人教版数学八年级下册:《19.1.1变量与函数》练习含答案

合集下载

《19.1 变量与函数》课件(含习题)

《19.1 变量与函数》课件(含习题)
这里有变化的量吗?如 果有,是什么?它们之 间有什么关系?
讲授新课
一 函数的相关概念
情景一
想一想,如果你坐 在摩天轮上,随着 时间的变化,你离 开地面的高度是如 何变化的?
下图反映了摩天轮上的一点的高度h (m)与旋转时间t(min) 之间的关系.
(1)根据左图填表:
t/分 0 1 2 3 4 5 … h/米 3 10 37 45 37 11 … (2)对于给定的时间t ,相 应的高度h能确定吗?
方法 区分常量与变量,就是看在某个变化过程中,该 量的值是否可以改变,即是否可以取不同的值.
二 确定两个变量之间的关系
例3 弹簧的长度与所挂重物有关.如果弹簧原长为10cm, 每1千克重物使弹簧伸长0.5cm,试填下表:
重物的质量 1 2 3 4 5 (kg)
弹簧长度 (cm)
10.5 11
11.5 12 12.5
4x 8 0 x 2
(3) y x 3
x 3 0 x 3
(4) y x 1 1 1 x
x 1且 x 1
x 1 0
1 x 0
即 xx
1 1
... -1 0 1
5.我市白天乘坐出租车收费标准如下:乘坐里程不超过3公 里,一律收费8元;超过3公里时,超过3公里的部分,每公里 加收1.8元;设乘坐出租车的里程为x(公里)(x为整数), 相对应的收费为y(元).
4.收音机上的刻度盘的波长和频率分别是用米(m)和 千赫兹(kHz)为单位标刻的.下面是一些对应的数:
波长l(m) 300 500 600 1000 1500 频率 1000 600 500 300 200 f(khz)
你能发现每一组l,f 的值之间的关系吗?并指出变量与 常量.

人教版八年级数学下册《19.1变量与函数》课堂练习(含答案)

人教版八年级数学下册《19.1变量与函数》课堂练习(含答案)

2019年八年级数学下册变量与函数课堂练习一、选择题:1、下列各曲线表示的y与x的关系中,y不是x的函数的是()2、小明放学后从学校乘轻轨回家,他从学校出发,先匀速步行至轻轨车站,等了一会儿,小明搭轻轨回到家,下面能反映在此过程中小明与家的距离y与x的函数关系的大致图象是()3、如图,火车匀速通过隧道(隧道长大于火车长)时,火车进入隧道的时间与火车在隧道内的长度之间的关系用图象描述大致是( )4、某洗衣机在洗涤衣服时经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水),在这三个过程中洗衣机内水量y(升)与时间x(分)之间的函数关系对应的图象大致为( )5、均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()6、如图所示的计算程序计算y的值,若输入x=2,则输出的y值是()A.0B.﹣2C.2D.47、巴西奥运会期间,童童从宾馆出发前往奥体中心观看中国女排决战塞尔维亚,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,她搭乘朋友的车顺利到家。

其中x表示童童从宾馆出发后所用时间,y表示童童离宾馆的距离.下图能反映y与x的函数关系式大致图象是()8、2014年5月10日上午,小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿.接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会,小华继续录入并加快了录入速度,直至录入完成.设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x的函数关系的大致图象是()9、如图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出.壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y表示壶底到水面的高度,则y与x的函数关系式的图象是( )10、向最大容量为60升的热水器内注水,每分钟注水10升,注水2分钟后停止注水1分钟,然后继续注水,直至注满.则能反映注水量与注水时间函数关系的图象是( )11、父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,那么下面与上述诗意大致相吻合的图象是( )12、如图,在一个正方体容器底部正中央嵌入一块平行于侧面的矩形隔板,隔板的高是正方体棱长的一半,现匀速向隔板左侧注水(到容器注满时停止),设注水时间为t(min),隔板所在平面左侧的水深为y左(cm),则y左与t的函数图象大致是( )二、填空题:13、函数的自变量x的取值范围是 .14、.函数中自变量x的取值范围是 .15、在函数中,自变量x的取值范围是.16、如图,某老师设计了一个程序要求学生计算函数值.若输入的x的值为2.5,写出所输出的函数值y为 .17、已知y关于x的函数图象如图所示,则当y<0时,自变量x的取值范围是.18、某物流公司的快递车和货车同时从甲地出发,以各自的速度匀速向乙地行驶,快递车到达乙地后卸完物品再另装货物共用45分钟,立即按原路以另一速度匀速返回,直至与货车相遇.已知货车的速度为60千米/时,两车之间的距离y(千米)与货车行驶时间x(小时)之间的函数图象如图所示,现有以下4个结论:①快递车从甲地到乙地的速度为100千米/小时;②甲、乙两地之间的距离为120千米;③图中点B的坐标为(3.75,75);④快递车从乙地返回时的速度为90千米/小时以上结论正确的是________________.三、解答题:19、下面的图象记录了某地1月份某天的温度随时间变化的情况,请你仔细观察图象后回答下面的问题. (1)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是______时,温度在﹣3℃以下的持续时间为______h.(2)你从图象中还能获取哪些信息(写出1~2条即可).20、在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.21、小敏上午8:00从家里出发,骑车去一家超市购物,然后从这家超市返回家中.小敏离家的路程y(米)和所经过的时间x(分)之间的函数图象如图所示.请根据图象回答下列问题:(1)小敏去超市途中的速度是多少?在超市逗留了多少时间?(2)小敏几点几分返回到家?22、如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图:(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)分段描述汽车在第0分种到第28分钟的行驶情况;(3)汽车在点A的速度是多少?在点C呢?23、已知动点P以每秒2㎝的速度沿图甲的边框按从的路径移动,相应的△ABP的面积S与时间t之间的关系如图乙中的图象表示.若AB=6cm,试回答下列问题:(1)图甲中的BC长是多少?(2)图乙中的a是多少?(3)图甲中的图形面积的多少?(4)图乙中的b是多少?参考答案1、C2、D.3、A4、D5、C6、D.7、A8、C.9、C.10、D.11、B.12、C13、x≤3且x≠214、x≥-2 且x≠115、x≥0且x≠216、0.4.17、答案是:﹣1<x<1或x>2.18、①③④19、解:(1)根据图象可直接得出答案.﹣1,12时和18时,14时,8;(2)答案不唯一,如:①最冷的时刻是4时,②0时的温度是﹣3℃.20、解:(1)∵情境a:小芳离开家不久,即离家一段路程,此时①②③都符合,发现把作业本忘在家里,于是返回了家里找到了作业本,即又返回家,离家的距离是0,此时②③都符合,又去学校,即离家越来越远,此时只有③返回,∴只有③符合情境a;∵情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进,即离家越来越远,且没有停留,∴只有①符合,故答案为:③,①.(2)情境是小芳离开家不久,休息了一会儿,又走回了家.21、解:(1)小敏去超市途中的速度是:3000÷10=300,在超市逗留了的时间为:40﹣10=30(分). (2)∴返回到家的时间为:8:55.22、解:(1)由AB平行于时间轴,得从点A到点B汽车以30千米/时匀速行驶;点E到点F汽车在加速行驶;点G到点H汽车在减速行驶;(2)由纵坐标看出第0分钟汽车的速度为零,汽车未形势;第28分钟汽车的速度是60千米/时;(3)由纵坐标看出汽车在点A的速度是30千米/时,汽车在点C的速度是0千米/时.23、解: (1)图甲中的BC长是8cm.(2)图乙中的a是24cm2(3)图甲中的图形面积的60 cm2 (4)图乙中的b是17 秒。

人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)

人教版八年级下册数学课时练《19.1.1 变量与函数》(含答案)

答卷时应注意事项1、拿到试卷,要认真仔细的先填好自己的考生信息。

2、拿到试卷不要提笔就写,先大致的浏览一遍,有多少大题,每个大题里有几个小题,有什么题型,哪些容易,哪些难,做到心里有底;3、审题,每个题目都要多读几遍,不仅要读大题,还要读小题,不放过每一个字,遇到暂时弄不懂题意的题目,手指点读,多读几遍题目,就能理解题意了;容易混乱的地方也应该多读几遍,比如从小到大,从左到右这样的题;4、每个题目做完了以后,把自己的手从试卷上完全移开,好好的看看有没有被自己的手臂挡住而遗漏的题;试卷第1页和第2页上下衔接的地方一定要注意,仔细看看有没有遗漏的小题;5、中途遇到真的解决不了的难题,注意安排好时间,先把后面会做的做完,再来重新读题,结合平时课堂上所学的知识,解答难题;一定要镇定,不能因此慌了手脚,影响下面的答题;6、卷面要清洁,字迹要清工整,非常重要;7、做完的试卷要检查,这样可以发现刚才可能留下的错误或是可以检查是否有漏题,检查的时候,用手指点读题目,不要管自己的答案,重新分析题意,所有计算题重新计算,判断题重新判断,填空题重新填空,之后把检查的结果与先前做的结果进行对比分析。

亲爱的小朋友,你们好!经过两个月的学习,你们一定有不小的收获吧,用你的自信和智慧,认真答题,相信你一定会闯关成功。

相信你是最棒的!人教版八年级数学下册第十九章一次函数《19.1.1变量与函数》课时练一、选择题(共30分)1.(本题3分)下列关系式中,y 不是x 的函数的是()A .1y x =+B .22y x =C .y x =D .22y x =-2.(本题3分)设min (x ,y )表示x ,y 二个数中的最小值.例如min {0,2}=0,min {12,8}=8,则关于x 的函数y =min {3x ,-x +4}可以表示为()A .y =()3(1)41x x x x <ìí-+³îB .y =()4(1)31x x x x -+<ìí³îC .y =3xD .y =-x +43.(本题3分)如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为().A .32y x =B .23y x =C .12y x=D .18=y x 4.(本题3分)从边长为4cm 的正方形中挖去一个半径是x cm 的圆面,剩下的面积是2y cm ,则y 与x 的函数关系是()A .216y x p =-B .()22y x p =-C .()24y x p =+D .216y x p =-+5.(本题3分)在函数y =12x x --中,自变量x 的取值范围是()A .x ≥1B .x ≠2C .x ≥2D .x ≥1且x ≠26.(本题3分)在函数1y x =-中,自变量x 的取值范围是()A .1³xB .1x ¹C .1x >D .1x ³-7.(本题3分)当实数x 的取值使得2x -有意义时,函数y =4x +1中y 的取值范围是()A .y ≥-7B .y ≥9C .y >9D .y ≤98.(本题3分)弹簧挂上物体后会伸长,测得一弹簧的长度y (cm )与所挂的物体的重量x (kg )间有下面的关系:x (kg )012345y (cm )1010.51111.51212.5下列说法不正确的是()A .x 与y 都是变量,且x 是自变量,y 是因变量B .物体质量每增加1kg ,弹簧长度y 增加0.5cmC .所挂物体质量为7kg 时,弹簧长度为13.5cmD .y 与x 的关系表达式是0.5y x=9.(本题3分)从空中落下一个物体,它降落的速度随时间的变化而变化,即落地前的速度随时间的增加而逐渐增大,这个问题中自变量是()A .物体B .速度C .时间D .空气10.(本题3分)根据如图所示的程序计算函数y 的值,若输入x 的值是8,则输出y 的值是﹣3,若输入x 的值是﹣8,则输出y 的值是()A .10B .14C .18D .22二、填空题(共15分)11.(本题3分)下列各项:①2y x =;②21y x =-;③22(0)y x x =³;④3(0)y xx =¹;具有函数关系(自变量为x )的是_____________.(填序号)12.(本题3分)周长为10cm 的等腰三角形,腰长y (cm )与底边长x (cm )之间的函数关系式是_____.13.(本题3分)在函数5x y x-=中,自变量x 的取值范围是______.14.(本题3分)若对于所有的实数x ,都有()()222x x f xf x -+=,则()2f =______.15.(本题3分)一个弹簧,不挂物体时长为10厘米,挂上物体后弹簧会变长,每挂上1千克物体,弹簧就会伸长1.5cm .如果挂上的物体的总质量为x 千克时,弹簧的长度为为ycm ,那么y 与x 的关系可表示为y =______.三、解答题(共75分)16.(本题7分)小明在劳动技术课中要制作一个周长为80cm 的等腰三角形.请你写出底边长y (cm )与腰长x (cm )的函数关系式,并求自变量x 的取值范围.17.(本题8分)为了增强居民的节水意识,某城区水价执行“阶梯式”计费,每月应缴水费y(元)与用水量x(t)之间的函数关系如图所示.若某用户去年5月缴水费18.05元,求该用户当月用水量.18.(本题8分)在等腰△ABC 中,底角为x (单位:度),顶角y (单位:度).(1)写出y 与x 的函数解析式;(2)求自变量x 的取值范围.19.(本题9分)如图,长方形ABCD 中,AB=4,BC=8.点P 在AB 上运动,设PB=x ,图中阴影部分的面积为y.(1)写出阴影部分的面积y 与x 之间的函数解析式和自变量x 的取值范围;(2)点P 在什么位置时,阴影部分的面积等于20?20.(本题10分)为了净化空气,美化校园环境,某学校计划在A ,B 两种树木中选择一种进行种植,已知A 种树木的单价是80元/棵,B 种树木的单价是72元/棵,且购买A 种树木有优惠,优惠方案是:购买超过20棵时,超出部分可以享受八折优惠.设学校准备购买树木x 棵(20x >),购买A 种树木和B 种树木花费的总金额分别为A y (元)和B y (元).(1)分别求出A y 、B y 与x 之间的函数关系式;(2)请你帮助该学校判断选择购买哪种树木更省钱.21.(本题10分)“五一”期间,小明和父母一起开车到距家200km 的景点旅游,出发前,汽车油箱内储油45L ,当行驶150km 时,发现油箱余油量为30L (假设行驶过程中汽车的耗油量是均匀的).(1)这个变化过程中哪个是自变量?哪个是因变量?(2)求该车平均每千米的耗油量,并写出行驶路程()x km 与剩余油量()Q L 的关系式;(3)当280x km =时,求剩余油量Q 的值.22.(本题11分)小亮想了解一根弹簧的长度是如何随所挂物体质量的变化而变化的,他把这根弹簧的上端固定,在其下端悬挂物体,下面是小亮测得的弹簧的长度y 与所挂物体质量x 的几组对应值.所挂物体质量/kg x 012345y303234363840弹簧长度/cm(1)上表所反映的变化过程中的两个变量,___________是自变量,___________是因变量;(请用文字语言描述)(2)请直接写出y与x的关系式;(3)当弹簧长度为100cm(在弹簧承受范围内)时,求所挂重物的质量.23.(本题12分)在一定弹性限度内,弹簧挂上物体后会伸长.现测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(已知在弹性限度内该弹簧悬挂物体后的最大长度为21cm.)所挂物体质0123456量x/kg弹簧长度1212.51313.51414.515 y/cm(1)有下列说法:①x与y都是变量,且x是自变量,y是x的函数;②所挂物体质量为6kg时,弹簧伸长了3cm;③弹簧不挂重物时的长度为6cm;④物体质量每增加1kg,弹簧长度y增加0.5cm.上述说法中错误的是(填序号)(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式及自变量的取值范围.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.参考答案1.B 2.A 3.A 4.D 5.D 6.A 7.B 8.D 9.C 10.C11.①②④12.y=-()15052x x +<<13.0x ¹14.015.10+1.5x16.802,2040y x x =-<<17.9吨18.(1)y=180-2x ;(2)由三角形内角和得0°<x <90°.19.(1)阴影部分的面积为:y=32-4x (0<x≤4);(2)PB=320.(1)()=6432020A y x x +>,()7220B y x x =>;(2)当2040x <<时,学校选择购买B 种树木更省钱;当40x =时,学校选择购买两种树木的花费一样;当40x >时,学校选择购买A 种树木更省钱.21.(1)(1)行驶路程x ,剩余油量Q ;(2)450.1Q x =-;(3)当280x =(千米)时,剩余油量Q 的值为17L22.(1)所挂物体质量,弹簧长度;(2)y =2x +30;(3)35kg 23.(1)③④;(2)y =0.5x +12(0≤x ≤18);(3)弹簧长度是17cm ;(4)所挂物体的质量为16kg .。

