数列求和的基本方法和技巧全面总结
数列求和常见的7种方法
数列求和的根本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法〔合并法求和〕 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个根本方法。
数列是高中代数的重要容,又是学习高等数学的根底. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要容之一,除了等差数列和等比数列有求和公式外,大局部数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的根本方法和技巧. 一、利用常用求和公式求和利用以下常用求和公式求和是数列求和的最根本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n[例1]3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 〔利用常用公式〕=x x x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n 〔利用常用公式〕 ∴1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n ·b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=……………………….②〔设制错位〕 ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- 〔错位相减〕再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………②〔设制错位〕 ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS 〔错位相减〕∴1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列〔反序〕,再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=-〔反序〕又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..……..②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-〔反序相加〕 ∴nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S ………….①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..②〔反序〕又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 〔反序相加〕)89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 函数〔1〕证明:;〔2〕求的值.解:〔1〕先利用指数的相关性质对函数化简,后证明左边=右边 〔2〕利用第〔1〕小题已经证明的结论可知, 两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,假设将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n 〔分组〕 当a =1时,2)13(n n n S n -+==2)13(nn + 〔分组求和〕当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132〔分组〕=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n 〔分组求和〕 =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项〔通项〕分解,然后重新组合,使之能消去一些项,最终到达求和的目的. 通项分解〔裂项〕如:〔1〕)()1(n f n f a n -+= 〔2〕n n n n tan )1tan()1cos(cos 1sin -+=+〔3〕111)1(1+-=+=n n n n a n 〔4〕)121121(211)12)(12()2(2+--+=+-=n n n n n a n 〔5〕])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 〔7〕)11(1))((1CAn B An B C C An B An a n +-+-=++=〔8〕n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111〔裂项〕则 11321211+++⋅⋅⋅++++=n n S n 〔裂项求和〕=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵211211nn n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n 〔裂项〕∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n 〔裂项求和〕=)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+〔裂项〕 ∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S 〔裂项求和〕 =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立答案:六、分段求和法〔合并法求和〕针对一些特殊的数列,将*些项合并在一起就具有*种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179° ∵)180cos(cosn n --= 〔找特殊性质项〕∴S n = 〔cos1°+ cos179°〕+〔 cos2°+ cos178°〕+〔cos3°+ cos177°〕+···+〔cos89°+ cos91°〕+ cos90° 〔合并求和〕= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得 ……∵0665646362616=+++++++++++k k k k k k a a a a a a 〔找特殊性质项〕 ∴ S 2002=2002321a a a a +⋅⋅⋅+++〔合并求和〕=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,假设103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+〔找特殊性质项〕 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=〔合并求和〕=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的构造及特征进展分析,找出数列的通项及其特征,然后再利用数列的通项提醒的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个〔找通项及特征〕 ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n 〔分组求和〕 =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n 〔找通项及特征〕=])4)(3(1)4)(2(1[8+++++⋅n n n n 〔设制分组〕=)4131(8)4121(4+-+++-+⋅n n n n 〔裂项〕∴∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n 〔分组、裂项求和〕 =418)4131(4⋅++⋅ =313 提高练习:1.数列{}n a 中,n S 是其前n 项和,并且1142(1,2,),1n n S a n a +=+==,⑴设数列),2,1(21 =-=+n a a b n n n ,求证:数列{}n b 是等比数列; ⑵设数列),2,1(,2 ==n a c n nn ,求证:数列{}n c 是等差数列; 2.设二次方程n a *2-n a +1*+1=0(n ∈N)有两根α和β,且满足6α-2αβ+6β=3.(1)试用n a 表示a 1n +;3.数列{}n a 中,2,841==a a 且满足n n n a a a -=++122*N n ∈⑴求数列{}n a 的通项公式;⑵设||||||21n n a a a S +++= ,求n S ;。
数列求和的基本方法和技巧学生用
数列求和的基本方法和技巧数列求和 通项分式法 错位相减法 反序相加法 分组法 分组法 合并法一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn[例] 求和1+x 2+x 4+x 6+…x 2n+4(x≠0)注:(1)利用等比数列求和公式.当公比是用字母表示时,应对其是否为1进行讨论,如本题若为“等比”的形式而并未指明其为等比数列,还应对x 是否为0进行讨论.(2)要弄清数列共有多少项,末项不一定是第n 项.对应高考考题:设数列1,(1+2),…,(1+2+1222-⋯+n ),……的前顶和为ns,则ns的值。
二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
[例] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )………………………①注意、1 要考虑 当公比x 为值1时为特殊情况 2 错位相减时要注意末项 此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对应高考考题:设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
数列求和各种方法总结归纳
故数列{an}的通项公式为an=2-n.
an (2)设数列{ n-1}的前n项和为Sn, 2 a2 an 即Sn=a1+ 2 +…+ n-1,① 2 Sn a1 a2 an 故S1=1, 2 = 2 + 4 +…+2n,② 所以,当n>1时,①-②得
a2-a1 an-an-1 an Sn 2 =a1+ 2 +…+ 2n-1 -2n
- - -
(2)由题意知bn-an=3n 1,所以bn=3n 1+an=3n 1-2n+21. Tn=Sn+(1+3+…+3
n-1
3n-1 )=-n +20n+ 2 .
2
[冲关锦囊]
分组求和常见类型及方法
(1)an=kn+b,利用等差数列前n项和公式直接求解; (2)an=a·n-1,利用等比数列前n项和公式直接求解; q (3)an=bn±cn,数列{bn},{cn}是等比数列或等差数列, 采用分组求和法求{an}的前n项和.
