真空导入工艺的介绍
简述真空树脂导入成型工艺流程及注意事项
简述真空树脂导入成型工艺流程及注意事项Vacuum resin infusion molding (VRIM) is a manufacturing process that involves the use of a vacuum to distribute resin throughout a composite material. This process is commonly used in the aerospace, automotive, and marine industries to produce lightweight, high-performance components. VRIM begins with the preparation of a mold and the selection of suitable materials, such as resin, reinforcements, and release agents.真空树脂导入成型工艺是一种制造过程,涉及使用真空将树脂分布到复合材料中。
这个过程通常用于航空航天、汽车和船舶等行业,以生产轻量化、高性能的组件。
真空树脂导入成型的第一步是制备模具,并选择适用的材料,如树脂、增强材料和脱模剂。
One key aspect of the VRIM process is the creation of a vacuum bag setup, which is used to draw resin into the mold cavity. The vacuum bag is typically made from a flexible, airtight material and is placed over the mold and reinforcements. Once the bag is sealed, a vacuum pump is used to remove air from the cavity, creating a pressuredifferential that allows the resin to be infused into the reinforcements.真空树脂导入成型工艺的一个关键方面是建立真空袋系统,用于将树脂吸入模腔。
新材料真空灌注工艺
❖ 5. 法兰边铺双面棉胶条,铺密封胶条
❖ 6. 铺袋膜,袋膜适度要有余量,不要留下太大的褶皱,但也要给铺 管道的区域留下空间,太松或太紧都会造成树脂淤积或异常灌注。
❖ 7.抽气管连接树脂收集器,再连接真空泵。
更大功率的泵将帮助灌注更快地进行。 收集器是一个密封容器,一端连接铺层,收集器的作用是防止树脂进入真 空泵,注:使用树脂回收罐之前,将一些脱模蜡涂在罐的内部,以保证固化的树 脂可以很容易地移除。
浸渍铺设好的纤维增强材料。当然还有一些导流介质来辅助树脂的流动。
2. 真空辅助工艺原理 (俗称湿法)
手糊产品后加真空辅助是抽走预浸纤维布的多余树脂(通俗叫法手糊) 铺层结束完,铺设辅助材料。第一步铺带脱模布和带孔薄膜,第二步铺吸 胶毡,第三步铺设真空袋,连接真空管。第四步开始抽真空。
图1
二 真空导入工艺的优势 和缺点
2.树脂的放热峰温度 ❖ 树脂的放热峰温度不应过高,生产厚壁制品时,放热峰温度过高容易产生爆聚。
同时反应放热峰温度又不能太低,放热峰温度过低容易导致凝胶时间过长,造成 流胶现象,固化不良,影响产品质量。
❖ 二增强材料
❖ 增强材料对树脂的浸润性好坏直接影响所生产产品性能的优劣。一般来说,对于 真空灌注成型工艺,连续毡优于短切毡,编织布好于方格布,连续毡和编织布更 有利于树脂在整个密闭体系中的流动;若生产碳纤维制品,选材时应考虑用与碳 纤维浸润性好的树脂。
❖ 一 真空导入原理,成型方法介绍 ❖ 二 真空导入优势和缺点 ❖ 三 真空导入主材,辅料介绍 ❖ 四 真空导入工艺---操作流程 ❖ 五 真空导入影响产品质量的因素 ❖ 六 操作注意事项
1、真空导入工艺原理 (俗称 干法)
真空导入工艺和手糊工艺的比较-1
真空导入工艺和手糊工艺的比较手糊工艺(Handlay-up)是一种开模工艺,目前在玻璃纤维增强的聚酯复合材料中占65%。
它的优点是在模具的形状改变上有很大的自由度,模具价格低,适应性强、产品性能得到市场认可和投资少等。
所以特别适合于小公司,也适合于船舶及航空航天产业,这儿通常是一次性的大部件。
但该工艺也存在一系列问题,如可挥发有机物(VOC)排放超标、对操作人员的健康影响大、人员易流失、许用材料限制多、产品性能低,树脂浪费并且用量大等,尤其是产品质量不稳定,产品的玻纤和树脂比例、部件厚度、层材制造速率、层材的均匀性等都受操作人员的影响,要求操作人员有较好的技术、经验和素质。
手糊产品的树脂含量一般在50%-70%左右。
开模工艺的VOC排放超过500PPm,苯乙烯的挥发量高达使用量的35%-45%。