人教版八年级数学下册19.1.1《变量与函数(1) 》习题含答案

人教版八年级数学下册19.1.1《变量与函数(1) 》习题含答案

19.1 函数19.1.1 变量与函数第1课时《常量和变量》习题含答案1、一种练习本每本0.5元,x本共付y元钱,那么0.5和y分别是()A、常量、常量B、常量、变量C、变量、常量D、变量、变量2、在圆的周长公式C=2πr中,下列说法正确的是()A、π,r是变量,2是常量B、 C是变量,2,π,r是常量C、 r是变量,2,π,C是常量D、 C,r是变量,2,π是常量3、一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A、xB、h、xC、V 、xD、x、h、V均为变量4、以固定的速度v0米/秒向上抛一个小球,小球的高度h米与小球运动的时间t 秒之间的关系式是h=v0t-4.9t2,在这个关系式中,常量、变量分别为()A、常量是4.9,变量是t,hB、常量是v0,2,变量是t,hC、常量是-4.9,v0,变量是t,h5、三角形的一边长为6cm,三角形的面积S(cm2)与这边上的高h(cm)之间的关系式为 .6、表格列出了一项实验的统计数据,表示小球从高度x(m)落下时,弹跳高度y(m)与小球高度x(m)的关系,据表写出y与x的关系式是 ,其中变量为,常量为 .7、一架雪橇沿一斜坡滑下,它在时间t(秒)滑下的距离S(米),由下面式子S=10t+2t2,假如滑到坡底的时间为8秒,斜坡长为米,其中式子中的变量是,常量是.8、如图,等腰直角三角形ABC的直角边长与正方形MNPQ的边长均为10cm,AC 与MN在同一直线上,开始时A点与M点重合,让△ABC向右运动,最后A点与N 点重合.试求出重叠部分的面积y cm2与MA的长度x cm之间的关系式,并指出其中的常量与变量.第8题图x 50 80 100 150y 25 40 50 759、由图形列表如下,设图形的周长为L,梯形的个数为n,回答问题:梯形个数n 1 2 3 4图形的周长L 5 9 13 17(1)写出L与n的关系式.(2)在这个变化过程中,变量、常量各是什么?(3)有11个梯形时,图形的周长是多少?10、在一个半径为20cm的圆上,从中挖去一个圆,当挖去圆半径由小变大时,剩下的一个圆环面积也随之发生变化,若挖去的圆的半径为x(cm),圆环的面积y(cm2).(1)在这个变化过程中,变量、常量各是什么?(2)写出y与x的关系式;(3)当挖去的圆的半径由1cm变化到10cm时,圆环的面积将发生怎样的变化?参考答案1、B2、D3、D4、C5、S=3h6、y=0.5x,变量是x,y,常量是0.57、208,变量是s,t,常量是10,28、由题意知,开始时A点与M点重合,让△ABC向右运动,两图形重合的长度为AM=xcm.∵∠BAC=45°,∴S阴影=12·AM·h=12AM2=12x2,则y=12x2,0≤x≤10.其中的常量为12,变量为重叠部分的面积ycm2与MA的长度xcm.9、(1)L=4n+1(2)变量是L,n,常量是4,1(3)4510、(1)变量是:挖去的圆的半径x,圆的面积y;(2)y=400π-πx2(3)圆环的面积将由399πcm2减小到300πcm2.。

八年级下册数学第十九章练习册答案

八年级下册数学第十九章练习册答案

八年级下册数学第十九章练习册答案八年级下册数学练习册第十九章你做好了吗?对照一下正确答案吧。

接下来是店铺为大家带来的八年级下册数学第十九章练习册的答案,供大家参考。

八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;C2、1,8,0.3;n,L3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)S=x(10-x),敞亮是10,变量是x,S(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)W=(n-2)×180°,常量是2,180°,变量是W,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)W=n²+1(3)常量是1,变量是n,W19.1.1变量与函数第2课时答案【基础知识】1、D2、B3、C4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、Q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)Q=1000-60;(2)0≤t≤50/3(3)当t=10时,Q=400(m²)(4)当Q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、C2、D3、A4、D5、Q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、S=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】2、A3、B4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、B2、D3、C4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)C(2)A【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、A2、C3、C4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、B2、C3、C4、D5、D6、(1,2)7、>18、一条直线;09、0.2;增大10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点A在y=5/2x上,点B在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、C2、A3、A4、B5、>-2;一、三;<-2;二、四6、y=50x7、y=4/3x8、m>6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45)19.2.2一次函数第1课时答案【基础知识】1、D2、D3、C4、A5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)S=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、D2、A3、B4、D5、A6、B7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、D2、C3、A4、C5、66、(-3/2,0);x=-3/27、<、>8、x<-19、(1)2(2)2(3)<2(4)y=-x+210、y=-1/2x+3或y=1/2x-3【能力提升】11、A12、313、(1)当通话时间为500分钟时。

八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案

八年级下册数学第十九章练习册参考答案八年级下册数学第十九章练习册参考答案19.1.1变量与函数第1课时答案【基础知识】1、2π、r;c2、1,8,0.3;n,l3、21000,200;x,y4、0.4;0.8;1.2;1.6;y=0.4x5、y=30/x;30;x,y6、(1)s=x(10-x),敞亮是10,变量是x,s(2)α+β=90°,常量是90°,变量是α,β(3)y=30-0.5t,常量是30,0.5,变量是y,t(4)w=(n-2)×180°,常量是2,180°,变量是w,n(5)s=y-10t,常量是y,10,变量是s,t【能力提升】8、(1)65、101(2)w=n²+1(3)常量是1,变量是n,w19.1.1变量与函数第2课时答案【基础知识】1、d2、b3、c4、x≥15、y=5n;n;y;n6、y=360-9x;x;40,且x为正整数7、y=x(30-x/2)8、q/πa²【能力提升】9、(1)x≠2(2)x≥0,且x≠1(3)x≤2(4)x取任意实数10、(1)q=1000-60;(2)0≤t≤50/3(3)当t=10时,q=400(m²)(4)当q=520时,1000-60t=520 ∴t=8(h)19.1.1变量与函数第3课时答案【基础知识】1、c2、d3、a4、d5、q=30-1/2t;0≤t≤60;406、-3/27、y=2x8、s=4(n-1)9、(1)y=12+0.5x(2)17cm【能力提升】10、y=4(5-x)=-4x+20(0【探索研究】11、y=1/2x²-10x+5019.1.2函数的图象第1课时答案【基础知识】1、b2、a3、b4、6;-125、-46、207、略8、(1)-4≤x≤4(2)x=-4,-2,4时,y的值分别为2,-2,0(3)当y=0时,x的值为-3,-1,4(4)当x=3/2时,y的值最大;当x=-2时,y的值最小(5)当-2≤x≤3/2时,y随x的增大而增大当-4≤x≤-2或3/2≤x≤4时,y随x的增大而减小9、(1)距离和时间(2)10千米;30千米(3)10时30分~11时;13时【能力提升】10、略19.1.2函数的图象第2课时答案【基础知识】1、b2、d3、c4、提示:注意画图象的三个步骤:①列表;②描点;③连线,图表略5、(1)6(2)39.5;36.8(3)第一天6~12时下降最快,第三天12~18时比较稳定6、(1)c(2)a(3)b【能力提升】7、(1)任意实数(2)y≤2(3)28、(1)共4段时间加速,即12~13时,15~16时,19~20时,2~2.5时(2)共有5段时间匀速,即13~15时,16~17时,30~22时,23~24时,2.5~3.5时;其速度分别为:50km/h,60km/h,80km/h,60km/h,45km/h(3)共有4段时间减速,即17~18时,22~23时,24~1时,3.5~4时(4)略【探索研究】9、略19.2.1正比例函数第1课时答案【基础知识】1、a2、c3、c4、-15、(1)y=2.5x,时正比例函数(2)y=18-x/2,不是正比例函数6、解:设y=kx(k≠0),∴3=1/2k,∴k=6,∴y=6x.7、解:∵k²-9=0,∴k=±3,又∵k≠3,∴k=-3,∴y=-6x,当x=-4时,y=24.【能力提升】8、解:由题意得y=1.6x,当x=50时,y=1.6×50=80.9、(1)y=-x-3(2)-6(3)-3 2/3【探索研究】10、解:设y=k1x(k1≠0),z=k2y(k2≠0),∴z=k1k2x,∵k1k2≠0.∴z与x成正比例19.2.1正比例函数第2课时答案【基础知识】1、b2、c3、c4、d5、d6、(1,2)7、>18、一条直线;09、0.2;增大9、x;减小;二、四10、(1)k=2或k=-2(2)k=2(3)k=-2(4)略(5)点a在y=5/2x上,点b在y=-3/2x上【能力提升】11、解:设y+1=kx(k≠0),∴k=2x-1.当点(a,-2)在函数图像上时,有2a-1=-2,∴a=-1/212、(1)30km/h(2)当t=1时,s=30.(3)当s=100时,t=10/3【探索研究】13、y=360x,时正比例函数学子斋 > 课后答案 > 八年级下册课后答案 > 人教版八年级下册数学配套练习册答案 >19.2.1正比例函数第3课时答案【基础知识】1、c2、a3、a4、b5、>-2;一、三;6【能力提升】9、y=2x+210、(1)100(2)甲(3)8【探索研究】11、(1)15、4/15(2)s=4/45t(0≤t≤45) 19.2.2一次函数第1课时答案【基础知识】1、d2、d3、c4、a5、(1)(2)(4)(6)6、y=600-10t;一次7、3/4;-38、减小9、y=5x-210、y=-x11、-312、k=213、-2;514、(1)(-4,5)(2)(2,2),(10,-2)【能力提升】15、y=2x-516、a=-1【探索研究】17、(1)s=-2x+12(2)019.2.2一次函数第2课时答案【基础知识】1、1、d2、a3、b4、d5、a6、b7、38、y=2x+59、三条直线互相平行10、v=3.5t;7.5m/s11、y=t-0.6;2.4;6.412、1【能力提升】13、(1)k=1;b=2(2)a=-2【探索研究】14、(1)2;6毫克(2)3毫克(3)y=3x(0≤x≤2);y=-x+2(0(4)4h19.2.2一次函数第3课时答案【基础知识】1、(1)2(2)y=2x+30(0(3)由2x+30>49,得x>9.5,即至少放入10个小球时水溢出2、(1)h=9d-20(2)24cm3、(1)y=9/5x(0≤x≤15),y=2.5x-10.5(x>15)(2)当x=21时,y=42(元)4、y=1/10x-2(x≥20)【能力提升】5、(1)y甲=300x,y乙=350(x-3)(2)当人数为20人时,选乙旅行社比较合算,当人数为21人时,两旅行社费用一样多6、(1)y=7/5x+14/5(x≥3)(2)当x=2.5时,y=7(元)(3)当x=13时,y=7/5×13+14/5=21(元)(4)x=20(km)【探索研究】7、(1)8;10;12(2)图象略(3)提示:根据一次函数列方程求解19.2.3一次函数与方程、不等式第1课时答案【基础知识】1、d2、c3、a4、c5、66、(-3/2,0);x=-3/27、8、x24x,即02时,一半植树棵数多2、解:设团队中由游客x人,购买方式a、b得消费全额为ya元,yb元,由题意有:ya=20×0.8x=16x,yb=5×20+0.7×20(x-5)=14x+30.当16x=14x+30,即x=15时,两种方式一样,当16x>14x+30,即x>15时,选择方式b合算;当16x600+0.04x,即020000时,b公司工资待遇高.4、解:(1)y甲=1500+x,y乙=2.5x(2)图像略(3)当x=800时,y甲=2300,y乙=2000.∴选择乙印刷厂比较合算;当y=3000时,x甲=1500,x乙=1200.∴甲印刷厂印制的宣传材料多【探索研究】5、(1)200元(2)800页(3)有图象知,当每月复印页数在1200页左右时,y甲>y乙,∴选乙复印社合算第十九章综合练习答案一、选择#formattableid_0# 二、8、(3,0)(0,1)9、x≥-1且x≠010、-1;;211、略(答案不唯一)12、y=-2x+1;y=-2x-113、a>014、9三、15、y=x-516、y=x+317、图像略(1)(1,0)(2)当x>1时,y118、y=-3x+919、(1)m=3(2)-1/2≤m≤320、(1)4/3km/min(2)7min(3)s=2t-2021、提示:(1)设a型x套,b型(80-x)套,则2090≤25x+28×(80-x)≤2096,即48≤x≤50,∴有三种方案,即a型48套,b型32套;a型49套,b型31套;a型50套,b型30套(2)设利润为w万元,则w=(30-25)x+(34-28)(80-x),即w=-x+480,∴当x越小时,w越大.∴当x=48时,w=-48+480=432,∴a型48套,b型32套(3)w=(34-28)(80-x)+(30-25+a)x=(a-1)x+480,∴当a>1时,w=50(a-1)+480;当0∴当a>1时,a型50套,b型30套;当0。