(1)求数列{an}的通项公式; 第三行
(2)若数列{bn}满足:bn=an+(-1)nln an,求 {bn}的前2n项和S2n
[自主解答]
(1)当a1=3时,不合题意;
当a1=2时,当且仅当a2=6,a3=18时,符合题意; 当a1=10时,不合题意. 因此a1=2,a2=6,a3=18.所以公比q=3,
2 3a2=1,a3=9a2a6.
(1)求数列{an}的通项公式; 1 (2)设bn=log3a1+log3a2+…+log3an,求数列{b }的前n项和. n
[自主解答]
(1)设数列{an}的公比为q.由a2=9a2a6得 3 9 3
1 1 2 2 2 a3=9a4,所以q = .由条件可知q>0,故q= . 1 由2a1+3a2=1,得2a1+3a1q=1,得a1=3. 1 故数列{an}的通项公式为an=3n.
有关数列求和公式方法总结
有关数列求和公式方法总结有关数列求和公式方法总结总结是指社会团体、企业单位和个人在自身的某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而肯定成绩,得到经验,找出差距,得出教训和一些规律性认识的一种书面材料。
以下是小编精心整理的数列求和公式方法总结,供大家参考借鉴,希望可以帮助到有需要的朋友。
一、分组转化求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列构成,则求这个数列的前n项和Sn时可以用分组求和法求解。
一般步骤是:拆裂通项――重新分组――求和合并。
例1求Sn=1×4+2×7+3×10+…+n(3n+1)的和解由和式可知,式中第n项为an=n(3n+1)=3n2+n∴Sn=1×4+2×7+3×10+…+n(3n+1)=(3×12+1)+(3×22+2)+(3×32+3)+…+(3n2+n)=3(12+22+32+…+n2)+(1+2+3+…+n)=3×16n(n+1)(2n+1)+n(n+1)2=n(n+1)2二、奇偶分析求和法求一个数列的前n项和Sn,如果需要对n进行奇偶性讨论或将奇数项、偶数项分组求和再求解,这种方法称为奇偶分析法。
例2:求和:Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)分析:观察数列的通项公式an=(-1)n(2n-1)可知Sn与数列项数n的奇偶性有关,故利用奇偶分析法及分组求和法求解,也可以在奇偶分析法的基础上利用并项求和法求的结果。
解:当n为偶数时,Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)=-n2(1+2n-3)2+n2(3+2n-1)2=-n2-n2+n2+n2=n当n为奇数时,Sn=-1+3-5+7-9+11-…+(-1)n(2n-1)=-(1+5+9+…+2n-3)+(3+7+11+…+2n-1)=-n+12(1+2n-1)2+n-12(3+2n-3)2=-n2+n2+n2-n2=-n综上所述,Sn=(-1)nn三、并项求和法一个数列an的前n项和Sn中,某些项合在一起就具有特殊的`性质,因此可以几项结合求和,再求Sn,称之为并项求和法。
数列求和的基本方法和技巧
数列求和的基本方法和技巧一、利用常用求和公式求和 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、 等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn自然数方幂和公式:3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n 二、错位相减法求和错位相减法求和在高考中占有相当重要的位置,近几年来的高考题其中的数列方面都出了这方面的内容。
需要我们的学生认真掌握好这种方法。
这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 求和时一般在已知和式的两边都乘以组成这个数列的等比数列的公比q ;然后再将得到的新和式和原和式相减,转化为同倍数的等比数列求和,这种方法就是错位相减法。
[例1] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S (1≠x )…………………①注意、1 要考虑 当公比x 为值1时为特殊情况; 2 错位相减时要注意末项此类题的特点是所求数列是由一个等差数列与一个等比数列对应项相乘。
对应高考考题:设正项等比数列{}n a 的首项211=a ,前n 项和为n S ,且0)12(21020103010=++-S S S 。
(Ⅰ)求{}n a 的通项; (Ⅱ)求{}n nS 的前n 项和n T 。
三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例2] 求证:nnn n n n n C n C C C 2)1()12(5321+=++⋅⋅⋅+++(提示mn n mn C C -=)延展思考:1:求2.已知函数1()()42xf x x R =∈+,点111(,)P x y 、222(,)P x y 是函数()f x 图象上的任意两点,且线段12PP 的中点的横坐标为12. 求证:(1)点P 的纵坐标为定植 (2)在数列{}n a 中,121121(),(),,(),,(),(),k m m k m m a f a f a f a f a f m N m m m m m*--=====∈ , 求数列{}n a 的前项和m S四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.若数列{}n a 的通项公式为n n n b a c +=,其中{}{}n n b a ,中一个是等差数列,另一个是等比数列,求和时一般用分组结合法。
数列求和的8种常用方法(最全)
求数列前n 项和的8种常用方法一.公式法(定义法): 1.等差数列求和公式:11()(1)22n n n a a n n S na d ++==+特别地,当前n 项的个数为奇数时,211(21)k k S k a ++=+⋅,即前n 项和为中间项乘以项数。
