,熟练掌握以上知识是解题的关键.22. 如图,在正方形ABCD 中,G 是对角线BD 上的一点(与点,B D 不重合),,,,GE CD GF BC E F ⊥⊥分别为垂足.连接,EF AG ,并延长AG 交EF 于点H .(1)求证:DAG EGH ∠=∠.(2)判断AH 与EF 是否垂直,并说明理由.【答案】(1)见解析(2)AH 与EF 垂直,理由见解析【解析】【分析】(1)由正方形的性质,得到AD CD ⊥,结合垂直于同一条直线的两条直线平行,可得AD GE ∥,再根据平行线的性质解答即可;(2)连接GC 交EF 于点O ,由SAS 证明ADG CDG ≌,再根据全等三角形对应角相等得到DAG DCG ∠=∠,继而证明四边形FCEG 为矩形,最后根据矩形的性质解答即可.【小问1详解】解:在正方形ABCD 中,AD CD⊥GE CD⊥ ∴AD GE ∥,∴DAG EGH ∠=∠.【小问2详解】AH 与EF 垂直,理由如下.连接GC 交EF 于点O .∵BD 为正方形ABCD 的对角线,∴45ADG CDG ∠=∠=︒,又∵,DG DG AD CD ==,∴ADG CDG ≌,∴DAG DCG ∠=∠.在正方形ABCD 中,90ECF ∠=︒,又∵,GE CD GF BC ⊥⊥,∴四边形FCEG 为矩形,∴OE OC =,∴OEC OCE ∠=∠,∴DAG OEC ∠=∠.又∵DAG EGH ∠=∠,∴90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=︒,∴90GHE ∠=°,∴AH EF ⊥.【点睛】本题考查正方形的性质、平行线的性质、全等三角形的判断与性质、矩形的判定与性质等知识,综合性较强,是重要考点,掌握相关知识是解题关键.23. 已知二次函数2y x bx c =-++.(1)当4,3b c ==时,①求该函数图象顶点坐标.②当13x -≤≤时,求y 的取值范围.(2)当0x ≤时,y 的最大值为2;当0x >时,y 的最大值为3,求二次函数的表达式.【答案】(1)①()2,7;②当13x -≤≤时,27y -≤≤(2)222y x x =-++【解析】【分析】(1)①将4,3b c ==代入解析式,化为顶点式,即可求解;②已知顶点()2,7,根据二次函数的增减性,得出当2x =时,y 有最大值7,当=1x -时取得最小值,即可求解;(2)根据题意0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,得出抛物线的对称轴2b x =在y 轴的右侧,即0b >,由抛物线开口向下,0x ≤时,y 的最大值为2,可知2c =,根据顶点坐标的纵坐标为3,求出2b =,即可得解.小问1详解】解:①当4,3b c ==时,2243(2)7y x x x =-++=--+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下,当12x -≤≤时,y 随x 增大而增大,当23x ≤≤时,y 随x 增大而减小,∴当2x =时,y 有最大值7.又()2132-->-∴当=1x -时取得最小值,最小值=2y -;∴当13x -≤≤时,27y -≤≤.【小问2详解】∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,∴抛物线的对称轴2b x =在y 轴的右侧,∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2,的【∴2c =,又∵()()241341c b ⨯-⨯-=⨯-,∴2b =±,∵0b >,∴2b =,∴二次函数的表达式为222y x x =-++.【点睛】本题考查了待定系数法求二次函数解析式,顶点式,二次函数的最值问题,熟练掌握二次函数的性质是解题的关键.24. 在平行四边形ABCD 中(顶点,,,A B C D 按逆时针方向排列),12,10,AB AD B ==∠为锐角,且4sin 5B =.(1)如图1,求AB 边上的高CH 的长.(2)P 是边AB 上的一动点,点,C D 同时绕点P 按逆时针方向旋转90︒得点,C D ''.①如图2,当点C '落在射线CA 上时,求BP 的长.②当AC D ''△是直角三角形时,求BP 的长.【答案】(1)8(2)①347BP =;②6BP =或8±【解析】【分析】(1)利用正弦的定义即可求得答案;(2)①先证明PQC CHP '△≌△,再证明AQC AHC '△∽△,最后利用相似三角形对应边成比例列出方程即可;②分三种情况讨论完成,第一种:C '为直角顶点;第二种:A 为直角顶点;第三种,D ¢为直角顶点,但此种情况不成立,故最终有两个答案.【小问1详解】在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=.【小问2详解】①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =-=,作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CH C Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△,∴C Q QA CH HA =',即6486x x --=,∴347x =,∴347BP =.②由旋转得,PCD PC D CD C D '''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,∴CPH PC T ∠=∠'.又∵90,CHP PTC PC C P ∠=∠=='︒',∴CPH PC T '△≌△,∴,8C T PH PT CH '===.设C T PH t '==,则6AP t =-,∴2AT PT PA t=-=+∵90,C AD C D AB ∠=︒''⊥'',∴ATD C TA '' ∽,∴AT C T TD TA='',∴2AT C T TD '=⋅',∴()2(2)12t t ι+=-,化简得2420t t -+=,解得2t =±∴8BP BH HP =+=±情况三:当以D ¢为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或8±【点睛】本题考查了平行四边形的性质,正弦的定义,全等的判定及性质,相似的判定及性质,理解记忆相关定义,判定,性质是解题的关键.。

(中考精品)浙江省绍兴市中考数学真题(解析版)

(中考精品)浙江省绍兴市中考数学真题(解析版)

2022年浙江省绍兴市中考数学真题一、选择题1. 实数-6的相反数是( ) A. 16- B. 16 C. -6 D. 6【答案】D【解析】【分析】根据只有符号不同的两个数是互为相反数求解即可.【详解】解:-6的相反数是6,故选:D .【点睛】本题考查相反数,掌握相反数的定义是解题的关键.2. 2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( )A. 63.210⨯B. 53.210⨯C. 43.210⨯D. 43210⨯【答案】B【解析】【分析】根据科学记数法“把一个大于10的数表示成10n a ⨯的形式(其中a 是整数数位只有一位的数,即a 大于或等于1且小于10,n 是正整数),这样的记数方法叫科学记数法”即可得.【详解】解:5320000 3.210=⨯,故选B .【点睛】本题考查了科学记数法,解题的关键是掌握科学记数法.3. 由七个相同的小立方块搭成的几何体如图所示,则它的主视图是( )A. B. C. D.【答案】B【解析】【分析】根据题目中的图形,可以画出主视图,本题得以解决.【详解】解:由图可得,题目中图形的主视图是,故选:B .【点睛】本题考查简单组合体的三视图,解题的关键是画出相应的图形.4. 在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( ) A. 34 B. 12 C. 13 D. 14【答案】A【解析】【分析】根据概率公式计算,即可求解. 【详解】解:根据题意得:从袋中任意摸出一个球为红球的概率是33314=+. 故选:A【点睛】本题考查了概率公式:熟练掌握随机事件A 的概率P (A )=事件A 可能出现的结果数除以所有可能出现的结果数;P (必然事件)=1;P (不可能事件)=0是解题的关键.5. 下列计算正确的是( )A. 2()a ab a a b +÷=+B. 22a a a ⋅=C. 222()a b a b +=+D. 325()a a = 【答案】A【解析】【分析】根据多项式除以单项式、同底数幂的乘法、完全平方公式、幂的乘方法则逐项判断即可.【详解】解:A 、2()a ab a a b +÷=+,原式计算正确;B 、23a a a ⋅=,原式计算错误;C 、222()2a b a b ab +=++,原式计算错误;D 、326()a a =,原式计算错误;故选:A .【点睛】本题考查了多项式除以单项式、同底数幂的乘法、完全平方公式和幂的乘方,熟练掌握运算法则是解题的关键.6. 如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,AC ∥EF ,则1∠=( )A. 30°B. 45°C. 60°D. 75°【答案】C【解析】 【分析】根据三角板的角度,可得60A ∠=︒,根据平行线的性质即可求解.【详解】解: 30C ∠=︒,9060A C ∴∠=︒-∠=︒AC ∥EF ,160A ∴∠=∠=︒故选C【点睛】本题考查了平行线的性质,掌握平行线的性质是解题的关键.7. 已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( )A. 0,4B. 1,5C. 1,-5D. -1,5【答案】D【解析】【分析】根据抛物线2y x mx =+的对称轴为直线2x =可求出m 的值,然后解方程即可.【详解】 抛物线2y x mx =+的对称轴为直线2x =, 221m ∴-=⨯, 解得4m =-,∴关于x 的方程25x mx +=为2450x x --=,(5)(1)0x x ∴-+=,解得125,1x x ==-,故选:D .【点睛】本题考查了二次函数的性质及解一元二次方程,准确理解题意,熟练掌握知识点是解题的关键.8. 如图,在平行四边形ABCD 中,22AD AB ==,60ABC ∠=︒,E ,F 是对角线BD 上的动点,且BE DF =,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ;②存在无数个矩形MENF ;③存在无数个菱形MENF ;④存在无数个正方形MENF .其中正确的个数是( )A. 1B. 2C. 3D. 4【答案】C【解析】 【分析】根据题意作出合适的辅助线,然后逐一分析即可.【详解】如图,连接AC 、与BD 交于点O ,连接ME ,MF ,NF ,EN ,MN ,∵四边形ABCD 是平行四边形∴OA =OC ,OB =OD∵BE =DF∴OE =OF∵点E 、F 时BD 上的点,∴只要M ,N 过点O ,那么四边形MENF 就是平行四边形∴存在无数个平行四边形MENF ,故①正确;只要MN =EF ,MN 过点O ,则四边形MENF 是矩形,∵点E 、F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN ⊥EF ,MN 过点O ,则四边形MENF 是菱形;∵点E 、F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN =EF ,MN ⊥EF ,MN 过点O ,则四边形MENF 是正方形,而符合要求的正方形只有一个,故④错误;故选:C【点睛】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定、解答本题的关键时明确题意,作出合适的辅助线.9. 已知112233()()()x y x y x y ,,,,,为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ).A. 若120x x >,则130y y >B. 若130x x <,则120y y >C. 若230x x >,则130y y >D. 若230x x <,则120y y >【答案】D【解析】【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【详解】解:∵直线y =−2x +3∴y 随x 增大而减小,当y =0时,=1.5∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =−2x +3上的三个点,且x 1<x 2<x 3∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意;若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意.故选:D .【点睛】本题考查一次函数图象上点的坐标特征,解题的关键是明确题意,利用一次函数的性质解答.10. 将一张以AB 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ,其中90A ∠=︒,9AB =,7BC =,6CD =,2AD =,则剪掉的两个直角三角形的斜边长不可能是( )A. 252B. 454C. 10D. 354【答案】A【解析】【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【详解】解:当△DFE ∽△ECB 时,如图,∴DF FE DE EC CB EB==, 设DF =x ,CE =y , ∴9672x y y x +==+,解得:274214x y ⎧=⎪⎪⎨⎪=⎪⎩, ∴2145644DE CD CE =+=+=,故B 选项不符合题意; ∴2735244EB DF AD =+=+=,故选项D 不符合题意;如图,当△DCF ∽△FEB 时,∴DC CF DF FE EB FB==, 设FC =m ,FD =n , ∴6927m n n m ==++,解得:810m n =⎧⎨=⎩, ∴FD =10,故选项C 不符合题意;8614BF FC BC =+=+=,故选项A 符合题意;故选:A【点睛】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题11. 分解因式:2x x + = ______【答案】(1)x x +【解析】【分析】利用提公因式法即可分解.【详解】2(1)x x x x +=+,故答案为:(1)x x +.【点睛】本题考查了用提公因式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解.12. 关于x 的不等式32x x ->的解是______.【答案】1x >【解析】【分析】将不等式移项,系数化为1即可得.【详解】解:32x x ->32x x ->22x >1x >,故答案为:1x >.【点睛】本题考查了解一元一次不等式,解题的关键是掌握解一元一次不等式的方法. 13. 元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.” 其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.【答案】20【解析】【分析】设良马x 天追上劣马,根据良马追上劣马所走路程相同可得:240x =150(x +12),即可解得良马20天追上劣马.【详解】解:设良马x 天追上劣马,根据题意得:240x =150(x +12),解得x =20,答:良马20天追上劣马;故答案为:20.【点睛】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14. 如图,在ABC 中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连接CD BCD ∠的度数是______.【答案】10°或100°【解析】【分析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.【详解】解:如图,点D 即为所求;在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,180408060ACB ∴∠=︒-︒-︒=︒,由作图可知:AC AD =,1(18080)502ACD ADC ∴∠=∠=︒-︒=︒, 605010BCD ACB ACD ∴∠=∠-∠=︒-︒=︒;由作图可知:AC AD =',ACD AD C ∴∠'=∠',80ACD AD C BAC ∠'+∠'=∠=︒ ,40AD C ∴∠'=︒,1801804040100BCD ABC AD C ∴∠'=︒-∠-∠'=︒-︒-︒=︒.综上所述:BCD ∠的度数是10︒或100︒.故答案为:10︒或100︒.【点睛】本题考查了作图-复杂作图,三角形内角和定理,等腰三角形的判定与性质,解题的关键是掌握基本作图方法.15. 如图,在平面直角坐标系xOy 中,点A (0,4),B (3,4),将ABO 向右平移到CDE △位置,A 的对应点是C ,O 的对应点是E ,函数(0)k y k x=≠的图象经过点C 和DE 的中点F ,则k 的值是______.【答案】6【解析】【分析】作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,设AC=EO=BD =a ,表示出四边形ACEO 的面积,再根据三角形中位线的性质得出FG ,EG ,即可表示出四边形HFGO 的面积,然后根据k 的几何意义得出方程,求出a ,可得答案.【详解】过点F 作FG ⊥x 轴,DQ ⊥x 轴,FH ⊥y 轴,根据题意,得AC=EO=BD ,设AC=EO=BD =a ,∴四边形ACEO 的面积是4a .∵F 是DE 的中点,FG ⊥x 轴,DQ ⊥x 轴,∴FG 是△EDQ 的中位线, ∴122FG D Q ==,1322E G E Q ==, ∴四边形HFGO 的面积为32()2a +, ∴342()2k a a ==+, 解得32a =, ∴k=6.故答案为:6.【点睛】本题主要考查了反比例函数中k 的几何意义,正确的作出辅助线构造矩形是解题的关键.16. 如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或354【解析】 【分析】过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =3x ,由△ACN ≌△CDM 可得AN =CM =10+x ,CN =DM =3x ,由点C 、M 、D 、E 四点共圆可得△NME 是等腰直角三角形,于是NE =10-2x ,由勾股定理求得AC 可得CE ,在Rt △CNE 中由勾股定理建立方程求得x ,进而可得BE ;【详解】解:如图,过点C 作CN ⊥BE 于N ,过点D 作DM ⊥CN 延长线于M ,连接EM ,设BN =x ,则CN =BN •tan ∠CBN =3x ,∵△CAD ,△ECD 都是等腰直角三角形,∴CA =CD ,EC =ED ,∠EDC =45°,∠CAN +∠ACN =90°,∠DCM +∠ACN =90°,则∠CAN =∠DCM ,在△ACN 和△CDM 中:∠CAN =∠DCM ,∠ANC =∠CMD =90°,AC =CD ,∴△ACN ≌△CDM (AAS ),∴AN =CM =10+x ,CN =DM =3x ,∵∠CMD =∠CED =90°,∴点C 、M 、D 、E 四点共圆,∴∠CME =∠CDE=45°,∵∠ENM =90°,∴△NME 是等腰直角三角形,∴NE =NM =CM -CN =10-2x ,Rt △ANC 中,AC =,Rt △ECD 中,CD =AC ,CE CD , Rt △CNE 中,CE 2=CN 2+NE 2,∴()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54, ∵BE =BN +NE =x +10-2x =10-x ,∴BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键.三、解答题17. 计算(1)计算:6tan30°+(π+1)0(2)解方程组242.x y x y -=⎧⎨+=⎩, 【答案】(1)1(2)20x y =⎧⎨=⎩【解析】 【分析】(1)根据特殊角的三角函数值,零指数幂,二次根式的性质化简,然后进行计算即可;(2)利用加减消元法解二元一次方程组即可.【小问1详解】解:原式611=-=+-1; 【小问2详解】242x y x y -=⎧⎨+=⎩①②, ①+②得3x =6,∴x =2,把x =2代入②,得y =0,∴原方程组的解是20x y =⎧⎨=⎩. 【点睛】本题考查了特殊角的三角函数值,零指数幂,二次根式的性质,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18. 双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x (单位:小时)情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题..的八年级学生每日完成书面作业所需时长情况的统计表 组别 所需时长(小时) 学生人数(人)A 00.5x <≤ 15B 0.51x <≤ mC 1 1.5x <≤ nD 1.52x <≤5(1)求统计表中m ,n 的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5 1.5x <≤的共有多少人.【答案】(1)m 为60,n 为20(2)640人【解析】【分析】(1)先求出被调查总人数,再根据扇形统计图求出m ,用总人数减去A 、B 、D 的人数,即可得n 的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.【小问1详解】解:被调查总人数:1515%100÷=(人), 10060%60m ∴=⨯=(人),1001560520n =---=(人),答:m 为60,n 为20;【小问2详解】解: 当0.5 1.5x <…时,在被调查的100人中有602080+=(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5 1.5x <…的共有80800640100⨯=(人), 答:估计共有640人.【点睛】本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19. 一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米). x0 0.5 1 1.5 2 y 1 1.5 2 2.5 3为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y kx b =+(0k ≠),y =ax 2+bx +c (0a ≠),k y x=(0k ≠). (1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x . 【答案】(1)y =x +1(0≤x ≤5),图见解析(2)4小时【解析】【分析】(1)观察表格数据,y 的增长量是固定的,故符合一次函数模型,建立模型待定系数法求解析式,画出函数图象即可求解;(2)根据5y =,代入解析式求得x 的值即可求解.小问1详解】(1)选择y =kx +b ,将(0,1),(1,2)代入,得12b k b =⎧⎨+=⎩,,解得11.k b =⎧⎨=⎩, ∴y =x +1(0≤x ≤5).【小问2详解】当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.【点睛】本题考查了一次函数的性质,画一次函数图象,求一次函数的解析式,根据题意建立模型是解题的关键.20. 圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” )和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即)ABC ∠为37︒,夏至正午太阳高度角(即)ADC ∠为84︒,圭面上冬至线与夏至线之间的距离(即DB 的【长)为4米.(1)求∠BAD 度数.(2)求表AC 的长(最后结果精确到0.1米).(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,tan84°≈192) 【答案】(1)47°(2)3.3米 【解析】【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出ADC ∠和ABC ∠的正切值,用AC 表示出CD 和CB ,得到一个只含有AC 的关系式,再解答即可.【小问1详解】解:84ADC ∠=︒ ,37ABC ∠=︒,47BAD ADC ABC ∴∠=∠-∠=︒,答:BAD ∠的度数是47︒.【小问2详解】解:在Rt △ABC 中,tan 37AC BC ︒=, ∴tan 37AC BC =︒. 同理,在Rt △ADC 中,有tan84AC DC =︒. ∵4BD =, ∴4tan 37tan84AC AC BC DC BD -=-==︒︒. ∴424319AC AC -≈,的∴ 3.3AC ≈(米).答:表AC 的长是3.3米.【点睛】本题主要考查了三角形外角的性质和三角函数,解题的关键是熟练掌握建模思想来解决.21. 如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B=90°,连接OD ,A D .(1)若∠ACB=20°,求 AD 的长(结果保留π). (2)求证:AD 平分∠BDO .【答案】(1)43π (2)见解析【解析】【分析】(1)连接OA ,由20ACB ∠=︒,得40AOD ∠=︒,由弧长公式即得 AD 的长为43π; (2)根据AB 切O 于点A ,90B ∠=︒,可得//OA BC ,有OAD ADB ∠=∠,而OA OD =,即可得ADB ODA ∠=∠,从而AD 平分BDO ∠.【小问1详解】解:连接OA ,∵∠ACB =20°,∴∠AOD =40°,∴ 180n rAD π=,18040⨯π⨯6=43π=. 【小问2详解】证明:OA OD = ,OAD ODA ∠=∠∴,AB Q 切O 于点A ,OA AB ∴⊥,90B ∠=︒ ,//OA BC ∴,OAD ADB ∴∠=∠,ADB ODA ∴∠=∠,AD ∴平分BDO ∠.【点睛】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22. 如图,在△ABC 中,∠ABC=40°, ∠ACB=90°,AE 平分∠BAC 交BC 于点E .P 是边BC 上的动点(不与B ,C 重合),连结AP ,将△APC 沿AP 翻折得△APD ,连结DC ,记∠BCD=α.(1)如图,当P 与E 重合时,求α的度数.(2)当P 与E 不重合时,记∠BAD=β,探究α与β的数量关系.【答案】(1)25° (2)①当点P 在线段BE 上时,2α-β=50°;②当点P 在线段CE 上时,2α+β=50°【解析】【分析】(1)由∠B =40°,∠ACB =90°,得∠BAC =50°,根据AE 平分∠BAC ,P 与E 重合,可得∠ACD ,从而α=∠ACB −∠ACD ;(2)分两种情况:①当点P 在线段BE 上时,可得∠ADC =∠ACD =90°−α,根据∠ADC +∠BAD =∠B +∠BCD ,即可得2α−β=50°;②当点P 在线段CE 上时,延长AD 交BC于点F,由∠ADC=∠ACD=90°−α,∠ADC=∠AFC+α=∠ABC+∠BAD+α可得90°−α=40°+α+β,即2α+β=50°.【小问1详解】解:∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,∴∠EAC=1∠BAC=25°,2∵P与E重合,∴D在AB边上,AE⊥CD,∴∠ACD=65°,∴α=∠ACB-∠ACD=25°;【小问2详解】①如图1,当点P在线段BE上时,∵∠ADC=∠ACD=90°-α,∠ADC+∠BAD=∠B+∠BCD,∴90°-α+β=40°+α,∴2α-β=50°;②如图2,当点P在线段CE上时,延长AD交BC于点F,∵∠ADC=∠ACD=90°-α,∠ADC=∠AFC+α=∠ABC+∠BAD+α=40°+α+β,∴90°-α=40°+α+β,∴2α+β=50°.【点睛】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形外角的性质. 23. 已知函数2y x bx c =-++(b ,c 为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b ,c 的值.(2)当﹣4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.【答案】(1)b =-6,c =-3(2)x =-3时,y 有最大值为6(3)m =-2或3--【解析】【分析】(1)把(0,-3),(-6,-3)代入y =2x bx c -++,即可求解;(2)先求出抛物线的顶点坐标为(-3,6),再由-4≤x ≤0,可得当x =-3时,y 有最大值,即可求解;(3)由(2)得当x >-3时,y 随x 增大而减小;当x ≤-3时,y 随x 的增大而增大,然后分两种情况:当-3<m≤0时,当m≤-3时,即可求解.【小问1详解】解:把(0,-3),(-6,-3)代入y =2x bx c -++,得∶33663c b c =-⎧⎨--+=-⎩,解得:63b c =-⎧⎨=-⎩; 【小问2详解】解:由(1)得:该函数解析式为y =263x x ---=2(3)6x -++,∴抛物线的顶点坐标为(-3,6),∵-1<0∴抛物线开口向下,又∵-4≤x ≤0,∴当x =-3时,y 有最大值为6.【小问3详解】解:由(2)得:抛物线的对称轴为直线x =-3,∴当x >-3时,y 随x 的增大而减小;当x ≤-3时,y 随x 的增大而增大,①当-3<m≤0时,当x =0时,y 有最小值为-3,当x =m 时,y 有最大值为263m m ---,∴263m m ---+(-3)=2, 的∴m =-2或m =-4(舍去).②当m≤-3时,当x =-3时,y 有最大值为6,∵y 的最大值与最小值之和为2,∴y 最小值为-4,∴2(3)6m -++=-4,∴m =3-或m =3-+(舍去).综上所述,m =-2或3--.【点睛】本题主要考查了二次函数的图象和性质,熟练掌握二次函数的图象和性质,并利用分类讨论思想解答是解题的关键.24. 如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2=时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【答案】(1)∠AEM =90°;(2)DE =103;MN ∥BD ,证明见解析;(3)DE 的长为 【解析】 【分析】(1)由DE =2知,AE =AB =6,可知∠AEB =∠MEB =45°,从而得出答案; (2)根据对称性得,∠ENC =∠BDC ,则cos ∠ENC =2610EN =,得EN =103,利用SSS 证明△BMN ≌△DCB ,得∠DBC =∠BNM ,则MN ∥BD ;(3)当点E 在边AD 上时,若直线MN 过点C ,利用AAS 证明△BCM ≌△CED ,得DE =MC;当点E在边CD上时,证明△BMC∽△CNE,可得BM MCCN EN=,从而解决问题.【小问1详解】解:∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°,由对称性知∠BEM=45°,∴∠AEM=∠AEB+∠BEM=90°;【小问2详解】如图1,∵AB=6,AD=8,∴由勾股定理得BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=2610 EN=,∴EN=10 3,∴DE=EN=10 3;直线MN与直线BD的位置关系是MN∥BD.由对称性知BM=AB=CD,MN=AD=BC,又∵BN=BD,∴△BMN≌△DCB(SSS),∴∠DBC=∠BNM,所以MN∥BD;【小问3详解】①情况1:如图2,当E在边AD上时,直线MN过点C,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∠BMC=∠EDC=90°,∴△BCM≌△CED(AAS),∴DE=MC=;②情况2:如图3,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8-,∵∠BMC=∠CNE=∠BCD=90°,∴∠BCM+∠ECN=90°,∵∠BCM+∠MBC=90°,∴∠ECN=∠MBC,∴△BMC∽△CNE,∴BM MC CN EN=,∴ENMC CNBM⋅==∴DE=EN.综上所述,DE的长为【点睛】本题是四边形综合题,主要考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,根据题意画出图形,并运用分类讨论思想是解题的关键。