人教八年级数学下册-变量与函数(附习题)

人教八年级数学下册-变量与函数(附习题)

C.p和t是变量
D.数100和t都是常量
2.分别指出下列式子中的变量和常量:
(1)圆的变周量长l=2π常r(其量中l为周长,r为半径);
(2)式变子量m=(n-常2)量×18变0°量(m为多边形的内角
和,n为边数);
变量
常量
变量 常量 (3)若矩形的宽为x,面积为36,则这个矩形的
长为y= 36 . 变量
2.能列出函数解析式表示两个变量之间 的关系.
3.能根据函数解析式求函数自变量的取 值范围.
4.能根据问题的实际意义求函数自变量 的取值范围.
推进新课
知识点 1 函数的概念及函数值
思考下面两个问题, 你学到了什么?
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?
小圆半径 小圆面积 圆环面积
课堂小结
变量
数值发生变化的量
常量
数值始终不变的量
拓展延伸 心理学家发现,学生对概念的接受能力y
与提出概念所用的时间x(单位:分)之间有如 下关系(其中0≤x≤30):
提出概念所用的时间(x) 2 5 7 10 12 13 14 17 20 对概念的接受能力(y) 47.8 53.5 56.3 59 59.8 59.9 59.8 58.3 55
13分钟
第2课时 函数
新课导入
上节课我们学习了变量与常量, 这节课我们进一步学习函数及函数自 变量的取值范围问题.
试判断下面所给的两个例子中两 个变量是否也存在一一对应的关系.
1.下图是体检时的心电图,图上点的横坐标x 表示时间,纵坐标y表示心脏部位的生物电流,它 们是两个变量.在心电图中,对于x的每一个确定 的值,y都有唯一确定的值与其对应吗?

人教版八年级数学下册 19.1 变量与函数 课后练习(含答案)

人教版八年级数学下册   19.1 变量与函数 课后练习(含答案)

2019年八年级数学下册变量与函数课后练习一、选择题:1、变量x,y有如下关系:①x+y=10;②y=;③y=|x-3;④y2=8x.其中y是x的函数的是( ).A.①②②③④B.①②③C.①②D.①2、在圆的周长C=2πr中,常量与变量分别是( ).A.2是常量,C、π、r是变量B.2是常量,C、r是变量C.C、2是常量,r是变量D.2是常量,C、r是变量3、小明在书上看到了一个实验:如右图,一个盛了水的圆柱形容器内,有一个顶端拴了一根细绳的实心铁球,将铁球从水面下沿竖直方向慢慢地匀速向上拉动.小明将此实验进行了改进,他把实心铁球换成了材质相同的别的物体,记录实验时间t以及容器内水面的高度h,并画出表示h与t的函数关系的大致图象.如图所示.小明选择的物体可能是()4、下列曲线中,不能表示y是x的函数的是( )5、下列四幅图像近似刻画了两个变量之间的关系,图像与下列四种情景对应排序正确的是( )①一辆汽车在公路上匀速行驶 (汽车行驶的路程与时间的关系);②向锥形瓶中匀速注水 (水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中 (温度计的读数与时间的关系);④一杯越来越凉的水 (水温与时间的关系).A.①②④③B.③④②①C.①④②③D.③②④①6、根据如图的程序,计算当输入值x=-2时,输出结果y为()A.1;B.5;C.7;D.以上都有可能;7、小明同学准备从家打车去南坪,出门后发现到了拥堵使得车辆停滞不前,等了几分钟后他决定步行前往地铁站乘地铁直达南坪站(忽略中途等站和停靠站的时间),在此过程中,他离南坪站的距离y(km)与时间x(h)的函数关系的大致图象是()8、小华同学接到通知,她的作文通过了《我的中国梦》征文选拔,需尽快上交该作文的电子文稿,接到通知后,小华立即在电脑上打字录入这篇文稿,录入一段时间后因事暂停,过了一小会儿,小华继续录入并加快了录入速度,直至录入完成,设从录入文稿开始所经过的时间为x,录入字数为y,下面能反映y与x 之间的关系的大致图象是()9、小丽的父亲饭后去散步,从家中走20分钟到离家1000米的报亭看了10分钟的报纸后,用15分钟返回家里,下列各图中表示小丽父亲离家的时间与距离之间的关系是()10、清清从家步行到公交车站台,等公交车去学校.下公交车后又步行了一段路程才到学校.图中的折线表示清清的行程s(米)与所花时间t (分)之间的函数关系.下列说法错误的是()A.清清等公交车时间为3分钟B.清清步行的速度是80米/分C.公交车的速度是500米/分D.清清全程的平均速度为290米/分二、填空题:11、在函数y=中,自变量x的取值范围是.12、小明根据某个一次函数关系式填写了下面的这张表, 其中有一格不慎被墨迹遮住了,想想看,表中空格原来填的数是 .13、一根蜡烛长20cm,点燃后每小时燃烧5cm,燃烧剩下的高度h(cm)随燃烧时间t(时)变化,请写出函数关系式14、明星中学计划投资8万元购买学生用电脑,则所购电脑的台数n(台)与单价x(万元)之间的关系是,其中________是常量,_______是变量.15、随着我国人口增长速度的减慢,小学入学儿童数量有所减少.下表中的数据近似地呈现了某地区入学儿童人数的变化趋势:(1)上表中_____是自变量,_____是因变量.(2)你预计该地区从_____年起入学儿童的人数不超过1 000人.16、如图所示表示“龟兔赛跑”时路程与时间的关系,已知龟、兔上午8:00从同一地点出发,请你根据图中给出的信息,算出乌龟在点追上兔子.三、解答题:17、科学家研究发现,声音在空气中传播的速度y(米/秒)与气温x(℃)有关,当气温是0 ℃时,音速是331米/秒;当气温是5 ℃时,音速是334米/秒;当气温是10 ℃时,音速是337米/秒;当气温是15 ℃时,音速是340米/秒;当气温是20 ℃时,音速是343米/秒;当气温是25 ℃时,音速是346米/秒;当气温是30 ℃时,音速是349米/秒.(1)请你用表格表示气温与音速之间的关系;(2)表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(3)当气温是35 ℃时,估计音速y可能是多少?(4)能否用一个式子来表示两个变量之间的关系?18、写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)某市居民用电价格是0.58元/度,居民生活应付电费y(元)与用电量x(度)之间满足y=0.58x.19、在一次实验中,小明把一根弹簧的上端固定.在其下端悬挂物体,下面是测得的弹簧的长度y与所挂物体质量x的一组对应值.(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂物体重量为3千克时,弹簧多长?不挂重物时呢?(3)若所挂重物为7千克时(在允许范围内),你能说出此时的弹簧长度吗?20、已知如图,一天上午6点钟,言老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程s(km)(即离开学校的距离)与时间(时)的关系可用图中的折线表示,根据图中提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)请你用一段简短的话,对言老师从上午6点到中午12点的活动情况进行描述.21、周六上午8:00小明从家出发,乘车1小时到郊外某基地参加社会实践活动,在基地活动2.2小时后,因家里有急事,他立即按原路以4千米/时的平均速度步行返回.同时爸爸开车从家出发沿同一路线接他,在离家28千米处与小明相遇。

人教版八年级数学 下册 第十九章 19.1.1 变量与函数 课时练(含答案)

人教版八年级数学 下册 第十九章 19.1.1 变量与函数 课时练(含答案)

第十九章 变量与函数19.1.1 变量与函数一、选择题1、对圆的周长公式2c r π=的说法正确的是( )A. π.r 是变量,2是常量B.C.r 是变量,π.2是常量 C. r 是变量,2.π.C 是常量D. C 是变量,2.π.r 是常量2、某人持续以a 米/分的速度用t 分钟时间跑了s 米,其中常量是( ) A 、a B 、 t C 、s D 、 s=at3、汽车以60千米/小时的速度匀速行驶,行驶里程为s 千米,行驶时间为t 小时.在以上这个过程中,变化的量是( ) A 、s, t B 、s C 、t D 、604、当圆的半径发生变化时,圆的面积也发生变化,圆的面积S 与半径r 的关系为S =2r π下列说法正确的是( ).A.S .π.r 都是变量B. 只有r 是变量C. S .r 是变量, π是常量D. S .π.r 都是常量 5、函数y =x 的取值范围是( ).A .x ≥1B .x ≥-1C .x ≤1D .x ≤-1二、填空题6、油箱中有油30kg,油从管道中匀速流出,1h 流完,则油箱中剩余油量Q (kg )与流出时间t (min )之间的函数关系式是 .7、下列变量间的关系是函数关系的有___ __(填序号) ①正方形的周长与边长; ②圆的面积与半径;③y = ④商场中某种商品的单价为a 元,销售总额与销售数量 8、在函数y=√x−5中,自变量x 的取值范围是9、小军用50元钱去买单价是8元的笔记本,则他剩余的钱Q•(元)与他买这种笔记本的本数x 之间的关系是10、一支圆珠笔的单价为2元,设圆珠笔的数量为x 支,总价为y 元。

则y=三、解答题11、在等腰△ABC 中,底角x 为(单位:度),顶角y (单位:度)(1)写出y 与x 的函数解析式; (2)求自变量x 的取值范围.12、写出下列问题中的关系式,并指出其中的变量和常量.(1)用20cm 的铁丝所围的长方形的长x (cm )与面积S (cm 2)的关系. (2)直角三角形中一个锐角a 与另一个锐角b 之间的关系.(3)一盛满30吨水的水箱,每小时流出0.5吨水,试用流水时间t•(小时)表示水箱中的剩水量y (吨)13、瓶子或罐头盒等物体常如下图那样堆放,试确定瓶子总数y与层数x之间的关系式.14、一家校办工厂2018年的年产值是15万元,计划从2019年开始,每年增加2万元,请写出年产值(从2017年开始)y(万元)与年数x的函数关系式,并指出自变量的取值范围。