这个公式在很多时候可以简化运算; 2.等比数列求和公式: (1)1q =,1n S na =; (2)1q ≠,()111nn a q S q-=-,特别要注意对公比的讨论;3.可转化为等差、等比数列的数列;4.常用公式:(1)1nk k ==∑12123(1)n n n ++++=+L ;(2)21nk k ==∑222211631123(1)(21)()(1)2n n n n n n n ++++=++==++L ; (3)31n k k ==∑33332(1)2123[]n n n +++++=L ;(4)1(21)n k k =-=∑2135(21)n n ++++-=L .例1 已知3log 1log 23-=x ,求23n x x x x ++++ 的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 23n n S x x x x =++++L=xx x n --1)1(=211)211(21--n =1-n 21例2 设123n S n =++++ ,*n N ∈,求1)32()(++=n nS n S n f 的最大值.解:易知 )1(21+=n n S n , )2)(1(211++=+n n S n∴ 1)32()(++=n n S n S n f =64342++n n n=n n 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即8n =时,501)(max =n f .二.倒序相加法:如果一个数列{}n a ,与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法。
数列求和各种方法总结归纳
数列求和各种方法总结归纳数列求和是数学中常见的问题之一,涉及到很多的方法和技巧。
下面我将对几种常见的数列求和方法进行总结归纳。
一、等差数列求和等差数列是指数列中相邻两项的差都相等的数列。
我们可以通过以下几种方法来求等差数列的和:1. 公式法:对于等差数列求和的最常用的方法是通过公式来求和。
等差数列的和可以表示为:S = (a1 + an) * n / 2,其中a1为首项,an为末项,n为项数。
2.差分法:我们可以通过差分法来求等差数列的和。
即将数列中相邻两项的差列示出来,并求和,这样就变成了一个等差数列求和的问题。
例如对于数列1,3,5,7,9,差分后得到的数列是2,2,2,2,再求和得到83.数学归纳法:我们可以通过数学归纳法来求等差数列的和。
首先假设等差数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。
例如对于数列1,3,5,7,9,我们可以假设Sn=1+3+5+7+9,然后通过归纳可以得到Sn+1=1+3+5+7+9+11=Sn+a(n+1),其中a(n+1)为数列的第n+1项,最终求得Sn=n^2二、等比数列求和等比数列是指数列中相邻两项的比相等的数列。
我们可以通过以下几种方法来求等比数列的和:1.公式法:对于等比数列求和的最常用的方法是通过公式来求和。
等比数列的和可以表示为:S=a*(1-r^n)/(1-r),其中a为首项,r为公比,n为项数。
需要注意的是,当r小于1时,求和公式仍然成立。
当r等于1时,等比数列的和为a*n。
2.求导法:我们可以通过对等比数列求导来求和。
对等比数列进行求导得到的结果是一个等差数列,然后再对等差数列进行求和就可以求得等比数列的和。
3.数学归纳法:和等差数列一样,我们也可以通过数学归纳法来求等比数列的和。
首先假设等比数列的和为Sn,然后通过归纳可以得到Sn+1和Sn之间的关系,最终求得Sn的表达式。
三、递推数列求和递推数列是指数列中每一项都是由前面一项或几项推出来的。
数列求和的常用方法有哪些数列求和的七种方法
一、数列求和的常用方法有哪些
1.裂项相加法:数列中的项形如的形式,可以把表示为
,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
4、分组转化法:把数列的每一项分成两项,或把数列的项“集”在一块重新组合,或把整个数列分成两个部分,使其转化为等差或等比数列,这一求和方法称为分组转化法。
5、公式法求和:所给数列的通项是关于n的多项式,此时求和可采用公式求和,常用的公式有:
数列求和的方法多种多样,要视具体情形选用合适方法。
1、裂项相加法:数列中的项形如的形式,可以把表示为,累加时抵消中间的许多项,从而求得数列的和;
2、错位相减法:源于等比数列前n项和公式的推导,对于形如
的数列,其中为等差数列,为等比数列,均可用此法;
3、倒序相加法:此方法源于等差数列前n项和公式的推导,目的在于利用与首末两项等距离的两项相加有公因式可提取,以便化简后求和。
数列求和的方法多种多样,要视具体情形选用合适方法。
数列求和特别提醒:
(1)对通项公式含有的一类数列,在求时,要注意讨论n的奇偶性;
(2)在用等比数列前n项和公式时,一定要分q=1和q≠1两种情况来讨论。
数列求和7种方法
数列求和7种方法一、求等差数列的和:等差数列的通项公式为 an = a1 + (n-1)d ,其中an 表示第 n 个数,a1 表示首项,d 表示公差,n 表示项数。
1.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等差数列的首项 a1 = 2,公差 d = 3,项数 n = 5,求和公式为 S = (a1 + an) * n / 2 = (2 + 2 + 4 * 3) * 5 / 2 = 35 2.公式法:利用等差数列的求和公式:S = (a1 + an) * n / 2例如:已知等差数列的首项a1=2,公差d=3,项数n=5,代入公式即可得到结果。
3.递推法:利用数列的递推关系a(n)=a(n-1)+d,可得到递归式,通过递归累加求和。
例如:已知等差数列的首项a1=2,公差d=3,项数n=5,则S(n)=S(n-1)+(a(n-1)+d)=S(n-1)+a(n-1)+d。
二、求等比数列的和:等比数列的通项公式为 an = a1 * q^(n-1),其中an 表示第 n 个数,a1 表示首项,q 表示公比,n 表示项数。
4.直接求和法:根据数列的首项 a1、末项 an 和项数 n,直接相加即可。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,求和公式为S=(a1*(q^n-1))/(q-1)=(2*(3^5-1))/(3-1)=2425.公式法:利用等比数列的求和公式:S=(a1*(q^n-1))/(q-1)。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,代入公式即可得到结果。
6.迭代法:利用数列的递推关系a(n)=a(n-1)*q,可得到递归式,通过递归累加求和。
例如:已知等比数列的首项a1=2,公比q=3,项数n=5,则S(n)=S(n-1)+a(n-1)*q=S(n-1)+a(n-1)*q。
三、其他数列的求和方法:7.利用数列的递归关系:对于一些特殊的数列,可能没有通项公式,但可以根据数列的递归关系利用递归求和。
数列求和的基本方法和技巧