2022年浙江省绍兴市中考数学原题试卷附解析

2022年浙江省绍兴市中考数学原题试卷附解析

2022年浙江省绍兴市中考数学原题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.一个不透明的袋中装有除颜色外均相同的5个红球和 3 个黄球,从中随机摸出一个,摸到黄球的概率是()A.18B.13C.38D.352.如果x:4=7:3,那么x=()A.283B.127C.214D.733.下面语句中,命题的个数是()(1)同角的补角相等.(2)两条直线相交,有几个交点?(3)相等的两个角是对顶角.(4)若a>0,b>0,则ab>0.A.1个 B 2个 C.3个D.4个4.关于x的一元二次方程22(3)60a x x a a-++--=的一个根是 0,则a 的值为()A.2- B.3 C.-2 或 3 D.-1或 65.某住宅小区六月份中1日至6日每天用水量变化情况如折线图所示,那么这6天的平均用水量是()A. 30吨B. 31 吨C. 32吨D. 33吨6.足球场平面示意图如图所示,它是轴对称图形,其对称轴条数为()A.1条B.2条C.3条D.4条7.下列事件中,不可能事件是()A.掷一枚六个面分别刻有1~6数码的均匀正方体骰子,•向上一面的点数是“5”B.任意选择某个电视频道,正在播放动画片C.肥皂泡会破碎D.在平面内,度量一个三角形的内角度数,其和为360°8.c b a 、、是△ABC 的三边,且bc ac ab c b a ++=++222,那么△ABC 的形状是( )A .直角三角形B .等腰三角形C .等腰直角三角形D .等边三角形9.下列说法中正确的是( )A .从所有的质数中任取一个数是偶数是不可能事件B .如果一件事不是必然发生,那么它就不可能发生C .抛掷四枚普通硬币,掷得四个正面朝上和掷得四个反面朝上的概率一样大D .投掷一枚普通正方体骰子,“掷得的数是奇数”是必然发生的,因为骰子上有奇数10.使分式221a a a ++的值为零的a 的值是( ) A .1 B .-1 C .0 D .0 或-111.已知二元一次方程组1941175x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩的解为x a y b =⎧⎨=⎩,则||a b -的值为( ) A . -11B . 11C . 13D . 16 12.54表示( )A .4个5 相乘B . 5个4相乘C .5与4的积D . 5个4相加的和 13.3.1449精确到百分位的近似数是 ( )A .3.14B .3.15C .3.20D .3.145 14. 下列说法正确的是( )A .两个负数相加,绝对值相减B. 正数加负数,和为正数;负数加正数,和为负数C .两正数相加,和为正数;两负数相加,和为负数D .两个有理数相加等于它们的绝对值相加15.若1aa =,则a ( )A .是正数或负数B .是正数C .是有理数D .是正整数二、填空题16.某同学的身高为1.4米,某一时刻他在阳光下的影长为1.2米,此时,与他相邻的一棵小树的影长为3.6米,则这棵树的高度为 米.17.用正十二边形与三角形组合能够铺满地面,每个顶点周围有 个三角形和个正十二边形.18.在:①有两边和一角对应相等的两个三角形全等;②两边和其中一边上的高对应相等的两个三角形全等;③斜边相等的两个等腰直角三角形全等中,正确的命题是 .19.一元二次方程2(1)210k x x ---=有两个不相等的实数根,则k 的取值范围是 .20.观察下列各式:111 =233+ ;112 =344+ ;113 =455+;…… 请将你猜想到的规律用含自然数n (n≥1)代数式表示出来: .21.如果三角形的两条边长分别为23cm 和10cm ,第三边与其中一边的长相等,那么第三边的长为___________.22.22()49x y -+÷( )=23x y +. 23.已知∠A=40°,则∠A 的余角是 .24.一 只蜘蛛有 8 条腿,n 只蜘蛛有 条腿.三、解答题25.如图,它是实物与其三种视图,在三种视图中缺少一些线(包括实线和虚线),请将它们补齐,让其成为一个完整的三种视图.26.画出图中几何体的三种视图.27.近年来某市政府不断加大对城市绿化的经济投入,使全市绿地面积不断增加,从2004年底到2006年底城市绿地面积变化如图所示,那么绿地面积的年平均增长率是 .28.根据下列关系列不等式:(1)x 的2倍大于一5;(2)4 减去 2x 的差是负数;(3)y 与 3 的和不大于0. 5.29.某服装店的老板,在广州看到一种夏季衬衫,就用8000元购进若干件,以每件58元的价格出售,很快售完,又用 17 600元购进同种衬衫,数量是第一次的 2倍,但这次每件进价比第一次多4元,服装店仍接每件58元出售,全部售完,问:该服装店这笔生意是否盈利,若盈利,请你求出盈利多少元?30.如图所示,把两张宽度都是 lcm 的纸条交错地叠在一起,相交成角α, 问:(1)试判断重叠部分的四边形的形状;(2)求重叠部分的面积.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.C2.A3.C4.A5.C6.B7.D8.D9.C10.D11.BB13.A14.C15.B二、填空题16.4.217.1,218.②③19.2k <且1k ≠20. 21)1(21++=++n n n n 21. 23㎝22.32y x -23. 50°24.8n三、解答题25.26.27.10%28.(1)2x>-5;(2)4-2x<0;(3)y+3≤0.5 29.设第一次购进衬衫x件. 根据题意,得80001760042x x+=,解得200x=,经检验200x=是原方程的解.当200x=时,服装店这笔生意盈利= 58×(200+400)-(17600+8000)=9200(元)>0. 答:该服装店这笔生意是盈利的,盈利920030.(1)菱形. 过A作AE⊥ BC 于 E,AF ⊥CD于 F,由 AE=AF,∠BEA=∠DFA= 90°,∠EAB=∠DAF=90°-α,∴△AEB∽△AFD(ASA)∴AB=AD,而易知四边形 ABCD 是平行四边形. ∴四边形 ABCD 是菱形(2)在 Rt△AEB 中,AE= 1,∠EBA=α, 由sinAEEBAAB∠=,得1sinABa=,∴重叠要部分的面积=111sin sin AB AFa a⋅=⋅=。

2022年浙江省绍兴市中考数学试卷(解析版))

2022年浙江省绍兴市中考数学试卷(解析版))