人教版八年级数学下册 第十九章 一次函数 19.1.1 变量与函数 课后练习

人教版八年级数学下册 第十九章 一次函数 19.1.1 变量与函数 课后练习

人教版八年级数学下册 第十九章 一次函数 19.1.1 变量与函数 课后练习一、选择题1.函数y =2x -中的自变量x 的取值范围是( ) A .x >1 B .x ≠2C .x >1且x ≠2D .x ≥1且x ≠22.函数y =x 的取值范围是( )A .0x ≥B .0x >C .1≥xD .1x >3.函数y=x中,自变量x 的取值范围是( ) A .x≤0B .x≥0C .x<1且x≠0D .x≤l 且x≠04.某商贩卖某种水果,出售时在进价的基础上加上一定的利润,其销售数量x 与售价y 的关系如下表,王阿姨想买这种水果6千克,她应付款( )A .27元B .24元C .7元D .26.5元5.如图,李大爷用24米长的篱笆靠墙围成一个矩形()ABCD 菜园,若菜园靠墙的一边()AD 长为x (米),那么菜园的面积y (平方米)与x 的关系式为( )A .(12)2x x y -=B .(12)y x x =-C .(24)2x x y -=D .(24)y x x =-6.若以周长为12长方形的长为自变量x ,宽的长度y 为x 的函数,则它的表达式是( ) A .y=-x+6(0<x <6) B .y=-x+6(0<x≤3) C .y=-2x+12(0<x <6) D .y=-x+6(3<x <6)7.下列各式,不能表示y 是x 的函数的是( )A .23y x =B .1y x=C .y =D .31y x8.变量x 与y 之间的关系是y=﹣12x 2+1,当自变量x=2时,因变量y 的值是( ) A .﹣2B .﹣1C .1D .29.矩形ABCD 的边BC 上有一动点E ,连接AE 、DE ,以AE 、DE 为边作平行四边形AEDF ,设BE=x ,平行四边形AEDF 的面积为y ,则y 与x 之间的关系描述正确的是( )A .y 与x 之间是函数关系,且当x 增大时,y 先增大再减小B .y 与x 之间是函数关系,且当x 增大时,y 先减小再增大C .y 与x 之间是函数关系,且当x 增大时,y 一直保持不变D .y 与x 之间不是函数关系10.假设汽车匀速行驶在高速公路上,那么在下列各量中,变量的个数是( )①行驶速度;②行驶时间;③行驶路程;④汽车油箱中的剩余油量 A .1个 B .2个C .3个D .4个二、填空题11.在函数3123x y x +=+中,自变量x 的取值范围是____. 12.长方形的周长为10cm ,其中一边为xcm (其中0x >),另一边为ycm ,则y 关于x 的函数表达式为__________.13.油箱中有油60升,油从管道中匀速流出,一小时流完,则油箱中剩余油量Q (升)与流出时间t (分钟)之间的函数关系为________________________ , 定义域为_____________ ,当Q=10升时, t=___________ 14.用周长为60m 的篱笆围成矩形场地,则矩形面积S ()2m 关于一边长x (m )之间的函数解析式是 _____ ,其中自变量是_____.15.某人摆苹果地摊,其卖出的苹果质量x 与售价y 的关系如下表:则y 与x 的关系式为____________.三、解答题16.根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量? (2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强? (3)学生对一个新概念的接受能力从什么时间开始逐渐减弱? 17.阅读下面材料并填空.当x 分别取0,1,-1,2,-2,……时,求多项式2x --的值.当0x =时,2x --=______. 当1x =时,2x --=______. 当1x =-时,2x --=______. 当2x =时,2x --=______. 当2x =-时,2x --=______.……以上的求解过程中,______和______都是变化的,是______的变化引起了______的变化.18.某烤鸡店,烤制的时间随鸡的质量的变化而变化,并且烤制的时间y (min )与鸡的质量x (kg )的关系可以用y=40x+20来表示(1)在这变化的过程中,自变量、因变量各是什么? (2)若要烤制3.5kg 的鸡,需要烤制时间是多少? (3)若烤制的试卷是180min ,则烤制的鸡的质量是多少? 19.已知水池中有800立方米的水,每小时抽50立方米.(1)写出剩余水的体积Q (立方米)与时间t (时)之间的函数关系式; (2)6小时后池中还有多少水?(3)几小时后,池中还有200立方米的水?20.在等腰三角形ABC 中,底边BC 长为,y 腰长AB 长为x .若三角形ABC 的周长为12,()1求y 关于x 的函数表达式.()2当腰长比底边的2倍多1时,求x 的值.21.空中的气温()T C 与距地面的高度()h km 有关,某地面气温为26C ,且已知离地面距离每升高1km ,气温下降4C . (1)在这个变化过程中, 是自变量, 是因变量; (2)写出该地空中气温()T C 与高度()h km 之间的关系式; (3)求空中气温为6C -处距地面的高度.22.一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是什么? (3)当t 每增加1秒,v 的变化情况相同吗?在哪个时间段内,v 增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.23.阅读材料:用均值不等式求最值.已知,x y 为非负实数,2220x y +-=+-=≥,x y ∴+≥当且仅当“x y =”时,等号成立,我们把不等式叫做,)00x y x y +≥≥≥均值不等式,利用均值不等式可以求一些函数的最值. 例:己知0x >,求函数22y x x=+的最小值,解:224y x x =+>=,当且仅当22x x =,即1x =时,“=”成立.∴当1x =时,函数有最小值4y =,根据以上材料,解决下列问题: (1)当0x >时,求函数91y x x=++的最小值. (2)若函数()40,0ay x x a x =+>>,当且仅当3x =时取得最小值,求实数a 的值【参考答案】1.D 2.C 3.D 4.A 5.C 6.D 7.C 8.B 9.D 10.C 11.x≠-32. 12.()505y x x =-+<<13.60Q t =- 060t ≤≤ 50 14.()30S x x =- 自变量是x 15.y=2.1x16.(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱17.x , 2x --;x , 2x --.18.(1)鸡的质量是自变量,烤制的时间是因变量;(2)需要烤制的时间是160min ;(3)则烤制的鸡的质量是4kg . 19.(1)Q =800﹣50t ;(2)500立方米;(3)12 20.(1)212y x =-+;(2)5x =21.(1)高度,气温;(2)264T h =-;(3)8h =22.(1)时间与速度;时间;速度;(2)0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)不相同;第9秒时;(4)1秒.23.(1)当3x =时,有函数的最小值7y =;(2)36.。

最新人教版初中八年级数学下册第19章变量与函数 课后同步练习题含答案解析

最新人教版初中八年级数学下册第19章变量与函数 课后同步练习题含答案解析

第十九章 一次函数19.1 函数19.1.1 变量与函数1. 下列说法中,不正确的是( )A.函数不是数,而是一种关系B.多边形的内角和是边数的函数C.一天中时间是温度的函数D.一天中温度是时间的函数 2. 下列各表达式不是表示y 是x 的函数的是( )A. B. C. D. 3. 指出下列事件过程中的常量与变量(1)某水果店橘子的单价为5元/千克,买a 千橘子的总价为m 元,其中常量是 ,变量是 ;(2)周长C 与圆的半径r 之间的关系式是C =2πr ,其中常量是 ,变量是4. 若球体体积为V ,半径为R ,则V = 其中变量是 、 ,常量是 .5. 计划购买50元的乒乓球,所能购买的总数n (个)与单价 a (元)的关系式是 ,其中变量是 ,常量是6. 汽车开始行使时油箱内有油40升,如果每小时耗油5升,则油箱内余油量Q(升)与行使时间t(小时)的关系是 ,其中的常量是 ,变量是 .7. 表格列出了一项实验的统计数据,表示小球从高度x (单位:m )落下时弹跳高度y (单位:m )与下落高的关系,据表可以写出的一个关系式是 .8. 下列关于变量x ,y y =2x +3y =x 2+3y =2|x|;④;⑤y 2-3x =10,其中表示y 是x 的函数关系的是 . 9. 设路程为s ,时间为t ,速度为v ,当v =60时,路程和时间的关系式为 ,这个关系式中, 是常量, 是变量, 是 的函数.10. 油箱中有油30kg,油从管道中匀速流出,1h 流完,则油箱中剩余油量Q (kg )与流出时间t (min )之间的函数关系式是 ,自变量t 的取值范围是 .11. 下列问题中,一个变量是否是另一个变量的函数?如果是,请指出自变量. (1)改变正方形的边长 x ,正方形的面积 S 随之变化;(2)秀水村的耕地面积是106 m 2,这个村人均占有耕地面积 y (单位:m 2)随这个村人数 n 的变化而变化;(3)P 是数轴上的一个动点,它到原点的距离记为 x ,它对应的实数为 y ,y 随 x 的变化而变化.343R π23x y =x y 1=(0)y x x =≥xy 18=y =12. 已知函数 (1)求当x =2,3,-3时,函数的值; (2)求当x 取什么值时,函数的值为0.13. 汽车的油箱中有汽油50L ,如果不再加油,那么油箱中的油量y (单位:L )随行驶里程x (单位:km )的增加而减少,平均耗油量为0.1L/km. (1)写出表示y 与x 的函数关系的式子. (2)指出自变量x 的取值范围;(3)汽车行驶200 km 时,油箱中还有多少油?参考答案: 1. C 2. C3. (1) 5 a ,m (2) 2,π C , r4. V R5. a ,n 506. Q=40-5t 40,5 Q ,t7. y =0.5x8.9. s =60t 60 t 和s s t43,π50n a =130Q t=-42.1x y x -=+10. 11. 解:(1)S 是x 的函数,其中x 是自变量. (2)y 是n 的函数,其中n 是自变量. (3)y 不是x 的函数.12. 解:(1)当x =2时,y = ; 当x =3时,y = ;当x =-3时,y =7. (2)令 解得x = 即当x = 时,y =0. 13. 解:(1) 函数关系式为: y = 50-0.1x(2) 由x ≥0及50-0.1x ≥0 得 0 ≤ x ≤ 500 ∴自变量的取值范围是0 ≤ x ≤ 500(3)当 x = 200时,函数 y 的值为y =50-0.1×200=30. 因此,当汽车行驶200 km 时,油箱中还有油30L.19.1.2函数的图象(1)函数的图象一、选择题1.图中,表示y 是x 的函数图象是()2.如图是护士统计一位病人的体温变化图,这位病人中午12时的体温约为()5242-2=22+1⨯42=01x x -+,1212A.39.0℃B.38.2℃C.38.5℃D.37.8℃3.如图,某游客为爬上3千米的山顶看日出,先用1小时爬了2千米,休息0.5小时后,再用1小时爬上山顶,游客爬山所用时间t(小时)与山高h(千米)间的函数关系用图象表示是()4.你一定知道“乌鸦喝水”的故事吧!一个紧口瓶中盛有一些水,乌鸦想喝,但是嘴够不着瓶中的水,于是乌鸦衔来一些小石子放入瓶中,瓶中水面的高度随石子的增多而上升,乌鸦喝到了水,但是还没解渴,瓶中水面下降到乌鸦够不着的高度,乌鸦只好再去衔些石子放入瓶中,水面又上升,乌鸦终于喝足了水,哇哇地叫着飞走了.如果设衔入瓶中石子的体积为x,瓶中水面的高度为y,下面能大致表示上面故事情节的图象是 ( )二、填空题5.星期日晚饭后,小红从家里出去散步,如图所示,描述了她散步过程中离家的距离s(m)与散步所用的时间t(min)之间的函数关系,该图象反映的过程是:小红从家出发,到了一个公共阅报栏,看了一会报后,继续向前走了一段,在邮亭买了一本杂志,然后回家了.依据图象回答下列问题(1)公共阅报栏离小红家有______米,小红从家走到公共阅报栏用了______分;(2)小红在公共阅报栏看新闻一共用了______分;(3)邮亭离公共阅报栏有______米,小红从公共阅报栏到邮亭用了______分;(4)小红从邮亭走回家用了______分,平均速度是______米/秒.三、解答题6.如图,下面的图象记录了某地一月份的温度随时间变化的情况,请你仔细观察图象回答下面的问题:(1)在这个问题中,变量分别是______,时间的取值范围是______;(2)20时的温度是______℃,温度是0℃的时刻是______时,最暖和的时刻是_______时,温度在-3℃以下的持续时间为______小时;(3)你从图象中还能获得哪些信息?(写出1~2条即可)答:__________________________________________________.7.大家知道,函数图象特征与函数性质之间存在着必然联系.请根据图中的函数图象特征及表中的提示,说出此函数的变化规律.此外,你还能说出此函数的哪些性质?8.(广州育才中学模拟)甲车速度为20米/秒,乙车速度为25米/秒。