而各国规定都在50-100PPm。
目前国外大都改用环戊二烯(DCPD)或其它低苯乙烯释放树脂,但苯乙烯作为单体还没有好的替代品。
真空树脂导入工艺是近20年来发展的制造工艺,尤适合于大型产品的制造。
优点如下:(1)产品性能优良,成品率高。
在同样原材料的情况下,与手糊构件相比,真空树脂导入工艺成型构件的强度、刚度及其它的物理特性可提高30%-50%以上(表1)。
工艺稳定后成品率可接近100%。
表1典型聚酯玻璃钢性能比较增强材料无捻粗纱布双抽向织物无捻粗纱布双抽向织物成型工艺手糊手糊真空树脂扩散真空树脂扩散玻纤含量45506065 拉伸强度(MPa)273.2389383.5480 拉伸模量(GPa)13.518.517.921.9 压缩强度(MPa)200.4247215.2258 压缩模量(GPa)13.421.315.623.6 弯曲强度(MPa)230.3321325.7385 弯曲模量(GPa)13.41716.118.5 层间剪切强度(MPa)2030.73537.8 纵横剪切强度(MPa)48.8852.17 纵横剪切模量(GPa)1.621.84(2)产品质量稳定,重复性好。
玻璃钢制作工艺真空导入原理
真空导入工艺原理真空导入工艺的基本原理是指在固化后的胶衣层上铺放玻璃纤维、玻璃纤维织物、各种嵌件、脱模布、树脂渗透层、铺放树脂管路和覆盖尼龙(或橡胶、硅酮)挠性薄膜(即真空袋),薄膜与型腔四周边缘密封严实。
型腔内抽真空,往型腔里注入树脂。
在真空状态下树脂沿树脂管路、纤维外表流动而浸渍纤维束,在室温或加热条件下制品固化的成型工艺。
1机械性能高与手糊构件相比,真空导入工艺成型的构件强度,刚度及其它的物理特性可提高1.5倍。
2重复性好构件有相对恒定的树脂比,孔隙率低≤1%,手糊≥5%.3质量轻纤维含量高达75-80%,无需额外的材料来连接芯材。
4环保真空导入工艺几乎是闭模成型过程,挥发性有机物和有毒空气污染物均被局限在真空袋中。
5成本低,效率高纤维含量高,树脂浪费率低于5%,比开模工艺可节约劳动力50%以上。
在芯材加入的前后,无需等待树脂的固化。
尤其在板中加筋时,材料和人工的节约相当可观。
真空导入工艺步骤1模具表面涂脱模剂(蜡)2铺放干织物和夹芯3铺放隔离层4铺放分散介质层5用真空袋密封6注入树脂同时抽真空7室温固化或放入烘箱真空导入材料的选择适应真空导入工艺的典型树脂包括低收缩聚酯树脂,乙烯基树脂,环氧树脂等。
树脂体系黏度一般0.15~0.8Pa.S。
使树脂仅在真空力作用下能够完全浸渍增强材料。
不同的工艺对凝胶时间有不同的要求,如有些工艺要求在35min内注射完,有些则需要4h完成,因此凝胶时间应可变易控,这是注射成功的关键之一。
在浸渍过程中粘度变化小,固化放热峰值应适中。
高放热峰会损坏模具甚至成型构件。
增强材料的选择手糊工艺常用的纤维增强材料在真空导入中均可使用,其它形式的纤维织物,从短切原丝到厚的针织毡也都可以使用。
新型的针织材料和平纹单向纤维是较理想的选择芯材的选择芯层材料一般为低密度泡沫和轻质木材,还可以是热塑性材料,混凝土材料,固化拉挤材料,金属嵌件等。
在具体使用中需考虑的因素有热膨胀系数差异,表面处理情况,与树脂的相溶性等。
真空导入工艺的介绍
真空导入工艺的介绍真空导入工艺的原理是通过减压使原料或物质从高压区域移动到低压区域。
真空环境下的低压可提供更好的控制条件,例如更低的温度、更高的纯度、更少的氧化和最小化的杂质。
这些条件可以改善材料的性能,并实现许多在常压条件下无法实现的加工和处理过程。
1.原料或物质装填:将原料或物质放入真空容器中。
根据需要和工艺要求,可以采用不同的装填方式,例如固体颗粒、液体注入或气体通入。
2.密封容器:仔细检查容器的密封性能,确保在真空环境下不会出现泄漏。
这可以通过O形圈、螺纹、焊接或其他密封方法来实现。
3.抽真空:通过真空泵等设备将容器中的气体抽取到低压区域,实现真空环境。
4.热处理或其他处理:在真空环境下对物质进行热处理或其他处理。
这可能涉及加热、冷却、淬火、退火、沉积薄膜等过程。
5.逐步恢复:处理完成后,逐步恢复容器内的气压。
这可以通过逐步注入气体或将容器与常压区域连接来实现。
1.温度控制:真空环境下的温度可以更好地控制,避免材料的热分解或不均匀加热。
2.质量控制:真空环境下的低气压可以减少氧化反应和杂质的进入,提高材料的纯度和质量。
3.物理和化学反应控制:真空环境下的低气压可以改变反应动力学,控制物理和化学反应的速率和方向。
4.材料性能改善:真空环境下的处理可以改善材料的性能,例如硬度、强度、耐磨性等。
5.薄膜沉积:真空导入工艺常用于薄膜沉积,例如物理气相沉积(PVD)和化学气相沉积(CVD)等过程。
6.表面改性:真空导入工艺可以用于表面改性,例如表面清洁、硅化、涂层、注入等处理。
真空导入工艺的应用领域广泛,包括半导体制造、航空航天、能源、医疗器械、光学和电子等行业。