2022年浙江省绍兴市中考数学试卷(真题)一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)(2022•绍兴)实数﹣6的相反数是()A.B.C.﹣6 D.62.(4分)(2022•绍兴)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×1043.(4分)(2022•绍兴)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.4.(4分)(2022•绍兴)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A.B.C.D.5.(4分)(2022•绍兴)下列计算正确的是()A.(a2+ab)÷a=a+b B.a2•a=a2C.(a+b)2=a2+b2D.(a3)2=a56.(4分)(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°7.(4分)(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x 的方程x2+mx=5的根是()A.0,4 B.1,5 C.1,﹣5 D.﹣1,5 8.(4分)(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1 B.2 C.3 D.49.(4分)(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0 D.若x2x3<0,则y1y2>010.(4分)(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10 D.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2022•绍兴)分解因式:x2+x=.12.(5分)(2022•绍兴)关于x的不等式3x﹣2>x的解集是.13.(5分)(2022•绍兴)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是.14.(5分)(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是.15.(5分)(2022•绍兴)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是.16.(5分)(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE =DE,CE⊥DE时,BE的长是.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.18.(8分)(2022•绍兴)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长(小时)学生人数(人)A0<x≤0.5 15B0.5<x≤1 mC1<x≤1.5 nD 1.5<x≤2 5(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5<x≤1.5的共有多少人.19.(8分)(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3 为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.20.(8分)(2022•绍兴)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)21.(10分)(2022•绍兴)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.22.(12分)(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE 平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.23.(12分)(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.24.(14分)(2022•绍兴)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A 出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.2022年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分)1.(4分)(2022•绍兴)实数﹣6的相反数是()A.B.C.﹣6 D.6【分析】根据相反数的定义即可得出答案.【解答】解:﹣6的相反数是6,故选:D.【点评】本题考查了相反数,掌握只有符号不同的两个数互为相反数是解题的关键.2.(4分)(2022•绍兴)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是()A.3.2×106B.3.2×105C.3.2×104D.32×104【分析】把较大的数写成a×10n(1≤a<10,n为正整数)的形式即可.【解答】解:320000=3.2×105,故选:B.【点评】本题考查了科学记数法﹣表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.3.(4分)(2022•绍兴)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.【分析】根据题目中的图形,可以画出主视图,本题得以解决.【解答】解:由图可得,题目中图形的主视图是,故选:B.【点评】本题考查简单组合体的三视图,解答本题的关键是画出相应的图形.4.(4分)(2022•绍兴)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是()A.B.C.D.【分析】根据红球可能出现的结果数÷所有可能出现的结果数即可得出答案.【解答】解:∵总共有4个球,其中红球有3个,摸到每个球的可能性都相等,∴摸到红球的概率P=,故选:A.【点评】本题考查了概率公式,掌握P(摸到红球的概率)=红球可能出现的结果数÷所有可能出现的结果数是解题的关键.5.(4分)(2022•绍兴)下列计算正确的是()A.(a2+ab)÷a=a+b B.a2•a=a2C.(a+b)2=a2+b2D.(a3)2=a5【分析】根据多项式除以单项式判断A选项;根据同底数幂的乘法判断B选项;根据完全平方公式判断C选项;根据幂的乘方判断D选项.【解答】解:A选项,原式=a2÷a+ab÷a=a+b,故该选项符合题意;B选项,原式=a3,故该选项不符合题意;C选项,原式=a2+2ab+b2,故该选项不符合题意;D选项,原式=a6,故该选项不符合题意;故选:A.【点评】本题考查了整式的除法,同底数幂的乘法,幂的乘方与积的乘方,完全平方公式,掌握(a+b)2=a2+2ab+b2是解题的关键.6.(4分)(2022•绍兴)如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC∥EF,则∠1=()A.30°B.45°C.60°D.75°【分析】根据平行线的性质,可以得到∠CBF的性质,再根据∠ABC=90°,可以得到∠1的度数.【解答】解:∵AC∥EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°﹣∠ABC﹣∠CBF=180°﹣90°﹣30°=60°,故选:C.【点评】本题考查直角三角形的性质、平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.(4分)(2022•绍兴)已知抛物线y=x2+mx的对称轴为直线x=2,则关于x 的方程x2+mx=5的根是()A.0,4 B.1,5 C.1,﹣5 D.﹣1,5【分析】根据抛物线y=x2+mx的对称轴为直线x=2,可以得到m的值,然后解方程即可.【解答】解:∵抛物线y=x2+mx的对称轴为直线x=2,∴﹣=2,解得m=﹣4,∴方程x2+mx=5可以写成x2﹣4x=5,∴x2﹣4x﹣5=0,∴(x﹣5)(x+1)=0,解得x1=5,x2=﹣1,故选:D.【点评】本题考查二次函数的性质、解一元二次方程,解答本题的关键是明确题意,求出m的值.8.(4分)(2022•绍兴)如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是()A.1 B.2 C.3 D.4【分析】根据题意作出合适的辅助线,然后逐一分析即可.【解答】解:连接AC,MN,BD,它们交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,只要OM=ON,那么四边形MENF就是平行四边形,∵点E,F是BD上的动点,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,OM=ON,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,OM=ON,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C.【点评】本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定,解答本题的关键是明确题意,作出合适的辅助线.9.(4分)(2022•绍兴)已知(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x3,则以下判断正确的是()A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0 D.若x2x3<0,则y1y2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y=﹣2x+3,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=﹣2x+3上的三个点,且x1<x2<x,3∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意;故选:D.【点评】本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.10.(4分)(2022•绍兴)将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是()A.B.C.10 D.【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意.【解答】解:如右图1所示,由已知可得,△DFE∽△ECB,则,设DF=x,CE=y,则,解得,∴DE=CD+CE=6+=,故选项B不符合题意;EB=DF+AD=+2=,故选项D不符合题意;如图2所示,由已知可得,△DCF∽△FEB,则,设FC=m,FD=n,则,解得,∴FD=10,故选项C不符合题意;BF=FC+BC=8+6=14,故选:A.【点评】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.二、填空题(本大题有6小题,每小题5分,共30分)11.(5分)(2022•绍兴)分解因式:x2+x=x(x+1).【分析】直接提取公因式x,进而分解因式得出即可.【解答】解:x2+x=x(x+1).故答案为:x(x+1).【点评】此题主要考查了提取公因式分解因式,正确提取公因式是解题关键.12.(5分)(2022•绍兴)关于x的不等式3x﹣2>x的解集是x>1 .【分析】根据解一元一次不等式步骤即可解得答案.【解答】解:∵3x﹣2>x,∴3x﹣x>2,即2x>2,解得x>1,故答案为:x>1.【点评】本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.13.(5分)(2022•绍兴)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是20 .【分析】设良马x天追上劣马,根据良马追上劣马所走路程相同可得:240x =150(x+12),即可解得良马20天追上劣马.【解答】解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.【点评】本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14.(5分)(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠BAC=80°,以点A为圆心,AC长为半径作弧,交射线BA于点D,连结CD,则∠BCD的度数是10°或100°.【分析】分两种情况画图,由作图可知得AC=AD,根据等腰三角形的性质和三角形内角和定理解答即可.【解答】解:如图,点D即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,∴∠ACB=180°﹣40°﹣80°=60°,由作图可知:AC=AD,∴∠ACD=∠ADC=(180°﹣80°)=50°,∴∠BCD=∠ACB﹣∠ACD=60°﹣50°=10°;由作图可知:AC=AD′,∴∠ACD′=∠AD′C,∵∠ACD′+∠AD′C=∠BAC=80°,∴∠AD′C=40°,∴∠BCD′=180°﹣∠ABC﹣∠AD′C=180°﹣40°﹣40°=100°.综上所述:∠BCD的度数是10°或100°.故答案为:10°或100°.【点评】本题考查了作图﹣复杂作图,三角形内角和定理,等腰三角形的判定与性质,解决本题的关键是掌握基本作图方法.15.(5分)(2022•绍兴)如图,在平面直角坐标系xOy中,点A(0,4),B(3,4),将△ABO向右平移到△CDE位置,A的对应点是C,O的对应点是E,函数y=(k≠0)的图象经过点C和DE的中点F,则k的值是 6 .【分析】根据反比例函数k的几何意义构造出矩形,利用方程思想解答即可.【解答】解:过点F作FG⊥x轴,DQ⊥x轴,FH⊥y轴,根据题意可知,AC=OE=BD,设AC=OE=BD=a,∴四边形ACEO的面积为4a,∵F为DE的中点,FG⊥x轴,DQ⊥x轴,∴FG为△EDQ的中位线,∴FG=DQ=2,EG=EQ=,∴四边形HFGO的面积为2(a+),∴k=4a=2(a+),解得:a=,∴k=6.故答案为:6.【点评】本题主要考查了反比例函数中k的几何意义,正确作出辅助线构造出矩形是解决本题的关键.16.(5分)(2022•绍兴)如图,AB=10,点C是射线BQ上的动点,连结AC,作CD⊥AC,CD=AC,动点E在AB延长线上,tan∠QBE=3,连结CE,DE,当CE =DE,CE⊥DE时,BE的长是5或.【分析】如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.由tan∠CBT=3=,可以假设BT=k,CT=3k,证明△ATC ≌△CJD(AAS),推出DJ=CT=3k,AT=CJ=10+k,再利用勾股定理,构建方程求解即可.【解答】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10﹣2k,∵CE2=CT2+TE2=(CD)2,∴(3k)2+(10﹣2k)2=[•]2,整理得4k2﹣25k+25=0,∴(k﹣5)(4k﹣5)=0,∴k=5和,∴BE=BT+ET=k+10﹣2k=10﹣k=5或,故答案为:5或.【点评】本题考查全等三角形的判定和性质,四点共圆,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(2022•绍兴)(1)计算:6tan30°+(π+1)0﹣.(2)解方程组:.【分析】(1)根据特殊角的三角函数值,实数的运算,零指数幂,二次根式的性质与化简进行计算即可;(2)根据加减法解二元一次方程组即可.【解答】解:(1)原式=6×+1﹣2==1;(2),①+②得:3x=6,解得x=2,把x=2代入②,得:y=0,∴原方程组的解是.【点评】本题考查了特殊角的三角函数值,实数的运算,零指数幂,二次根式的性质与化简,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18.(8分)(2022•绍兴)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题.八年级学生每日完成书面作业所需时长情况的统计表组别所需时长(小时)学生人数(人)A0<x≤0.5 15B0.5<x≤1 mC1<x≤1.5 nD 1.5<x≤2 5(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5<x≤1.5的共有多少人.【分析】(1)先求出被调查总人数,再根据扇形统计图求出m,用总人数减去A、B、D的人数,即可得n的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.【解答】解:(1)被调查总人数:15÷15%=100(人),∴m=100×60%=60(人),n=100﹣15﹣60﹣5=20(人),答:m为60,n为20;(2)∵当0.5<x≤1.5时,在被调查的100人中有60+20=80(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5<x≤1.5的共有800×=640(人),答:估计共有640人.【点评】本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19.(8分)(2022•绍兴)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x0 0.5 1 1.5 2y 1 1.5 2 2.5 3 为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y =kx+b(k≠0),y=ax2+bx+c(a≠0),y=(k≠0).(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.【分析】(1)根据表格数对画出函数图象即可;然后利用待定系数法即可求出相应的函数表达式;(2)结合(1)的函数表达式,代入值即可解决问题.【解答】解:(1)函数的图象如图所示:根据图象可知:选择函数y=kx+b,将(0,1),(1,2)代入,得解得∴函数表达式为:y=x+1(0≤x≤5);(2)当y=5时,x+1=5,∴x=4.答:当水位高度达到5米时,进水用时x为4小时.【点评】本题考查了一次函数的应用,解决本题的关键是掌握一次函数的图象和性质.20.(8分)(2022•绍兴)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.(1)求∠BAD的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:sin37°≈,cos37°≈,tan37°≈,tan84°≈)【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出∠ADC和∠ABC的正切值,用AC表示出CD和CB,得到一个只含有AC的关系式,再解答即可.【解答】解:(1)∵∠ADC=84°,∠ABC=37°,∴∠BAD=∠ADC﹣∠ABC=47°,答:∠BAD的度数是47°.(2)在Rt△ABC中,,∴.在Rt△ADC中,,∵BD=4,∴,∴,∴AC≈3.3(米),答:表AC的长是3.3米.【点评】本题主要考查了三角形外角的性质和三角函数,熟练掌握建模思想是解决本题的关键.21.(10分)(2022•绍兴)如图,半径为6的⊙O与Rt△ABC的边AB相切于点A,交边BC于点C,D,∠B=90°,连结OD,AD.(1)若∠ACB=20°,求的长(结果保留π).(2)求证:AD平分∠BDO.【分析】(1)连结OA,由∠ACB=20°,得∠AOD=40°,由弧长公式即得的长为;(2)根据AB切⊙O于点A,∠B=90°,可得OA∥BC,有∠OAD=∠ADB,而OA=OD,即可得∠ADB=∠ODA,从而AD平分∠BDO.【解答】(1)解:连结OA,如图:∵∠ACB=20°,∴∠AOD=40°,∴==;(2)证明:∵OA=OD,∴∠OAD=∠ODA,∵AB切⊙O于点A,∴OA⊥AB,∵∠B=90°,∴OA∥BC,∴∠OAD=∠ADB,∴∠ADB=∠ODA,∴AD平分∠BDO.【点评】本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22.(12分)(2022•绍兴)如图,在△ABC中,∠ABC=40°,∠ACB=90°,AE 平分∠BAC交BC于点E.P是边BC上的动点(不与B,C重合),连结AP,将△APC沿AP翻折得△APD,连结DC,记∠BCD=α.(1)如图,当P与E重合时,求α的度数.(2)当P与E不重合时,记∠BAD=β,探究α与β的数量关系.【分析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根据AE平分∠BAC,P与E重合,即得∠ACD=∠ADC=65°,从而α=∠ACB﹣∠ACD=25°;(2)分两种情况:①当点P在线段BE上时,可得∠ADC=∠ACD=90°﹣α,根据∠ADC+∠BAD=∠B+∠BCD,即可得2α﹣β=50°;②当点P在线段CE 上时,延长AD交BC于点F,由∠ADC=∠ACD=90°﹣α,又∠ADC=∠AFC+∠BCD,∠AFC=∠ABC+∠BAD可得90°﹣α=40°+α+β,2α+β=50°.【解答】解:(1)∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,P与E重合,∴D在AB边上,AC=AD,∴∠ACD=∠ADC=(180°﹣∠BAC)÷2=65°,∴α=∠ACB﹣∠ACD=25°;答:α的度数为25°;(2)①当点P在线段BE上时,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°﹣α,又∵∠ADC+∠BAD=∠B+∠BCD,∠BAD=β,∠B=40°,∴(90°﹣α)+β=40°+α,∴2α﹣β=50°,②如图2,当点P在线段CE上时,延长AD交BC于点F,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°﹣α,又∵∠ADC=∠AFC+∠BCD,∠AFC=∠ABC+∠BAD,∴∠ADC=∠ABC+∠BAD+∠BCD=40°+β+α,∴90°﹣α=40°+α+β,∴2α+β=50°;综上所述,当点P在线段BE上时,2α﹣β=50°;当点P在线段CE上时,2α+β=50°.【点评】本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形内角和定理.23.(12分)(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【点评】此题主要考查了待定系数法求二次函数解析式以及二次函数的性质等知识,正确分类讨论得出m的取值范围是解题关键.24.(14分)(2022•绍兴)如图,在矩形ABCD中,AB=6,BC=8,动点E从点A 出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.【分析】(1)由DE=2知,AE=AB=6,可知∠AEB=∠MEB=45°,从而得出答案;(2)根据对称性得,∠ENC=∠BDC,则cos∠ENC=,得EN=,利用HL证明Rt△BMN≌Rt△DCB,得∠DBC=∠BNM,则MN∥BD;(3)当E在边AD上时,若直线MN过点C,利用AAS证明△BCM≌△CED,得DE=MC,当点E在边CD上时,利用△BMC∽△CNE,则,从而解决问题.【解答】解:(1)∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°.由对称性知∠BEM=45°,∴∠AEM=90°.(2)如图2,∵AB=6,AD=8,∴BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=,得EN=,∴DE=EN=.∵BM=AB=CD,MN=AD=BC,∴Rt△BMN≌Rt△DCB(HL),∴∠DBC=∠BNM,∴MN∥BD.(3)如图3,当E在边AD上时,∴∠BMC=90°,∴MC=.∵BM=AB=CD,∠DEC=∠BCE,∴△BCM≌△CED(AAS),∴DE=MC=.如图4,点E在边CD上时,∵BM=6,BC=8,∴MC=,CN=8﹣.∵∠BMC=∠CNE=∠BCD=90°,∴△BMC∽△CNE,∴,∴EN=,∴DE=EN=.综上所述,DE的长为或.【点评】本题是四边形综合题,主要考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,根据题意画出图形,并运用分类讨论思想是解题的关键.。

2022年浙江省绍兴市中考数学真题试卷附解析

2022年浙江省绍兴市中考数学真题试卷附解析

2022年浙江省绍兴市中考数学真题试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.下列成语所描述的事件是必然发生的是( ) A .水中捞月B .拔苗助长C .守株待免D .瓮中捉鳖2. 平行光照在竖立地面的两标杆上,产生影子,标杆 CD 长为 lm ,其影子长为 2m ,若标杆 AB 的影子长为 4m ,则 AB 长为( ) A .O.5mB .lmC .2mD .8m如图,王华晚上由路灯A 下的B 处走到C处时,测得影子CD 的长为1米,继续往前走3米到达E处时,测得影子EF 的长为2米,已知王华的身高是1.5米,那么路灯A 的高度AB 等于( )A .4.5米B .6米C .7.2米D .8米4.二次函数22,,04y ax bx c b ac x y =++===-且时,则( ) A .=4y -最大 B .=4y -最小 C .=3y -最大 D .=3y -最小 5.函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是( ) 6.函数ky x=的图象经过点(1,-2),则k 的值为( ) A .12 B . 12-C . 2D . -27.等腰三角形是轴对称图形,它的对称轴是( ) A .过顶点的直线 B .底边上的高所在的直线 C .顶角平分线所在的直线 D .腰上的高所在的直线8. 根据图中所给数据,能得出( ) A .a ∥b ,c ∥dB .a ∥b ,但c 与d 不平行C .c ∥d ,但a 与b 不平行D .a 与b ,c 与d 均不互相平行9.用放大镜将图形放大,应该属于( ) ) A .相似变换B .平移变换C .对称变换D .旋转变换二、填空题10.如图,过正方形ABCD 的顶点B 作直线l ,过A C ,作l 的垂线,垂足分别为E F ,.若1AE =,3CF =,则AB 的长度为 .11.物体沿一个斜坡下滑,它的速度v(m /s)与其下滑时间t(s)的关系如图所示: (1)下滑2s 时物体的速度为 .(2)v(m /s)与t(s)之间的函数解析式为 . (3)下滑3s 时物体的速度为 .12.某初级中学八年级(1)班若干名同学(不足20人)星期日去公园游览,公园售票窗口标明票价:每人10元,团体票20人以上(含 20人)八折优惠. 他们经过核算,买团体票比买单人票便宜,则它们至少有 人.13.某机构要调查某厂家生产的手机质量,从中抽取了20只手机进行试验检查,其中样本 容量是 .14.在如图所示方格纸中,已知△DEF 是由△ABC 经相似变换所得的像,那么△DEF 的每条边都扩大到原来的__________倍.15.如图,在△ABC 中,∠BAC=45O ,现将△ABC 绕点A 旋转30O 至△ADE 的位置.则∠DAC = .16.在数轴上,在原点的左边与表示1-的点的距离是2的点所表示的数是 . 17.a 的 2倍的立方与b 的5倍的平方的差可表示为 . 18.计算:(1)5+(-3)= ; (2)(-4)+(-5)= ; (3)(-2)+6= ; (4)11()()23-++= ;A BCDMND ′(5)1(0.125)()8-+= ;(6)0+ (-9.7)= .三、解答题19.如图,在水平桌面上的两个“E ”,当点 P 1、P 2、0在一条直线上时,在点0处用①号“E ”测得的视力与用②号“E ”测得的视图相同. (1)图中 b l ,b 2,1l ,2l 满足怎样的关系式?(2)若b l =3.2㎝, b 2=2㎝, ①号“E ”的测试距离1l =8㎝,要使测得的视力相同,则②号“E ”的测试距离2l 应为多少?20.解方程: (1)2231x x -=; (2)(5)(7)13x x -+=.21.已知:如图,在□ABCD 中,AB =4,∠ABC =60°,对角线AC ⊥AB ,将□ABCD 对折,使点C 与点A 重合,折痕为MN , 试判断△AMD ′的形状,并说明理由.22.如图,已知∠B=∠AEF=40°,∠C=58°,求∠BAC与∠F的度数.23.如图,△ACB、△ECD都是等腰直角三角形,且点C在AD上,AE的延长线与BD交于点F.请你在图中找出一对全等三角形,并写出证明它们全等的过程.24.计算题:(1)10⨯ (2)332)156⨯25.某地举办乒乓球比赛的费用y(元)包括两部分:一部分是租用比赛场地等固定不变的费用b(元),另一部分与参加比赛的人数x(人)成正比例关系.当x=20时,y=1600,当x=30时,y=2000.(1)求y与x之间的函数解析式;(2)如果有50名运动员参加比赛,且全部费用由运动员分摊,那么每名运动员需要支付多少元?26.如图,已知△ABC的三个顶点分别是A(-1,4),B(-4,-l.5),C(1,1).(1)小明在画好图后,发现BC边上有一点D(-1,0),请你帮助小明计算△ABC的面积;(2)小王将△ABC的图形向左平移1个单位,得到△A′B′C′,发现原点0在B′C′边上,请你帮助小王写出△A′B′C′的三个顶点的坐标并计算△A′B′C′的面积.27.如图,DC ∥AB ,∠ADC=∠ABC ,BE ,DF 分别平分∠ABC 和∠ADC ,请判断BE 和DF 是否平行,并说明理由.28.解方程组2345y x x y =⎧⎨-=⎩和124223x y x y ⎧-=⎪⎨⎪+=⎩各用什么方法解比较简便?求出它们的解.29.某种子培育基地用A ,B ,C ,D 四种型号的小麦种子共2 000粒进行发芽实验,从中选出发芽率高的种子进行推广.通过实验得知,C 型号种子的发芽率为95%,根据实验数据绘制了图1和图2两幅尚不完整的统计图. (1)D 型号种子的粒数是 ; (2)请你将图2的统计图补充完整;(3)通过计算说明,应选哪一个型号的种子进行推广.A 35%B20% C 20%D各型号种子数的百分比图1图2A B C D型号800 600400200630 370 470发芽数/粒30.如图,用字母表示阴影部分的面积.222111()()()222222x y x y πππ+--【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.D2.C3.B4.C5.B6.D7.C8.B9.A二、填空题10.1011.(1)5 m /s ;(2)u=2.5t ;(3)7.5 m /s12.1713.2014.215.15°16.-317.32(2)(5)a b -18.(1)2 (2)-9 (3)4 (4)16- (5)0 (6)-9.7三、解答题 19. (1)1212b b l l =.(2) 1212b b l l =,∴23.228l =,25l =㎝ 20.(1)1x =,2x ;(2)18x =-,26x = 21.△AMD ′是正三角形.22.∠BAC=82°,∠F= 42°23.△ACE ≌△BCD (SAS ).24.⑴30;⑵-1.25.(1)y=40x+800;(2)56元26.(1)10;(2)1027.BE ∥DF ,理由略28.对于方程组2345y x x y =⎧⎨-=⎩,用代入法解得12x y =-⎧⎨=-⎩;对于方程组124223x y x y ⎧-=⎪⎨⎪+=⎩,用加减法解得5412x y ⎧=⎪⎪⎨⎪=⎪⎩29.解:(1)500; (2)如图; (3)A 型号发芽率为90%,B 型号发芽率为92.5%,D 型号发芽率为94%,C 型号发芽率为95%.∴应选C 型号的种子进行推广.30.222111()()()222222x y x y πππ+--。

