第3章:水环境化学.ppt
合集下载
《水环境化学》课件
![《水环境化学》课件](https://img.taocdn.com/s3/m/d833e1420640be1e650e52ea551810a6f524c822.png)
水环境化学的重要性 和应用
水环境化学对于保护水资 源、维护环境、促进可持 续发展具有重要的意义。
水的物理化学性质
溶解度溶解度是指单位体Fra bibliotek溶液中 最多能溶解多少物质,它是 表征物质在水中溶解程度的 重要参数。
离子强度
水中的离子强度是所有阴离 子和阳离子的浓度之和和它 们的电荷平方和之比的平方 根。
pH值
水环境监测方法
通过水质监测,及时发现水体 污染的情况,采取有效的技术 措施来防治和修复水体污染。
水环境化学的未来
1 水环境化学的发展趋势
未来水环境化学将逐渐转向绿色、可持续和低碳化发展。
2 水环境化学的应用前景
水环境化学需求将继续增长,未来将更多地应用于水资源保护、净化和开发领域。
3 水环境化学的挑战与机遇
水环境化学
水是地球上最珍贵的资源之一,水环境化学是研究水体的化学性质、污染及 其净化和水质监测的学科。
水环境化学简介
什么是水环境化学?
水环境化学是研究水及其 体系在自然界和生产生活 中的各种过程所涉及到的 化学现象的学科。
水环境化学的研究对 象和内容
研究水环境中各种物质的 迁移、转化和去除,以及 不同水环境对生态环境的 影响。
3
物理污染物
有些物理污染物如悬浮物、浮游生物、颗粒物或沉积物都会影响水的质量和可用性。
水的净化与处理
常见水污染物的去除方法
颗粒物、悬浮物主要通过过滤 和沉淀去除,生物污染物主要 通过消毒去除,化学污染物主 要依靠氧化、还原、沉淀和离 子交换等方法除去。
常见水处理技术及其原理
如生物处理、深度处理、反渗 透等技术,利用技术手段将水 中的污染物清除或降低到符合 生产和生活需求的标准。
《水环境化学》PPT课件
![《水环境化学》PPT课件](https://img.taocdn.com/s3/m/5aa75db73186bceb19e8bbc1.png)
总含盐量(TDS):
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO 24
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
常把CO2和H2CO3合并为H2CO3*。
H2CO3*— HCO3-—CO32-体系可用下面 的反应和平衡常数表示:
CO2 + H2O = H2CO3* H2CO3* = H+ + HCO3HCO3- = H+ + CO323
pK0 = 1.46 pK1 = 6.35
pK2 = 10.3
α0 =[H2CO3* ]/{[H2CO3* ]+[HCO3- ]+[CO32]} α1= [HCO3- ] /{[H2CO3* ]+[HCO3- ]+[CO32- ]} α2 = [CO32- ] /{[H2CO3* ]+[HCO3- ]+[CO32- ]}
3、胶体相互凝聚
4. “边对面”絮凝
胶体颗粒凝聚方式
(Aggregation Way of Colloid Particulate)
(5)第二极小值絮凝; (6)聚合物粘结架桥絮凝; (7)无机高分子的絮凝; (8)絮团卷扫絮凝; (9)颗粒层吸附絮凝;
表面吸附
离子交换吸附
专属吸附
(1)吸附等温线和等温式
(Adsorption Isotherms and Isothermal Equation)
TDS=[K++Na++Ca2++Mg2+]+[HCO3-+NO3-+Cl-+SO 24
2、天然水的性质
(Characteristic of Natural Waters) (1)碳酸平衡(Balance of H2CO3) 水体中存在四种化合态:
CO2、CO32-、HCO3-、H2CO3
常把CO2和H2CO3合并为H2CO3*。
H2CO3*— HCO3-—CO32-体系可用下面 的反应和平衡常数表示:
CO2 + H2O = H2CO3* H2CO3* = H+ + HCO3HCO3- = H+ + CO323
pK0 = 1.46 pK1 = 6.35
pK2 = 10.3
α0 =[H2CO3* ]/{[H2CO3* ]+[HCO3- ]+[CO32]} α1= [HCO3- ] /{[H2CO3* ]+[HCO3- ]+[CO32- ]} α2 = [CO32- ] /{[H2CO3* ]+[HCO3- ]+[CO32- ]}
3、胶体相互凝聚
4. “边对面”絮凝
胶体颗粒凝聚方式
(Aggregation Way of Colloid Particulate)
(5)第二极小值絮凝; (6)聚合物粘结架桥絮凝; (7)无机高分子的絮凝; (8)絮团卷扫絮凝; (9)颗粒层吸附絮凝;
表面吸附
离子交换吸附
专属吸附
(1)吸附等温线和等温式
(Adsorption Isotherms and Isothermal Equation)
环境化学课件第三章 水环境化学
![环境化学课件第三章 水环境化学](https://img.taocdn.com/s3/m/38ea2c5d581b6bd97f19ea50.png)
水危机产生的原因 The causes of water crisis
1.自然条件的影响:
●淡水在地球上分布不均 ●气候变化的影响
2.城市与工业区集中发展
●世界人口趋向于集中在地球较小部分 的城镇和城市:
41.6%人口集中于占0.3的土地面积的城镇
●城市及其周围大量建设工业区,集中 用水量很大,超过当地水资源的供水能力
电离度:很小。是真正的中性物质,并能同时提供微量的H+
和OH-,有利于维持生物体的酸碱平衡。
透明度:相当地大。对红外和紫外的辐射能吸收大,对可见
光的选择吸收比较小,既是无色的又透明度大,这种特征 性的吸收,能保护浮游生物不受紫外线的伤害。
热传导:所有液体中最高(汞除外)。在活细胞里小尺度范
围内有重要作用,其分子热传导过程远不如涡动热传导过 程剧烈。
③破坏了水中固有的生态系统; ④破坏了水体的功能及其在经济发展和人民生活中的 作用
地球上水的总储量约为1.38×109km3,海洋占97.41%,覆盖了地 球表面积的71%,地球因而表现为漂亮的蔚蓝色星球。淡水占总水 量的2.59%,而其中大约70%以上以固态储存在极地和高山上,只 有不到30%的淡水资源存在于地下、湖泊、土壤、河流、大气等之 中。水圈的上限算到对流层顶,下限为深层地下水所及的深度。
生成热 (千焦/摩)
6.02 -286.26
H2O (-95) (推测)
H2S -85.2
(-80) (2.58) (12.55) (2.09) (-8.56)
-60.3 1.10
18.66
2.38 -22.02
H2Se -65.7
-41.3 0.40
19.33
2.51 -66.14
环境化学第三章__水环境化学(PPT)
![环境化学第三章__水环境化学(PPT)](https://img.taocdn.com/s3/m/635124a6f424ccbff121dd36a32d7375a417c618.png)
氧的分压为(1.0130-0.03167)×105×0.2095 =0.2056×105 Pa
第十二页,共九十页。
代入亨利定律即可求出氧在水中的摩尔(mó ěr)浓度为:
[O2(aq)]= KH·PO2=1.26×10-8×0.2056×105 =2.6×10-4 mol/L
氧的分子量为32,因此其溶解度为8.32 mg/L。
第三章 水环境 化学 (huánjìng)