例如,在半导体制造中,真空导入工艺可用于沉积硅氧化物、金属薄膜和多层结构等;在航空航天领域,真空导入工艺可用于制备高温合金和陶瓷材料等。
总的来说,真空导入工艺通过在真空环境下进行处理,提供了更好的控制条件,改善了材料的性能和质量。
它在许多领域中具有重要的应用,为材料加工和处理提供了新的可能性。
真空工艺
真空树脂导入工艺在风电机舱罩中的应用风电2010-05-07 09:03:30 阅读265 评论0字号:大中小0 引言“真空树脂导入工艺”(VRIP),又称为“真空辅助树脂扩散模塑工艺”(VARIM),或“真空辅助树脂转移模塑工艺”(VARTM)。
该工艺原理为借助真空的驱动,把树脂注入预制成形的增强材料中,模具由柔性膜和刚性半模组成。
由于增强材料为真空所压紧,树脂的渗透速度一般较慢,要依靠导流介质(导流布或导流管)的帮助,这就是Seemann发明的专利技术SCRIMP。
SCRIMP的基本原理是利用导流介质,在部件表面形成高流速的渗透区,使树脂迅速达到产品的整个表面,浸渍主要是通过厚度方向来实现,从而大大缩短了树脂的渗透途径和时间,依靠高真空度,制品的孔隙率可达到1%一1.5%,纤维体积含量在50%以上。
SCRIMP的另一种工艺是在芯材上开槽,织物放在芯材的上方,树脂在槽内流动,其速度快于在导流介质中的流动。
机舱罩是风电设备的重要部件,由于风机总是在较为恶劣的气象环境中工作,风电机舱罩要满足如下技术要求:(1)空气动力学负载:承担风速达70m/s的空气动力负载。
(2)人员站立负载:为安装和维修要求,机罩上的任何点都能承担一个人站立,设计要求在每5X103mm2的面积上,受力80Kg时材料弯曲变形不超过0.5cm。
(3)疲劳负载:承受相当20年的疲劳损害。
(4)在下述环境中工作20年,材料性能不发生明显变化。
紫外照射:幅射强度:1000W/M2..,耐油脂:尤其是要耐机内所用的油脂;·工作湿度:达95%..,工作温度:-10℃-+40℃,极端情况可达-20℃~+50℃。
由此作为机舱罩的复合材料要求具有:(1)使用寿命20年;(2)适合于机舱罩的工作环境,如耐油、耐湿、耐紫外照射等;(3)材料容易买到;(4)价格可以接受;(5)可维修,这是大型产品所必须的;(6)材料力学性能满足设计要求,尤其是刚性要好;(7)抗疲劳性能好;(8)有一定的阻燃性能。
真空导入成型工艺工艺流程
真空导入成型工艺工艺流程1. 真空导入成型工艺介绍真空导入成型工艺是一种先进的高温工艺,适用于多种材料的成型和加工。
该工艺通过在真空条件下进行成型,可以避免材料在高温下的氧化和变质,保证制品质量的稳定性和可靠性。
2. 真空导入成型工艺流程真空导入成型工艺一般包括以下几个步骤:2.1 准备工作在进行真空导入成型之前,需要进行一系列的准备工作。
首先,准备好需要加工成型的材料和模具。
然后,清洁模具表面,并确保表面没有任何杂质。
接下来,将模具安装到成型机上,并确认其位置是否正确。
2.2 加热在准备好材料和模具之后,将需要加工的材料放置在模具中。
然后,将模具加热至适当的温度。
加热的温度和时间取决于材料的性质和要求。
2.3 真空处理一旦模具和材料达到适当的温度,开始进行真空处理。
打开真空泵,将模具和材料置于真空腔室中。
通过抽取气体,将腔室内的压力降低至适当的真空度。
真空处理的时间取决于材料和成型要求,一般需要几分钟到几小时不等。
2.4 压力导入真空处理完成后,开始进行压力导入。
通过控制导入系统中的压力,将材料从模具中挤出,并填充到所需的形状中。
导入的压力和时间取决于材料的性质和成型要求。
2.5 冷却压力导入完成后,进行材料冷却。
将模具和材料冷却至室温,以保证制品完全固化和形状稳定。
冷却的时间根据材料的性质和大小而定,一般需要几分钟到几小时不等。
2.6 脱模材料完全冷却后,开始进行脱模操作。
打开模具,取出成型的材料。
在脱模过程中,需要注意避免材料损坏或变形。
3. 真空导入成型工艺的优势真空导入成型工艺相比传统成型工艺具有以下优势:•高质量成品:真空导入成型避免了材料在高温下的氧化和变质,可以获得高质量的成品。
•复杂形状成型:真空导入成型可以实现复杂形状的精确成型,满足不同产品的需求。
•节约材料:真空导入成型可以将材料的浪费降到最低,节约生产成本。
•环保节能:真空导入成型过程中无需使用过多的添加剂,减少了对环境的污染,并且能有效节能。
真空导入工艺的介绍
真空导入工艺的介绍在目前的材料中,复合材料因其质轻高强而被广泛应用。
针对复合材料的制造工艺也在不断的提高和创新。
由起初的手糊,发展到机械化的喷射,拉挤,模压等工艺,都现在兴起的真空导入工艺,与真空导入相关的工艺还有树脂传递模塑(RTM),真空辅助RTM (VARTM),真空袋压,SCRIMP,SRIM(Structural Reaction Molding),RTI(resin film infusion).但都有一些差别,很多文章中都介绍过,这里就不赘述了。