2022年浙江省绍兴市中考数学试卷含答案解析

2022年浙江省绍兴市中考数学试卷含答案解析

2022年浙江省绍兴市中考数学试卷及答案解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分) 1.(4分)实数6-的相反数是( ) A .16-B .16C .6-D .62.(4分)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( ) A .63.210⨯B .53.210⨯C .43.210⨯D .43210⨯3.(4分)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是( )A .B .C .D .4.(4分)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( ) A .34B .12 C .13D .145.(4分)下列计算正确的是( ) A .2()a ab a a b +÷=+ B .22a a a ⋅= C .222()a b a b +=+D .325()a a =6.(4分)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,//AC EF ,则1(∠= )A .30︒B .45︒C .60︒D .75︒7.(4分)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( ) A .0,4B .1,5C .1,5-D .1-,58.(4分)如图,在平行四边形ABCD 中,22AD AB ==,60ABC ∠=︒,E ,F 是对角线BD 上的动点,且BE DF =,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ; ②存在无数个矩形MENF ; ③存在无数个菱形MENF ; ④存在无数个正方形MENF . 其中正确的个数是( )A .1B .2C .3D .49.(4分)已知1(x ,1)y ,2(x ,2)y ,3(x ,3)y 为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ) A .若120x x >,则130y y > B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >10.(4分)将一张以AB 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ,其中90A ∠=︒,9AB =,7BC =,6CD =,2AD =,则剪掉的两个直角三角形的斜边长不可能是( )A .252B .454C .10D .354二、填空题(本大题有6小题,每小题5分,共30分) 11.(5分)分解因式:2x x += .12.(5分)关于x 的不等式32x x ->的解集是 .13.(5分)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是 . 14.(5分)如图,在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连结CD ,则BCD ∠的度数是 .15.(5分)如图,在平面直角坐标系xOy 中,点(0,4)A ,(3,4)B ,将ABO ∆向右平移到CDE ∆位置,A 的对应点是C ,O 的对应点是E ,函数(0)ky k x=≠的图象经过点C 和DE 的中点F ,则k 的值是 .16.(5分)如图,10AB =,点C 是射线BQ 上的动点,连结AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连结CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:06tan 30(1)12π︒++ (2)解方程组:242x y x y -=⎧⎨+=⎩.18.(8分)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x (单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题. 八年级学生每日完成书面作业所需时长情况的统计表 组别 所需时长(小时) 学生人数(人)A 00.5x < 15B0.51x < m C1 1.5x <nD1.52x < 5(1)求统计表中m ,n 的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5 1.5x <的共有多少人.19.(8分)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).x0 0.5 1 1.5 2 y11.522.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:(0)y kx b k =+≠,2(0)y ax bx c a =++≠,(0)ky k x=≠.(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象. (2)当水位高度达到5米时,求进水用时x .20.(8分)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC垂直圭BC,已知该市冬至正午太阳高度角(即)ABC∠为37︒,夏至正午太阳高度角(即)ADC∠为84︒,圭面上冬至线与夏至线之间的距离(即DB的长)为4米.(1)求BAD∠的度数.(2)求表AC的长(最后结果精确到0.1米).(参考数据:3sin375︒≈,4cos375︒≈,3tan374︒≈,19tan84)2︒≈21.(10分)如图,半径为6的O与Rt ABC∆的边AB相切于点A,交边BC于点C,D,90B∠=︒,连结OD,AD.(1)若20ACB∠=︒,求AD的长(结果保留)π.(2)求证:AD平分BDO∠.22.(12分)如图,在ABC ∆中,40ABC ∠=︒,90ACB ∠=︒,AE 平分BAC ∠交BC 于点E .P 是边BC 上的动点(不与B ,C 重合),连结AP ,将APC ∆沿AP 翻折得APD ∆,连结DC ,记BCD α∠=.(1)如图,当P 与E 重合时,求α的度数.(2)当P 与E 不重合时,记BAD β∠=,探究α与β的数量关系.23.(12分)已知函数2(y x bx c b =-++,c 为常数)的图象经过点(0,3)-,(6,3)--. (1)求b ,c 的值.(2)当40x -时,求y 的最大值.(3)当0m x 时,若y 的最大值与最小值之和为2,求m 的值.24.(14分)如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN . (1)如图,当E 在边AD 上且2DE =时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.2022年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个最符合题意的选项,不选、多选、错选,均不给分) 1.(4分)实数6-的相反数是( ) A .16-B .16C .6-D .6【分析】根据相反数的定义即可得出答案. 【解答】解:6-的相反数是6, 故选:D .2.(4分)2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( ) A .63.210⨯B .53.210⨯C .43.210⨯D .43210⨯【分析】把较大的数写成10(110n a a ⨯<,n 为正整数)的形式即可. 【解答】解:5320000 3.210=⨯, 故选:B .3.(4分)由七个相同的小立方块搭成的几何体如图所示,则它的主视图是( )A .B .C .D .【分析】根据题目中的图形,可以画出主视图,本题得以解决. 【解答】解:由图可得,题目中图形的主视图是,故选:B .4.(4分)在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( ) A .34B .12 C .13D .14【分析】根据红球可能出现的结果数÷所有可能出现的结果数即可得出答案. 【解答】解:总共有4个球,其中红球有3个,摸到每个球的可能性都相等,∴摸到红球的概率34P =, 故选:A .5.(4分)下列计算正确的是( ) A .2()a ab a a b +÷=+ B .22a a a ⋅= C .222()a b a b +=+D .325()a a =【分析】根据多项式除以单项式判断A 选项;根据同底数幂的乘法判断B 选项;根据完全平方公式判断C 选项;根据幂的乘方判断D 选项.【解答】解:A 选项,原式2a a ab a a b =÷+÷=+,故该选项符合题意;B 选项,原式3a =,故该选项不符合题意;C 选项,原式222a ab b =++,故该选项不符合题意;D 选项,原式6a =,故该选项不符合题意;故选:A .6.(4分)如图,把一块三角板ABC 的直角顶点B 放在直线EF 上,30C ∠=︒,//AC EF ,则1(∠= )A .30︒B .45︒C .60︒D .75︒【分析】根据平行线的性质,可以得到CBF ∠的度数,再根据90ABC ∠=︒,可以得到1∠的度数. 【解答】解://AC EF ,30C ∠=︒,30C CBF ∴∠=∠=︒, 90ABC ∠=︒,1180180903060ABC CBF ∴∠=︒-∠-∠=︒-︒-︒=︒,故选:C .7.(4分)已知抛物线2y x mx =+的对称轴为直线2x =,则关于x 的方程25x mx +=的根是( ) A .0,4B .1,5C .1,5-D .1-,5【分析】根据抛物线2y x mx =+的对称轴为直线2x =,可以得到m 的值,然后解方程即可. 【解答】解:抛物线2y x mx =+的对称轴为直线2x =, 221m∴-=⨯, 解得4m =-,∴方程25x mx +=可以写成245x x -=,2450x x ∴--=, (5)(1)0x x ∴-+=,解得15x =,21x =-, 故选:D .8.(4分)如图,在平行四边形ABCD 中,22AD AB ==,60ABC ∠=︒,E ,F 是对角线BD 上的动点,且BE DF =,M ,N 分别是边AD ,边BC 上的动点.下列四种说法:①存在无数个平行四边形MENF ; ②存在无数个矩形MENF ; ③存在无数个菱形MENF ; ④存在无数个正方形MENF . 其中正确的个数是( )A .1B .2C .3D .4【分析】根据题意作出合适的辅助线,然后逐一分析即可. 【解答】解:连接AC ,MN ,且令AC ,MN ,BD 相交于点O , 四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,BE DF =,OE OF ∴=,只要OM ON =,那么四边形MENF 就是平行四边形, 点E ,F 是BD 上的动点,∴存在无数个平行四边形MENF ,故①正确;只要MN EF =,OM ON =,则四边形MENF 是矩形, 点E ,F 是BD 上的动点,∴存在无数个矩形MENF ,故②正确;只要MN EF ⊥,OM ON =,则四边形MENF 是菱形, 点E ,F 是BD 上的动点,∴存在无数个菱形MENF ,故③正确;只要MN EF =,MN EF ⊥,OM ON =,则四边形MENF 是正方形, 而符合要求的正方形只有一个,故④错误; 故选:C .9.(4分)已知1(x ,1)y ,2(x ,2)y ,3(x ,3)y 为直线23y x =-+上的三个点,且123x x x <<,则以下判断正确的是( ) A .若120x x >,则130y y > B .若130x x <,则120y y >C .若230x x >,则130y y >D .若230x x <,则120y y >【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题. 【解答】解:直线23y x =-+,y ∴随x 的增大而减小,当0y =时, 1.5x =,1(x ,1)y ,2(x ,2)y ,3(x ,3)y 为直线23y x =-+上的三个点,且123x x x <<,∴若120x x >,则1x ,2x 同号,但不能确定13y y 的正负,故选项A 不符合题意;若130x x <,则1x ,3x 异号,但不能确定12y y 的正负,故选项B 不符合题意;若230x x >,则2x ,3x 同号,但不能确定13y y 的正负,故选项C 不符合题意;若230x x <,则2x ,3x 异号,则1x ,2x 同时为负,故1y ,2y 同时为正,故120y y >,故选项D 符合题意;故选:D .10.(4分)将一张以AB 为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD ,其中90A ∠=︒,9AB =,7BC =,6CD =,2AD =,则剪掉的两个直角三角形的斜边长不可能是( )A .252B .454C .10D .354【分析】根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意. 【解答】解:如右图1所示, 由已知可得,DFE ECB ∆∆∽, 则DF FE DEEC CB EB==, 设DF x =,CE y =, 则9672x yy x+==+, 解得274214x y ⎧=⎪⎪⎨⎪=⎪⎩,2145644DE CD CE ∴=+=+=,故选项B 不符合题意; 2735244EB DF AD =+=+=,故选项D 不符合题意; 如图2所示,由已知可得,DCF FEB ∆∆∽, 则DC CF DF FE EB FB==,设FC m =,FD n =, 则6927m nn m ==++, 解得810m n =⎧⎨=⎩,10FD ∴=,故选项C 不符合题意; 8715BF FC BC =+=+=,故选:A .二、填空题(本大题有6小题,每小题5分,共30分) 11.(5分)分解因式:2x x += (1)x x + . 【分析】直接提取公因式x ,进而分解因式得出即可. 【解答】解:2(1)x x x x +=+. 故答案为:(1)x x +.12.(5分)关于x 的不等式32x x ->的解集是 1x > . 【分析】根据解一元一次不等式步骤即可解得答案. 【解答】解:32x x ->, 32x x ∴->,即22x >,解得1x >,故答案为:1x >.13.(5分)元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是 20 . 【分析】设良马x 天追上劣马,根据良马追上劣马所走路程相同可得:240150(12)x x =+,即可解得良马20天追上劣马. 【解答】解:设良马x 天追上劣马, 根据题意得:240150(12)x x =+, 解得20x =,答:良马20天追上劣马; 故答案为:20.14.(5分)如图,在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒,以点A 为圆心,AC 长为半径作弧,交射线BA 于点D ,连结CD ,则BCD ∠的度数是 10︒或100︒ .【分析】分两种情况画图,由作图可知得AC AD =,根据等腰三角形的性质和三角形内角和定理解答即可.【解答】解:如图,点D 即为所求;在ABC ∆中,40ABC ∠=︒,80BAC ∠=︒, 180408060ACB ∴∠=︒-︒-︒=︒,由作图可知:AC AD =,1(18080)502ACD ADC ∴∠=∠=︒-︒=︒,605010BCD ACB ACD ∴∠=∠-∠=︒-︒=︒;由作图可知:AC AD =', ACD AD C ∴∠'=∠',80ACD AD C BAC ∠'+∠'=∠=︒, 40AD C ∴∠'=︒,1801804040100BCD ABC AD C ∴∠'=︒-∠-∠'=︒-︒-︒=︒.综上所述:BCD ∠的度数是10︒或100︒. 故答案为:10︒或100︒.15.(5分)如图,在平面直角坐标系xOy 中,点(0,4)A ,(3,4)B ,将ABO ∆向右平移到CDE ∆位置,A 的对应点是C ,O 的对应点是E ,函数(0)ky k x=≠的图象经过点C 和DE 的中点F ,则k 的值是 6 .【分析】根据反比例函数k 的几何意义构造出矩形,利用方程思想解答即可. 【解答】解:过点F 作FG x ⊥轴,DQ x ⊥轴,FH y ⊥轴, 根据题意可知,AC OE BD ==, 设AC OE BD a ===,∴四边形ACEO 的面积为4a ,F 为DE 的中点,FG x ⊥轴,DQ x ⊥轴,FG ∴为EDQ ∆的中位线,122FG DQ ∴==,1322EG EQ ==, ∴四边形HFGO 的面积为32()2a +,342()2k a a ∴==+,解得:32a =, 6k ∴=.故答案为:6.16.(5分)如图,10AB =,点C 是射线BQ 上的动点,连结AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连结CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是354.【分析】如图,过点C 作CT AE ⊥于点T ,过点D 作DJ CT ⊥交CT 的延长线于点J ,连接EJ .由tan 3CTCBT BT∠==,可以假设BT k =,3CT k =,证明()ATC CJD AAS ∆≅∆,推出3DJ CT k ==,10AT CJ k ==+,再利用勾股定理,构建方程求解即可.【解答】解:如图,过点C 作CT AE ⊥于点T ,过点D 作DJ CT ⊥交CT 的延长线于点J ,连接EJ .tan 3CTCBT BT∠==, ∴可以假设BT k =,3CT k =,90CAT ACT ∠+∠=︒,90ACT JCD ∠+∠=︒, CAT JCD ∴∠=∠,在ATC ∆和CJD ∆中, 90ATC CJD CAT JCDCA CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,()ATC CJD AAS ∴∆≅∆,3DJ CT k ∴==,10AT CJ k ==+, 90CJD CED ∠=∠=︒, C ∴,E ,D ,J 四点共圆,EC DE =,45CJE DJE ∴∠=∠=︒, 102ET TJ k ∴==-,2222)CE CT TE =+=,222(3)(102)[2k k ∴+-=, 整理得2425250k k -+=, (5)(45)0k k ∴--=, 5k ∴=和54, 102105BE BT ET k k k ∴=+=+-=-=或354, 故答案为:5或354. 三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题8分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:06tan 30(1)π︒++ (2)解方程组:242x y x y -=⎧⎨+=⎩.【分析】(1)根据特殊角的三角函数值,实数的运算,零指数幂,二次根式的性质与化简进行计算即可;(2)根据加减法解二元一次方程组即可.【解答】解:(1)原式61=+-1=-1=;(2)242x y x y -=⎧⎨+=⎩①②,①+②得:36x =, 解得2x =,把2x =代入②,得:0y =, ∴原方程组的解是20x y =⎧⎨=⎩.18.(8分)双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x (单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题. 八年级学生每日完成书面作业所需时长情况的统计表 组别 所需时长(小时) 学生人数(人)A 00.5x < 15B0.51x < m C1 1.5x <nD1.52x < 5(1)求统计表中m ,n 的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5 1.5x <的共有多少人.【分析】(1)先求出被调查总人数,再根据扇形统计图求出m ,用总人数减去A 、B 、D 的人数,即可得n 的值;(2)用被调查情况估计八年级800人的情况,即可得到答案. 【解答】解:(1)被调查总人数:1515%100÷=(人),10060%60m ∴=⨯=(人), 1001560520n =---=(人),答:m 为60,n 为20;(2)当0.5 1.5x <时,在被调查的100人中有602080+=(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5 1.5x <的共有80800640100⨯=(人), 答:估计共有640人.19.(8分)一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x 表示进水用时(单位:小时),y 表示水位高度(单位:米).x0 0.5 1 1.5 2 y11.522.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:(0)y kx b k =+≠,2(0)y ax bx c a =++≠,(0)ky k x=≠.(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象. (2)当水位高度达到5米时,求进水用时x .【分析】(1)根据表格数对画出函数图象即可;然后利用待定系数法即可求出相应的函数表达式;(2)结合(1)的函数表达式,代入值即可解决问题. 【解答】解:(1)函数的图象如图所示:根据图象可知:选择函数y kx b =+, 将(0,1),(1,2)代入, 得1,2,b k b =⎧⎨+=⎩解得1,1.k b =⎧⎨=⎩∴函数表达式为:1(05)y x x =+;(2)当5y =时,15x +=, 4x ∴=.答:当水位高度达到5米时,进水用时x 为4小时.20.(8分)圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表” )和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭” ),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即)ABC ∠为37︒,夏至正午太阳高度角(即)ADC ∠为84︒,圭面上冬至线与夏至线之间的距离(即DB 的长)为4米.(1)求BAD ∠的度数.(2)求表AC 的长(最后结果精确到0.1米). (参考数据:3sin375︒≈,4cos375︒≈,3tan374︒≈,19tan84)2︒≈ 【分析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出ADC ∠和ABC ∠的正切值,用AC 表示出CD 和CB ,得到一个只含有AC 的关系式,再解答即可.【解答】解:(1)84ADC ∠=︒,37ABC ∠=︒, 47BAD ADC ABC ∴∠=∠-∠=︒,答:BAD ∠的度数是47︒. (2)在Rt ABC ∆中,tan37ACBC︒=, ∴tan37ACBC =︒. 在Rt ADC ∆中,tan84ACDC =︒, 4BD =,∴4tan37tan84AC ACBC DC BD -=-==︒︒, ∴424319AC AC -≈, 3.3AC ∴≈(米),答:表AC 的长是3.3米.21.(10分)如图,半径为6的O 与Rt ABC ∆的边AB 相切于点A ,交边BC 于点C ,D ,90B ∠=︒,连结OD ,AD .(1)若20ACB ∠=︒,求AD 的长(结果保留)π. (2)求证:AD 平分BDO ∠.【分析】(1)连结OA,由20ACB∠=︒,得40AOD∠=︒,由弧长公式即得AD的长为43π;(2)根据AB切O于点A,90B∠=︒,可得//OA BC,有OAD ADB∠=∠,而OA OD=,即可得ADB ODA∠=∠,从而AD平分BDO∠.【解答】(1)解:连结OA,如图:20ACB∠=︒,40AOD∴∠=︒,∴40641803 ADππ⨯⨯==;(2)证明:OA OD=,OAD ODA∴∠=∠,AB切O于点A,OA AB∴⊥,90B∠=︒,//OA BC∴,OAD ADB∴∠=∠,ADB ODA∴∠=∠,AD∴平分BDO∠.22.(12分)如图,在ABC∆中,40ABC∠=︒,90ACB∠=︒,AE平分BAC∠交BC于点E.P 是边BC上的动点(不与B,C重合),连结AP,将APC∆沿AP翻折得APD∆,连结DC,记BCDα∠=.(1)如图,当P与E重合时,求α的度数.(2)当P 与E 不重合时,记BAD β∠=,探究α与β的数量关系.【分析】(1)由40B ∠=︒,90ACB ∠=︒,得50BAC ∠=︒,根据AE 平分BAC ∠,P 与E 重合,即得65ACD ADC ∠=∠=︒,从而25ACB ACD α=∠-∠=︒;(2)分两种情况:①当点P 在线段BE 上时,可得90ADC ACD α∠=∠=︒-,根据ADC BAD B BCD ∠+∠=∠+∠,即可得250αβ-=︒;②当点P 在线段CE 上时,延长AD 交BC 于点F ,由90ADC ACD α∠=∠=︒-,又ADC AFC BCD ∠=∠+∠,AFC ABC BAD ∠=∠+∠可得9040ααβ︒-=︒++,250αβ+=︒.【解答】解:(1)40B ∠=︒,90ACB ∠=︒,50BAC ∴∠=︒, AE 平分BAC ∠,P 与E 重合,D ∴在AB 边上,AC AD =,(180)265ACD ADC BAC ∴∠=∠=︒-∠÷=︒,25ACB ACD α∴=∠-∠=︒;答:α的度数为25︒;(2)①当点P 在线段BE 上时,如图:将APC ∆沿AP 翻折得APD ∆,AC AD ∴=,BCD α∠=,90ACB ∠=︒,90ADC ACD α∴∠=∠=︒-,又ADC BAD B BCD ∠+∠=∠+∠,BAD β∠=,40B ∠=︒,(90)40αβα∴︒-+=︒+,250αβ∴-=︒,②如图2,当点P 在线段CE 上时,延长AD 交BC 于点F ,如图:将APC ∆沿AP 翻折得APD ∆,AC AD ∴=,BCD α∠=,90ACB ∠=︒,90ADC ACD α∴∠=∠=︒-,又ADC AFC BCD ∠=∠+∠,AFC ABC BAD ∠=∠+∠,40ADC ABC BAD BCD βα∴∠=∠+∠+∠=︒++,9040ααβ∴︒-=︒++,250αβ∴+=︒;综上所述,当点P 在线段BE 上时,250αβ-=︒;当点P 在线段CE 上时,250αβ+=︒.23.(12分)已知函数2(y x bx c b =-++,c 为常数)的图象经过点(0,3)-,(6,3)--.(1)求b ,c 的值.(2)当40x -时,求y 的最大值.(3)当0m x 时,若y 的最大值与最小值之和为2,求m 的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x 的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为3x =-,结合二次函数图象的性质,分类讨论得出m 的取值范围即可.【解答】解:(1)把(0,3)-,(6,3)--代入2y x bx c =-++,得6b =-,3c =-.(2)2263(3)6y x x x =---=-++,又40x -,∴当3x =-时,y 有最大值为6.(3)①当30m -<时,当0x =时,y 有最小值为3-,当x m =时,y 有最大值为263m m ---,263(3)2m m ∴---+-=,2m ∴=-或4m =-(舍去). ②当3m -时,当3x =-时y 有最大值为6, y 的最大值与最小值之和为2,y ∴最小值为4-,2(3)64m ∴-++=-,310m ∴=--或310m =-+(舍去). 综上所述,2m =-或310--.24.(14分)如图,在矩形ABCD 中,6AB =,8BC =,动点E 从点A 出发,沿边AD ,DC 向点C 运动,A ,D 关于直线BE 的对称点分别为M ,N ,连结MN .(1)如图,当E 在边AD 上且2DE =时,求AEM ∠的度数.(2)当N 在BC 延长线上时,求DE 的长,并判断直线MN 与直线BD 的位置关系,说明理由.(3)当直线MN 恰好经过点C 时,求DE 的长.【分析】(1)由2DE =知,6AE AB ==,可知45AEB MEB ∠=∠=︒,从而得出答案;(2)根据对称性得,ENC BDC ∠=∠,则26cos 10ENC EN ∠==,得103EN =,利用HL 证明Rt BMN Rt DCB ∆≅∆,得DBC BNM ∠=∠,则//MN BD ;(3)当E 在边AD 上时,若直线MN 过点C ,利用AAS 证明BCM CED ∆≅∆,得DE MC =,当点E 在边CD 上时,利用BMC CNE ∆∆∽,则BM MC CN EN=,从而解决问题. 【解答】解:(1)2DE =,6AE AB ∴==, 四边形ABCD 是矩形,90A ∴∠=︒,45AEB ABE ∴∠=∠=︒.由对称性知45BEM ∠=︒,90AEM ∴∠=︒.(2)如图2,6AB =,8AD =,10BD ∴=, 当N 落在BC 延长线上时,10BN BD ==,2CN ∴=.由对称性得,ENC BDC ∠=∠,26cos 10ENC EN ∴∠==, 得103EN =, 103DE EN ∴==. BM AB CD ==,MN AD BC ==, Rt BMN Rt DCB(HL)∴∆≅∆, DBC BNM ∴∠=∠, //MN BD ∴.(3)如图3,当E 在边AD 上时,90BMC ∴∠=︒,2227MC BC BM ∴=-=. BM AB CD ==,DEC BCE ∠=∠, ()BCM CED AAS ∴∆≅∆, 27DE MC ∴==.如图4,点E 在边CD 上时,6BM =,8BC =,MC∴=,8CN=-90 BMC CNE BCD∠=∠=∠=︒,BMC CNE∴∆∆∽,∴BM MC CN EN=,MC CN ENBM⋅∴=,DE EN∴==.综上所述,DE的长为。