数列求和的基本方法和技巧 起点教育 李一、利用常用求和公式求和1、等差数列一般求和公式:d n n na a a n S nn 2)1(2)(11-+=+= 2、等比数列一般求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a q q a q na S n nn 3、)1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n 5、213)]1(21[+==∑=n n k S nk n例1: 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 …………利用常用公式=xx x n --1)1(=211)211(21--n =1-n 21 例2: 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(211++=+n n S n ∴ 1)32()(++=n nS n S n f =64342++n n n …………………利用常用公式 =nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. 解:设 n n n b a c =的前n 项的和为 n Sn n n b a b a b a b a S ++++=......332211…………………………① 113221.................+-++++=n n n n n b a b a b a b a qS ………………② ∴()13211)...(1+-++++=-n n n n b a b b b d b a S q首项是2b 公比 q 项数是 n -1 的等比数列例3: 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=………………………① (设制错位)14322226242221++⋅⋅⋅+++=n n nS ……………………② (错位相减) ①-②得 1432222222222222)211(+-+⋅⋅⋅++++=-n n n n S1122212+---=n n n∴ 1224-+-=n n n S练习:求:S n =1+5x+9x 2+······+(4n-3)x n-1三、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.例4: 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n aa a n ,…解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得 )23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n …………………分组当a =1时,2)13(n n n S n -+==2)13(nn + …………… 分组求和当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+---例5: 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n = k k k nk nk nk ∑∑∑===++1213132 ………………………分组=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n …………………分组求和 =2)2()1(2++n n n练习:1.32-=n a n 求 n S 2 .n n a 32⨯= 求 n S 3.32-=n a n +n 32⨯求 n S4.求数列∙∙∙+∙∙∙),21(,,813,412,211nn 的前n 项和。
数列求和的基本方法和技巧
数列求和的基本方法和技巧数列是高中数学的重要内容,又是学习高等数学的基础。
高考对数列的考查比较全面,等差数列,等比数列的考查每年都不会遗漏。
有关数列的试题经常是综合题,经常把数列知识和指数函数、对数函数和不等式的知识综合起来,试题也常把等差数列、等比数列,求极限和数学归纳法综合在一起。
下面是小编整理的数列求和的基本方法和技巧,供参考。
更多相关信息请关注相应栏目!一.公式法如果一个数列是等差数列或等比数列,则求和时直接利用等差、等比数列的前n项和公式.注意等比数列公示q的取值要分q=1和q≠1.二.倒序相加法如果一个数列的首末两端等“距离”的两项的和相等,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.三.错位相减法如果一个数列的各项和是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.四.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.用裂项相消法求和时应注意抵消后并不一定只剩下第一项和最后一项,也可能前面剩两项,后面也剩两项,前后剩余项是对称出现的.五.分组求和法若一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和然后相加减.六.并项求和法一个数列的前n项和中,若可两两结合求解,则称之为并项求和法.形如类型,可采用两项合并求解.数列知识整合1、在掌握等差数列、等比数列的定义、*质、通项公式、前n项和公式的基础上,系统掌握解等差数列与等比数列综合题的规律,深化数学思想方法在解题实践中的指导作用,灵活地运用数列知识和方法解决数学和实际生活中的有关问题。
2、在解决综合题和探索*问题实践中加深对基础知识、基本技能和基本数学思想方法的认识,沟通各类知识的联系,形成更完整的知识网络,提高分析问题和解决问题的能力。
数列求和各种方法总结归纳
(2)bn=log3a1+log3a2+…+log3an nn+1 =-(1+2+…+n)=- 2 .
1 1 1 2 故b =- =-2n-n+1. nn+1 n 1 1 1 1 1 1 1- + - +…+ 2 2 3 b1+b2+…+bn=-2 1 1 2n - =- . n n+1 n+1
[冲关锦囊] 用错位相减法求和时,应注意
(1)要善于识别题目类型,特别是等比数列公比为负数
的情形; (2)在写出“Sn”与“qSn”的表达式时应特别注意将两式“ 错项对齐”以便下一步准确写出“Sn-qSn”的表达式.
[精析考题] [例3] (2011· 全国新课标卷)等比数列{an}的各项均为正数,且2a1+
裂项求和法a1一般的数列求和应从通项入手若无通项先求通项然后通过对通项变形转化为与特殊数列有关或具备某种方法适用特点的形式从而选择合适的方法求和
一、公式法 1.如果一个数列是等差数列或等比数列,则求和时直接利用等 差、等比数列的前n项和公式,注意等比数列公比q的取值情况要 分q=1或q≠1.
(1)1+2+3+4+ … +n=
1 2n 所以数列{b }的前n项和为- . n+1 n
[巧练模拟]—————(课堂突破保分题,分分必保!)