第一节 天然水的根本特征及污染物的存在形态(xíngtài)
第二节 水中无机污染物的迁移转化 第三节 水中有机污染物的迁移转化
第一页,共九十页。
内容提要: 本章主要介绍天然水的根本特征,水中重要污染物存在形态及分布, 污染物在水环境中的迁移转化(zhuǎnhuà)的根本原理。
第二十三页,共九十页。
❖❖[图CO中3的2p-]H可=以8.3忽可略以不作计为,一水个分中界只点有,[CpOH2<〔8.a3q,〕很]、小[,H22CO3]、
❖[HCO3-],可以只考虑一级电离平衡(pínghéng),即此时:
❖
❖❖❖当溶所液以的ppHH>=8p[.3KH时1-],lg[[KHH122[CC[HHOO23C3C**]OO3]+3可*]l]g以[H忽C略O不3-计]。,水中只存在
P↑↓R
C 1 0 6H 2 6 3 O 1 1 0N 1 6P 1 3 8 O 2
第十七页,共九十页。
〔二〕天然水的性质(xìngzhì)
1、碳酸平衡〔重点〕
对于CO2-H2O系统,水体中存在着CO2〔aq〕、H2CO3、HCO3-和CO32-等 四种化合态,常把CO2(aq)和H2CO3合并为H2CO3*,实际上H2CO3含量 (hánliàng)极低,主要是溶解性气体CO2(aq)。
第十二页,共九十页。
代入亨利定律即可求出氧在水中的摩尔(mó ěr)浓度为:
[O2(aq)]= KH·PO2=1.26×10-8×0.2056×105 =2.6×10-4 mol/L
氧的分子量为32,因此其溶解度为8.32 mg/L。
第三章 水环境 化学 (huánjìng)
第一节 天然水的根本特征及污染物的存在形态(xíngtài)
第二节 水中无机污染物的迁移转化 第三节 水中有机污染物的迁移转化
第一页,共九十页。
内容提要: 本章主要介绍天然水的根本特征,水中重要污染物存在形态及分布, 污染物在水环境中的迁移转化(zhuǎnhuà)的根本原理。
第二十三页,共九十页。
❖❖[图CO中3的2p-]H可=以8.3忽可略以不作计为,一水个分中界只点有,[CpOH2<〔8.a3q,〕很]、小[,H22CO3]、
❖[HCO3-],可以只考虑一级电离平衡(pínghéng),即此时:
❖
❖❖❖当溶所液以的ppHH>=8p[.3KH时1-],lg[[KHH122[CC[HHOO23C3C**]OO3]+3可*]l]g以[H忽C略O不3-计]。,水中只存在
P↑↓R
C 1 0 6H 2 6 3 O 1 1 0N 1 6P 1 3 8 O 2
第十七页,共九十页。
〔二〕天然水的性质(xìngzhì)
1、碳酸平衡〔重点〕
对于CO2-H2O系统,水体中存在着CO2〔aq〕、H2CO3、HCO3-和CO32-等 四种化合态,常把CO2(aq)和H2CO3合并为H2CO3*,实际上H2CO3含量 (hánliàng)极低,主要是溶解性气体CO2(aq)。
水环境化学 ppt课件
![水环境化学 ppt课件](https://img.taocdn.com/s3/m/1a71d37afad6195f312ba6eb.png)
(2)金属水合氧化物:
褐铁矿:Fe2O3﹒nH2O
水化赤铁矿:2Fe2O3﹒H2O 得到具有重要胶体作用的:
针铁矿:Fe2O3﹒H2O 水解 [FeOOH]∞聚合无机高分子
水铝石:Al2O3﹒H2O
[Al(OH)3]∞聚合无机高分子
三水铝石:Al2O3﹒3H2O
[MnOOH]∞聚合无机高分子
二氧化硅凝胶:SiO2﹒nH2O
水环境中发现的腐殖质大部分为富里酸这一 类,原因在于易溶于水,来源有二:一部分是水 生植物的分泌物和降解产物;另一部分来自土壤, 由土壤淋溶液和泾流带入水体。河水中腐殖质平 均含量在10~15mg/L,但起源于沼泽地带的河流 其含量要丰富的多。
水体污染