2022年浙江省绍兴市中考数学试题及答案解析

2022年浙江省绍兴市中考数学试题及答案解析

2022年浙江省绍兴市中考数学试卷一、选择题(本大题共10小题,共40.0分)1.实数−6的相反数是( )A. −16B. 16C. −6D. 62.2022年北京冬奥会3个赛区场馆使用绿色电力,减排320000吨二氧化碳.数字320000用科学记数法表示是( )A. 3.2×106B. 3.2×105C. 3.2×104D. 32×1043.由七个相同的小立方块搭成的几何体如图所示,则它的主视图是( )A.B.C.D.4.在一个不透明的袋子里,装有3个红球、1个白球,它们除颜色外都相同,从袋中任意摸出一个球为红球的概率是( )A. 34B. 12C. 13D. 145.下列计算正确的是( )A. (a2+ab)÷a=a+bB. a2⋅a=a2C. (a+b)2=a2+b2D. (a3)2=a56.如图,把一块三角板ABC的直角顶点B放在直线EF上,∠C=30°,AC//EF,则∠1=( )A. 30°B. 45°C. 60°D. 75°7.已知抛物线y=x2+mx的对称轴为直线x=2,则关于x的方程x2+mx=5的根是( )A. 0,4B. 1,5C. 1,−5D. −1,58.如图,在平行四边形ABCD中,AD=2AB=2,∠ABC=60°,E,F是对角线BD上的动点,且BE=DF,M,N分别是边AD,边BC上的动点.下列四种说法:①存在无数个平行四边形MENF;②存在无数个矩形MENF;③存在无数个菱形MENF;④存在无数个正方形MENF.其中正确的个数是( )A. 1B. 2C. 3D. 49.已知(x1,y1),(x2,y2),(x3,y3)为直线y=−2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( )A. 若x1x2>0,则y1y3>0B. 若x1x3<0,则y1y2>0C. 若x2x3>0,则y1y3>0D. 若x2x3<0,则y1y2>010.将一张以AB为边的矩形纸片,先沿一条直线剪掉一个直角三角形,在剩下的纸片中,再沿一条直线剪掉一个直角三角形(剪掉的两个直角三角形相似),剩下的是如图所示的四边形纸片ABCD,其中∠A=90°,AB=9,BC=7,CD=6,AD=2,则剪掉的两个直角三角形的斜边长不可能是( )A. 252B. 454C. 10D. 354二、填空题(本大题共6小题,共30.0分)11.分解因式:x2+x=______.12.关于x的不等式3x−2>x的解集是______.13.元朝朱世杰的《算学启蒙》一书记载:“良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何追及之.”其题意为:“良马每天行240里,劣马每天行150里,劣马先行12天,良马要几天追上劣马?”答:良马追上劣马需要的天数是______.14. 如图,在△ABC 中,∠ABC =40°,∠BAC =80°,以点A为圆心,AC 长为半径作弧,交射线BA 于点D ,连结CD ,则∠BCD 的度数是______. 15. 如图,在平面直角坐标系xOy 中,点A(0,4),B(3,4),将△ABO 向右平移到△CDE 位置,A 的对应点是C ,O 的对应点是E ,函数y =kx (k ≠0)的图象经过点C 和DE 的中点F ,则k 的值是______.16. 如图,AB =10,点C 是射线BQ 上的动点,连结AC ,作CD ⊥AC ,CD =AC ,动点E 在AB 延长线上,tan∠QBE =3,连结CE ,DE ,当CE =DE ,CE ⊥DE 时,BE 的长是______.三、计算题(本大题共1小题,共8.0分) 17. (1)计算:6tan30°+(π+1)0−√12.(2)解方程组:{2x −y =4x +y =2.四、解答题(本大题共7小题,共72.0分)18. 双减政策实施后,学校为了解八年级学生每日完成书面作业所需时长x(单位:小时)的情况,在全校范围内随机抽取了八年级若干名学生进行调查,并将所收集的数据分组整理,绘制了如下两幅不完整的统计图表,请根据图表信息解答下列问题. 八年级学生每日完成书面作业所需时长情况的统计表 组别 所需时长(小时)学生人数(人)A 0<x ≤0.5 15B 0.5<x ≤1 mC 1<x ≤1.5 n D1.5<x ≤25(1)求统计表中m,n的值.(2)已知该校八年级学生有800人,试估计该校八年级学生中每日完成书面作业所需时长满足0.5<x≤1.5的共有多少人.19.一个深为6米的水池积存着少量水,现在打开水阀进水,下表记录了2小时内5个时刻的水位高度,其中x表示进水用时(单位:小时),y表示水位高度(单位:米).x00.51 1.52y1 1.52 2.53为了描述水池水位高度与进水用时的关系,现有以下三种函数模型供选择:y=(k≠0).kx+b(k≠0),y=ax2+bx+c(a≠0),y=kx(1)在平面直角坐标系中描出表中数据对应的点,再选出最符合实际的函数模型,求出相应的函数表达式,并画出这个函数的图象.(2)当水位高度达到5米时,求进水用时x.20.圭表(如图1)是我国古代一种通过测量正午日影长度来推定节气的天文仪器,它包括一根直立的标竿(称为“表”)和一把呈南北方向水平固定摆放的与标竿垂直的长尺(称为“圭”),当正午太阳照射在表上时,日影便会投影在圭面上,圭面上日影长度最长的那一天定为冬至,日影长度最短的那一天定为夏至.图2是一个根据某市地理位置设计的圭表平面示意图,表AC 垂直圭BC ,已知该市冬至正午太阳高度角(即∠ABC)为37°,夏至正午太阳高度角(即∠ADC)为84°,圭面上冬至线与夏至线之间的距离(即DB 的长)为4米.(1)求∠BAD 的度数.(2)求表AC 的长(最后结果精确到0.1米).(参考数据:sin37°≈35,cos37°≈45,tan37°≈34,tan84°≈192)21. 如图,半径为6的⊙O 与Rt △ABC 的边AB 相切于点A ,交边BC 于点C ,D ,∠B =90°,连结OD ,AD .(1)若∠ACB =20°,求AD ⏜的长(结果保留π). (2)求证:AD 平分∠BDO .22. 如图,在△ABC 中,∠ABC =40°,∠ACB =90°,AE 平分∠BAC 交BC 于点E.P 是边BC 上的动点(不与B ,C 重合),连结AP ,将△APC 沿AP 翻折得△APD ,连结DC ,记∠BCD =α.(1)如图,当P 与E 重合时,求α的度数.(2)当P 与E 不重合时,记∠BAD =β,探究α与β的数量关系.23.已知函数y=−x2+bx+c(b,c为常数)的图象经过点(0,−3),(−6,−3).(1)求b,c的值.(2)当−4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.24.如图,在矩形ABCD中,AB=6,BC=8,动点E从点A出发,沿边AD,DC向点C运动,A,D关于直线BE的对称点分别为M,N,连结MN.(1)如图,当E在边AD上且DE=2时,求∠AEM的度数.(2)当N在BC延长线上时,求DE的长,并判断直线MN与直线BD的位置关系,说明理由.(3)当直线MN恰好经过点C时,求DE的长.答案和解析1.【答案】D【解析】解:−6的相反数是6,故选:D.根据相反数的定义即可得出答案.本题考查了相反数,掌握只有符号不同的两个数互为相反数是解题的关键.2.【答案】B【解析】解:320000=3.2×105,故选:B.把较大的数写成a×10n(1≤a<10,n为正整数)的形式即可.本题考查了科学记数法−表示较大的数,掌握10的指数比原来的整数位数少1是解题的关键.3.【答案】B【解析】解:由图可得,题目中图形的主视图是,故选:B.根据题目中的图形,可以画出主视图,本题得以解决.本题考查简单组合体的三视图,解答本题的关键是画出相应的图形.4.【答案】A【解析】解:∵总共有4个球,其中红球有3个,摸到每个球的可能性都相等,∴摸到红球的概率P=3,4故选:A.根据红球可能出现的结果数÷所有可能出现的结果数即可得出答案.本题考查了概率公式,掌握P(摸到红球的概率)=红球可能出现的结果数÷所有可能出现的结果数是解题的关键.5.【答案】A【解析】解:A选项,原式=a2÷a+ab÷a=a+b,故该选项符合题意;B选项,原式=a3,故该选项不符合题意;C选项,原式=a2+2ab+b2,故该选项不符合题意;D选项,原式=a6,故该选项不符合题意;故选:A.根据多项式除以单项式判断A选项;根据同底数幂的乘法判断B选项;根据完全平方公式判断C选项;根据幂的乘方判断D选项.本题考查了整式的除法,同底数幂的乘法,幂的乘方与积的乘方,完全平方公式,掌握(a+b)2=a2+2ab+b2是解题的关键.6.【答案】C【解析】解:∵AC//EF,∠C=30°,∴∠C=∠CBF=30°,∵∠ABC=90°,∴∠1=180°−∠ABC−∠CBF=180°−90°−30°=60°,故选:C.根据平行线的性质,可以得到∠CBF的性质,再根据∠ABC=90°,可以得到∠1的度数.本题考查直角三角形的性质、平行线的性质,解答本题的关键是明确题意,利用平行线的性质解答.7.【答案】D【解析】解:∵抛物线y=x2+mx的对称轴为直线x=2,=2,∴−m2×1解得m=−4,∴方程x2+mx=5可以写成x2−4x=5,∴x2−4x−5=0,∴(x−5)(x+1)=0,解得x1=5,x2=−1,故选:D.根据抛物线y=x2+mx的对称轴为直线x=2,可以得到m的值,然后解方程即可.本题考查二次函数的性质、解一元二次方程,解答本题的关键是明确题意,求出m的值.8.【答案】C【解析】解:连接AC,MN,BD,它们交于点O,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,只要OM=ON,那么四边形MENF就是平行四边形,∵点E,F是BD上的动点,∴存在无数个平行四边形MENF,故①正确;只要MN=EF,OM=ON,则四边形MENF是矩形,∵点E,F是BD上的动点,∴存在无数个矩形MENF,故②正确;只要MN⊥EF,OM=ON,则四边形MENF是菱形,∵点E,F是BD上的动点,∴存在无数个菱形MENF,故③正确;只要MN=EF,MN⊥EF,OM=ON,则四边形MENF是正方形,而符合要求的正方形只有一个,故④错误;故选:C.根据题意作出合适的辅助线,然后逐一分析即可.本题考查正方形的判定、菱形的判定、矩形的判定、平行四边形的判定,解答本题的关键是明确题意,作出合适的辅助线.9.【答案】D【解析】解:∵直线y=−2x+3,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=−2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D 符合题意; 故选:D .根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题. 本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.10.【答案】A【解析】 【分析】本题考查相似三角形的性质、矩形的性质,解答本题的关键是明确题意,利用分类讨论的方法解答.根据题意,画出相应的图形,然后利用相似三角形的性质和分类讨论的方法,求出剪掉的两个直角三角形的斜边长,然后即可判断哪个选项符合题意. 【解答】解:如图1所示,∠DFE =∠BCE =∠BEF =90°, ∴∠DEF +∠EDF =∠DEF +∠BEC , ∴∠EDF =∠BEC ,∴△DFE∽△ECB , 则DFEC =FECB =DEEB , 设DF =x ,CE =y ,∵EF =AB =9,BC =7,CD =6,AD =2,BE =AF =DF +AD =x +2, 则xy =97=6+y2+x ,解得{x =274y =214,且适合此方程组,∴DE =CD +CE =6+214=454,故选项B 不符合题意;EB =DF +AD =274+2=354,故选项D 不符合题意;如图2所示,同法可得,△DCF∽△FEB ,则DC FE =CF EB =DFFB ,设FC =m ,FD =n ,则69=m n+2=n m+7,解得{m =8n =10,且适合此方程组, ∴FD =10,故选项C 不符合题意;BF =FC +BC =8+6=14,因此,剪掉的两个直角三角形的斜边长不可能是252.故选:A . 11.【答案】x(x +1)【解析】解:x 2+x =x(x +1).故答案为:x(x +1).直接提取公因式x ,进而分解因式得出即可.此题主要考查了提取公因式分解因式,正确提取公因式是解题关键.12.【答案】x >1【解析】解:∵3x −2>x ,∴3x −x >2,即2x >2,解得x >1,故答案为:x >1.根据解一元一次不等式步骤即可解得答案.本题考查解一元一次不等式,解题的关键是掌握解一元一次不等式的基本步骤.13.【答案】20【解析】解:设良马x天追上劣马,根据题意得:240x=150(x+12),解得x=20,答:良马20天追上劣马;故答案为:20.设良马x天追上劣马,根据良马追上劣马所走路程相同可得:240x=150(x+12),即可解得良马20天追上劣马.本题考查一元一次方程的应用,解题的关键是读懂题意,找到等量关系列出方程.14.【答案】10°或100°【解析】解:如图,点D即为所求;在△ABC中,∠ABC=40°,∠BAC=80°,∴∠ACB=180°−40°−80°=60°,由作图可知:AC=AD,(180°−80°)=50°,∴∠ACD=∠ADC=12∴∠BCD=∠ACB−∠ACD=60°−50°=10°;由作图可知:AC=AD′,∴∠ACD′=∠AD′C,∵∠ACD′+∠AD′C=∠BAC=80°,∴∠AD′C=40°,∴∠BCD′=180°−∠ABC−∠AD′C=180°−40°−40°=100°.综上所述:∠BCD的度数是10°或100°.故答案为:10°或100°.分两种情况画图,由作图可知得AC=AD,根据等腰三角形的性质和三角形内角和定理解答即可.本题考查了作图−复杂作图,三角形内角和定理,等腰三角形的判定与性质,解决本题的关键是掌握基本作图方法.15.【答案】6【解析】解:过点F作FG⊥x轴,DQ⊥x轴,FH⊥y轴,根据题意可知,AC=OE=BD,设AC=OE=BD=a,∴四边形ACEO的面积为4a,∵F为DE的中点,FG⊥x轴,DQ⊥x轴,∴FG为△EDQ的中位线,∴FG=12DQ=2,EG=12EQ=32,∴四边形HFGO的面积为2(a+32),∴k=4a=2(a+32),解得:a=32,∴k=6.故答案为:6.根据反比例函数k的几何意义构造出矩形,利用方程思想解答即可.本题主要考查了反比例函数中k的几何意义,正确作出辅助线构造出矩形是解决本题的关键.16.【答案】5或354【解析】解:如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.∵tan∠CBT=3=CTBT,∴可以假设BT=k,CT=3k,∵∠CAT+∠ACT=90°,∠ACT+∠JCD=90°,∴∠CAT=∠JCD,在△ATC和△CJD中,{∠ATC=∠CJD=90°∠CAT=∠JCDCA=CD,∴△ATC≌△CJD(AAS),∴DJ=CT=3k,AT=CJ=10+k,∵∠CJD=∠CED=90°,∴C,E,D,J四点共圆,∵EC=DE,∴∠CJE=∠DJE=45°,∴ET=TJ=10−2k,∵CE2=CT2+TE2=(√22CD)2,∴(3k)2+(10−2k)2=[√22⋅√(3k)2+(10+k)2]2,整理得4k2−25k+25=0,∴(k−5)(4k−5)=0,∴k=5和54,∴BE=BT+ET=k+10−2k=10−k=5或354,故答案为:5或354.如图,过点C作CT⊥AE于点T,过点D作DJ⊥CT交CT的延长线于点J,连接EJ.由tan∠CBT=3=CTBT,可以假设BT=k,CT=3k,证明△ATC≌△CJD(AAS),推出DJ= CT=3k,AT=CJ=10+k,再利用勾股定理,构建方程求解即可.本题考查全等三角形的判定和性质,四点共圆,勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.17.【答案】解:(1)原式=6×√33+1−2√3 =2√3+1−2√3=1;(2){2x −y =4①x +y =2②, ①+②得:3x =6,解得x =2,把x =2代入②,得:y =0,∴原方程组的解是{x =2y =0. 【解析】(1)根据特殊角的三角函数值,实数的运算,零指数幂,二次根式的性质与化简进行计算即可;(2)根据加减法解二元一次方程组即可.本题考查了特殊角的三角函数值,实数的运算,零指数幂,二次根式的性质与化简,解二元一次方程组,解决本题的关键是掌握以上知识熟练运算.18.【答案】解:(1)被调查总人数:15÷15%=100(人),∴m =100×60%=60(人),n =100−15−60−5=20(人),答:m 为60,n 为20;(2)∵当0.5<x ≤1.5时,在被调查的100人中有60+20=80(人),∴在该校八年级学生800人中,每日完成书面作业所需时长满足0.5<x ≤1.5的共有800×80100=640(人),答:估计共有640人.【解析】(1)先求出被调查总人数,再根据扇形统计图求出m ,用总人数减去A 、B 、D 的人数,即可得n 的值;(2)用被调查情况估计八年级800人的情况,即可得到答案.本题考查统计图和统计表,解题的关键是掌握从图表中寻找“完整信息”从而求出被调查的总数.19.【答案】解:(1)函数的图象如图所示:根据图象可知:选择函数y =kx +b ,将(0,1),(1,2)代入,得{b =1, k +b =2, 解得{k =1, b =1.∴函数表达式为:y =x +1(0≤x ≤5);(2)当y =5时,x +1=5,∴x =4.答:当水位高度达到5米时,进水用时x 为4小时.【解析】(1)根据表格数对画出函数图象即可;然后利用待定系数法即可求出相应的函数表达式;(2)结合(1)的函数表达式,代入值即可解决问题.本题考查了一次函数的应用,解决本题的关键是掌握一次函数的图象和性质.20.【答案】解:(1)∵∠ADC =84°,∠ABC =37°,∴∠BAD =∠ADC −∠ABC =47°,答:∠BAD 的度数是47°.(2)在Rt △ABC 中,tan37°=AC BC ,∴BC =AC tan37∘.在Rt △ADC 中,DC =AC tan84∘,∵BD =4,∴BC−DC=ACtan37∘−ACtan84∘=BD=4,∴43AC−219AC≈4,∴AC≈3.3(米),答:表AC的长是3.3米.【解析】(1)根据三角形的外角等于与它不相邻两个内角的和解答即可;(2)分别求出∠ADC和∠ABC的正切值,用AC表示出CD和CB,得到一个只含有AC的关系式,再解答即可.本题主要考查了三角形外角的性质和三角函数,熟练掌握建模思想是解决本题的关键.21.【答案】(1)解:连结OA,如图:∵∠ACB=20°,∴∠AOD=40°,∴AD⏜=40×π×6180=4π3;(2)证明:∵OA=OD,∴∠OAD=∠ODA,∵AB切⊙O于点A,∴OA⊥AB,∵∠B=90°,∴OA//BC,∴∠OAD=∠ADB,∴∠ADB=∠ODA,∴AD平分∠BDO.【解析】(1)连结OA,由∠ACB=20°,得∠AOD=40°,由弧长公式即得AD⏜的长为4π3;(2)根据AB切⊙O于点A,∠B=90°,可得OA//BC,有∠OAD=∠ADB,而OA=OD,即可得∠ADB=∠ODA,从而AD平分∠BDO.本题考查与圆有关的计算及圆的性质,解题的关键是掌握弧长公式及圆的切线的性质.22.【答案】解:(1)∵∠B=40°,∠ACB=90°,∴∠BAC=50°,∵AE平分∠BAC,P与E重合,∴D在AB边上,AC=AD,∴∠ACD=∠ADC=(180°−∠BAC)÷2=65°,∴α=∠ACB−∠ACD=25°;答:α的度数为25°;(2)①当点P在线段BE上时,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°−α,又∵∠ADC+∠BAD=∠B+∠BCD,∠BAD=β,∠B=40°,∴(90°−α)+β=40°+α,∴2α−β=50°,②如图2,当点P在线段CE上时,延长AD交BC于点F,如图:∵将△APC沿AP翻折得△APD,∴AC=AD,∵∠BCD=α,∠ACB=90°,∴∠ADC=∠ACD=90°−α,又∵∠ADC=∠AFC+∠BCD,∠AFC=∠ABC+∠BAD,∴∠ADC=∠ABC+∠BAD+∠BCD=40°+β+α,∴90°−α=40°+α+β,∴2α+β=50°;综上所述,当点P在线段BE上时,2α−β=50°;当点P在线段CE上时,2α+β=50°.【解析】(1)由∠B=40°,∠ACB=90°,得∠BAC=50°,根据AE平分∠BAC,P与E重合,即得∠ACD=∠ADC=65°,从而α=∠ACB−∠ACD=25°;(2)分两种情况:①当点P在线段BE上时,可得∠ADC=∠ACD=90°−α,根据∠ADC+∠BAD=∠B+∠BCD,即可得2α−β=50°;②当点P在线段CE上时,延长AD交BC于点F,由∠ADC=∠ACD=90°−α,又∠ADC=∠AFC+∠BCD,∠AFC=∠ABC+∠BAD 可得90°−α=40°+α+β,2α+β=50°.本题考查三角形综合应用,涉及轴对称变换,三角形外角等于不相邻的两个内角的和的应用,解题的关键是掌握轴对称的性质,能熟练运用三角形内角和定理.23.【答案】解:(1)把(0,−3),(−6,−3)代入y=−x2+bx+c,得b=−6,c=−3.(2)∵y=−x2−6x−3=−(x+3)2+6,又∵−4≤x≤0,∴当x=−3时,y有最大值为6.(3)①当−3<m≤0时,当x=0时,y有最小值为−3,当x=m时,y有最大值为−m2−6m−3,∴−m2−6m−3+(−3)=2,∴m=−2或m=−4(舍去).②当m≤−3时,当x=−3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为−4,∴−(m+3)2+6=−4,∴m=−3−√10或m=−3+√10(舍去).综上所述,m=−2或−3−√10.【解析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y的最大值即可;(3)根据对称轴为x=−3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.此题主要考查了待定系数法求二次函数解析式以及二次函数的性质等知识,正确分类讨论得出m的取值范围是解题关键.24.【答案】解:(1)∵DE=2,∴AE=AB=6,∵四边形ABCD是矩形,∴∠A=90°,∴∠AEB=∠ABE=45°.由对称性知∠BEM=45°,∴∠AEM=90°.(2)如图2,∵AB=6,AD=8,∴BD=10,∵当N落在BC延长线上时,BN=BD=10,∴CN=2.由对称性得,∠ENC=∠BDC,∴cos∠ENC=2EN =610,得EN=103,∴DE=EN=103.∵BM=AB=CD,MN=AD=BC,∴Rt△BMN≌Rt△DCB(HL),∴∠DBC=∠BNM,∴MN//BD.(3)如图3,当E在边AD上时,∴∠BMC=90°,∴MC=√BC2−BM2=2√7.∵BM=AB=CD,∠DEC=∠BCE,∴△BCM≌△CED(AAS),∴DE=MC=2√7.如图4,点E在边CD上时,∵BM=6,BC=8,∴MC=2√7,CN=8−2√7.∵∠BMC=∠CNE=∠BCD=90°,∴△BMC∽△CNE,∴BMCN =MCEN,∴EN=MC⋅CNBM =8√7−143,∴DE=EN=8√7−143.综上所述,DE的长为2√7或8√7−143.【解析】(1)由DE=2知,AE=AB=6,可知∠AEB=∠MEB=45°,从而得出答案;(2)根据对称性得,∠ENC=∠BDC,则cos∠ENC=2EN =610,得EN=103,利用HL证明Rt△BMN≌Rt△DCB,得∠DBC=∠BNM,则MN//BD;(3)当E在边AD上时,若直线MN过点C,利用AAS证明△BCM≌△CED,得DE=MC,当点E在边CD上时,利用△BMC∽△CNE,则BMCN =MCEN,从而解决问题.本题是四边形综合题,主要考查了矩形的性质,轴对称的性质,全等三角形的判定与性质,相似三角形的判定与性质,三角函数等知识,根据题意画出图形,并运用分类讨论思想是解题的关键.。