人教版八年级下册数学19.1.1变量与函数练习题及答案

人教版八年级下册数学19.1.1变量与函数练习题及答案

19.1.1变量与函数练习题一、单选题1.下列关系式中,y 不是x 的函数的是( )A .31y x =+B .2y x=C .12y x =-D .y x =2.下列关系式中,变量x=-1时,变量y=6的是( ) A .y=3x+3B .y=-3x+3C .y=3x –3D .y=-3x –33.在以x 为自变量, y 为函数的关系式y=5πx 中,常量为( ) A .5B .πC .5πD .πx4.己知两个变量之间的关系满足y=-x+2,则当x=-1时,对应的y 的值( ) A .3B .1C .-1D .-35.长方形的周长是12cm ,期中一条边为x cm(x >0),面积为y cm ²,则这个长方形的面积y 与边长x 的关系可以表示为( ) A .y=(6-x)xB .y=x ²C .y=x(12-x)D .y=2(6-x)6.关于函数y =,下列说法正确的是( ) A .自变量x 的取值范围是5x ≥ B .5x =时, 函数y 的值是0 C .当5x >时,函数y 的值大于0D .A 、B 、C 都不对7.设路程()s km ,速度(/)v km h ,时间t(h),当s 50=时,50t v=.在这个函数关系中( ) A .路程是常量,t 是s 的函数 B .路程是常量,t 是v 的函数 C .路程是常量,v 是t 的函数D .路程是常量,t 是v 的函数8.弹簧挂上物体后会伸长,若一弹簧长度(cm)与所挂物体质量(kg)之间的关系如下表:则下列说法错误..的是( ) A .弹簧长度随物体的质量的变化而变化,物体的质量是自变量,弹簧的长度是因变量B .如果物体的质量为x kg ,那么弹簧的长度y cm 可以表示为y=12+0.5xC .在弹簧能承受的范围内,当物体的质量为7kg 时,弹簧的长度为16cmD .在没挂物体时,弹簧的长度为12cm9.如果一盒圆珠笔有12支,售价18元,用y (元)表示圆珠笔的售价,x 表示圆珠笔的支数,那么y 与x 之间的解析式为( ). A .32y x =B .23y x =C .12y x =D .18=y x10.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧总长y(cm)与所挂重物x(kg)之间的关系式为( )A .y =x +12B .y =0.5x +12C .y =0.5x +10D .y =x +10.5 二、填空题11.在函数y =中, 自变量x 的取值范围是 .12.某等腰三角形的周长是50cm ,底边长是xcm ,腰长是ycm ,则y 与x 之间的关系式是________________.13.函数y=11-+x x 中自变量x 的取值范围是 14.变量y 与x 之间的函数关系式是2112y x =-,则当自变量2x =-时,函数y =_____________. 15.将长为20cm 、宽为8cm 的长方形白纸,按如图所示的方法粘合起来,粘合部分的宽为3cm ,设x 张白纸粘合后的总长度为ycm ,y 与x 之间的关系式为_______.16.小明应用计算机设计了一个计算程序,输入和输出的数据如下表:当输入数据是时,输出的数据是_____.17.汽车开始行驶时,油箱中有油30升,如果每小时耗油4升,那么油箱中的剩余油量y(升)和工作时间x (时)之间的函数关系式是____________;18.若函数y=⎩⎨⎧≤+),2(2),2(22>x x x x 则当函数值y=8时,自变量x 的值等于________.三、解答题19.某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如下表所示(每位乘客的公交票价是固定不变的):(1)在这个变化过程中,______是自变量,______是因变量;(2)观察表中数据可知,每月乘客量达到_______人以上时,该公交车才不会亏损; (3)请你估计当每月乘车人数为3500人时,每月利润为多少元?20.在一次实验中,小英把一根弹簧的上端固定,在其下端悬挂物体,下面是弹簧长度y 与所挂物体质量x 的一组对应值(以下情况均在弹簧所允许范围内)(1)在这个变化过程中,自变量是 ______ ,因变量是 ______ ;(2)当所挂物体重量为3 千克时,弹簧长度为 ______ cm ;不挂重物时,弹簧长度为 ______ cm ; (3)请写出y 与x 的关系式,若所挂重物为7 千克时,弹簧长度是多长?21.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过10吨时,水价为每吨1.2元;超过10吨时,超过部分按每吨1.8元收费,该市某户居民5月份用水吨,应x (10)x >缴水费元.(1)写出与之间的关系式;(2)某户居民若5月份用水16吨,应缴水费多少元?y y x19.1.1变量与函数练习题答案一、单选题1.D 2.B 3.C 4.A 5.A 6.C 7.B 8.C 9.A 10.B 二、填空题11.4x ≥- 12.y =502x-(0<x <25) 13.x ≥-1且x ≠1 14.1 15.y=17x+3 16.55117.y=30-4x 18.-6或4 19.(1)x , y ;(2)观察表中数据可知,每月乘客量达到2000;(3)每月乘车人数为3500人时,每月利润为3000元. 20.(1)自变量是所挂物体的质量,因变量是弹簧的长度;(2)当所挂物体重量为3千克时,弹簧长度为24cm ;不挂重物时,弹簧长度为18cm ;(3)y=2x+18,32 21.(1)依题意有y =1.2×10+(x –10)×1.8=1.8x –6. 所以y 关于x 的函数关系式是y =1.8x –6(x >10);(2)用水16吨,即x =16,代入(1)种关系式可得应缴水费y =1.816–6=22.8.⨯。

人教版八年级数学下《19.1.1变量与函数》练习含答案

人教版八年级数学下《19.1.1变量与函数》练习含答案

《变量与函数》练习一、选择——基础知识运用1.在圆的周长C=2πR中,常量与变量分别是()A.2是常量,C、π、R是变量B.2π是常量,C、R是变量C.C、2是常量,R是变量D.2是常量,C、R是变量2.一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A.x B.h C.V D.x、h、V均为变量3.设路程s,速度v,时间t,在关系式s=vt中,说法正确的是()A.当s一定时,v是常量,t是变量B.当v一定时,t是常量,s是变量C.当t一定时,t是常量,s,v是变量D.当t一定时,s是常量,v是变量4.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:①a是常量时,y是变量;②a是变量时,y是常量;③a是变量时,y也是变量;④a,y可以都是常量或都是变量。

上述判断正确的有()A.1个B.2个C.3个D.4个5.已知y与x之间有下列关系:y=x2-1.显然,当x=1时,y=0;当x=2时,y=3。

在这个等式中()A.x是变量,y是常量B.x是变量,y是常量C.x是常量,y是变量D.x是变量,y是变量二、解答——知识提高运用6.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是,变量是。

7.汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt。

如果汽车以每时60km 的速度行驶,那么在s=vt中,变量是,常量是;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是,常量是;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是,常量是。

8.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐。

潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,h表示水深。

上述问题中,字母T,h表示的是变量还是常量,简述你的理由。

9.写出下列各问题中的关系式中的常量与变量:(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s=40t。

人教版八年级数学下册19.1.1《变量与函数(2) 》习题含答案

人教版八年级数学下册19.1.1《变量与函数(2) 》习题含答案

19.1.1 变量与函数第2课时《函数》习题含答案1、下列各式中,y 不是x 的函数的是( )A 、521-=x y B 、x y 2= C 、x y 253=+ D 、822+=x y 2、根据如图所示程序计算函数值,若输入x 的值为52,则输出的函数值为( )第2题图A 、32B 、25C 、425D 、2543、汽车由北京驶往相距120千米的天津,它的平均速度是30千米/时,则汽车距天津的路程s (千米)与行驶时间t 的函数关系式及自变量的取值范围为( )A 、s=120-30t(0≤t ≤4)B 、s=30t(0≤t ≤4)C 、s=120-30t(t>0)D 、3=30t(t=4)4、已知函数y =2x +5,当自变量x 增加m 时,相应的函数值增加( )A 、2m+1B 、2mC 、mD 、2m-15、小强想给爷爷买双鞋,爷爷说他的脚长25.5cm ,若用x(cm)表示脚长,用y(码)表示鞋码,则有2x -y =10,根据上述关系式,小强应给爷爷买________码的鞋.6、写出自变量的取值范围(1)在函数y =2x -3中,自变量x 的取值范围是________________;(2)在函数y =31-x中,自变量x 的取值范围是________________; (3)在函数y =4-x 中,自变量x 的取值范围是________________;(4)在函数y =x -1x -2中,自变量x 的取值范围是________________. 7、直角三角形的一个锐角的度数y 与另一锐角的度数x 之间的函数关系为____________,则x 的取值范围为____________.8、已知函数y=2x2-1.(1)求出当x=2时的函数值;(2)求出当y=3时x的值.9、箱内原有水200升,7:30打开水龙头,以2升/分的速度放水,设经t分钟时,水箱内存水y升.(1)求y关于t的函数关系式和自变量的取值范围;(2)7:55时,水箱内还有多少水?(3)几点几分水箱内的水恰好放完?10、某学校组织学生到离校6km的光明科技馆去参观,学生小明因事没能乘上学校的包车,于是准备在学校门口改乘出租车去光明科技馆,出租车的收费标准如下表:(1)写出出租车行驶的路程x(x≥3)与收费y(元)之间的函数关系式;(2)小明身上有14元钱,乘出租车到科技馆的车费够不够?请说理由.参考答案1、D2、B3、A4、B5、416、(1)全体实数;(2)x≠1;(3)x≤4;(4)x≥1且x≠2.7、y=90-x,0<x<908、当x=2时y=7,当y=3时x=29、(1)∵水箱内存有的水=原有水-放掉的水,∴y=200-2t.∵y≥0,∴200-2t≥0,解得t≤100,∴0≤t≤100,∴y关于t的函数关系式为y=200-2t(0≤t≤100);(2)∵7:55-7:30=25(分钟),∴当t=25分钟时,y=200-2t=200-50=150(升),∴7:55时,水箱内还有水150升;(3)当y=0时,200-2t=0,解得t=100,而100分钟=1小时40分钟,7点30分+1小时40分钟=9点10分,故9点10分水箱内的水恰好放完.10、(1)y=8+1.8(x-3)=1.8x+2.6(x≥3)(2)当x=6时,y=13.4<14,车费够.。

新人教版八年级下《19.1.1变量与函数》课时练习含答案

新人教版八年级下《19.1.1变量与函数》课时练习含答案

14.某蓄水池的横断面示意图如图,分深水区和浅水区,如果这个注满水的蓄水池以固定的流量把水全部放出.下
面的图象能大致表示水的深度 h 和放水时间t 之间的关系的是( )
h
h
h
h
h
答案:A 知识点:函数的图像
O
tO
tO
tO
t
A.
B.
C.
D.
后,因怕耽误了上课,他比修车前加快了骑车的速度,下面四幅图中最能反映小明这段行程的是(

s
s
s
s
O A
t
O
B
t O C
t O D
t
答案:C 知识点:函数的图像
解析: 解答:开始的时候,小明速度不变,也就是直线的倾斜度不变;行驶至途中,车子因为故障停止前进,所以路程不
变,时间继续增加,因此这段过程应该是水平线;第三段加快速度,意味着直线倾斜度变大.综合看三段过程,整 个过程分为三个阶段,其中还有一段是水平的,所以应该选则 C 答案. 分析:这类函数图像问题,要注意横纵坐标的比值表示速度,速度变大直线变陡,速度变小直线变平.若是停止运
0,
1 3
-1,所以在函数图像上的有①③
分析:将 x 取相应的值,代入函数表达式,若 y 值与对应点的纵坐标一致,则该点在函数图像上;反之,则不在函
数图像上 5.下列给出的四个点中,在函数y=3x+1的图像上的是( ) A.(1,4) B.(0,-1) C.(2,-7) D.(-1,2)
答案:A
知识点:函数的图像
答案:A 知识点:函数自变量的取值范围 解析:
解答:二次根式有意义的条件是根号下被开方数非负,所以 x+2≥0,即 x≥ 2

2021年人教版数学八年级下册19.1.1《变量与函数》精选练习 (含答案)

2021年人教版数学八年级下册19.1.1《变量与函数》精选练习 (含答案)