由于人类活动排放的污染物进入河流、湖泊、 海洋或地下水等水体,使水和水体底泥的物理、 化学性质或生物群落组成发生变化,从而降低了 水体的使用价值,这种现象称为水体污染。
水体的自净作用 污水排入水体后,一方面对水体产生污染,
另一方面水体本身有一定旳净化污水能力,即经 过水体的物理、化学与生物的作用,使污染物浓 度逐渐降低,经过一段时间后,水体往往能恢复 到受污染前的状态,并在微生物的作用下分解, 从而使水体由不洁恢复为清洁,这一过程称为水 体的自净过程。
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
• “不怕太阳晒,也不怕那风雨狂,只怕先生骂我 笨,没有学问无颜见爹娘 ……”
• “太阳当空照,花儿对我笑,小鸟说早早早……”
藻类疯长; 藻类尸体分解引起水体溶氧下降; 水体发臭; 水生生物死亡; 绿藻和硅藻由蓝藻取代产生藻毒素。
▪举例:触目惊心的赤潮中毒事件
➢赤潮区域内,某些赤潮生物分泌赤潮毒素,污染鱼、贝 类等生物,生物毒素可在这些生物体内蓄积,当毒素的蓄 积量超过人体可接受的水平时,人一旦食用了这些生物, 就会导致疾病发生,甚至会爆发传染病。
[课件]第三章 水环境化学(2)PPT
![[课件]第三章 水环境化学(2)PPT](https://img.taocdn.com/s3/m/9485c8f349649b6648d74726.png)
了现在人们所说的神经毒 气(如:沙林,甲氟磷酸 异丙酯)。另一些同属结 构成为农药。 事故。在世界许多地方, 对硫磷造成的死亡率是令 人震惊的:1958年在印度 有l00起致命的病例,叙利 亚有67起;在日本,每年 平均有336人中毒致死。
2、多氯联苯(polychlorinated biphenlys)
二、水中污染物的分布和存在形态
功绩:为 20世纪上半叶防止农业病虫 (一)有机污染物 害,减轻疟疾伤寒等蚊蝇传播的 疾病 危害起到了不小的作用。 1948年诺贝 1、农药(主要是有机氯和有机磷) 尔生理学和医学奖给了米勒。
DDT (Dichloro Diphenyl Trichloroethane):双对氯苯基三氯乙 烷,化学式(ClC6H4)2CHCCl3
——米糠油事件。1968年,日本九州爱知县一带在生产米糠 油过程中,由于生产失误,米糠油中混人了多氯联苯(作脱 臭工艺中的热载体 ),致使1400多人食用后中毒,4个月后, 中毒者猛增到5000余人,并有16人死亡。与此同时,用生产 米糠油的副产品黑油做家禽饲料,又使数十万只鸡死亡。 PCBs Biphenly 1978-1979年间为期6个月的时间里,台湾油症地区约 2000人食用了受多氯联苯和多氯联二苯并呋喃污染的食用油。 多氯联苯从热交换器漏入成品油中。一部分多氯联苯受热后 多氯联苯极难溶于水,不易降解,易溶于有机溶剂和脂肪中, 降解产生了多氯二苯并呋喃和其他氯化物,造成了高达数万 具有高的辛醇-水分配系数,能强烈的分配到沉积有机质和生 人的患者。 物脂肪中,因此,即使它在水中浓度很低时,在水生生物体内 1986年,加拿大一辆卡车载着一台有高浓度多氯联苯液 体的变压器去废物储存场,途中在经过安大略省北部的凯拉 和沉积物中的浓度仍然可以很高。由于 PCBs在环境中的持久 城附近时,有400多升PCBs从变压器中泄漏,污染了100公 性、生物累积性、远距离迁移性及对人体健康的危害, 1973年 里的高速公路和其它车辆,对当地的居民身体健康造成极大 以后,各国陆续开始减少或停止生产。 伤害。
2、多氯联苯(polychlorinated biphenlys)
二、水中污染物的分布和存在形态
功绩:为 20世纪上半叶防止农业病虫 (一)有机污染物 害,减轻疟疾伤寒等蚊蝇传播的 疾病 危害起到了不小的作用。 1948年诺贝 1、农药(主要是有机氯和有机磷) 尔生理学和医学奖给了米勒。