2023年浙江省绍兴市中考数学试卷附解析

2023年浙江省绍兴市中考数学试卷附解析

2023年浙江省绍兴市中考数学试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.如图,小敏在某次投篮中,球的运动路线是抛物线21 3.55y x =-+的一部分,若命中篮筐中心,则他与篮底的距离l 是( )A .3.5mB .4mC .4.5 mD .4.6 m2.有左、中、右三个抽屉,左边的抽屉里放有 2个白球,中间和右边的抽屉里各放一个红球和一个白球,从三个抽屉里任选一个球是红球的概率是( )A .14 B .13 C .16 D .253. 四位学生用计算器求 cos27o 40′的值正确的是( )A . 0.8857B .0.8856C . 0. 8852D . 0.88514.下面几个命题中,正确的有( )(1)等腰三角形的外接圆圆心在顶角平分线所在的直线上(2)直角三角形的外接圆圆心在斜边上(3)等边三角形的外接圆圆心在一边的中线上(4)钝角三角形的外接圆圆心在三角形的外面A .1 个B .2 个C .3 个D .4 个5.正方形的面积 y (cm 2)与它的周长 x (cm )之间的函数关系式是( )A .214y x = B .2116y x = C . 2164y x = D .24y x = 6.用配方法解方程2420x x -+=,下列配方正确的是( ) A .2(2)2x -= B .2(2)2x += C .2(2)2x -=- D .2(2)6x -= 7.在下列定理中,没有逆定理的是( )A .有斜边和一直角边对应相等的两个直角三角形全等B .直角三角形两个锐角互余C .全等三角形对应角相等D .角平分线上的点到这个角两边的距离相等8.已知正比例函数y kx =的图象经过点(2,4),k 的值是( )A . 1B .2C . -1D .-29.下列调查方式合适的是( )A .为了了解全国中小学生的睡眠状况,采用普查的方式B .为了对“神舟六号”零部件进行检查,采用抽样调查的方式C .为了了解我市居民的环保意识,采用普查的方式D .为了了解炮弹的杀伤力,采用抽样调查的方式10.如图,∠AEF 和∠EFD 是一对( )A .同位角B .内错角C .同旁内角D .以上都不对11. 小王身上只有 2元和 5元两种面值的人民币,他买一件学习用品要支付27元,则付款的( )A .1种B .2种C .3种D .4种12.国家规定存款利息的纳税办法是:利息税=利息×20%,银行一年定期储蓄的年利率为2.25%,今年小刚取出一年到期的本息时,交纳了l3.5元的利息税,则小刚一年前存入银行的本金为 ( )A .1000元B .2000元C .4000元D .3000元 13.下列说法中正确的有( ) ①单项式212x y π-的系数是12-②多项式3a b ab ++是一次多项式③多项式23342a b ab -+ 的第二项是4ab ④2123x x+-是多项式 A .0 个B .1 个C .2 个D . 3 个 14.在数12-,0,4.5,9,-6.79中,属于正数的有( )A .2个B .3个C .4个D .5个二、填空题15.如图所示,函数y kx =-(k ≠0)与4y x=-的图象交于A 、B 两点,过点A 作AC ⊥y 轴,垂足为 C ,则△BOC 的面积为 .16.若一次函数y x a =+与一次函数y x b =-+的图象的交点坐标为(m ,4),则a b += .17.若关于x 的不等式组41320x x x a +⎧>+⎪⎨⎪-<⎩的解为2x <,则a 的取值范围是 .18.如果一个三角形的三条高都在三角形的内部,那么这个三角形是 三角形(按角分类).19.在括号前面填上“+”或“-”号,使等式成立:(1)22)()(y x x y -=-;(2))2)(1()2)(1(--=--x x x x .20.如图,∠ACB=∠DFE ,BC=EF ,请你再补充一个条件: ,使得△ABC 与△DEF 全等.21.写出下列各式分解因式时应提取的公因式:(1)ax ay -应提取的公因式是 ;(2)236x mx n -应提取的公因式是 ;(3)2x xy xz -+-应提取的公因式是 ;(4)322225520x y x y x y --应提取的公因式是 ;(5)()()a x y b x y +-+应提取的公因式是 .22.如图所示,四边形ABCD 为正方形,它被虚线分成了9个小正方形,则△DBE 与△DEC 的面积之比为 .23.如图所示,在△ABC 中,∠B=35°,∠C=60°,AE 是∠BAC 的平分线,AD ⊥BC 于D ,则∠DAE 的度数为 .24.常见的非负数的表示方式有 , .(用含字母 a 的式子表示).25.两个有理数相乘,若把一个因数换成它的相反数,所得的积是原来积的 .三、解答题26.如图,,已知 AD 平分∠CAB ,且DC ⊥AC ,DB ⊥AB ,那么AB 和AC 相等吗?请说明理由.27.化简:(1)22)(9)(4y x y x --+ (2)4x 3 ÷(-2x )2-(2x 2-x )÷(21x ) (3)[(x -y )2-(x + y )2]÷(-4xy ) (4)(a+3)2-2(a+3)(a-3)+(a-3)228.用平方差公式计算:(1)2(2)(2)(4)x x x -++;(2)99810029991001⨯-⨯;(3)22222210099989721-+-+-; (4) 2222211111(1){1)(1)(1)(1)234910-----29.如果25x y =⎧⎨=-⎩和11x y =⎧⎨=-⎩是方程15mx ny +=的两个解,求m ,n 的值.30.下列用科学记数法表示的数原来各是什么数?(1)3.7×105;(2)6.38×l04;(3)5.010×106;(4)7.86×l07.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.A4.D5.答案:B6.A7.C8.B9.D10.B11.CD13.A14.A二、填空题15.216.817.a≥18.2锐角19.(1)+,(2)+20.略21.(1) a;(2)3x;(3)x-;(4)25x y;(5)x y+ 22.1:223.12.5°24.,2a,||a25.相反数三、解答题26.AB =AC,理由略(1)225526y x xy --;(2)2-3x ;(3)1;(4) 36. 28.(1)416x -;(2)-3;(3)5050;(4)1120 29.m=20 ,n= 5 30.(1) 370000 (2)63800 (3)5010000 (4)78600000。

历年浙江省绍兴市中考数学试卷(含答案)

历年浙江省绍兴市中考数学试卷(含答案)

2017 年浙江省绍兴市中考数学试卷一、选择题(本大题共 10 小题,每小题 4 分,共 40 分。

请选出每小题中一个 最符合题意的选项,不选、多选、错选,均不给分) 1.(4分)﹣5 的相反数是( )B .5C .﹣D .﹣5 2.(4 分)研究表明,可燃冰是一种替代石油的新型清洁能源,在我国某海域已 探明的可燃冰存储量达 150000000000立方米,其中数字 150000000000 用科学 记数法可表示为( )A .15×1010B .0.15×1012C . 1.5× 1011D .1.5×10123.(4 分)如图的几何体由五个相同的小正方体搭成,它的主视图是( )4.(4分)在一个不透明的袋子中装有 4个红球和 3 个黑球,它们除颜色外其他 均相同,从中任意摸出一个球,则摸出黑球的概率是( ) A . B . C . D .5.(4 分)下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平 均数和方差: 甲乙 丙 丁 平均数(环) 9.149.15 9.14 9.15 方差6.6 6.8 6.7 6.6 根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A . A .A.甲B.乙C.丙D.丁6.(4 分)如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7 米,顶端距离地面 2.4 米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面 2 米,则小巷的宽度为()A.0.7米B.1.5米C.2.2米D.2.4 米7.(4 分)均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h 随时间t 的变化规律如图所示(图中OABC 为折线),这个容器的形状可以是)D8.(4分)在探索“尺规三等分角”这个数学名题的过程中,曾利用了如图.该图中,四边形ABCD是矩形,E是BA延长线上一点,F是CE上一点,∠ACF=∠AFC,∠FAE=∠FEA.若∠ ACB=2°1,则∠ ECD的度数是()A.7° B.21°C.23°D.24°9.(4 分)矩形ABCD的两条对称轴为坐标轴,点 A 的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,使这个点与点A重合,此时抛物线的函数表达式为y=x2,再次平移透明纸,使这个点与点 C 重合,则该抛物线的函数表达式变为()A.y=x2+8x+14 B.y=x2﹣8x+14 C.y=x2+4x+3 D.y=x2﹣4x+310.( 4 分)一块竹条编织物,先将其按如图MN 翻转180°,再将它所示绕直线按逆时针方向旋转90°,所得的竹条编织物是()二、填空题(本大题共 6 小题,每小题5分,共30 分)11.( 5 分)分解因式:x2y﹣y= .12.(5 分)如图,一块含45°角的直角三角板,它的一个锐角顶点A 在⊙O上,边AB,AC分别与⊙ O交于点D,E,则∠ DOE的度数为.13.(5 分)如图,Rt△ABC的两个锐角顶点A,B 在函数y=(x>0)的图象上,AC∥x轴,AC=2,若点A的坐标为(2,2),则点B的坐标为.14.(5 分)如图为某城市部分街道示意图,四边形ABCD为正方形,点G 在对角线BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路线为B→A→G→E,小聪行走的路线为B→ A→ D→ E→F.若小敏行走的路程为3100m,则小聪行走的路程为m.15.(5分)以Rt△ABC的锐角顶点A为圆心,适当长为半径作弧,与边AB,AC 各相交于一点,再分别以这两个交点为圆心,适当长为半径作弧,过两弧的交点与点A作直线,与边BC交于点D.若∠ ADB=6°0 ,点D到AC的距离为2,则AB 的长为.16.(5 分)如图,∠ AOB=45°,点M,N 在边OA上,OM=x,ON=x+4,点P 是边OB上的点,若使点P,M,N 构成等腰三角形的点P 恰好有三个,则x 的值是.三、解答题(本大题共8小题,第17-20小题每小题8分,第21题10分,第22,23小题每小题8分,第24小题14分,共80分,解答需写出必要的文字说明、演算步骤或证明过程)17.(8分)(1)计算:(2 ﹣π)0+|4﹣3 | ﹣.(2)解不等式:4x+5≤2(x+1)18.(8 分)某市规定了每月用水18 立方米以内(含18 立方米)和用水18 立方米以上两种不同的收费标准,该市的用户每月应交水费y(元)是用水量x(立方米)的函数,其图象如图所示.(1)若某月用水量为18 立方米,则应交水费多少元?(2)求当x>18时,y关于x的函数表达式,若小敏家某月交水费81元,则这个月用水量为多少立方米?19.(8 分)为了解本校七年级同学在双休日参加体育锻炼的时间,课题小组进行了问卷调查(问卷调查表如图所示),并用调查结果绘制了图1,图 2 两幅统计图(均不完整),请根据统计图解答以下问题:(1)本次接受问卷调查的同学有多少人?补全条形统计图.(2)本校有七年级同学800人,估计双休日参加体育锻炼时间在 3 小时以内(不含 3 小时)的人数.20.(8 分)如图,学校的实验楼对面是一幢教学楼,小敏在实验楼的窗口 C 测得教学楼顶部 D 的仰角为18°,教学楼底部B的俯角为20°,量得实验楼与教学楼之间的距离AB=30m.(1)求∠ BCD的度数.(2)求教学楼的高BD.(结果精确到0.1m,参考数据:tan20 °≈0.36,tan1821.(10 分)某农场拟建一间矩形种牛饲养室,饲养室的一面靠现有墙(墙足够长),已知计划中的建筑材料可建围墙的总长为50m.设饲养室长为x(m),占地面积为y(m2).(1)如图1,问饲养室长x 为多少时,占地面积y 最大?(2)如图2,现要求在图中所示位置留2m 宽的门,且仍使饲养室的占地面积最大,小敏说:“只要饲养室长比(1)中的长多2m 就行了.”请你通过计算,判断小敏的说法是否正确.22.(12 分)定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.(1)如图1,等腰直角四边形ABCD,AB=BC,∠ ABC=9°0,①若AB=CD=1,AB∥CD,求对角线BD 的长.②若AC⊥BD,求证:AD=CD,(2)如图2,在矩形ABCD中,AB=5,BC=9,点P 是对角线BD上一点,且BP=2PD,过点P 作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形,求AE 的长.23.(12 分)已知△ ABC,AB=AC,D 为直线BC上一点,E为直线AC 上一点,AD=AE,设∠ BAD=α,∠ CDE=β.(1)如图,若点D在线段BC上,点E在线段AC上.①如果∠ ABC=6°0,∠ ADE=7°0,那么α=°,β= °,②求α,β之间的关系式.(2)是否存在不同于以上②中的α,β之间的关系式?若存在,求出这个关系式(求出一个即可);若不存在,说明理由.24.(14分)如图1,已知?ABCD,AB∥x轴,AB=6,点A的坐标为(1,﹣4),点 D 的坐标为(﹣3,4),点 B 在第四象限,点P 是?ABCD边上的一个动点.(1)若点P 在边BC上,PD=CD,求点P 的坐标.(2)若点P在边AB,AD上,点P关于坐标轴对称的点Q落在直线y=x﹣1 上,求点P 的坐标.(3)若点P在边AB,AD,CD上,点G是AD与y 轴的交点,如图2,过点P 作y轴的平行线PM,过点G作x 轴的平行线GM,它们相交于点M,将△ PGM 沿直线PG翻折,当点M 的对应点落在坐标轴上时,求点P 的坐标.(直接写出2017 年浙江省绍兴市中考数学试卷参考答案与试题解析一、选择题(本大题共10 小题,每小题 4 分,共40 分。