19.1.1《变量与函数》精选练习一、选择题1.小军用50元钱买单价为8元的笔记本,他剩余的钱数Q(元)与他买这种笔记本的本数x之间的关系式为Q=50-8x,则下列说法正确的是( )A.Q和x是变量B.Q是自变量C.50和x是常量D.x是Q的函数2.函数中自变量的取值范围是()A. B. C. D.3.函数y=+x-2的自变量x的取值范围是( )A.x≥2B.x>2C.x≠2D.x≤24.根据科学研究表明,在弹簧的承受范围内,弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的重量x(kg)间有下表的关系:下列说法不正确的是( )A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.随着所挂物体的重量增加,弹簧长度逐渐边长D.所挂物体的重量每增加1kg,弹簧长度增加0.5cm5.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系,下列说法不正确的是()A.弹簧不挂重物时的长度为0cmB.x与y都是变量,且x是自变量,y是因变量C.物体质量每增加1 kg,弹簧长度y增加0.5cmD.所挂物体质量为7 kg时,弹簧长度为23.5cm6.在实验课上,小亮利用同一块木板测得小车从不同高度(h)与下滑的时间(t)的关系如下表:以下结论错误的是()A.当h=40时,t约2.66秒B.随高度增加,下滑时间越来越短C.估计当h=80cm时,t一定小于2.56秒D.高度每增加了10cm,时间就会减少0.24秒7.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:下列说法不正确的是()A.x与y都是变量,且x是自变量,y是因变量B.弹簧不挂重物时的长度为0 cmC.物体质量每增加1 kg,弹簧长度y增加0.5 cmD.所挂物体质量为7 kg时,弹簧长度为13.5 cm8.如图,某工厂有甲、乙两个大小相同的蓄水池,且中间有管道连通,现要向甲池中注水,若单位时间内的注水量不变,那么从注水开始,乙水池水面上升的高度h与注水时间t之间的函数关系图象可能是( )A. B. C. D.9.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道长度为750米.其中正确的结论是( )A.①②B.③④C.②③D.①④10.某蓄水池的横断面示意图如图,如果这个注满水的蓄水池以固定的流量把水全部放出.下面的图象能大致表示水的深度h和放水时间t之间的关系的是()A. B. C. D.11.小芳在本学期的体育测试中,1分钟跳绳获得了满分,她的“满分秘籍”如下:前20秒由于体力好,小芳速度均匀增加,20秒至50秒保持跳绳速度不变,后10秒进行冲刺,速度再次均匀增加,最终获得满分,反映小芳1分钟内跳绳速度y(个/秒)与时间t(秒)关系的函数图象大致为()A. B.C. D.12.星期六早晨蕊蕊妈妈从家里出发去观山湖公园锻炼,她连续、匀速走了60min后回家,图中的折线段OA﹣AB﹣BC是她出发后所在位置离家的距离s(km)与行走时间t(min)之间的函数关系,则下列图形中可以大致描述蕊蕊妈妈行走的路线是()A. B. C. D.二、填空题13.某水果店卖出的香蕉数量(千克)与售价(元)之间的关系如表:上表反映了两个变量之间的关系,其中,自变量是香蕉数量;因变量是售价 .14.直角三角形两锐角的度数分别为x,y,其表达式为y=90-x,其中变量为__________,常量为__________.15.使式子有意义的x的取值范围是_____.16.已知函数y=x2-9,当x=5时,y=_______;反之,当y=16时,x=______.17.某商店进了一批货,每件3元,出售时每件加价0.5元,如售出x件应收入货款y元,那么y(元)与x(件)的函数表达式是_________________.18.关于x,y的关系式:(1)y-x=0;(2)x=2y;(3)y2=2x;(4)y-x2=x,其中y是x的函数的是 .三、解答题19.如图表示一辆汽车在行驶途中的速度v(千米/时)随时间t(分)的变化示意图:(1)从点A到点B、点E到点F、点G到点H分别表明汽车在什么状态?(2)分段描述汽车在第0分种到第28分钟的行驶情况;(3)汽车在点A的速度是多少?在点C呢?20.如图表示的是汽车在行驶的过程中,速度随时间变化而变化的情况.(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在那些时间段保持匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.21.小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y (m)与各自离开出发地的时间x(min)之间的函数图象如图所示(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;(3)求两人相遇的时间.22.在如图所示的三个函数图象中,有两个函数图象能近似地刻画如下a,b两个情境:情境a:小芳离开家不久,发现把作业本忘在家里,于是返回了家里找到了作业本再去学校;情境b:小芳从家出发,走了一段路程后,为了赶时间,以更快的速度前进.(1)情境a,b所对应的函数图象分别是、(填写序号);(2)请你为剩下的函数图象写出一个适合的情境.23.心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分)之间有如下关系(其中0≤x≤30).(1)上表中反映了哪两个变量之间的关系?那个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表格中可知,当提出概念所用时间x在什么范围内,学生的接受能力逐步增强?当提出概念所用时间x在什么范围内,学生的接受能力逐步降低?(4)根据表格大致估计当提出概念所用时间为23分钟时,学生对概念的接受能力是多少. 24.父亲告诉小明:“距离地面越高,温度越低,”并给小明出示了下面的表格。

(附答案解析)人教版八年级数学下册19.1.1 变量与函数(2))精选同步练习

(附答案解析)人教版八年级数学下册19.1.1 变量与函数(2))精选同步练习

19.1.1 变量与函数(2)同步练习班级__________姓名____________总分___________本节应掌握和应用的知识点1.在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说x是自变量,y是x的函数.2.如果当x=a时y=b,那么b叫做当自变量的值为a时的函数值.3.确定自变量的取值范围时,既要考虑函数关系式有意义,还要注意问题的实际意义.基础知识和能力拓展精练一、选择题1.下列曲线中表示y是x的函数的是()A. B. C. D.2.下列对函数的认识正确的是()A. 若y是x的函数,那么x也是y的函数B. 两个变量之间的函数关系一定能用数学式子表达C. 若y是x的函数,则当y取一个值时,一定有唯一的x值与它对应D. 一个人的身高也可以看作他年龄的函数3.下列函数中,自变量x的取值范围为1x<的是()A.11yx=-B.11yx=- C. 1y x=- D.11yx=-4.下列式子中的y不是x的函数的是()A. y=-2x-3B. y=-C. y=±D. y=x+15.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为()A. y =x +2B. y =x 2+2 C. y =D. y =6.函数y=1x -中,自变量x 的取值范围是( ) A. x≥1 B. x≤1 C. x >1 D. x≠1 7.已知函数2x 1y x 2-=+,当x 3=时,y 的值为() A. 1 B. 1- C. 2- D. 3-8.根据如图的程序,计算当输入x=3时,输出的结果y=()A. 2B. 3C. 4D. 59.一个长方体的体积为12 cm 3,当底面积不变,高增大时,长方体的体积发生变化,若底面积不变,高变为原来的3倍,则体积变为( ) A. 12 cm 3B. 24 cm 3C. 36 cm 3D. 48 cm 3二、填空题10.下列是关于变量 x 与 y 的八个关系式:① y = x ;② y2 = x ;③ 2x2 − y = 0;④ 2x − y2 = 0;⑤ y = x3 ;⑥ y = ∣x ∣;⑦ x = ∣y ∣;⑧ x =.其中 y 不是 x 的函数的有___________________________.(填序号)11.关于x ,y 的关系式:(1)y-x=0;(2)x=2y ;(3)y 2=2x ;(4)y-x 2=x ,其中y 是x 的函数的是_____________________12.如图是济南市8月2日的气温随时间变化的图象,根据图象可知:在这一天中,气温T(℃)____(填“是”或“不是”)时间t (时)的函数.13.等腰三角形的顶角y 与底角x 之间是函数关系吗?_________(是或不是中选择)14.在函数y=+中,自变量x的取值范围是_______.15.已知函数y=x2-x+2,当x=2时,函数值y=_____;已知函数y=3x2,当x=______时,函数值y=12.16.某人乘雪橇沿如图所示的斜坡笔直下滑,滑下的距离s(m)与时间t(s)之间的关系式是s =t2+10t.若下滑的时间为2s,则此人下滑的高度是_______m.三、解答题17.如图,下列各曲线中哪些能够表示y是x的函数?你能说出其中的道理吗?18.在等腰△ABC中,底角x为(单位:度),顶角y(单位:度).(1)写出y与x的函数解析式;(2)求自变量x的取值范围.19.在国内投寄平信应付邮资如下表:信件质量x(克)0<x≤200<x≤400<x≤60邮资y(元)0.80 1.60 2.40①y是x的函数吗?为什么?②分别求当x=5,10,30,50时的函数值.20.下表是丽丽往姥姥家打长途电话的几次收费记录:时间(分) 1 2 3 4 5 6 7电话费(元) 0.6 1.2 1.8 2.4 3.0 3.6 4.2(1)如果用x表示时间,y表示电话费,上表反映了哪两个变量之间的关系?哪个是自变量?哪个是函数,请用式子表示它们的关系;(2)随x的变化,y的变化趋势是什么?(3)丽丽打了5分钟电话,那么电话费需付多少元?(4)你能帮丽丽预测一下,如果打10分钟的电话,需付多少元话费?21.下列关系哪些表示函数关系?(1)在一定的时间t内,匀速运动所走的路程s和速度v;(2)在平静的湖面上,投入一粒石子,泛起的波纹的周长L与半径r;(3)正方形的面积S和梯形的面积S′;(4)圆的面积S和它的周长C.答案与解析1.C【解析】函数表示一个变化过程中两个变量的对应关系,对于自变量x的每个值,函数y都有唯一的值与它对应,由此可得B是正确的.故答案为:C.点睛:本题是函数的概念、函数的图象、反比例函数的意义的考查,根据函数的意义可知,函数表示一个变化过程中两个变量的对应关系,对于自变量x的每个值,函数y都有唯一的值与它对应,由此可得结果.2.D【解析】满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D正确;所以D选项是正确的.点睛:根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.3.D【解析】A项,因为1-x位于分母上,则1-x≠0,则该函数自变量x的取值范围为x≠1。

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题(含答案)

人教版八年级数学下册第十九章19.1.1变量与函数同步练习题一、选择题1.在圆的面积公式S =πr 2中,常量是(B )A .SB .πC .rD .S 和r2.小王计划用100元钱买乒乓球,所购买乒乓球的个数W(单位:个)与单价n(单位:元/个)的关系式W =100n 中(A )A .100是常量,W ,n 是变量B .100,W 是常量,n 是变量C .100,n 是常量,W 是变量D .无法确定3.小邢到单位附近的加油站加油,如图是小邢所用的加油机上的数据显示牌,则数据中的变量是(D )A .金额B .数量C .单价D .金额和数量4.一个长方形的面积是10 cm 2,其长是a cm 2,宽是b cm 2,下列判断错误的是(B )A .10是常量B .10是变量C .b 是变量D .a 是变量5.下列关系式中,y 是x 的函数的是(B )A .2x =y 2B .y =3x -1C .||y =23xD .y 2=3x -56.下列变量间的关系不是函数关系的是(C )A.长方形的宽一定,其长与面积B.正方形的周长与面积C.等腰三角形的底边长与面积D.圆的周长与半径7.已知两个变量之间的函数关系式为y=-x+2,则当x=-1时,对应的y的值为(B)A.1 B.3C.-1 D.-38.在函数y=1x+3+4-x中,自变量x的取值范围是(D)A.x<4 B.x≥4且x≠-3C.x>4 D.x≤4且x≠-39.若等腰三角形的周长为60 cm,底边长为x cm,一腰长为y cm,则y关于x的函数解析式及自变量x的取值范围是(D)A.y=60-2x(0<x<60)B.y=60-2x(0<x<30)C.y=12(60-x)(0<x<60)D.y=12(60-x)(0<x<30)10.根据如图所示的程序计算函数y的值,若输入x的值是7,则输出y的值是-2,若输入x的值是-8,则输出y的值是(C)A .5B .10C .19D .2111.函数y =2x -4的自变量x 的取值范围是(D )A .x <2B .x ≤2C .x >2D .x ≥2二、填空题12.如图,圆锥的底面半径r =2 cm ,当圆锥的高h 由小到大变化时,圆锥的体积V 也随之发生了变化,在这个变化过程中,变量是V ,h(圆锥体积公式:V =13πr 2h).13.某地某一时刻的地面温度为10 ℃,高度每增加1 km ,温度下降4 ℃,则有下列说法:①10 ℃是常量;②高度是变量;③温度是变量;④该地某一高度这一时刻的温度y(℃)与高度x(km )的关系式为y =10-4x.其中正确的是(D )A .①②③B .②③④C .①③④D .①②③④14.n 边形的内角和α°的公式是α=(n -2)·180,其中变量是n ,α,常量是2,180.15.用黑、白两种颜色的正六边形地板砖镶嵌成若干图案(如图),则第n 个图案中白色地板砖的总块数N(块)与n 之间的关系式是N =4n +2,其中常量是4,2,变量是N ,n .16.若92号汽油的售价为6.8元/升,则付款金额y(元)随加油数量x(升)的变化而变化,其中,x是自变量,y是x的函数,其解析式为y=6.8x.17.函数y=1x-6中,自变量x的取值范围是x≠6.18.某公交车每月的利润y(元)与乘客人数x(人)之间的函数关系式为y=2.5x -6 000,该公交车为使每月不亏损,则每月乘客量x应满足的条件是x≥2__400且x为整数.19.对于函数y=6xx+3,当y=2时,x=32.20.若物体运动的路程s(米)与时间t(秒)的函数关系式为s=3t2+2t+1,则当t=4秒时,该物体运动的路程为57米.21.函数y=x+2x中,自变量x的取值范围是x≥-2且x≠0.22.函数y=x-2+(x-3)0中,自变量x的取值范围是x≥2且x≠3.三、解答题23.写出下列问题中的变量和常量:(1)购买单价为5元的钢笔n支,共花去y元;(2)全班50名同学,有a名男同学,b名女同学;(3)汽车以60 km/h的速度行驶了t h,所走过的路程为s km.解:(1)y,n是变量,5是常量.(2)a,b是变量,50是常量.(3)s,t是变量,60是常量.24.如图,已知m∥n,直线m,n之间的距离是3,△ABC的顶点A在直线m上,边BC在直线n上,设BC边的长为x,△ABC的面积为S,请用含x的式子表示S,并指出式子中的常量与变量.解:S=12×3x=32x.常量:3 2;变量:S,x.25.已知水池中有800立方米的水,每小时抽水50立方米.(1)写出剩余水的体积Q(立方米)与时间t(小时)之间的函数解析式;(2)写出自变量t的取值范围;(3)10小时后,池中还有多少水?解:(1)Q=800-50t.(2)令y=0,则0=800-50t,解得t=16.∴0≤t≤16.(3)当t=10时,Q=800-50×10=300.答:10小时后,池中还有300立方米水.。