1.真空导入工艺(Vacuum infusion process,VIP)真空导入工艺(Vacuum infusion process),简称VIP,在模具上铺“干”增强材料(玻璃纤维,碳纤维,夹心材料等,有别于真空袋工艺),然后铺真空袋,并抽出体系中的真空,在模具型腔中形成一个负压,利用真空产生的压力吧不饱和树脂通过预铺的管路压入纤维层中,让树脂浸润增强材料最后充满整个模具,制品固化后,揭去真空袋材料,从模具上得到所需的制品。
VIP采用单面模具(就象通常的手糊和喷射模具)建立一个闭合系统。
真空导入工艺公诸于世很久了,这个工艺在1950年出现了专利记录。
然而,直到近几年才得到了发展。
由于这种工艺是从国外引入,所以在命名上有多种称呼,真空导入,真空灌注,真空注射。
2.理论真空导入工艺能被广泛的应用,有其理论基础的,这就是达西定律(Darcy’s Law)t =ℓ 2h/(2 kDP )t 是导入时间,由四个参数来决定。
h-树脂粘度,从公式上可以看出所用树脂的粘度低,则所需导入时间就短,因此真空导入所用的树脂粘度一般不能太高。
这样可以使树脂能够快速的充满整个模具。
ℓ-注射长度,指的树脂进料口与到达出料口的之间的距离,距离长当然所需的时间亦长。
DP-压力差, 体系内与体系外压力差值越大,对树脂的驱动力也越大,树脂流速越快,当然所需导入时间也越短。
真空导入成型 工艺
第三步:增强材料铺设选用增强材料-玻璃纤维,碳纤维,夹心材料…这 要依据制品强度要求来定。选择增强材料对积层工艺来说是很重要的 一步,但对于VIP要多考虑几点。虽然所有织物都可以用,但不同的 材料和织法会影响树脂流速。
VIP工艺的应用领域
1)船艇工业--船体,甲板,方向舵,雷达屏 蔽罩
VIP工艺的应用领域
2)风电能源--叶片,机仓罩 3)体育休闲--头盔,帆板 4)汽车工业--各类车顶,挡风板,车厢 5)建筑领域--建筑物顶部件,建筑模板 6)农业和园艺--粮仓圆盖,农机保护盖
其他问题
1、当然任何一个工艺不可能是十全十美的, 目前来说VIP所需的一次性耗材很大一部分 需要进口,提高材料成本。
2、另外对操作人员的技能要求更高。每一过 程都仔细按步骤做好才能进入下一步的操 作,否则会造成不能逆转的损失。
第六步:配树脂抽真空达到一定要求后,准备树脂。按凝胶 时间配入相应的固化剂,切记不能忘加固化剂,否则很难 弥补。不过一般真空导入树脂含有固化指示剂,可以从颜 色上来判断是否加了固化剂。
第七步:导入树脂把进树脂管路插入配好的树脂桶中,根据 进料顺序依次打开夹子,注意树脂桶的量,及时补充。
第八步:脱模树脂凝胶固化到一定程度后,揭去真空袋材料。 从模具上取出制品并进行后处理。
第四步:真空袋材料铺设先铺上脱模布,接着是导流布,最后是真空袋。 在合上真空袋之前,要仔细考虑树脂和抽真空管路的走向,否则有的 地方树脂会无法浸润到。铺设时要非常小心,以免一些尖锐物刺破真 空袋。
工艺流程
第五步:抽真空铺完这些材料后,夹紧各进树脂管,对整个 体系抽真空,尽量把体系中空气抽空,并检查气密性,这 一步很关键,如有漏点存在,当树脂导入时,空气会进体 入体系,气泡会在漏点向其它地方渗入,甚至于有可能整 个制品报废。
真空导入
铺放脱模布
真空袋压树脂注入工艺流程
5铺放导流网
铺放导流网时,导流网的边缘离增强材料的边缘3-5cm 左右远,即导流网的面积比增强材料的面积略微小一 些,当树脂在浸润没有导流网的增强材料时,速度比 有导流网的地方要慢得多,这样可以使树脂有充分的 时间来浸润增强材料,还能减少树脂的浪费。导流网 与导流网之间的搭接距离应尽可能小,但不应出现没 有导流网得地方。导流网一般也用极少量的黑色密封 胶带粘在脱模布上,而不用定位胶。
固化体系的选择
由于真空袋压树脂注入工艺一般采用的是已经 加入促进剂的树脂,因此在使用之前只需加入 引发剂即可。常用的引发剂是过氧化甲乙酮。 引发剂的用量与所需的凝胶时间和充模时的温 度有很大的关系,因为真空袋压树脂注入是闭 模成型,因此湿度对引发剂的用量基本没有影 响。
真空袋压树脂注入工艺所需材料
(3)脱模布:低孔隙率、低渗透率的纤维 织物可改善制品的表观,防止真空袋粘在 制品上。 (4)中空螺旋管:主要用作树脂流道和袋 膜内抽气管。 (5)树脂进料管:用来连接树脂灌和注入 口的塑料管,在承受一个大气压的情况下 而不变形。 (6)抽气管:用来连接抽气口和树脂收集 气及树脂收集器与真空泵的塑料管,能承 受一个大气压而不变形,通常直径比树脂 进料管要小。
真空导入工艺图
真空导入工艺的发展
真空导入是一种新颖的复合材料成型工艺,以即经济 又安全的方法生产高品质的大型复合材料制品见长。 真空导入工艺始于80年代末,1990年初获得专利,最 初公众反应平平。在1996年SPI复合材料年会上引起 重视并成为热点。
真空导入产生的背景
(1)环保法规的要求。 (2)巨型制品成型工艺的要求。
真空导入成型工艺实验报告
真空导入成型工艺实验报告
实验目的:
通过对真空导入成型工艺实验的研究,掌握具有真空环境下热塑性材料的熔融和成型特性,了解真空导入成型工艺的成型原理,为进一步优化工艺参数提供参考。
实验原理:
真空导入成型是一种利用热塑性材料在真空环境下通过热和压力使其熔融并在模具中形成所需形状的工艺。
在真空环境下,材料内的气体被逼出,减少了气泡和亚表面打磨问题,提高成型质量。
其主要工艺过程包括:填料、加热、真空、加气、加热、冷却等。
实验步骤:
1. 准备工作:选择合适的热塑性材料和模具,对模具表面进行处理,选择合适的填充料。
2. 填料:将预先混合好的填料按照一定比例放入模具中。
3. 加热:将模具放置在真空炉中,按照工艺要求加热至预设温度,使填料熔化。
4. 真空:打开真空泵,排除箱体内的气体,使填料中的气体逸出。
5. 加气:在真空环境下,开启气阀,将气体缓慢注入模具中,使材料充满模具。
6. 加热:维持一定的温度,在一定压力下进行加热,直到材料达到所需成型温度。
7. 冷却:停止加热,将模具从真空炉中取出,使其自然冷却。
取模后进行后续处理。
实验结果:
通过实验可以得到真空导入成型工艺中的材料熔化特性、模具填充特性、真空逸出特性、加气特性、成型特性等参数和性能指标。
同时可以优化工艺参数,进一步提高成型品质。
实验结论:
真空导入成型工艺是一种先进、高效的热塑性材料成型工艺,其能够提高成型品质,减少气泡和亚表面打磨问题。
优化工艺参数可以使成型品质更加优良。
玻璃钢制作工艺真空导入原理
真空导入工艺原理真空导入工艺的基本原理是指在固化后的胶衣层上铺放玻璃纤维、玻璃纤维织物、各种嵌件、脱模布、树脂渗透层、铺放树脂管路和覆盖尼龙(或橡胶、硅酮)挠性薄膜(即真空袋),薄膜与型腔四周边缘密封严实。
型腔内抽真空,往型腔里注入树脂。
在真空状态下树脂沿树脂管路、纤维外表流动而浸渍纤维束,在室温或加热条件下制品固化的成型工艺。
1机械性能高与手糊构件相比,真空导入工艺成型的构件强度,刚度及其它的物理特性可提高1.5倍。
2重复性好构件有相对恒定的树脂比,孔隙率低≤1%,手糊≥5%.3质量轻纤维含量高达75-80%,无需额外的材料来连接芯材。
4环保真空导入工艺几乎是闭模成型过程,挥发性有机物和有毒空气污染物均被局限在真空袋中。
5成本低,效率高纤维含量高,树脂浪费率低于5%,比开模工艺可节约劳动力50%以上。
在芯材加入的前后,无需等待树脂的固化。
尤其在板中加筋时,材料和人工的节约相当可观。
真空导入工艺步骤1模具表面涂脱模剂(蜡)2铺放干织物和夹芯3铺放隔离层4铺放分散介质层5用真空袋密封6注入树脂同时抽真空7室温固化或放入烘箱真空导入材料的选择。
增强材料的选择手糊工艺常用的纤维增强材料在真空导入中均可使用,其它形式的纤维织物,从短切原丝到厚的针织毡也都可以使用。
新型的针织材料和平纹单向纤维是较理想的选择芯材的选择芯层材料一般为低密度泡沫和轻质木材,还可以是热塑性材料,混凝土材料,固化拉挤材料,金属嵌件等。
在具体使用中需考虑的因素有热膨胀系数差异,表面处理情况,与树脂的相溶性等。
固化体系的选择由于真空袋压树脂注入工艺一般采用的是已经加入促进剂的树脂,因此在使用之前只需加入引发剂即可。
常用的引发剂是过氧化甲乙酮。
引发剂的用量与所需的凝胶时间和充模时的温度有很大的关系,因为真空袋压树脂注入是闭模成型,因此湿度对引发剂的用量基本没有影响。
真空袋压树脂注入工艺所需材料真空袋膜导流网脱模布中空螺旋管树脂进料管抽气管真空袋密封胶吸胶毡定位喷胶1.真空袋膜聚丙烯膜是最常用的真空袋膜,可以在形状复杂的模具上拉伸,无折叠和褶皱,真空效率高。
玻璃钢制作工艺真空导入原理
真空导入工艺原理真空导入工艺的基本原理是指在固化后的胶衣层上铺放玻璃纤维、玻璃纤维织物、各种嵌件、脱模布、树脂渗透层、铺放树脂管路和覆盖尼龙(或橡胶、硅酮)挠性薄膜(即真空袋),薄膜与型腔四周边缘密封严实。
型腔内抽真空,往型腔里注入树脂。
在真空状态下树脂沿树脂管路、纤维外表流动而浸渍纤维束,在室温或加热条件下制品固化的成型工艺。
1机械性能高与手糊构件相比,真空导入工艺成型的构件强度,刚度及其它的物理特性可提高1.5倍。
2重复性好构件有相对恒定的树脂比,孔隙率低≤1%,手糊≥5%.3质量轻纤维含量高达75-80%,无需额外的材料来连接芯材。
4环保真空导入工艺几乎是闭模成型过程,挥发性有机物和有毒空气污染物均被局限在真空袋中。
5成本低,效率高纤维含量高,树脂浪费率低于5%,比开模工艺可节约劳动力50%以上。
在芯材加入的前后,无需等待树脂的固化。
尤其在板中加筋时,材料和人工的节约相当可观。
真空导入工艺步骤1模具表面涂脱模剂(蜡)2铺放干织物和夹芯3铺放隔离层4铺放分散介质层5用真空袋密封6注入树脂同时抽真空7室温固化或放入烘箱真空导入材料的选择适应真空导入工艺的典型树脂包括低收缩聚酯树脂,乙烯基树脂,环氧树脂等。
树脂体系黏度一般0.15~0.8Pa.S。
使树脂仅在真空力作用下能够完全浸渍增强材料。
不同的工艺对凝胶时间有不同的要求,如有些工艺要求在35min内注射完,有些则需要4h完成,因此凝胶时间应可变易控,这是注射成功的关键之一。