DDT (Dichloro Diphenyl Trichloroethane):双对氯苯基三氯乙 烷,化学式(ClC6H4)2CHCCl3
——米糠油事件。1968年,日本九州爱知县一带在生产米糠 油过程中,由于生产失误,米糠油中混人了多氯联苯(作脱 臭工艺中的热载体 ),致使1400多人食用后中毒,4个月后, 中毒者猛增到5000余人,并有16人死亡。与此同时,用生产 米糠油的副产品黑油做家禽饲料,又使数十万只鸡死亡。 PCBs Biphenly 1978-1979年间为期6个月的时间里,台湾油症地区约 2000人食用了受多氯联苯和多氯联二苯并呋喃污染的食用油。 多氯联苯从热交换器漏入成品油中。一部分多氯联苯受热后 多氯联苯极难溶于水,不易降解,易溶于有机溶剂和脂肪中, 降解产生了多氯二苯并呋喃和其他氯化物,造成了高达数万 具有高的辛醇-水分配系数,能强烈的分配到沉积有机质和生 人的患者。 物脂肪中,因此,即使它在水中浓度很低时,在水生生物体内 1986年,加拿大一辆卡车载着一台有高浓度多氯联苯液 体的变压器去废物储存场,途中在经过安大略省北部的凯拉 和沉积物中的浓度仍然可以很高。由于 PCBs在环境中的持久 城附近时,有400多升PCBs从变压器中泄漏,污染了100公 性、生物累积性、远距离迁移性及对人体健康的危害, 1973年 里的高速公路和其它车辆,对当地的居民身体健康造成极大 以后,各国陆续开始减少或停止生产。 伤害。
第三章水环境化学
![第三章水环境化学](https://img.taocdn.com/s3/m/eb1898785727a5e9856a6199.png)
天然水体的pH值一般在6~9之间。 水中含有的各种碳酸化合物控制水的pH值并具有缓冲作用。
2020/4/10
12
§1.2天然水的性质
(4)水的硬度
水中所含钙、镁离子总量称为水的总硬度。
水的硬度分级
总硬度
水质
0~4度
很软水
4~8度
软水
8~16度
中等硬水
16~30度
硬水30度ຫໍສະໝຸດ 上很硬水常用“度”作为硬度单位。例如l0mg/L的CaO称为1德国度, l0mg/L的CaCO3称为法国度。
生物自净
在生物的作用下,污染物的数量减少,浓度下降,毒 性减轻或消失.
2020/4/10
23
§2.水中污染物的分布和存在形态
上个世纪60年代,美国学者曾把水体中的污染物划 分为八类:(1)耗氧污染物(一些能较快被微生物降解 成人C类O、2和动H物2O患的病有原机微物生)物;与(细2)致菌病)污;染(3)物合(成一有些机可物使; (4)植物营养物;(5)无机物及矿物质;(6)由土壤、岩石 等冲刷下来的沉淀物;(7)放射性物质;(8)热污染。 总的可以分为两大类:
2020/4/10
13
§1.3天然水体--海洋
海洋覆盖着70.8%的地球表面,总面积约 3 6 1 1 0 1 2 m2, 平 均 深 度 3 8 0 0 m, 总 体 积 为 13701015m3。
海水离子强度I约为0.7。海水pH值在表层为
8.1~8.3,在深层可下降到7.8。主要成分依次为
地下水中污染物质
• 耗氧污染物 • 病原体,如细菌、病毒、原生动物等 • 植物营养物质 • 有机化学物品 • 放射性物质
2020/4/10
19
§1.4天然水的水质
2020/4/10
12
§1.2天然水的性质
(4)水的硬度
水中所含钙、镁离子总量称为水的总硬度。
水的硬度分级
总硬度
水质
0~4度
很软水
4~8度
软水
8~16度
中等硬水
16~30度
硬水30度ຫໍສະໝຸດ 上很硬水常用“度”作为硬度单位。例如l0mg/L的CaO称为1德国度, l0mg/L的CaCO3称为法国度。
生物自净
在生物的作用下,污染物的数量减少,浓度下降,毒 性减轻或消失.