4.(2012· 青田模拟)设函数 f(x)=xm+ax 的导函数 f′(x)=2x+1, 1 则数列{ }(n∈N*)的前 n 项和是 fn n A. n+1 n C. n-1 n+2 B. n+1 n+1 D. n ( )
1 1 1 = 2n-1-2n+1, 2
1 1 1 1 1 1 + - +…+ ∴Sn= 1-3 2n-1-2n+1 2 3 5
1 1 n = 1-2n+1= . 2 2n+1
数列求和的方法技巧总结
数列求和的方法技巧总结数列求和的方法技巧总结总结是事后对某一时期、某一项目或某些工作进行回顾和分析,从而做出带有规律性的结论,写总结有利于我们学习和工作能力的提高,我想我们需要写一份总结了吧。
总结怎么写才不会千篇一律呢?下面是小编为大家整理的数列求和的方法技巧总结,仅供参考,欢迎大家阅读。
一、倒序相加法此法来源于等差数列求和公式的推导方法。
例1. 已知求解:。
①把等式①的右边顺序倒过来写,即①可以写成以下式子:②把①②两式相加得二、错位相消法此法来源于等比数列求和公式的推导方法。
例2. 求数列的前n项和。
解:设当时,当时,①①式两边同时乘以公比a,得②①②两式相减得三、拆项分组法把一个数列分拆成若干个简单数列(等差数列、等比数列),然后利用相应公式进行分别求和。
例3. 求数列的前n项和。
解:设数列的前n项和为,则当时,当时,说明:在运用等比数列的前n项和公式时,应对q=1与的'情况进行讨论。
四、裂项相消法用裂项相消法求和,需要掌握一些常见的裂项技巧。
如例4. 求数列的前n项和。
解:五、奇偶数讨论法如果一个数列为正负交错型数列,那么从奇数项和偶数项分别总结出与n的关系进行求解。
例5. 已知数列求该数列的前n项和。
解:对n分奇数、偶数讨论求和。
①当时,②当时,六、通项公式法利用,问题便转化成了求数列的通项问题。
这种方法不仅思路清晰,而且运算简洁。
例6. 已知数列求该数列的前n项和。
解:即∴数列是一个常数列,首项为七、综合法这种方法灵活性比较大,平时注意培养对式子的敏锐观察力,尽量把给定数列转化为等差或等比数列来处理。
例7. 已知求分析:注意观察到:其他可依次类推。
关键是注意讨论最后的n是奇数还是偶数。
解:①当n为奇数时,由以上的分析可知:②当n为偶数时,可知:由①②可得说明:对于以上的各种方法,大家应注意体会其中所蕴含的分类讨论及化归的数学思想方法。
当然,数列求和的方法还有很多,大家平时还应多注意总结。
数列求和的8种常用方法(最全)
数列求和的8种常用方法(最全)一、前言在高中数学以及各类应用数学问题中,数列求和问题是非常常见的。
解决数列求和问题不仅需要对常用数列的规律进行深刻的理解,还需要掌握多种数列求和的方法。
本文将介绍数列求和的八种常用方法,并且会结合具体的数列实例来进行讲解。
尽力做到对每一种方法的介绍都能够做到极致详细,希望对读者有所帮助。
二、数列求和的8种常用方法1. 等差数列求和公式对于一个首项为$a_1$,公差为$d$,共有$n$ 项的等差数列,其求和公式为:$$S_n = \frac{n}{2}(2a_1 + (n-1)d)$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,3,5,7,9$ 的和。
分析:此数列的首项为1,公差为2,总共有5项。
解答:$$S_5 = \frac{5}{2}(2\times 1 + (5-1)\times 2)=25$$因此,数列$1,3,5,7,9$ 的和为25。
2. 等比数列求和公式对于一个首项为$a_1$,公比为$q$,共有$n$ 项的等比数列,其求和公式为:$$S_n = \frac{a_1(1-q^n)}{1-q}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$2,4,8,16,32$ 的和。
分析:此数列的首项为2,公比为2,总共有5项。
解答:$$S_5=\frac{2\times (1-2^5)}{1-2}=-62$$因此,数列$2,4,8,16,32$ 的和为-62。
3. 几何级数通项公式求和对于一般形式为$a_1r^{n-1}$ 的数列,其求和公式为:$$S_n = \frac{a_1(1-r^n)}{1-r}$$其中,$S_n$ 代表前$n$ 项的和。
举例:求和数列$1,-\frac{1}{2},\frac{1}{4},-\frac{1}{8},\frac{1}{16}$ 的和。
分析:此数列的首项是1,公比是$-\frac{1}{2}$,总共有5项。
数列求和7种方法(方法全-例子多)
数列求和的基本方法和技巧一、总论:数列求和7种方法: 利用等差、等比数列求和公式错位相减法求和 反序相加法求和 分组相加法求和 裂项消去法求和分段求和法(合并法求和) 利用数列通项法求和二、等差数列求和的方法是逆序相加法,等比数列的求和方法是错位相减法,三、逆序相加法、错位相减法是数列求和的二个基本方法。
一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f题1.等比数列的前n项和S n=2n-1,则=题2.若12+22+…+(n -1)2=an 3+bn 2+cn ,则a = ,b = ,c =.解: 原式=答案:二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=--∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232nn前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S练习题1 已知 ,求数列{a n }的前n 项和S n .答案:练习题2 的前n 项和为____答案:三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n nn C n C C C 2)1()12(53210+=++⋅⋅⋅+++ 证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加)∴ nn n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5题1 已知函数 (1)证明:;(2)求的值.解:(1)先利用指数的相关性质对函数化简,后证明左边=右边 (2)利用第(1)小题已经证明的结论可知,两式相加得:所以.练习、求值:四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可.[例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n-+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 (7))11(1))((1CAn B An B C C An B An a n +-+-=++=(8)n a ==[例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n = 18+n n [例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立练习题1.答案:.练习题2。
数列求和方法