2022年浙江省绍兴市中考数学试卷原卷附解析

2022年浙江省绍兴市中考数学试卷原卷附解析

2022年浙江省绍兴市中考数学试卷原卷 学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.若⊙O 1的半径为3cm ,⊙O 2的半径为4cm ,且圆心距121cm O O =,则⊙O 1与⊙O 2的位置关系是( )A .外离B .内切C .相交D .内含2.已知圆锥的侧面积是50π cm 2,圆锥的底面半径为 r (cm ),母线长为l (cm ),则l 关于r 的函数的图象大致是( )A .B .C .D . 3.如图,AB 是⊙O 的直径,CD ⊥AB 于E ,则下列结论:①BC= BD ;②AC= AD ;③ CE= DE ;④B = BE ·BA. 其中正确的有( )A .1 个B .2 个C .3个D .4个4.生物兴趣小组的学生,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,若全组有x 名同学,则根据题意列出的方程是( )A .(1)182x x +=B .(1)182x x -=C .2(1)182x x +=D .(1)1822x x -=⨯5.下列各组所述的几何图形中,一定全等的是( )A .有一个角是45°的两个等腰三角形B .两个等边三角形C .腰长相等的两个等腰直角三角形D .各有一个角是40°,腰长都为5cm 的两个等腰三角形6.下列图形中是四棱柱的侧面展开图的是( )A .B .C .D . 7.已知多项式13323+++x ax x 能被21x +整除,且商式是31x +,则a 的值为( ) A .3a =B .2a =C .1a =D .不能确定 8.如图,D 在AB 上,E 在AC 上,且∠B=∠C ,则下列条件中,无法判定△ABE ≌△ACD 的是( )A .AD=AEB .AB=AC C .BE=CD D .∠AEB=∠ADC 9.若方程3(2x-1)=2-3x 的解与关于x 的方程622(3)k x -=+的解相同,则k 的值为( )A .59B .59-C .53D .53-二、填空题10.随意地抛掷一只纸可乐杯,杯口朝上的概率是 0.22,杯底朝上的概率约是 0.38,则杯子横卧的概率是 .11.若锐角 ∠A 满足02sin(15)3A -=,则∠A= .12.“百城馆”中一滑梯的倾斜角α= 60°,则该滑梯的坡比为 .13.若三个圆两两外切,圆心距分别是6,8,10,则这三个圆的半径分别是 .14.已知函数y =(m +2)x m(m+1)是二次函数,则m=______________.115.已知代数式(5)10x x ++与代数式925x -的值互为相反数,则x = .16.若关于x 的方程x 2+mx +1=0有两个相等的实数根,则m = .17.一个暗箱里放入除颜色外,其他都相同的 3个红球和 11个黄球,搅拌均匀后,随机任取一个球,取到的是红球的概率是 .18.多项式24ax a -与多项式244x x -+的公因式是 .19.直角三角形作相似变换,各条边放大到原来的3倍,则放大后所得图形面积是原图形面积的 倍.20.如图所示,已知∠C=∠B ,AC=AB ,请写出一个与点D 有关的正确结论: .三、解答题A B CD FE 21.如图,在△ABC 中,AB =8,∠B =30o ,∠C =45o ,以A 、C 为圆心的⊙A 与⊙C 的半径分别为3和5,试判断⊙A 与⊙C 的位置关系,并通过计算说明理由.22.如图,梯形ABCD 中,AB ∥DC ,∠B=90°,E 为BC 上一点,且AE ⊥ED. 若BC=12,DC=7,BE ∶EC=1∶2,求AB 的长.23.判断 222,1 2为比例中项的一个比例式.24. 如图,在□ABCD 中,E F ,分别是边BC 和AD 上的点且BE DF ,则线段AE 与线段CF 有怎样的数量关系....和位置关系....?并证明你的结论.25.为了解某初中学生的体能情况,•抽取若干名学生在单位时间内进行引体向上测试,将所得数据整理后,画出频数分布直方图(如图),•图中从左到右依次为第1,2,3,4,5组.CB A(1)求抽取了多少名学生参加测试.(2)处于哪个次数段的学生数最多(答出是第几组即可)?(3)若次数在5次(含5次)以上为达标,求这次测试的达标率.26.某车站在春运期间为改进服务,随机抽样调查了100名旅客从开始在购票窗口排队到购到车票所用的时间t(以下简称购票用时,单位为分钟).下面是这次调查统计分析得到的频数分布表和频数分布直方图.解答下列问题:(1)这次抽样的样本容量是多少?(2)在表中填写缺失的数据并补全频数分布直方图;(3)旅客购票用时的平均数可能落在哪一小组?(4)若每增加一个购票窗口可以使平均购票用时降低5分钟,要使平均购票用时不超过10分钟,那么请你估计最少需增加几个窗口?27.解下列不等式:(1)4371x x+<-(2)324(5) 325x x xx+-+->--28.在Rt△ABC中,∠C=90°,∠A=5∠B.求∠A和∠B的度数.29.若y=kx+b,当x=1时y=-1;当x=3时,y=5,求k和b的值.30.如图,在小正方形组成的“L”形图中,请你用三种方法分别在图中添画一个小正方形使它成为轴对称图形.【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.B3.D4.B5.C6.A7.C8.D9.B二、填空题10.0.4.75°12.13.2,4,614.15.1 或-1516.2± 17.31418. 2x - 19.920.AD=AE 等三、解答题21.画AD ⊥BC ,垂足为D ,可算得AC=24,⊙A 与⊙C 的位置关系是相交. 22.证明△EAB ∽△DEC ,可得732=AB . 23.∵2×=. 24.AE 与CF 相等且平行,可证明△ABE ≌△CDF .25.(1)100名,(2)第3组,(3)达标率为65%26.⑴样本容量是100;⑵50,0.10, 略;⑶第4小组;⑷至少增加2个窗口. 27. (1)43x >;(2)6x ≥∠A=75°,∠B=15° 29.⎩⎨⎧+=+=-b k b k 351,解得:⎩⎨⎧-==43b k . 30.图略。

2022年浙江省绍兴市中考数学测试试卷附解析

2022年浙江省绍兴市中考数学测试试卷附解析

2022年浙江省绍兴市中考数学测试试卷学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上一、选择题1.到△ABC 的三条边的距离相等的点是△ABC 的( ) A .三条中线的交点 B .三条角平分线的交点 C .三条高的交点 D .三条边的垂直平分线的交点2.在半径为50cm 的图形铁片上剪去一块扇形铁皮,用剩余部分制做成一个底面直径为80cm ,母线长为50cm 的圆锥形烟囱帽,则剪去的扇形的圆心角的度数为( ) A .288°B .144°C .72°D .36°3.二次函数2y ax bx c =++的图象如图,则点 M (b,ca)在( ) A . 第一象限B .第二象限C . 第三象限D . 第四象限4.一个三角形的三条中位线把这个三角形分成面积相等的三角形有( ) A .2个B .3个C .4 个D .5个5.如图所示,直线a ,b 被直线c 所截,现给出下面四个条件:①∠1=∠5;②∠1=∠7;③∠2+∠3=180°;④∠4=∠7.其中能判定a ∥b 的条件的序号是( ) A .①②B .①③C .①④D .③④6.如图反映的过程是:小明从家跑步到体育馆,在那里锻炼了一阵后又走到新华书店去买书,然后散步走回家,其中t 表示时间,s 表示小明离家的距离,那么小明在体育馆锻炼和在新华书店买书共用去的时间是( ) A .35minB .45minC .50minD .60min7.若点P (m ,2)与点Q (3,n )关于y 轴对称,则m 、n 的值分别为( ) A . -3,2 B . 3,-2 C .-3,-2 D .3,2 8.已知,有一条直的宽纸带,按图所示折叠,则∠α等于( )A . 50°B .60°C . 75°D . 85°9.小明通常上学时走上坡路,途中的速度为m 千米/时,放学回家时,沿原路返回,速度为n 千米/时,则小明上学和放学路上的平均速度为( ) A .2nm +千米/时 B .n m mn +千米/时 C .n m mn +2千米/时 D .mnnm +千米/时 10.若2x <,则2|2|x x --的值为( ) A .-1B .0C .1D . 211.如果三角形的一个外角是锐角,那么这个三角形是( )A .锐角三角形B .钝角三角形C .直角三角形D .以上三种都可能二、填空题12.已知⊙O 1和⊙O 2的圆心距为7,两圆半径是方程27120x x -+=的两根,则⊙O 1和⊙O 2的位置关系是__________.13.如图,两个同心圆的半径分别为2和1,∠AOB= 120°,则阴影部分的面积是 .14.如图,菱形ABCD 的对角线AC =24,BD =10,则菱形的周长L=________. 15.一个多边形的每个外角都等于45°,这个多边形的边数是 . 16.26x ++ =2(3)x +.17.若a 11的小数部分,则(6)a a += .18.一射击运动员连续射靶10次,其中2次命中10环,3次命中9环,5次命中8环,则他 平均每次命中 环.19.若)3)(5(-+x x 是二次三项式152--kx x 的因式,那么k = .20. 联系生活实际,给出一个能用方程(110%)1050x +=解决的实际问题的背景 .21.已知线段AB ,延长AB 到点C ,使BC=13AB ,反向延长线段AC 到点D ,使DA=12AC .若BC=3 cm ,则DC= .22.为了了解贯彻执行国家提倡的“阳光体育运动”的实施情况,将某班50名同学一周的体育锻炼情况绘制成了如图所示的条形统计图,根据统计图提供的数据,该班50名同学一周参加体育锻炼时间的中位数与众数之和为 .818204学生人数(人)(小时)体育锻炼时间1098725201510517 题图三、解答题23.随着社会的发展,人们对防洪的意识越来越强,今年为了提前做好防洪准备工作,某市正在长江边某处常出现险情的河段修建一防洪大坝,其横断面为梯形ABCD ,如图所示,根据图中数据计算坝底 CD 的宽度. (结果保留根号)24.老师在同一直角坐标系中画了一个反比例函数的图象以及一个正比例函数y=-x 的图象,请同学们观察.同学甲、乙对反比例函数图象的描述如下: 同学甲:与直线y= 一x 有两个交点;同学乙:图象上任意一点到两坐标轴的距离的积都为 5 请根据以上信息,写出反比例函数的解析式.25.如图,四边形ABCD 是正方形,G 是BC 上任意一点(点G 与B 、C 不重合),AE ⊥DG于E,CF∥AE交DG于F.(1)在图中找出一对全等三角形,并加以证明;(2)求证:AE=FC+EF.26.某青少年研究所随机调查了某市某校100名学生寒假中花零花钱的数量(钱取整数元),以便引导学生树立正确的消费观.根据调查制成了频率分布表(未完成).某校100名学生零花钱的频数分布表(1)补全频数分布表;(2)画出频数分布直方图;(3)该研究所认为,应对消费150元以上的学生提出勤俭节约的建议.试估计应对该校1200名学生中约多少名学生提出这项建议?27.化简:(1)249 ()77a a aa a a--⋅-+(2)12()11b bbb b+÷---.AB CDEFG28.(1)按要求在网格中画图:画出图形“”关于直线l 的对称图形,再将所画图形与原图形组成的图案向右平移2格;(2)根据以上构成的图案,请写一句简短、贴切的解说词:29.如图是一个被等分成12个扇形的转盘.请在转盘上选出若干个扇形涂上斜线(涂上斜线表示阴影区域,其中有一个扇形已涂),使得自由转动这个转盘,当它停止转动时,指针落在阴影区域内的概率为41.30.计算下列各式,结果用幂的形式表示: (1)25[()]a b -;(2)3322()a a ⋅;(3)535632()2()x x x x ⋅-⋅⋅【参考答案】学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上一、选择题1.B2.C3.D4.C5.A6.C7.A8.C9.C10.A11.B二、填空题 12. 外切13.π14.5215.816.917.218.8.719.-220.略21.18 cm22.17三、解答题 23.在 Rt △ADF 中,∠D=60°,tan AFD DF=,∴9tan AF DF D ===在 Rt △BEC 中,∵∠C=45°,∴△BEC 为等腰直角三角形∴EC= BE=9,在矩形 AFEB 中,FE=AB=10,∴DC DF FE EC ⋅=++10919=+=+24.∵反比例函数的图象与直线 y=一x 有两个交点,∴此图象必须经过四象限;∵图象上任意一点到两坐标轴的距离的积都为5,∴||5k =,∴k.=一5 (+5舍去). ∴5y x=-.25.(1) ΔAED ≌ΔDFC.∵ 四边形ABCD 是正方形,∴ AD=DC ,∠ADC=90º. 又∵ AE ⊥DG ,CF ∥AE ,∴ ∠AED=∠DFC=90º, ∴ ∠EAD+∠ADE=∠FDC+∠ADE=90º, ∴ ∠EAD=∠FDC. ∴ ΔAED ≌ΔDFC (AAS ).(2) ∵ ΔAED ≌ΔDFC ,∴ AE=DF ,ED=FC. ∵ DF=DE+EF ,∴ AE=FC+EF26.(1) 某校100名学生零花钱的频数分布表组别(元) 组中值(元) 频数 频率 0.5~50.5 25.5 10 0.1 50.5~100.5 75.5 20 0.2 100.5~150.5 125.5 25 0.25 150.5 ~200.5 175.5 30 0.3 200.5~250.5 225.5 10 0.1 250.5~300.5 275.55 0.05 合计1001.00 (2)(3)(0.3+0.1+0.05)×1200=540(名)答:估计应对该校1200名学生中约540名学生提出这项建议.27.(1)14;(2)1b-28.(1)如图:(2)解说合理即可,如爱心传递或我们心连心等.频数(人)10203025.575.5125.5175.5225.5275.5某校100名学生零花钱的频数分布直方图1020253010529.略.30.(1)102a;(3)20x--;(2)9a b()。

2023年浙江省绍兴市中考数学真题(答案解析)

2023年浙江省绍兴市中考数学真题(答案解析)

数学卷Ⅰ(选择题)一、选择题1.【答案】A【解析】解:231-=-,故选:A .2.【答案】B【解析】解:8274000000 2.7410=⨯,故选B .3.【答案】D【解析】从正面看第一层是三个小正方形,第二层左边一个小正方形,中间没有,右边1个小正方形,故选:D .4.【答案】C【解析】解:A 选项,6243a a a a ÷=≠,原计算错误,不符合题意;B 选项,()5210a a a -=-≠-,原计算错误,不符合题意;C 选项,()()2111a a a +-=-,原计算正确,符合题意;D 选项,222(1)211a a a a +=++≠+,原计算错误,不符合题意;故选:C .5.【答案】C【解析】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .6.【答案】B【解析】解:设大容器的容积为x 斛,小容器的容积为y 斛,根据题意得:5352x y x y +=⎧⎨+=⎩.故选:B .7.【答案】D【解析】解:将点(),m n 先向右平移2个单位,再向上平移1个单位,最后所得点的坐标是()2,1m n ++.故选:D .8.【答案】A【解析】∵四边形ABCD 是矩形,∴AB CD ∥,90BAD ABC ∠=∠=︒,∴60BDC ABD ∠=∠=︒,906030ADB CBD ∠=∠=︒-︒=︒,∵OE OF =、OB OD =,∴DF EB=∵对称,∴21DF DF BF BF ==,,21,BE BE DE DE ==∴1221E F E F =∵对称,∴260F DC CDF ∠=∠=︒,130EDA E DA ∠=∠=︒∴160E DB ∠=︒,同理160F BD ∠=︒,∴11DE BF ∥∴1221E F E F ∥∴四边形1212E E F F 是平行四边形,如图所示,当,,E F O 三点重合时,DO BO =,∴1212DE DF AE AE ===即1212E E EF =∴四边形1212E E F F 是菱形,如图所示,当,E F 分别为,OD OB 的中点时,设4DB =,则21DF DF ==,13DE DE ==,在Rt △ABD 中,2,AB AD ==,连接AE ,AO ,∵602ABO BO AB ∠=︒==,,∴ABO 是等边三角形,∵E 为OB 中点,∴AE OB ⊥,1BE =,∴AE ==,根据对称性可得1AE AE ==∴2221112,9,3AD DE AE ===,∴22211AD AE DE =+,∴1DE A 是直角三角形,且190E ∠=︒,∴四边形1212E E F F 是矩形,当,F E 分别与,D B 重合时,11,BE D BDF 都是等边三角形,则四边形1212E E F F 是菱形∴在整个过程中,四边形1212E E F F 形状的变化依次是菱形→平行四边形→矩形→平行四边形→菱形,故选:A .9.【答案】B【解析】解:∵()()2,,2,N a P a -,∴得N 、P 关于y 轴对称,∴选项A 、C 错误,∵()()4,2,2,M a N a ---在同一个函数图象上,∴当0x <时,y 随x 的增大而增大,∴选项D 错误,选项B 正确.故选:B .10.【答案】D【解析】解:如图所示,连接ND ,∵DE AB ∥,DF AC ∥,∴,ECD FDB FBD EDC ∠=∠∠=∠,,BFD A A DEC ∠=∠∠=.∴FBD EDC ∽,NFD MEC ∠=∠.∴FB FD ED EC=.∵2DM ME =,2BN NF =,∴11,33NF BF ME DE ==,∴NF BF ME DE =.∴FD NF EC ME =.又∵NFD MEC ∠=∠,∴NFD MEC ∽.∴ECM FDN ∠=∠.∵FDB ECD∠=∠∴MCD NDB ∠=∠.∴MC ND ∥.∴MNC MDC S S = .∵2DM ME =,∴1122EMC DMC MNC S S S == .故选:D .卷Ⅱ(非选择题)二、填空题11.【答案】()3m m -【解析】解:()233m m m m -=-,故答案为:()3m m -.12.【答案】80︒##80度【解析】解:∵四边形ABCD 内接于O ,∴180B D �邪=,∵100D ∠=︒,∴18080B D ∠︒∠︒=﹣=.故答案为:80︒.13.【答案】3x =【解析】解:去分母,得:39x =,化系数为1,得:3x =.检验:当3x =时,10x +≠,∴3x =是原分式方程的解.故答案为:3x =.14.【答案】10︒或80︒【解析】解:∵四边形ABCD 为菱形,40DAB ∠=︒,∴1202CAD DAB ∠=∠=︒,连接CE ,①当点E 在点A 上方时,如图1E ,∵1AC AE =,120CAE ∠=︒,∴()1118020802AE C ∠=︒-︒=︒,②当点E 在点A 下方时,如图2E ,∵1AC AE =,120CAE ∠=︒,∴211102AE C CAE ∠=∠=︒,故答案为:10︒或80︒.15.【答案】2【解析】解:如图,过点A B 、作AF y ⊥轴于点F ,AD x ⊥轴于点D ,BE x ⊥于点E ,6AFO ABO BOE FABEO S S S S k =++=+ 五边形AFOD FABEO ADEB ADEBS S S k S =+=+矩形五边形梯形梯形6ADEB S ∴=梯形2121()()62y y x x +-∴= 212x x =2112y y ∴=11112121111()(2)()()32==6224y y x x y y x x y x +-+-∴=11=8x y ∴8k ∴=21121111111111()()82222244ABC S AC BC x x y y y y =×=-×-=×==´=故答案为:2.16.【答案】712或2512-【解析】由()2(2)03y x x =-≤≤,当0x =时,4y =,∴()0,4C ,∵()3,0A ,四边形ABCO 是矩形,∴()3,4B ,①当抛物线经过O B ,时,将点()0,0,()3,4B 代入()21034y x bx c x =++≤≤,∴019344c b c =⎧⎪⎨⨯++=⎪⎩解得:712b =②当抛物线经过点,A C 时,将点()3,0A ,()0,4C 代入()21034y x bx c x =++≤≤,∴419304c b c =⎧⎪⎨⨯++=⎪⎩解得:2512b =-综上所述,712b =或2512b =-,故答案为:712或2512-.三、解答题17.【答案】(1)1;(2)3x >【解析】解:(1)原式1=-1=.(2)移项得36x x ->,即26x >,∴3x >.∴原不等式的解是3x >.18.【答案】(1)100(2)360(3)答案不唯一,见解析【解析】(1)被抽查学生数:3030%100÷=,答:本次调查共抽查了100名学生.(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5⨯=,∴被抽查的100人中最喜爱篮球的人数为:100301015540----=,∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.19.【答案】(1)58︒(2)该运动员能挂上篮网,理由见解析【解析】(1)解:∵CG CD ⊥,∴90ACG ∠=︒,∵32AGC ∠=︒,∴903258GAC ∠=︒-︒=︒.(2)该运动员能挂上篮网,理由如下.如图,延长,OA ED 交于点M ,∵,OA OB DE OB ⊥∥,∴90DMA ∠=︒,又∵58DAM GAC ∠=∠=︒,∴32ADM ∠=︒,在Rt ADM △中,sin 320.80.530.424AM AD =︒≈⨯=,∴ 2.50.424 2.9243OM OA AM =+=+=<,∴该运动员能挂上篮网.20.【答案】(1)200y x =(2)出发后甲机器人行走103分钟,与乙机器人相遇(3),P M 两地间的距离为600米【解析】(1)∵()()0,0,5,1000O A ,∴OA 所在直线的表达式为200y x =.(2)设BC 所在直线的表达式为y kx b =+,∵()()0,1000,10,0B C ,∴10000,010,b k b =+⎧⎨=+⎩解得100,1000k b =-⎧⎨=⎩.∴1001000y x =-+.甲、乙机器人相遇时,即2001001000x x =-+,解得103x =,∴出发后甲机器人行走103分钟,与乙机器人相遇.(3)设甲机器人行走t 分钟时到P 地,P 地与M 地距离200y t =,则乙机器人()1t +分钟后到P 地,P 地与M 地距离()10011000y t =-++,由()20010011000t t =-++,得3t =.∴600y =.答:,P M 两地间的距离为600米.21.【答案】(1)115︒(2)CE =【解析】(1)解:∵AE CD ⊥于点E ,∴90AEC ∠=︒,∴9025115ACD AEC EAC ∠=∠+∠=︒+︒=︒.(2)∵CD 是O 的切线,OC 是O 的半径,∴90OCD ∠=︒.在Rt OCD △中,∵2,3OC OB OD OB BD ===+=,∴CD ==.∵90OCD AEC ∠=∠=︒,∴OC AE∥∴CD OD CE OA =,即32CE =,∴CE =.22.【答案】(1)见解析(2)AH 与EF 垂直,理由见解析【解析】(1)解:在正方形ABCD 中,AD CD ⊥GE CD ⊥∴AD GE ∥,∴DAG EGH ∠=∠.(2)AH 与EF 垂直,理由如下.连接GC 交EF 于点O .∵BD 为正方形ABCD 的对角线,∴45ADG CDG ∠=∠=︒,又∵,DG DG AD CD ==,∴ADG CDG ≌,∴DAG DCG ∠=∠.在正方形ABCD 中,90ECF ∠=︒,又∵,GE CD GF BC ⊥⊥,∴四边形FCEG 为矩形,∴OE OC =,∴OEC OCE ∠=∠,∴DAG OEC ∠=∠.又∵DAG EGH ∠=∠,∴90EGH GEH OEC GEH GEC ∠+∠=∠+∠=∠=︒,∴90GHE ∠=°,∴AH EF ⊥.23.【答案】(1)①()2,7;②当13x -≤≤时,27y -≤≤(2)222y x x =-++【解析】(1)解:①当4,3b c ==时,2243(2)7y x x x =-++=--+,∴顶点坐标为()2,7.②∵顶点坐标为()2,7.抛物线开口向下,当12x -≤≤时,y 随x 增大而增大,当23x ≤≤时,y 随x 增大而减小,∴当2x =时,y 有最大值7.又()2132-->-∴当=1x -时取得最小值,最小值=2y -;∴当13x -≤≤时,27y -≤≤.(2)∵0x ≤时,y 的最大值为2;0x >时,y 的最大值为3,∴抛物线的对称轴2b x =在y 轴的右侧,∴0b >,∵抛物线开口向下,0x ≤时,y 的最大值为2,∴2c =,又∵()()241341c b ⨯-⨯-=⨯-,∴2b =±,∵0b >,∴2b =,∴二次函数的表达式为222y x x =-++.24.【答案】(1)8(2)①347BP =;②6BP =或8±【解析】(1)在ABCD Y 中,10BC AD ==,在Rt BCH 中,4sin 1085CH BC B ==⨯=.(2)①如图1,作CH BA ⊥于点H ,由(1)得,6BH ==,则1266AH =-=,作C Q BA '⊥交BA 延长线于点Q ,则90CHP PQC ∠'=∠=︒,∴90C PQ PC Q '∠+∠='︒.∵90C PQ CPH ∠+∠='︒∴PC Q CPH ∠=∠'.由旋转知PC PC '=,∴PQC CHP '△≌△.设BP x =,则8,6,4PQ CHC Q PH x QA PQ PA x ====-=-=-'.∵,C Q AB CH AB '⊥⊥,∴C Q CH '∥,∴AQC AHC '△∽△,∴C Q QA CH HA =',即6486x x --=,∴347x =,∴347BP =.②由旋转得,PCD PC D CD C D '''='△≌△,CD C D ⊥'',又因为AB CD ,所以C D AB ''⊥.情况一:当以C '为直角顶点时,如图2.∵C D AB ''⊥,∴C '落在线段BA 延长线上.∵PC PC ⊥',∴PC AB ⊥,由(1)知,8PC =,∴6BP =.情况二:当以A 为直角顶点时,如图3.设C D ''与射线BA 的交点为T ,作CH AB ⊥于点H .∵PC PC ⊥',∴90CPH TPC ∠'+∠=︒,∵C D AT ''⊥,∴90PC T TPC ∠'+∠='︒,∴CPH PC T ∠=∠'.又∵90,CHP PTC PC C P ∠=∠=='︒',∴CPH PC T '△≌△,∴,8C T PH PT CH '===.设C T PH t '==,则6AP t =-,∴2AT PT PA t=-=+∵90,C AD C D AB ∠=︒''⊥'',∴ATD C TA '' ∽,∴AT C T TD TA='',∴2AT C T TD '=⋅',∴()2(2)12t t ι+=-,化简得2420t t -+=,解得2t =±∴8BP BH HP =+=±情况三:当以D ¢为直角顶点时,点P 落在BA 的延长线上,不符合题意.综上所述,6BP =或8±。