2020/4/10
23
§2.水中污染物的分布和存在形态
上个世纪60年代,美国学者曾把水体中的污染物划 分为八类:(1)耗氧污染物(一些能较快被微生物降解 成人C类O、2和动H物2O患的病有原机微物生)物;与(细2)致菌病)污;染(3)物合(成一有些机可物使; (4)植物营养物;(5)无机物及矿物质;(6)由土壤、岩石 等冲刷下来的沉淀物;(7)放射性物质;(8)热污染。 总的可以分为两大类:
2020/4/10
13
§1.3天然水体--海洋
海洋覆盖着70.8%的地球表面,总面积约 3 6 1 1 0 1 2 m2, 平 均 深 度 3 8 0 0 m, 总 体 积 为 13701015m3。
海水离子强度I约为0.7。海水pH值在表层为
8.1~8.3,在深层可下降到7.8。主要成分依次为
地下水中污染物质
• 耗氧污染物 • 病原体,如细菌、病毒、原生动物等 • 植物营养物质 • 有机化学物品 • 放射性物质
2020/4/10
19
§1.4天然水的水质
3 水环境化学 环境化学课件
![3 水环境化学 环境化学课件](https://img.taocdn.com/s3/m/fa5a38ca76a20029bd642df6.png)
3
水中这些主要离子的分类,常用来作为表征水体主要化学特 征指标。
硬 Ca2+ HCO3度 Mg2+ CO32酸 H+ OH碱 金 属 阳 离 子 Na+ SO42- ClNO3-
阴 离 子
碱
度
酸
根
4
2.水中的金属离子
水 溶 液 中 金 属 离 子 的 表 示 式 常 写 成 Mn+, 与 水 水 合 形 成
19
2.天然水中的酸碱度
酸度 水中能与强碱发生中和作用的全部物质
(放出H+或经过水解能产生H+的物质的总量)
组成水中酸度的物质
(1)强酸; (2)弱酸如CO2、H2CO3、H2S、蛋白质以及各种有机酸类; (3)强酸弱碱盐。
天然水体的缓冲能力
天然水体的pH值一般在6~9之间。 水中碳酸化合物控制水的pH值--具有缓冲作用。
矿物酸度=[H+]-[HCO3-]-2[CO32-]-[OH-]
23
在化学计量点 pH=8.3 ( pH HCO3- ) : 水中所有碳酸盐类都要转 化为HCO3-,此时 一个H2CO3*能够提供1个H+, 一个CO32-需要消耗1个H+, 一个OH-需要消耗1个H+ 因此得到H+平衡方程:[H+]+[H2CO3*]=[CO32-]+[OH-] 滴定前,如果上式右侧〉左侧,则存在碳酸盐碱度,而当上式 右侧<左侧,存在二氧化碳酸度,并得到其计算公式: 碳酸盐碱度= [CO32-]+[OH-]-[H+]-[H2CO3*]
=4.45×10-7molL-1
=4.68×10-11molL-1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
由于所分析的污染物是在水相,因而方程可写为:
1 1 RT Kv KL Kg KH
或1 1
1
Kv KL KH 'Kg
由此可以看出,挥发速率常数依赖于KL、KH’和Kg。当 亨利定律常数大于1.0130×102Pa·m3/mol时,挥发作 用主要受液膜控制,此时可用Kv = KL。
当亨利定律常数小于1.013Pa·m3/mol时,挥发作用 主要受气膜控制,此时可用Kv =KH’Kg这个简化方程。如 果亨利定律常数介于二者之间,则式中两项都是重要的。
一个化合物在开始使用之前,必须使微生物群落适应 这种化学物质,在野外和室内试验表明,一般需要2—50天 的滞后期,一旦微生物群体适应了它,生长基质的降解是 相当快的。由于生长基质和生长浓度均随时间而变化,因 而其动力学表达式相当复杂。
Monod方程是用来描述当化合物作为唯一碳源时,化合物的降解速 率:
2.挥发作用的双膜理论
▪ 双膜理论是基于化学物质从水中挥发时必须克服来自近水表层和空 气层的阻力而提出的。这种阻力控制着化学物质由水向空气迁移的速 率。由图可见,化学物质在挥发过程中要分别通过一个薄的“液膜” 和一个薄的“气膜”。
▪ 在气膜和液膜的界面上,液相浓度为ci,气相分压则用pci表示:pci = KH ci