人教版八年级数学下册 变量与函数同步练习卷(含解析)

人教版八年级数学下册 变量与函数同步练习卷(含解析)

人教版八年级下册:19.1 函数 同步练习卷一、选择题1.小李驾车以70km/h 的速度行驶时,他所走的路程()km s 与时间()h t 之间可用公式70s t =来表示,则下列说法正确的是( ) A .数70和s ,t 都是变量 B .s 是常量,数70和t 是变量 C .数70是常量,s 和t 是变量D .t 是常量,数70和s 是变量2.函数2y x =-的自变量x 的取值范围是( ) A .2x ≠B .2x <C .2x >D .2x ≥3.下列关系式中y 不是x 的函数是( ) A .()0y x x =±> B .()20y x x =-> C .2yxD .()()20y x x =>4.当2x =时,函数的21y x =-+值是( ) A .2B .2-C .12D .12-5.刘老师每天从家去学校上班行走的路程为1200米,某天他从家去学校上班时以每分钟40米的速度行走了前半程,为了不迟到他加快了速度,以每分钟50米的速度行走完了剩下的路程,那么刘老师距离学校的路程y (米)与他行走的时间t (分)(15t >)之间的函数关系为( ) A .501350y t =-+ B .50150y t =- C .401350y t =-+D .101350y t =-+6.如图所示能表示y 是x 的函数是( )A .B .C .D .7.下列关系不是函数关系的是 ( ) A .长方形的宽一定时,它的长与面积. B .正方形的周长与面积.D.等腰三角形顶角的度数与底角的度数.8.点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩y cm,下列说法正确的有()A.蜡烛每分钟燃烧0.6cmB.y与x的关系式为y=22﹣4xC.第23分钟时,蜡烛还剩12.8cmD.第51分钟时,蜡烛燃尽9.小明的父亲饭后出去散步,从家中走20min到一个离家900m的报亭看10min报纸后.用15min返回家里,图中表示小明父亲离家的时间与距离之间的关系是()A.B.C.D.10.甲、乙两地之间是一条直路,在全民健身活动中,王强跑步从甲地往乙地,李刚骑自行车从乙地往甲地,两人同时出发,李刚先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发0.5小时后相遇B.李刚到达目的地时两人相距8kmC.甲乙两地相距12kmD.王强比李刚晚0.75h到达目的地11.对于圆的周长公式c=2πr,其中自变量是______,因变量是______.12.在男子1000米的长跑中,运动员的平均速度v=1000,则这个关系式中自变量是___.t13.等边三角形的边长为x,此三角形的面积S表示成x的函数为______.14.校园里栽下一棵小树高1.8m,以后每年长0.4m,则n年后的树高L与年数n之间的关系式为______.15.已知A,B两地相距80km,甲、乙两人沿同一条公路从A地出发到B地,乙骑自行车,甲骑摩托车.图中DE,OC分别表示甲、乙离开A地的路程s(km)与时间(h)的函数关系的图象,则甲与乙的速度之差为______,甲出发后经过______小时追上乙.16.今年“五一”节,小明外出爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用时间为t(分钟),所走的路程为s(米),s与t之间的函数关系如图所示,则下列说法中正确的序号为______.①小明中途休息用了20分钟;②小明休息前爬山的平均速度为每分钟70米/分钟;③小明在上述过程中所走的路程为6600米;④小明休息前爬山的平均速度大于休息后爬山的平均速度三、解答题17.科学家认为二氧化碳2CO的释放量越来越多是全球变暖的原因之一.下表1950~1990年全世界所()释放的二氧化碳量:年份1950 1960 1970 1980 1990CO释放量/百万吨6002 9475 14989 19287 22588 2(2)说一说这两个变量之间的关系.18.如图所示,一个四棱柱的底面是一个边长为10cm 的正方形,它的高变化时,棱柱的体积也随着变化. ①在这个变化中,自变量、因变量分别是______、______;②如果高为()cm h 时,体积为()3cm V ,则V 与h 的关系为______;③当高为5cm 时,棱柱的体积是______;④棱柱的高由1cm 变化到10cm 时,它的体积由______变化到______.19.周末,小明坐公交车到滨海公园游玩,他从家出发0.8小时候达到中心书城,逗留一段时间后继续坐公交车到滨海公园,小明离家一段时间后,爸爸驾车沿相同的路线前往海滨公园,如图是他们离家路程()km s 与小明离家时间()h t 的关系图,请根据图回答下列问题:(1)图中自变量是____________,因变量是____________; (2)小明家到滨海公园的路程为______________km ;(3)小明从家出发____________小时后爸爸驾车出发,爸爸驾车经过_____________小时追上小明.20.心理学家发现,学生对概念的接受能力y 与提出概念所用的时间x (单位:分)之间有如下关系:提出概念所用时间257101213141720()x对概念的接受能力47.853.556.359.059.859.959.858.355.0()y(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当提出概念所用时间是7分钟时,学生的接受能力是多少?(3)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(4)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?21.小华骑自行车上学,当他骑了一段路时,想起要买本书,于是又这回到刚经过的某书店,买到书后继续去学校,以下是他本次上学所用的时间与离家距离的关系示意图,根据图中提供的信息回答下列问题:(1)小华家到学校的路程是______m,小华在书店停留了_____min.(2)在整个上学的途中哪个时间段小华的骑车速度最快?最快的速度是多少?(3)本次上学途中,小华一共骑行了多少米?(4)如果小华到校后立刻以300m/min的速度回家,请在原图上画出小华回家所用时间与离家距离的关系图象.22.甲、乙两车分别从B,A两地同时出发,甲车匀速前往A地;乙车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;设甲、乙两车距A地的路程为y(千米),乙车行驶的时间为x(时),y(1)求乙车从B地到达A地的速度;(2)求乙车到达B地时甲车距A地的路程;(3)求乙车返回前甲、乙两车相距40千米时,乙车行驶的时间.参考答案1.C根据常量和变量的定义(在某一变化过程中,数值发生变化的量称为变量,数值始终不变的量称为常量)即可得. 【详解】解:在70s t =中,数70是常量,s 和t 是变量, 故选:C . 【点睛】本题考查了常量和变量,熟记定义是解题关键. 2.D 【解析】 【分析】根据二次根式有意义的条件求解即可. 【详解】 解:∵20x -≥ ∴2x ≥ 故选D 【点睛】本题考查了二次根式有意义的条件,函数的定义,掌握二次根式有意义的条件是解题的关键. 3.A 【解析】 【分析】根据函数的定义逐项分析即可. 【详解】在选项B,C,D 中,每给x 一个值,y 都有1个值与它对应,所以B,C,D 中y 是x 的函数, 在A 中,给x 一个正值,y 有2个值与之对应,所以y 不是x 的函数. 故选A 【点睛】本题考查了函数的定义,掌握函数的定义是解题的关键.一般的,在一个变化过程中,假设有两个变量x 、y ,如果对于任意一个x 都有唯一确定的一个y 和它对应,那么就称x 是自变量,y 是x 的函数. 4.B将2x=代入函数解析式即可求得.【详解】当2x=时,21yx=-+2221-+==-故选B【点睛】本题考查了已知自变量的值,求函数的值,正确的计算是解题的关键.5.A【解析】【分析】由题意可得前半程所需时间为15分钟,则剩下路程所需时间为(t﹣15)分,再由1200﹣y=600+50(t ﹣15),可求函数关系式.【详解】解:∵以每分钟40米的速度行走了前半程,∴以每分钟40米的速度行走了600米,∴600÷40=15(分),∴剩下路程所需时间为(t﹣15)分,∴1200﹣y=600+50(t﹣15),整理得y=﹣50t+1350,故选:A.【点睛】本题考查函数关系式,能够通过题中条件获取信息,并能将所得信息转化为数学关系式是解题的关键.6.D【解析】【分析】对于自变量的每一个确定的值,函数值有且只有一个值与之对应,根据函数的概念即可求出答案.【详解】根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以能表示y是x的函数是:.故选:D.【点评】本题主要考查了函数的概念.函数的意义反映在图象上简单的判断方法是:作垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.7.C【解析】【分析】根据函数的概念可直接进行排除选项.【详解】长方形的面积=长×宽,当宽一定时,它的长与面积成函数关系故A正确;正方形面积=正方形的周长的平方的十六分之一,故B正确;等腰三角形的面积=底边长×底边上的高×0.5,当底边上的高不确定时,等腰三角形的底边长与面积不成函数关系,故C不正确;等腰三角形顶角的度数是180与底角的度数2倍的差,等腰三角形顶角的度数与底角的度数成函数关系,故D正确.故选C.【点睛】本题主要考查函数的概念,熟记掌握函数的概念是解题的关键.8.C【解析】【分析】根据题意可得这根蜡烛总长度是22cm,燃烧10分钟后变短了4cm,可得每分钟燃烧410cm,据此可得各选项答案.【详解】解:A、燃烧10分钟后变短了4cm,可得每分钟燃烧4100.4cm,故不正确,不合题意;B、点燃的蜡烛每分钟燃烧的长度一定,长22cm的蜡烛,点燃10分钟,变短了4cm,设点燃x分钟后,还剩C、第23分钟时,蜡烛还剩y=22﹣0.4×23=12.8cm,故正确,符合题意;D、第51分钟时,蜡烛还剩y=22﹣0.4×51=1.6cm,故不正确,不合题意;故选:C.【点睛】本题主要考查一次函数的应用,解答本题的关键是明确题意,求出相应的函数关系式,利用函数解析式解答问题.9.D【解析】【分析】根据函数图象的横坐标,可得时间,根据函数图象的纵坐标,可得离家的距离.【详解】解:20分钟到报亭离家的距离随时间的增加而增加;看报10分钟,离家的距离不变;15分钟回家离家的距离随时间的增加而减少,故D选项符合题意.故选:D【点睛】本题考查了函数图象,根据横轴和纵轴表示的量,得出时间与离家距离的关系是解题关键.10.B【解析】【分析】根据图象可得两地之间的距离,再分别算出两人的行进速度,据此可得各项数据进而判断各选项.【详解】解:由图可知:当时间为0h时,两人相距12km,即甲乙两地相距12km,故C不符合题意.当时间为0.5h时,甲乙两人之间距离为0,即此时两人相遇,故A不符合题意;∵李刚比王强先到目的地,∴王强全程花费的时间为1.5h,∴王强的速度为12÷1.5=8km/h,∵12÷0.5=24km/h,∴李刚的速度为16km/h,∴李刚到达目的地时两人相距0.75×8=6km,王强比李刚晚0.75h到达目的地,故B选项符合题意,D选项不符合题意;故选B.【点睛】本题考查了动点问题的函数图象,解题时要充分理解题意,读懂函数图象的意义.11.r c【解析】【详解】试题解析:∵圆的周长随着圆的半径的变化而变化,∴对于圆的周长公式2πC r=,其中自变量是r,因变量是C.故答案为,.r C12.t【解析】【分析】分析:根据函数的定义:设x和y是两个变量,对于x的每一个值,y都有唯一确定的值和它对应,我们就说y是x的函数,其中x是自变量.据此解答即可.【详解】解:在男子1000米的长跑中,运动员的平均速度v=1000t,则这个关系式中自变量是t,故答案为:t.【点睛】本题考查了函数的定义,理解掌握函数的定义是解体的关键.13.2=S【解析】【分析】作出三角形的高,利用直角三角形的性质及勾股定理可求得高,那么三角形的面积=12×底×高,把相关数值代入即可求解.【详解】解:如图,ABC为等边三角形,边长为x,作AD⊥BC于点D,则∠ADB=90°,∵ABC 为等边三角形 ∴BD =CD =12BC =12x在Rt △ABD 中,∠ADB =90°,AB =x ,BD =12x ∴223AD AB BD x =- ∴2113322S BC AD x =⨯⋅⋅==,∴S 表示成x 的函数为23=S x . 故答案为:23=S x . 【点睛】本题考查三角形的面积的求法,找到等边三角形一边上的高是重点. 14.L =0.4n +1.8 【解析】 【分析】由小树每年长0.4m,则n 年长0.4n m,再由栽下时小树高1.8 m,据此求解即可. 【详解】解:∵每年长0.4m ∴n 年长0.4n m ∵栽下时小树高1.8 m∴n 年后的树高L 与年数n 之间的关系式为 L =0.4n +1.8. 故答案为: L =0.4n +1.8. 【点睛】本题主要考查了列函数关系式,正确理解题意是解题的关键 15.1003km /h 1.8 【解析】 【分析】根据题意和函数图象中的数据可以计算出甲乙的速度,从而可以解答本题.解:由题意和图象可得,乙到达B 地时甲距A 地120km , 甲的速度是:120÷(3-1)=60km /h , 乙的速度是:80÷3=803km /h , ∴甲与乙的速度之差为60-803=1003km /h , 设乙出发后被甲追上的时间为x h , ∴60(x -1)=803x ,解得x =1.8, 故答案为:1003km /h ,1.8. 【点睛】本题考查函数的图象,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答. 16.①②④ 【解析】 【分析】根据函数图象可知,小明40分钟爬山2800米,40~60分钟休息,60~100分钟爬山(3800−2800)米,爬山的总路程为3800米,根据路程、速度、时间之间的关系进行解答即可. 【详解】解:小明中途休息用了60−40=20分钟,故①正确;小明休息前爬山的速度为2800÷40=70(米/分钟),故②正确; 小明在上述过程中所走的路程为3800米,故③错误;小明休息前爬山的速度为2800÷40=70(米/分钟),小明休息后爬山的速度是(3800−2800)÷(100−60)=25(米/分钟),小明休息前爬山的平均速度大于休息后爬山的平均速度,故④正确; 故答案为:①②④. 【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 17.(1)2CO 释放量与年份;(2)2CO 释放量的随着年份的增加而增大 【解析】 【分析】(1)分别根据变量、因变量的定义分别得出即可; (2)根据图表分析得出答案.解:(1)上标反映的是2CO 释放量与年份之间的关系; (2)2CO 释放量的随着年份的增加而增大. 【点睛】本题考查了常量与变量的定义以及利用图表得出正确方案等知识,利用图表获取正确数据是解题关键.18.①高、棱柱的体积;②100V h =;③3500cm ;④3100cm ,31000cm 【解析】 【分析】①在这个变化中,棱柱的体积随着高的变化而变化可知自变量、因变量; ②根据棱柱的体积公式:h V S =可得答案;③利用待定系数法把高为5cm 代入函数关系式即可;④利用待定系数法把高为1cm 代入函数关系式,高为10cm 代入函数关系式计算即可. 【详解】解:∵棱柱的体积=底面积×高, ∴长方体的体积随着高的变化而变化,①在这个变化中,自变量、因变量分别是高、棱柱体积, 故答案为:高、棱柱体积; ②由题意得:1010100V h h =⨯⋅=, 故答案为:100V h =; ③由②得31005=500cm V =⨯, 故答案为:3500cm ; ④∵100V h =, ∴V 随h 的增大而增大,∴当1cm h =,3100cm V =,当10cm h =,31000cm V =∴棱柱的高由1cm 变化到10cm 时,它的体积由3100cm 变化到31000cm , 故答案为:3100cm ,31000cm 【点睛】本题主要考查了因变量和自变量,求因变量,函数关系式等,熟练掌握棱柱的体积公式是解题的关键. 19.(1)时间t ; 离家路程s (2)30(3)2.5;23【解析】 【分析】(1)根据图象进行判断,即可得出自变量与因变量; (2)根据图象中数据即可得到路程;(3)根据图象直接可得到爸爸驾车出发的时间;先算出小明坐公交车到滨海公园的平均速度和爸爸驾车的平均速度,设爸爸出发后x h 追上小明,根据在x 这段时间内,爸爸通过的路程比小明乘公交车通过的路程多12km 列出方程,解方程即可. (1)由图可得,自变量是时间t ,因变量是离家路程s ; 故答案为:时间t ;离家的路程s . (2)由图可得,小明家到滨海公园的路程为30km ; 故答案为:30. (3)由图可得,小明出发2.5小时后爸爸驾车出发; 爸爸驾车的平均速度为()3030km/h 3.5 2.5=-,小明乘公交车的平均速度为:()3012=12km/h 4 2.5--, 设爸爸出发后x h 追上小明,根据题意得:301212x x -=,解得:23x =. 故答案为:2.5;23h . 【点睛】本题考查了路程时间的图象,以及行程问题的数量关系的运用,解答时理解清楚图象的意义是解答此题的关键.20.(1)提出概念所用的时间x 和对概念的接受能力y 两个变量之间的关系,提出概念所用时间x 是自变量,对概念的接受能力y 是因变量;(2)56.3;(3)提出概念所用时间为13分钟时,学生的接受能力最强;(3)当2x 13<<时,y 值逐渐增大,学生的接受能力逐步增强;当13x 20<<时,y 值逐渐减小,学生的接受能力逐步降低 【解析】 【分析】(1)根据自变量与因变量的定义即可求解;(2)根据表格中数据即可求解;(3)根据表格中13x时,y的值最大是59.9,即可求解;(4)根据表格中的数据即可求解.【详解】解:()1提出概念所用的时间x和对概念的接受能力y两个变量;提出概念所用时间x是自变量,对概念的接受能力y是因变量.()2当x7=时,y56.3=,所以当提出概念所用时间是7分钟时,学生的接受能力是56.3.()3当13x时,y的值最大是59.9,所以提出概念所用时间为13分钟时,学生的接受能力最强.()4由表中数据可知:当2x13<<时,y值逐渐增大,学生的接受能力逐步增强;当13x20<<时,y值逐渐减小,学生的接受能力逐步降低.【点睛】准确理解函数的概念:在运动变化过程中有两个变量x和y,对于x的每一个值,y都有唯一确定的值与之对应,y是x的函数,x是自变量.21.(1)1500,4;(2)从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:2700m;(4)5min,图见解析【解析】【分析】(1)根据图象可以直接求得;(2)求得各段的速度,然后进行比较即可;(3)求得各段的路程,然后求和即可;(4)求得回来时所用的时间,即可补充图象.(1)小华到学校的路程是1500m,在书店停留的时间是12﹣8=4(min).故答案是:1500,4;(2)从开始到6分钟的速度是12006=200m/min,从6分钟到8分钟的速度是:120060086-=-300m/min;从12分钟到14分钟的速度是:15006001412-=-450m/min.则从12分钟到14分钟的速度最快,速度是450m/min;(3)小华一共骑行的路程是:1200+600+(1500﹣600)=2700(m);(4)小华回家的时间是1500300=5(min)..【点睛】本题考查了函数的图象,正确根据图象理解运动过程是关键.22.(1)100千米/小时;(2)100千米;(3)1.3小时或1.7小时【解析】【分析】(1)根据题意列算式即可得到结论;(2)根据题意求出n的值以及甲车的速度为即可解答;(3)求出甲车的速度以及乙车返回前的速度,再根据题意列方程解答即可.【详解】解:(1)m=300÷(180÷1.5)=2.5,∴乙车从A地到达B地所用的时间为2.5小时,∴乙车从B地返回A地所用时间:5.5-2.5=3(小时),∴乙车从B地到达A地的速度:300÷3=100(千米/小时);(2)n=300÷[(300﹣180)÷1.5]=3.75,甲车的速度为:(300﹣180)÷1.5=80(千米/时),故乙车到达B地时甲车距A地的路程为:80×(3.75﹣2.5)=100(km);(3)甲车的速度为80千米/时,乙车返回前的速度为:180÷1.5=120(千米/时),设乙车返回前甲、乙两车相距40千米时,乙车行驶的时间为x小时,根据题意得:80x+120x=300﹣40或80x+120x=300+40,解得x=1.3或x=1.7,故乙车返回前甲、乙两车相距40千米时,甲车行驶的时间为1.3小时或1.7小时.【点睛】本题考查了函数的图象、有理数的混合运算、一元一次方程的应用,理解题意,能从图象中获取相关联信息,行程问题的数量关系的运用是解答的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《变量与函数》练习题一、选择——基础知识运用
1.在圆的周长C=2πR中,常量与变量分别是()
A.2是常量,C、π、R是变量C.C、2是常量,R是变量B.2π是常量,C、R是变量D.2是常量,C、R是变量
2.一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是()A.x B.h C.V D.x、h、V均为变量
3.设路程s,速度v,时间t,在关系式s=vt中,说法正确的是()
A.当s一定时,v是常量,t是变量
B.当v一定时,t是常量,s是变量
C.当t一定时,t是常量,s,v是变量
D.当t一定时,s是常量,v是变量
4.笔记本每本a元,买3本笔记本共支出y元,在这个问题中:
①a是常量时,y是变量;
②a是变量时,y是常量;
③a是变量时,y也是变量;
④a,y可以都是常量或都是变量。