绍兴中考数学试题及答案

绍兴中考数学试题及答案

绍兴中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是无理数?A. 2.5B. √2C. 0.33333...D. 3.14答案:B2. 一个三角形的两边长分别为3和5,第三边的长x满足的条件是?A. 2 < x < 8B. 1 < x < 8C. 2 < x < 6D. 3 < x < 8答案:C3. 函数y=2x+3的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:C4. 下列哪个图形是轴对称图形?A. 平行四边形C. 菱形D. 任意三角形答案:B5. 一个数的平方等于9,这个数是?A. 3B. -3C. ±3D. ±9答案:C6. 已知一个等腰三角形的底角为45°,顶角为?A. 45°B. 90°C. 135°D. 无法确定答案:B7. 一个圆的半径为5cm,它的周长是?A. 10π cmB. 20π cmC. 25π cmD. 30π cm答案:B8. 下列哪个选项是二次函数的一般形式?B. y=ax^2+bx+cC. y=a(x+b)^2+cD. y=a(x-b)^2+c答案:B9. 一个正数的算术平方根是2,这个数是?A. 4B. 2C. 1/4D. 1/2答案:A10. 一个长方体的长、宽、高分别为2cm、3cm、4cm,它的体积是?A. 24 cm³B. 12 cm³C. 6 cm³D. 8 cm³答案:B二、填空题(每题3分,共15分)11. 一个等差数列的首项为1,公差为2,它的第五项是______。

答案:912. 一个二次函数y=ax^2+bx+c的顶点坐标为(1, -4),对称轴为直线x=1,且过点(0,3),则a=______。

答案:-113. 一个直角三角形的两直角边长分别为6和8,斜边长为______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2010年浙江省绍兴市初中毕业生学业考试试卷数 学一、选择题(本大题有10小题,每小题4分,共40分.请选出每小题中一个符合题意的正确选项,不选、多选、错选,均不给分)1.21的相反数是( ) A .2 B .-2 C .21 D .21- 2.如图,是由四个相同的小正方体组成的立体图形,它的俯视图是( )3.已知⊙O 的半径为5,弦AB 的弦心距为3,则AB 的长是( ) A .3 B .4 C .6 D .84.自上海世博会开幕以来,中国馆以其独特的造型吸引 了世人的目光.据预测,在会展期间,参观中国馆的人次数估计可达到14 900 000,此数用科学记数法表示是 ( )A .61049.1⨯B .810149.0⨯ C .7109.14⨯ D .71049.1⨯ 5.化简1111--+x x ,可得( ) A .122-x B .122--x C .122-x x D .122--x x6.甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是( )A .甲B .乙C .丙D .丁选 手 甲 乙 丙 丁 平均数(环) 9.2 9.2 9.2 9.2 方差(环2)0.0350.0150.0250.027第4题图A .B .C .D .第2题图主视方向7.一辆汽车和一辆摩托车分别从A ,B 两地去同一城市,它们离A 地的路程随时间变化的图象如图所示.则下列结论错误..的是( ) A .摩托车比汽车晚到1 h B . A ,B 两地的路程为20 km C .摩托车的速度为45 km/h D .汽车的速度为60 km/h8.如图,已知△ABC ,分别以A ,C 为圆心,BC ,AB 长为半径画弧,两弧在直线BC 上方交于点D ,连结AD ,CD .则有( ) A .∠ADC 与∠BAD 相等 B .∠ADC 与∠BAD 互补 C .∠ADC 与∠ABC 互补 D .∠ADC 与∠ABC 互余9.已知(x 1, y 1),(x 2, y 2),(x 3, y 3)是反比例函数xy 4-=的图象上的三个点,且x 1<x 2<0,x 3>0,则y 1,y 2,y 3的大小关系是( )A . y 3<y 1<y 2B . y 2<y 1<y 3C . y 1<y 2<y 3D . y 3<y 2<y 1 10.如图为某机械装置的截面图,相切的两圆⊙O 1, ⊙O 2均与⊙O 的弧AB 相切,且O 1O 2∥l 1( l 1为水 平线),⊙O 1,⊙O 2的半径均为30 mm ,弧AB 的 最低点到l 1的距离为30 mm ,公切线l 2与l 1间的 距离为100 mm .则⊙O 的半径为( ) A.70 mm B.80 mm C.85 mm D.100 mm二、填空题(本大题有6小题,每小题5分,共30分.将答案填在题中横线上)11.因式分解:y y x 92-=_______________.12.如图,⊙O 是正三角形ABC 的外接圆,点P 在劣弧AB 上, ABP ∠=22°,则BCP ∠的度数为_____________. 13.不等式-032>-x 的解是_______________.14.根据第六届世界合唱比赛的活动细则,每个参赛的合唱团在比赛时须演唱4首歌曲.爱乐合唱团已确定了2首歌曲,还需在A ,B 两首歌曲中确定一首,在C ,D 两首歌曲中确定另一首,则同时确定A ,C 为参赛歌曲的概率是_______________.第12题图第8题图BAC第10题图 AB单位:mml 1l 2第7题图15.做如下操作:在等腰三角形ABC 中,AB = AC ,AD 平分∠BAC , 交BC 于点D .将△ABD 作关于直线AD 的轴对称变换,所得的 像与△ACD 重合.对于下列结论:①在同一个三角形中,等角对等边;②在同一个三角形中,等边对等角;③等腰三角形的顶角平分线、底边上的中线和高互相重合.由上述操作可得出的是 (将正确结论的序号都填上). 16.水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD 时的∠ABC ,其中AB 为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为 .三、解答题(本大题有8小题,第17~20小题每小题8分,第21小题10分,第22,23小题每小题12分,第24小题14分,共80分.解答需写出必要的文字说明、演算步骤或证明过程)17.(1)计算: |2-|o 2o 12sin30(3)(tan 45)-+--+;(2)先化简,再求值: 6)6()3)(3(2+---+a a a a ,其中12-=a .18.分别按下列要求解答:(1)在图1中,将△ABC 先向左平移5个单位,再作关于直线AB 的轴对称图形,经两次变换后得到△A 1B 1 C 1.画出△A 1B 1C 1;(2)在图2中,△ABC 经变换得到△A 2B 2C 2.描述变换过程.第18题图1第18题图20 1 2 3 4 5 6 7 8 9 10 1211 1211 10 9 8 76 5 4 3 2 1ABCA 2B 2C 2第15题图第16题图 0 1 2 3 4 5 6 7 8 9 10 1211 12 11 10 9 8 7 6 5 4 3 2 1AC19.绍兴有许多优秀的旅游景点,某旅行社对5月份本社接待的外地游客来绍旅游的首选景点作了一次抽样调查,调查结果如下图表.2 600人,请你估计首选景点是鲁迅故里的人C 处一个气球,分100 m .当气球 ,在A 处测得气 (1)求气球的高度(结果精确到0.1m);(2)求气球飘移的平均速度(结果保留3个有效数字).21.在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形, 叫做此一次函数的坐标三角形.例如,图中的一次函数的图象与 x ,y 轴分别交于点A ,B ,则△OAB 为此函数的坐标三角形. (1)求函数y =43-x +3的坐标三角形的三条边长; (2)若函数y =43-x +b (b 为常数)的坐标三角形周长为16,求此三角形面积.景点 频数 频率 鲁迅故里 6500.325柯岩胜景 350 五泄瀑布 3000.1565030020050300100200300400500600700人数(人)景点外地游客来绍旅游首选景点统计图鲁迅柯岩五泄大佛千丈曹娥其它外地游客来绍旅游首选景点的频数分布表第20题图A yO Bx第21题图22.某公司投资新建了一商场,共有商铺30间.据预测,当每间的年租金定为10万元时,可全部租出.每间的年租金每增加5 000元,少租出商铺1间.该公司要为租出的商铺每间每年交各种费用1万元,未租出的商铺每间每年交各种费用5 000元.(1)当每间商铺的年租金定为13万元时,能租出多少间?(2)当每间商铺的年租金定为多少万元时,该公司的年收益(收益=租金-各种费用)为275万元?23. (1) 如图1,在正方形ABCD中,点E,F分别在边BC,CD上,AE,BF交于点O,∠AOF=90°.求证:BE=CF.(2) 如图2,在正方形ABCD中,点E,H,F,G分别在边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°, EF=4.求GH的长.(3) 已知点E,H,F,G分别在矩形ABCD的边AB,BC,CD,DA上,EF,GH交于点O,∠FOH=90°,EF=4.直接写出下列两题的答案:①如图3,矩形ABCD由2个全等的正方形组成,求GH的长;②如图4,矩形ABCD由n个全等的正方形组成,求GH的长(用n的代数式表示).第23题图1第23题图2 第23题图3 第23题图424.如图,设抛物线C 1:()512-+=x a y , C 2:()512+--=x a y ,C 1与C 2的交点为A , B ,点A的坐标是)4,2(,点B 的横坐标是-2. (1)求a 的值及点B 的坐标;(2)点D 在线段AB 上,过D 作x 轴的垂线,垂足为点H ,在DH 的右侧作正三角形DHG . 记过C 2顶点M的 直线为l ,且l 与x 轴交于点N .① 若l 过△DHG 的顶点G ,点D 的坐标为 (1, 2),求点N 的横坐标;② 若l 与△DHG 的边DG 相交,求点N 的横 坐标的取值范围.第24题图浙江省2010年初中毕业生学业考试绍兴市试卷数学参考答案一、选择题(本大题有10小题,满分40分)1.D 2.C 3. D 4. D 5.B 6.B 7.C 8. B 9. A 10. B 二、填空题(本大题有6小题,满分30分) 11.)3)(3(-+x x y 12. 38° 13.23-<x 14. 41 15.②③ 16.π21三、解答题(本大题有8小题,满分80分) 17.(本题满分8分)解:(1) 原式= 2+1-3+1=1.(2) 原式=a a 62+, 当12-=a 时,原式=324-.18.(本题满分8分) (1) 如图.(2) 将△ABC 先关于点A 作中心对称图形,再向左平移2个单位,得到△A 2B 2C 2.(变换过程不唯一)19.(本题满分8分)(1) 0.175, 150. 图略. (2) 解:2 600×0.325=845(人) . 20.(本题满分8分)解:(1) 作CD ⊥AB ,C /E ⊥AB ,垂足分别为D ,E.∵ CD =BD ·tan 60°, CD =(100+BD )·tan 30°,∴(100+BD )·tan 30°=BD ·tan 60°, ∴ BD =50, CD =503≈86.6 m , ∴ 气球的高度约为86.6 m.(2) ∵ BD =50, AB =100, ∴ AD =150 , 又∵ AE =C /E =503,∴ DE =150-503≈63.40, ∴ 气球飘移的平均速度约为6.34米/秒. 21.(本题满分10分) 解:(1) ∵ 直线y =43-x +3与x 轴的交点坐标为(4,0),与y 轴交点坐标为(0,3), ∴函数y =43-x +3的坐标三角形的三条边长分别为3,4,5.(2) 直线y =43-x +b 与x 轴的交点坐标为(b 34,0),与y 轴交点坐标为(0,b ),当b >0时,163534=++b b b ,得b =4,此时,坐标三角形面积为332;当b <0时,163534=---b b b ,得b =-4,此时,坐标三角形面积为332.综上,当函数y =43-x +b 的坐标三角形周长为16时,面积为332.第20题图 第18题图22.(本题满分12分)解:(1)∵ 30 000÷5 000=6, ∴ 能租出24间. (2)设每间商铺的年租金增加x 万元,则 (30-5.0x )×(10+x )-(30-5.0x )×1-5.0x×0.5=275, 2 x 2-11x +5=0, ∴ x =5或0.5,∴ 每间商铺的年租金定为10.5万元或15万元.23.(本题满分12分)(1) 证明:如图1,∵ 四边形ABCD 为正方形,∴ AB =BC ,∠ABC =∠BCD =90°, ∴ ∠EAB +∠AEB =90°. ∵ ∠EOB =∠AOF =90°,∴ ∠FBC +∠AEB =90°,∴ ∠EAB =∠FBC , ∴ △ABE ≌△BCF , ∴ BE =CF . (2) 解:如图2,过点A 作AM //GH 交BC 于M ,过点B 作BN //EF 交CD 于N ,AM 与BN 交于点O /, 则四边形AMHG 和四边形BNFE 均为平行四边形, ∴ EF=BN ,GH=AM , ∵ ∠FOH =90°, AM //GH ,EF//BN , ∴∠NO /A =90°,故由(1)得, △ABM ≌△BCN , ∴ AM =BN , ∴ GH =EF =4. (3) ① 8.② 4n . 24.(本题满分14分)解:(1)∵ 点A )4,2(在抛物线C 1上,∴ 把点A 坐标代入()512-+=x a y 得 a =1.∴ 抛物线C 1的解析式为422-+=x x y ,设B (-2,b ), ∴ b =-4, ∴ B (-2,-4) . (2)①如图1,∵ M (1, 5),D (1, 2), 且DH ⊥x 轴,∴ 点M 在DH 上,MH =5. 过点G 作GE ⊥DH ,垂足为E,由△DHG 是正三角形,可得EG=3, EH =1, ∴ ME =4. 设N ( x , 0 ), 则 NH =x -1,由△MEG ∽△MHN ,得HNEGMH ME =, ∴ 1354-=x , ∴ =x 1345+,第23题图1第23题图2O ′NM 第24题图1∴ 点N 的横坐标为1345+. ② 当点D移到与点A 重合时,如图2,直线l 与DG 交于点G ,此时点N的横坐标最大. 过点G,M作x 轴的垂线,垂足分别为点Q,F , 设N(x ,0),∵ A (2, 4), ∴ G (322+, 2),∴ NQ =322--x ,NF =1-x , GQ =2, MF =5. ∵ △NGQ ∽△NMF ,∴MF GQNF NQ =, ∴521322=---x x , ∴ 38310+=x .当点D 移到与点B 重合时,如图3, 直线l 与DG 交于点D ,即点B , 此时点N 的横坐标最小.∵ B (-2, -4), ∴ H (-2, 0), D (-2, -4), 设N (x ,0),∵ △BHN ∽△MFN , ∴ MFBHFN NH =, ∴ 5412=-+x x , ∴ 32-=x .∴ 点N 横坐标的范围为 32-≤x ≤38310+且x ≠0.第24题图2第24题图3图4。

相关文档
最新文档