数列求和的基本方法和技巧数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧.下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧. (总结为8种求和方法)⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧数学归纳法求和利用数列的通项求和合并法求和裂项法求和分组法求和反序相加法求和错位相减法求和利用常用求和公式求和一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n n n3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n[例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++n x x x x 32的前n 项和.解:由212log log 3log 1log 3323=⇒-=⇒-=x x x 由等比数列求和公式得 n n x x x x S +⋅⋅⋅+++=32 (利用常用公式)=xx x n --1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n nS n S n f =64342++n n n =nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列. [例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n x n }的通项是等差数列{2n -1}的通项与等比数列{1-n x }的通项之积设n n x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ②(设制错位)①-②得 n n n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=--(错位相减)再利用等比数列的求和公式得:n n n x n xx x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和.解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………① 14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位)①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS(错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n nn n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nnn n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ① 把①式右边倒转过来得113)12()12(nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-(反序)又由mn nm n C C -=可得 n nn n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ② ①+②得 n n n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=-(反序相加)∴ n n n S 2)1(⋅+=[例6] 求 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设 89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1s i n 2s i n 3s i n88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序)又因为 1cos sin ),90cos(sin 22=+-=x x x x ①+②得(反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n(分组)当a=1时,2)13(nn n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S n n -+--==2)13(11n n a a a n -+---[例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1( ∴ ∑=++=nk n k k k S 1)12)(1(=)32(231k k k nk ++∑=将其每一项拆开再重新组合得S n=k k k nk n k n k ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和)=2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n(5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6)nn n n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n(裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n n n n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和.解: ∵ 211211n n n n n a n =++⋅⋅⋅++++=∴)111(82122+-=+⋅=n n n n b n(裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和)=)111(8+-n = 18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项)∴89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和)=]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2 ∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+·+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+·+ cos178°+ cos179°∵ )180cos(cos n n --=(找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+·+(cos89°+ cos91°)+ cos90°(合并求和) = 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a ……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a ∵0665646362616=+++++++++++k k k k k k a a a a a a(找特殊性质项)∴ S 2002=2002321a a a a +⋅⋅⋅+++(合并求和)=)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+ =2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+(找特殊性质项)和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++=(合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和. 解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅kk k个个 (找通项及特征)∴11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和)=)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值.解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n(设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n(分组、裂项求和)=418)4131(4⋅++⋅ =313八、数学归纳法求和 一般地,证明一个与正整数n 有关的命题,有如下步骤:(1)证明当n 取第一个值时命题成立;(2)假设当n=k (k ≥n 的第一个值,k 为自然数)时命题成立,证明当n=k+1时命题也成立。