在浸渍过程中粘度变化小,固化放热峰值应适中。
高放热峰会损坏模具甚至成型构件。
增强材料的选择手糊工艺常用的纤维增强材料在真空导入中均可使用,其它形式的纤维织物,从短切原丝到厚的针织毡也都可以使用。
新型的针织材料和平纹单向纤维是较理想的选择芯材的选择芯层材料一般为低密度泡沫和轻质木材,还可以是热塑性材料,混凝土材料,固化拉挤材料,金属嵌件等。
在具体使用中需考虑的因素有热膨胀系数差异,表面处理情况,与树脂的相溶性等。
真空导入工艺的介绍
真空导入工艺的介绍在目前的材料中,复合材料因其质轻高强而被广泛应用。
针对复合材料的制造工艺也在不断的提高和创新。
由起初的手糊,发展到机械化的喷射,拉挤,模压等工艺,都现在兴起的真空导入工艺,与真空导入相关的工艺还有树脂传递模塑(RTM),真空辅助RTM(V ARTM),真空袋压,SCRIMP,SRIM(Structural Reaction Molding),RTI(resin film infusion),但都有一些差别,很多文章中都介绍过,这里就不赘述了。
1、真空导入工艺(Vacuum infusion process,VIP)真空导入工艺(Vacuum infusion process),简称VIP,在模具上铺“干”增强材料(玻璃纤维,碳纤维,夹心材料等,有别于真空袋工艺),然后铺真空袋,并抽出体系中的真空,在模具型腔中形成一个负压,利用真空产生的压力吧不饱和树脂通过预铺的管路压入纤维层中,让树脂浸润增强材料最后充满整个模具,制品固化后, 揭去真空袋材料,从模具上得到所需的制品。
VIP采用单面模具(就象通常的手糊和喷射模具)建立一个闭合系统。
真空导入工艺公诸于世很久了,这个工艺在1950年出现了专利记录。
然而,真到近几年才得到了发展。
由于这种工艺是从国外引入,所以在命上有多种称呼,真空导入,真空灌注,真空注射。
2、理论真空导入工艺能被广泛的应用,有其理论基础的,这就是达西定律(Darcy’s Law)t={2h/(2KDP)t是导入时间,由四个参数来决定。
h-树脂粘度,从公式上可以看出所用树脂的粘度低,则所需导入时间就短,因此真空导入所用的树脂粘度一般不能太高。
这样可以使树脂能够快速的充满整个模具。
{-注射长度,指的树脂进料口与到达出料口的之间的距离,距离长当然所需的时间亦长。
DP-压力差,体系内与体系外压力差值越大,对树脂的驱动力也越大,树脂流速越快,当然所需导入时间也越短。
K=渗透性,指玻纤,夹心材料等对树脂浸润好坏的参数。
真空导入成型工艺工艺流程
THANK YOU
感谢聆听
原理
该工艺基于真空吸力原理,通过创建模具内部的负压环境,使得 液态或半固态材料在外部大气压力的作用下被吸入模具中,并在 模具内完成填充、流动和固化等过程,最终获得所需形状和性能 的制品。
工艺流程简介
01
02
03
04
准备阶段
包括模具设计、制造与装配, 以及材料的准备和预处理等。
真空导入阶段
将液态或半固态材料通过特定 的进料系统导入模具中,同时 启动真空系统以创建负压环境 。
设备调试
根据工艺参数和产品要求,对设备进行调试和优化,以确保生产过程的稳定性和 产品质量的一致性。
03
真空导入成型工艺详细流程
模具装配与密封
模具准备
选择适当的模具材料,并进行加工和抛光,确保模 具表面光滑、无缺陷。
模具装配
将模具各部分按照设计要求进行装配,确保模具的 准确性和稳定性。
密封处理
在模具的合模面上涂抹脱模剂,并放置密封条,以 防止树脂泄漏。真空Fra bibliotek统启动及参数设置
80%
真空泵启动
打开真空泵,检查真空系统的密 封性,确保无泄漏。
100%
参数设置
根据树脂的性质和工艺要求,设 置真空度、保持时间等参数。
80%
真空度检测
在树脂注入前,对真空度进行检 测,确保达到预设的真空度要求 。
树脂注入与固化过程控制
树脂准备
按照配比要求准备好树脂和固 化剂,并进行充分搅拌,确保 混合均匀。
05
设备维护与保养
设备日常保养项目
01
02
03
清洁设备
定期清理设备表面和内部 的灰尘、杂质,保持设备 干净整洁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
真空导入工艺的介绍在目前的材料中,复合材料因其质轻高强而被广泛应用。
针对复合材料的制造工艺也在不断的提高和创新。
由起初的手糊,发展到机械化的喷射,拉挤,模压等工艺,都现在兴起的真空导入工艺,与真空导入相关的工艺还有树脂传递模塑(RTM),真空辅助RTM (VARTM),真空袋压,SCRIMP,SRIM(Structural Reaction Molding),RTI(resin film infusion).但都有一些差别,很多文章中都介绍过,这里就不赘述了。