上述判断正确的有()
A.1个B.2个C.3个D.4个
5.已知y与x之间有下列关系:y=x2-1.显然,当x=1时,y=0;当x=2时,y=3。

在这个等式中()
A.x是变量,y是常量
B.x是变量,y是常量
C.x是常量,y是变量
D.x是变量,y是变量
二、解答——知识提高运用
6.饮食店里快餐每盒5元,买n盒需付S元,则其中常量是,变量是。

7.汽车行驶的路程s、行驶时间t和行驶速度v之间有下列关系:s=vt。

如果汽车以每时60km
的速度行驶,那么在s=vt中,变量是,常量是;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是,常量是;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是,常量是。

8.海水受日月的引力而产生潮汐现象.早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐。

潮汐与人类的生活有着密切的联系.某港口某天从0时到12时的水深情况如下表,其中T表示时刻,
h表示水深。

T(时)h(米)0
5
3
7.4
6
5.1
9
2.6
12
4.5
上述问题中,字母T,h表示的是变量还是常量,简述你的理由。

9.写出下列各问题中的关系式中的常量与变量:
(1)时针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;
(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程S(千米)与行驶时间t(时)之间的关系式s=40t。

10.阅读下面这段有关“龟兔赛跑”的寓言故事,并指出所涉及的量中,哪些是常量,哪些是变量。

一次乌龟与兔子举行500米赛跑,比赛开始不久,兔子就遥遥领先.当兔子以20米/分的速度跑了10分时,往回一看,乌龟远远地落在后面呢!兔子心想:“我就是睡一觉,你乌龟也追不上我,我
为何不在此美美地睡上一觉呢?”可是,当骄傲的兔子正做着胜利者的美梦时,勤勉的乌龟却从它身边悄悄爬过,并以10米/分的速度匀速爬向终点.40分后,兔子梦醒了,而此时乌龟刚好到达终点.兔
子悔之晚矣,等它再以30米/分的速度跑向终点时,它比乌龟足足晚了10分。

11.某电信公司提供了一种移动通讯服务的收费标准,如下表:
项目标准
月基本服务费
40元
月免费通话时间
150分
超出后每分收费
0.6元
则每月话费y(元)与每月通话时间x(分)之间有关系式y=
40(0≤x≤150)
0.6x50(x>150),在这个关系式中,常量是什么?变量是什么?
参考答案
一、选择——基础知识运用
1.【答案】B
【解析】∵在圆的周长公式C=2πr中,C与r是改变的,π是不变的;
∴变量是C,r,常量是2π。

故选:B。

2.【答案】D
【解析】一长方体的宽为b(定值),长为x(x>b),高为h,体积为V,则V=bxh,其中变量是:x、h、V;
常量是b。

故选D。

3.【答案】C
【解析】A、当s一定时,s是常量,v、t是变量,故原题说法错误;
B、当v一定时,v是常量,t、s是变量,故原题说法错误;
C、当t一定时,t是常量,s,v是变量,说法正确;
D、当t一定时,t是常量,v、s是变量,故原题说法错误;
故选:C。

4.【答案】B
【解析】由题意得:y=3a,
此问题中a、y都是变量,3是常量,或a,y都是常量,则③④,
故选:B。

5.【答案】D
【解析】y=x2-1中,x、y是变量,-1是常量,
故选:D。

二、解答——知识提高运用
6.【答案】5;n,s。

【解析】单价5元固定,是常量,
付费S元随着盒数n的变化而变化,是变量,
故常量是5,变量是n,s;
故答案为:5;n,s。

7.【答案】s,t;60;s,v;1;v,t;200
【解析】汽车以每时60km的速度行驶,那么在s=vt中,变量是s,t,常量60;如果汽车行驶的时间t规定为1小时,那么在s=vt中,变量是s,v,常量是1;如果甲乙两地的路程s为200km,汽车从甲地开往乙地,那么在s=vt中,变量是v,t,常量是200。

故答案为:s,t;60;s,v;1;v,t;200。

8.【答案】根据变量和常量的定义:在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量可得x、y是变量。

字母T,h表示的是变量.因为水深h随着时间T的变化而变化。

9.【答案】(1)常量:6;变量:n,t。

(2)常量:40;变量:s,t。

10.【答案】500米、乌龟的速度10米/分等在整个变化过程中是常量,兔子的速度是变量。

11.【答案】在0≤x≤150中,y,40是常量,x是变量;在x>150时,0.6,50是常量,x,y
是变量。

相关文档
最新文档