数列求和的8种方法
数列求和的8种方法数列求和是数学中一个很重要的概念,常常在数学课上出现,也被广泛应用于其他学科中。
本文将为您介绍数列求和的8种常用方法。
一、公式法公式法是数列求和中最常用的一种方法。
当数列具有规律性时,可以通过观察数列的特点和规律,得出数列求和的公式。
例如,等差数列的求和公式为Sn = (a1 + an) × n / 2,其中a1为首项,an为尾项,n为项数。
二、差累加法差累加法是一种通过累加差值来求和的方法。
将一个数列中的每一项与其前一项的差相加,即可得到数列的和。
例如,斐波那契数列的差累加法求和公式为Sn=Fn+2-1三、奇偶分拆法奇偶分拆法是一种将数列分为奇数项和偶数项两个数列的方法。
通过将原数列中的项按照奇偶分类,并分别求和,然后将奇数部分和偶数部分的和相加,即可得到原数列的和。
这种方法特别适用于等差数列或等比数列求和。
四、数形结合法数形结合法是通过图形化数列来求和的方法。
将数列用图形的形式展现出来,然后通过计算图形的面积、周长或者中点之间的连线长度等等,来求得数列的和。
这种方法特别适用于几何数列或者满足其中一种几何规律的数列。
五、递推关系法递推关系法是通过递推关系来求和的方法。
数列中的每一项可以通过前面一项或者多项之间的关系得到,因此可以通过递推关系来直接求得数列的和。
例如,斐波那契数列的递推关系是Fn=Fn-1+Fn-2,可以利用这个关系式求得数列的和。
六、数列分解法数列分解法是通过将数列分解成其他数列的和来求和的方法。
通过将数列拆分成两个或多个数列,然后分别求得每个数列的和,并将它们相加,即可得到原数列的和。
这种方法适用于数列可以被分解成多个简单数列的情况。
七、夹逼定理法夹逼定理法是一种通过构造相等的两个或多个数列来求和的方法。
通过找到与原数列相等的其他数列,然后求得这些数列的和,并将它们相加,就可以求得原数列的和。
这种方法特别适用于数列无法通过常规的方法求和的情况。
八、换元法换元法是一种通过将数列中的索引进行变换,来求得数列的和的方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列求和的基本方法和技巧全面总结数列是高中代数的重要内容,又是学习高等数学的基础. 在高考和各种数学竞赛中都占有重要的地位. 数列求和是数列的重要内容之一,除了等差数列和等比数列有求和公式外,大部分数列的求和都需要一定的技巧. 下面,就几个历届高考数学和数学竞赛试题来谈谈数列求和的基本方法和技巧.一、利用常用求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式:d n n na a a n S n n 2)1(2)(11-+=+=2、等比数列求和公式:⎪⎩⎪⎨⎧≠--=--==)1(11)1()1(111q q q a a qq a q na S n nn3、 )1(211+==∑=n n k S nk n 4、)12)(1(6112++==∑=n n n k S nk n5、 213)]1(21[+==∑=n n k S nk n [例1] 已知3log 1log 23-=x ,求⋅⋅⋅++⋅⋅⋅+++nx x x x 32的前n 项和. 解:由212log log 3log 1log 3323=⇒-=⇒-=x x x由等比数列求和公式得 nn x x x x S +⋅⋅⋅+++=32 (利用常用公式)=x x x n--1)1(=211)211(21--n =1-n 21[例2] 设S n =1+2+3+…+n ,n ∈N *,求1)32()(++=n nS n S n f 的最大值.解:由等差数列求和公式得 )1(21+=n n S n , )2)(1(21++=n n S n (利用常用公式) ∴ 1)32()(++=n n S n S n f =64342++n n n=nn 64341++=50)8(12+-nn 501≤∴ 当 88-n ,即n =8时,501)(max =n f二、错位相减法求和这种方法是在推导等比数列的前n 项和公式时所用的方法,这种方法主要用于求数列{a n · b n }的前n 项和,其中{ a n }、{ b n }分别是等差数列和等比数列.[例3] 求和:132)12(7531--+⋅⋅⋅++++=n n x n x x x S ………………………①解:由题可知,{1)12(--n xn }的通项是等差数列{2n -1}的通项与等比数列{1-n x}的通项之积设nn x n x x x x xS )12(7531432-+⋅⋅⋅++++=………………………. ② (设制错位) ①-②得 nn n x n x x x x x S x )12(222221)1(1432--+⋅⋅⋅+++++=-- (错位相减)再利用等比数列的求和公式得:n n n x n x x x S x )12(1121)1(1----⋅+=-- ∴ 21)1()1()12()12(x x x n x n S n n n -+++--=+[例4] 求数列⋅⋅⋅⋅⋅⋅,22,,26,24,2232n n前n 项的和. 解:由题可知,{n n 22}的通项是等差数列{2n}的通项与等比数列{n 21}的通项之积设n n nS 2226242232+⋅⋅⋅+++=…………………………………①14322226242221++⋅⋅⋅+++=n n nS ………………………………② (设制错位) ①-②得1432222222222222)211(+-+⋅⋅⋅++++=-n n n nS (错位相减)1122212+---=n n n∴ 1224-+-=n n n S三、反序相加法求和这是推导等差数列的前n 项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n 个)(1n a a +.[例5] 求证:n n n n n n n C n C C C 2)1()12(53210+=++⋅⋅⋅+++证明: 设nn n n n n C n C C C S )12(53210++⋅⋅⋅+++=………………………….. ①把①式右边倒转过来得113)12()12(n n n n n n n C C C n C n S ++⋅⋅⋅+-++=- (反序)又由mn n m n C C -=可得nn n n n n n C C C n C n S ++⋅⋅⋅+-++=-1103)12()12(…………..…….. ②①+②得 nn n n n n n n n C C C C n S 2)1(2))(22(2110⋅+=++⋅⋅⋅+++=- (反序相加) ∴ nn n S 2)1(⋅+=[例6] 求89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++的值解:设89sin 88sin 3sin 2sin 1sin 22222++⋅⋅⋅+++=S …………. ①将①式右边反序得1sin 2sin 3sin 88sin 89sin 22222+++⋅⋅⋅++=S …………..