1.真空导入工艺(Vacuum infusion process,VIP)真空导入工艺(Vacuum infusion process),简称VIP,在模具上铺“干”增强材料(玻璃纤维,碳纤维,夹心材料等,有别于真空袋工艺),然后铺真空袋,并抽出体系中的真空,在模具型腔中形成一个负压,利用真空产生的压力吧不饱和树脂通过预铺的管路压入纤维层中,让树脂浸润增强材料最后充满整个模具,制品固化后,揭去真空袋材料,从模具上得到所需的制品。
VIP采用单面模具(就象通常的手糊和喷射模具)建立一个闭合系统。
真空导入工艺公诸于世很久了,这个工艺在1950年出现了专利记录。
然而,直到近几年才得到了发展。
由于这种工艺是从国外引入,所以在命名上有多种称呼,真空导入,真空灌注,真空注射。
2.理论真空导入工艺能被广泛的应用,有其理论基础的,这就是达西定律(Darcy’s Law)t =ℓ 2h/(2 kDP )t 是导入时间,由四个参数来决定。
h-树脂粘度,从公式上可以看出所用树脂的粘度低,则所需导入时间就短,因此真空导入所用的树脂粘度一般不能太高。
这样可以使树脂能够快速的充满整个模具。
ℓ-注射长度,指的树脂进料口与到达出料口的之间的距离,距离长当然所需的时间亦长。
DP-压力差, 体系内与体系外压力差值越大,对树脂的驱动力也越大,树脂流速越快,当然所需导入时间也越短。
k= 渗透性,指玻纤,夹心材料等对树脂浸润好坏的参数。
k值大说明浸润好,象连续毡,多向毡要比方格布,短切毡易被树脂浸润。
因此为了使得树脂在增强材料被压实的情况下能方便的充满体系,一般会人为设置一些导流槽,比如在夹心泡沫上下打孔等。
3.优势在通常的手糊工艺(hand lay-up)中, 增强材料铺于模具中, 采用刷子,辊子或其它方式手工浸润增强材料。
另外一种改进的方法是使用真空袋吸出手糊时积层中多余的树脂。
这样提高的玻纤含量,得到更高强度和更轻的产品,VIP相对于传统的工艺具有很多优势。
如图以手糊,真空袋和真空导入为例。
在力学性能上真空导入占有明显的优势。
由此可以看出真空导入的优势a更高质量制品:在真空环境下树脂浸润玻纤,与传统制造工艺相比,制品中的气泡极少。
体系中不留有多余的树脂,玻纤含量很高,可达到时70%,甚至更低。
所得制品重量更轻,强度更高。
批与批之间也非常稳定。
b更少树脂损耗:用VIP工艺,树脂的用量可以精确预算,对于手糊或喷射工艺来说,会因操作人员的多变性而难于控制。
VIP可以使得树脂的损耗达到最少,更重要的是,这样可以节约成本。
c树脂分布均匀:对于一个制品来说,不同部分的真空产生的压力是一致的,因此树脂对玻纤的浸润速度和含量趋于一致。
这个对于重量要求稳定的FRP制件来是很关键的。
d过程挥发更少:生产过程中没有刷子或辊子之类,不会造成树脂的泼洒或滴落现象发现,更不会有大量的气味出现。
所以它能提供一个干净、安全和友好的工作环境, 保护操作者的身心健康。
e使用单面模具:仅用一面模具就可以得到两面光滑平整的制品,可以较好的控制产品的厚度。
节约模具制造成本和时间。
正因为用VIP工艺所做产品有如些的优点,最早应用于航天航空等特种领域,后来慢慢应用于高要求的民用产品。
VIP工艺的应用领域1)船艇工业--船体,甲板,方向舵,雷达屏蔽罩2)风电能源--叶片,机仓罩3)体育休闲--头盔,帆板4)汽车工业--各类车顶,挡风板,车厢5)建筑领域--建筑物顶部件,建筑模板6)农业和园艺 --粮仓圆盖,农机保护盖4.1.1树脂当准备开始真空导入的试验时,首先要选用合适的树脂,是环氧树脂还是不饱和聚酯树脂。
真空导入工艺的树脂,不能用普通的树脂来代替,它对粘度,凝胶时间,放热峰,浸润性等有特殊的要求,具体可咨询树脂供应商。
4.1.2 固化体系如果是环氧树脂,要使用其相对应的专用固化剂;不饱和树脂常用的固化剂是过氧化甲乙酮。
不同的厂家其质量是不一样的,选用时对其评价,不能因为用量少的材料而影响到整个制品的质量。
4.1.3 增强材料增强材料一般常用的是玻璃纤维和碳纤维。
比如连续毡,复合缝边毡,单布等,具体要根据力学设计。
选用时最好做一下实验,渗透性如何,因为纤维在制造过程中选用的浸润剂,粘接剂的不同对树脂的浸润会不一样,导致最终制品的力学性能会有很大的差异。
4.1.4 夹心一般常用的是木板,Balsa木,PVC泡沫,PUR 泡沫,强蕊毡等。
依据制品的需要选用合适的夹心材料。
4.1.5 设备、辅材真空泵,接口,压力表,导流管,脱模布,导流布,真空袋等等。
真空导入工艺用所的材料不是随随便便拿来就能用,每种材料都要经过实验加以确认,以此判断是不是适用。
这里就不详细阐述,作为专题在以后的文章中讨论。
4.2 VIP工艺流程然后要了解材料如何使用和如何安排。
为了解说方便,我们以如所例示意图为例子。
第一步:准备模具和其它积层工艺一样,对VIP来说高质量的模具也是必须的。
表面要有较高的硬度和较高的光泽,并且模具边缘至少保留15厘米,便于密封条和管路的铺设。
对模具进行清理干净,然后打脱模蜡或抹脱模水。
第二步:施工胶衣面可以根据制品的要求,可以用产品胶衣和打磨胶衣,选用类型有邻苯,间苯和乙烯基。
用手刷和喷射的方法施工胶衣。
第三步:增强材料铺设选用增强材料-玻璃纤维,碳纤维,夹心材料…这要依据制品强度要求来定。
选择增强材料对积层工艺来说是很重要的一步,但对于VIP要多考虑几点。
虽然所有织物都可以用,但不同的材料和织法会影响树脂流速。
第四步:真空袋材料铺设先铺上脱模布,接着是导流布,最后是真空袋。
在合上真空袋之前,要仔细考虑树脂和抽真空管路的走向,否则有的地方树脂会无法浸润到。
铺设时要非常小心,以免一些尖锐物刺破真空袋。
第五步:抽真空铺完这些材料后,夹紧各进树脂管,对整个体系抽真空,尽量把体系中空气抽空,并检查气密性,这一步很关键,如有漏点存在,当树脂导入时,空气会进体入体系,气泡会在漏点向其它地方渗入,甚至于有可能整个制品报废。
第六步:配树脂抽真空达到一定要求后,准备树脂。
按凝胶时间配入相应的固化剂,切记不能忘加固化剂,否则很难弥补。
不过一般真空导入树脂含有固化指示剂,可以从颜色上来判断是否加了固化剂。
第七步:导入树脂把进树脂管路插入配好的树脂桶中,根据进料顺序依次打开夹子,注意树脂桶的量,及时补充。
第八步:脱模树脂凝胶固化到一定程度后,揭去真空袋材料。
从模具上取出制品并进行后处理。
5结语当然任何一个工艺不可能是十全十美的,目前来说VIP所需的一次性耗材很大一部分需要进口,提高材料成本,但这部分可以减少树脂用量上得到平衡。
另外对操作人员的技能要求更高。
每一过程都仔细按步骤做好才能进入下一步的操作,否则会造成不能逆转的损失。
所以这种工艺目前用在附加值高的FPR部件和制品中,如体育用品配件,游艇,风力发电叶片等。
但人们对更高性能材料的大量需要,真空导入工艺正被越来越多的人认识和采用材料简介环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。
环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。
由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。
应用特性1、形式多样。
各种树脂、固化剂、改性剂体系几乎可以适应各种应用对形式提出的要求,其范围可以从极低的粘度到高熔点固体。
2、固化方便。
选用各种不同的固化剂,环氧树脂体系几乎可以在0~180℃温度范围内固化。
3、粘附力强。
环氧树脂分子链中固有的极性羟基和醚键的存在,使其对各种物质具有很高的粘附力。
环氧树脂固化时的收缩性低,产生的内应力小,这也有助于提高粘附强度。
4、收缩性低。
环氧树脂和所用的固化剂的反应是通过直接加成反应或树脂分子中环氧基的开环聚合反应来进行的,没有水或其它挥发性副产物放出。
它们和不饱和聚酯树脂、酚醛树脂相比,在固化过程中显示出很低的收缩性(小于2%)。
5、力学性能。
固化后的环氧树脂体系具有优良的力学性能。
6、电性能。
固化后的环氧树脂体系是一种具有高介电性能、耐表面漏电、耐电弧的优良绝缘材料。
7、化学稳定性。
通常,固化后的环氧树脂体系具有优良的耐碱性、耐酸性和耐溶剂性。
像固化环氧体系的其它性能一样,化学稳定性也取决于所选用的树脂和固化剂。
适当地选用环氧树脂和固化剂,可以使其具有特殊的化学稳定性能。
8、尺寸稳定性。
上述的许多性能的综合,使环氧树脂体系具有突出的尺寸稳定性和耐久性。
9、耐霉菌。
固化的环氧树脂体系耐大多数霉菌,可以在苛刻的热带条件下使用。
类型分类根据分子结构,环氧树脂大体上可分为五大类:1、缩水甘油醚类环氧树脂2、缩水甘油酯类环氧树脂3、缩水甘油胺类环氧树脂4、线型脂肪族类环氧树脂5、脂环族类环氧树脂复合材料工业上使用量最大的环氧树脂品种是上述第一类缩水甘油醚类环氧树脂,而其中又以二酚基丙烷型环氧树脂(简称双酚A型环氧树脂)为主。
其次是缩水甘油胺类环氧树脂。
1、缩水甘油醚类环氧树脂缩水甘油醚类环氧树脂是由含活泼氢的酚类或醇类与环氧氯丙烷缩聚而成的。
(1)二酚基丙烷型环氧树脂二酚基丙烷型环氧树脂是由二酚基丙烷与环氧氯丙烷缩聚而成。
工业二酚基丙烷型环氧树脂实际上是含不同聚合度的分子的混合物。
其中大多数的分子是含有两个环氧基端的线型结构。
少数分子可能支化,极少数分子终止的基团是氯醇基团而不是环氧基。
因此环氧树脂的环氧基含量、氯含量等对树脂的固化及固化物的性能有很大的影响。
工业上作为树脂的控制指标如下:①环氧值。
环氧值是鉴别环氧树脂性质的最主要的指标,工业环氧树脂型号就是按环氧值不同来区分的。
环氧值是指每100g树脂中所含环氧基的物质的量数。
环氧值的倒数乘以100就称之为环氧当量。
环氧当量的含义是:含有1mol环氧基的环氧树脂的克数。
②无机氯含量。
树脂中的氯离子能与胺类固化剂起络合作用而影响树脂的固化,同时也影响固化树脂的电性能,因此氯含量也环氧树脂的一项重要指标。
③有机氯含量。
树脂中的有机氯含量标志着分子中未起闭环反应的那部分氯醇基团的含量,它含量应尽可能地降低,否则也要影响树脂的固化及固化物的性能。