② (反序) 又因为 1cos sin ),90cos(sin 22=+-=x x x x①+②得 (反序相加))89cos 89(sin )2cos 2(sin )1cos 1(sin 2222222 ++⋅⋅⋅++++=S =89∴ S =44.5四、分组法求和有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可. [例7] 求数列的前n 项和:231,,71,41,1112-+⋅⋅⋅+++-n a a a n ,… 解:设)231()71()41()11(12-++⋅⋅⋅++++++=-n aa a S n n将其每一项拆开再重新组合得)23741()1111(12-+⋅⋅⋅+++++⋅⋅⋅+++=-n aa a S n n (分组) 当a =1时,2)13(n n n S n -+==2)13(nn + (分组求和)当1≠a 时,2)13(1111n n aa S nn -+--==2)13(11n n a a a n -+--- [例8] 求数列{n(n+1)(2n+1)}的前n 项和.解:设k k k k k k a k ++=++=2332)12)(1(∴ ∑=++=n k n k k k S 1)12)(1(=)32(231k k knk ++∑=将其每一项拆开再重新组合得S n =k k k nk n k nk ∑∑∑===++1213132(分组)=)21()21(3)21(2222333n n n +⋅⋅⋅++++⋅⋅⋅++++⋅⋅⋅++=2)1(2)12)(1(2)1(22++++++n n n n n n n (分组求和) =2)2()1(2++n n n五、裂项法求和这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如:(1))()1(n f n f a n -+= (2)n n n n tan )1tan()1cos(cos 1sin -+=+ (3)111)1(1+-=+=n n n n a n (4))121121(211)12)(12()2(2+--+=+-=n n n n n a n (5)])2)(1(1)1(1[21)2)(1(1++-+=+-=n n n n n n n a n(6) nnn n n n n n S n n n n n n n n n a 2)1(11,2)1(12121)1()1(221)1(21+-=+-⋅=⋅+-+=⋅++=-则 [例9] 求数列⋅⋅⋅++⋅⋅⋅++,11,,321,211n n 的前n 项和.解:设n n n n a n -+=++=111(裂项)则 11321211+++⋅⋅⋅++++=n n S n (裂项求和)=)1()23()12(n n -++⋅⋅⋅+-+- =11-+n[例10] 在数列{a n }中,11211++⋅⋅⋅++++=n nn n a n ,又12+⋅=n n n a a b ,求数列{b n }的前n 项的和. 解: ∵ 211211nn n n n a n =++⋅⋅⋅++++=∴ )111(82122+-=+⋅=n n n n b n (裂项)∴ 数列{b n }的前n 项和)]111()4131()3121()211[(8+-+⋅⋅⋅+-+-+-=n n S n (裂项求和) =)111(8+-n =18+n n[例11] 求证:1sin 1cos 89cos 88cos 12cos 1cos 11cos 0cos 12=+⋅⋅⋅++ 解:设89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S ∵n n n n tan )1tan()1cos(cos 1sin -+=+ (裂项) ∴ 89cos 88cos 12cos 1cos 11cos 0cos 1+⋅⋅⋅++=S (裂项求和) =]}88tan 89[tan )2tan 3(tan )1tan 2(tan )0tan 1{(tan 1sin 1-+-+-+- =)0tan 89(tan 1sin 1 -=1cot 1sin 1⋅= 1sin 1cos 2∴ 原等式成立六、合并法求和针对一些特殊的数列,将某些项合并在一起就具有某种特殊的性质,因此,在求数列的和时,可将这些项放在一起先求和,然后再求S n .[例12] 求cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°的值.解:设S n = cos1°+ cos2°+ cos3°+···+ cos178°+ cos179°∵ )180cos(cosn n --= (找特殊性质项)∴S n = (cos1°+ cos179°)+( cos2°+ cos178°)+ (cos3°+ cos177°)+···+(cos89°+ cos91°)+ cos90° (合并求和)= 0[例13] 数列{a n }:n n n a a a a a a -====++12321,2,3,1,求S 2002.解:设S 2002=2002321a a a a +⋅⋅⋅+++由n n n a a a a a a -====++12321,2,3,1可得,2,3,1654-=-=-=a a a,2,3,1,2,3,1121110987-=-=-====a a a a a a……2,3,1,2,3,1665646362616-=-=-====++++++k k k k k k a a a a a a∵ 0665646362616=+++++++++++k k k k k k a a a a a a (找特殊性质项) ∴ S 2002=2002321a a a a +⋅⋅⋅+++ (合并求和) =)()()(66261612876321++++⋅⋅⋅+++⋅⋅⋅+⋅⋅⋅+++⋅⋅⋅+++k k k a a a a a a a a a a2002200120001999199819941993)(a a a a a a a +++++⋅⋅⋅+++⋅⋅⋅+=2002200120001999a a a a +++ =46362616+++++++k k k k a a a a =5[例14] 在各项均为正数的等比数列中,若103231365log log log ,9a a a a a +⋅⋅⋅++=求的值.解:设1032313log log log a a a S n +⋅⋅⋅++=由等比数列的性质 q p n m a a a a q p n m =⇒+=+ (找特殊性质项) 和对数的运算性质 N M N M a a a ⋅=+log log log 得)log (log )log (log )log (log 6353932310313a a a a a a S n ++⋅⋅⋅++++= (合并求和)=)(log )(log )(log 6539231013a a a a a a ⋅+⋅⋅⋅+⋅+⋅ =9log 9log 9log 333+⋅⋅⋅++ =10七、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利用数列的通项揭示的规律来求数列的前n 项和,是一个重要的方法.[例15] 求11111111111个n ⋅⋅⋅+⋅⋅⋅+++之和.解:由于)110(91999991111111-=⋅⋅⋅⨯=⋅⋅⋅k k k个个 (找通项及特征) ∴ 11111111111个n ⋅⋅⋅+⋅⋅⋅+++ =)110(91)110(91)110(91)110(91321-+⋅⋅⋅+-+-+-n (分组求和) =)1111(91)10101010(911321 个n n +⋅⋅⋅+++-+⋅⋅⋅+++ =9110)110(1091nn ---⋅=)91010(8111n n --+ [例16] 已知数列{a n }:∑∞=+-+++=11))(1(,)3)(1(8n n n n a a n n n a 求的值. 解:∵ ])4)(2(1)3)(1(1)[1(8))(1(1++-+++=-++n n n n n a a n n n (找通项及特征)=])4)(3(1)4)(2(1[8+++++⋅n n n n (设制分组)=)4131(8)4121(4+-+++-+⋅n n n n (裂项)∴ ∑∑∑∞=∞=∞=++-+++-+=-+1111)4131(8)4121(4))(1(n n n n n n n n n a a n (分组、裂项求和) =418)4131(4⋅++⋅ =313说明:本资料适用于高三总复习,也适用于高一“数列”一章的学习。