▪光解作用是有机污染物真正的分解过程,因为它不可逆地改变了 反应分子,强烈地影响水环境中某些污染物的归趋。一个有毒化合 物的光化学分解的产物可能还是有毒的。例如,辐照DDT反应产生 的 DDE,它在环境中滞留时间比DDT还长。 ▪光解过程可分为三类:第一类称为直接光解,这是化合物本身直 接吸收了太阳能而进行分解反应;第二类称为敏化光解,水体中存 在的天然物质(如腐殖质等)被阳光激发,又将其激发态的能量转移 给化合物而导致的分解反应;第三类是氧化反应,天然物质被辐照 而产生自由基或纯态氧(又称单一氧)等中间体,这些中间体又与化 合物作用而生成转化的产物。
在许多情况下,化合物的大气分压是零,所以方程可简化为:c/ t=-Kv’c
挥发性物质在气相和溶解相之间的相互转化过程,关键是亨利定律决定的: 1.亨利定律
▪ 形式:亨利定律是表示当一个化学物质在气—液相达到平衡时,溶解于水相 的浓度与气相中化学物质浓度(或分压力)有关,亨利定律的一般表示式: ➢ G(aq)=KHP(G(aq)—mol/m3,P—Pa,KH—亨利常数mol*m-3 Pa-1) ➢ 或者P = KHCw(式中:P—污染物在水面大气中的平衡分压,Pa;Cw—污染 物在水中平衡浓度,mol/m3;KH—亨利定律常数,Pa*m3/mol)。
2、敏化光解(间接光解)
除了直接光解外,光还可以用其他方法使水中有机污染物降解。 一个光吸收分子可能将它的过剩能量转移到一个接受体分子,导 致接受体反应,这种反应就是光敏化作用。2,5—二甲基呋喃就 是可被光敏化作用降解的一个化合物,在蒸馏水中将其暴露于阳 光中没有反应,但是它在含有天然腐殖质的水中降解很快,这是 由于腐殖质可以强烈地吸收波长小于500nm的光,并将部分能量 转移给它,从而导致它的降解反应。
1、直接光解
根据Grothus—Draper定律,只有吸收辐射(以光子的形式)的 那些分子才会进行光化学转化。这意味着光化学反应的先决条件 应该是污染物的吸收光谱要与太阳发射光谱在水环境中可利用的 部分相适应。
(1)水环境中光的吸收作用:光以具有能量的光子与物质作用,物 质分子能够吸收作为光子的光,如果光子的相应能量变化允许分 子间隔能量级之间的迁移,则光的吸收是可能的。因此,光子被 吸收的可能性强烈地随着光的波长而变化。一般说来,在紫外— 可见光范围的波长的辐射作用,可以有有效的能量给最初的光化 学反应。下面首先讨论外来光强是如何到达水体表面的。
▪ 对于有机毒物挥发速率的预测方法,可以根据以下关系得到:
c / t = -Kv(c-p/KH)/Z = -Kv’(c-p/KH) 式中:c—溶解相中有机毒物的浓度;Kv—挥发速率常数;Kv’—单 位时间混合水体的挥发速率常数;Z—水体的混合深度;p—在所研 究的水体上面,有机毒物在大气中的分压;KH—亨利定律常数。
六、生物降解作用
生物降解是引起有机污染物分解的最重要的环境过程之 一。水环境中化合物的生物降解依赖于微生物通过酶催化反 应分解有机物。当微生物代谢时,一些有机污染物作为食物 源提供能量和提供细胞生长所需的碳;另一些有机物,不能 作为微生物的唯一碳源和能源,必须由另外的化合物提供。 因此,有机物生物降解存在两种代谢模式:生长代谢 (Growth metabolism)和共代谢(Cometabolism)。这两种 代 谢特征和降解速率极不相同,下面分别进行讨论。
3、氧化反应
有机毒物在水环境中所常遇见的氧化剂有单重态氧(1O2), 烷 基 过 氧 自 由 基 (RO2·) , 烷 氧 自 由 基 (RO·) 或 羟 自 由 基 (OH·)。这些自由基虽然是光化学的产物,但它们是与基 态的有机物起作用的,所以把它们放在光化学反应以外, 单独作为氧化反应这一类。
▪ 通常测定水中有机物的水解是一级反应,RX的消失速率正 比于[RX],即
-dIRX]/dt=Kh[RX]
式中:Kh—水解速率常数。
只要温度、pH值等反应条件不变,可推出半衰期:t1/2 = 0.693 / Kh
实验表明,水解速率与pH有关。Mabey等把水解速率归 纳为由酸性或碱性催化的和中性的过程,因而水解速率可表 示为:
1.生长代谢
许多有毒物质可以像天然有机化合物那样作为微生物 的生长基质。只要用这些有毒物质作为微生物培养的唯一 碳源便可鉴定是否属生长代谢。在生长代谢过程中微生物 可对有毒物质进行较彻底的降解或矿化,因而是解毒生长 基质去毒效应和相当快的生长基质代谢意味着与那些不能 用这种方法降解的化合物相比,对环境威胁小。
▪ 若在界面上不存在净积累,则一个相的质量通量必须等于另一相的 质量通量。因此,化学物质在-z方向的通量(Fz)可表示为:
Fz =KLi(c-ci)=
K g i ( p pi ) K g i n
RT
V
式中:Kgi—在气相通过气膜的传质系数;KLi—在液相通过液膜的传质 系数;(c-ci)—从液相挥发时存在的浓度梯度;(p-pci)—在气相一侧存
这里,采用第二种形式,则可以知道,如果大气中存在某种污染物,其 分压为P,那么在水中的溶解形成的浓度:Cw=P/KH。
▪ 亨利常数的估算:
➢一 般 方 法 : KH’=C / Cw ( C— 有 机 毒 物 在 空 气 中 的 摩 尔 浓 度 , mol/m3;KH’—亨
利定律常数的替换形式,无量纲)。
四、水解作用
▪ 水解作用是有机化合物与水之间最重要的反应。在反应中, 化合物的官能团X-和水中的OH-发生交换,整个反应可表 示为:RX+H2OROH + HX ▪ 有机物通过水解反应而改变了原化合物的化学结构。对于
许多有机物来说,水解作用是其在环境中消失的重要途径。
▪ 在环境条件下,一般酯类和饱和卤代烃容易水解,不饱和
也可将KH转换为无量纲形式,此时亨利定律常数则为:K
H
'
0.12 pS M SW T
W
例如二氯乙烷的蒸汽压为2.4×104pa,20℃时在水中的溶解度为5 500mg / L,可分别计算出亨利定律常数KH或KH’:
KH = 2.4×104×99/5 500 = 432Pa·m3/mol
KH’ = 0.12×2.4×104×99/5 500×293 = 0.18
在一个气膜的浓度梯度。可得: ci
KLc K g p /(RT) KL K g KH /(RT)
若以液相为主时,气相的浓度为零(p=0),将ci代入后得:
Fz K L (c ci ) K LKRT=L KKgKKVLgHCK,H c
KvL
KLKg KH KLRT Kg KH
水环境中污染物光吸收作用仅来自太阳辐射可利用的能量,太 阳发射几乎恒定强度的辐射和光谱分布,但是在地球表面上的气 体和颗粒物通过散射和吸收作用,改变了太阳的辐射强度。阳光 与大气相互作用改变了太阳辐射的谱线分布。
太阳辐射到水体表面的光强随波长而变化,特别是近紫外(290— 320nm)区光强变化很大,而这部分紫外光往往使许多有机物发生 光解作用。其次,光强随太阳射角高度的降低而降低。此外,由于 太阳光通过大气时,有一部分被散射,因而使地面接受的光线除一 部分是直射光(Id)外,还有一部分是从天空来的散射光(Is),在近紫 外区,散射光要占到50%以上。
则可以得到:
KH KH '
P C
nRTC,/V所以R:T KH’=KH/(RT)=KH/(8.31T)
式中:T—水的绝对温度,K;R—气体常数。
➢ 对于微溶化合物(摩尔分数≤0.02),亨利定律常数的估算公式为:
KH = ps*Mw/Sw
式中:ps—纯化合物饱和蒸汽压,Pa;Mw—分子量;
Sw—化合物在水中溶解度,mg/L。
环境条件也影响光解量子产率。分子氧在一些光化学反应中的作 用象是淬灭剂,减少光量子产率,在另外一些情况下,
它不影响甚至可能参加反应,因此任何情况下,进行光解速率常 数和光量子产率的测量时需要说明水体中分子氧的浓度。
悬浮物也影响光解速率,它不仅可以增加光的衰减作用,而且 还改变吸附在他们上面的化合物的活性。化学吸附作用也能影响 光解速率,一种有机酸或碱的不同存在形式可能有不同的光量子 产率以及出现化合物光解速率随pH变化等。
卤代烃和芳香烃则不易发生水解。
酯类水解:RCOOR’+ H2ORCOOH + R’OH 饱和卤代烃:CH3CH2-CBrH-CH3+ H2O CH3CH2-CHOHCH3 + HBr
▪ 水解作用可以改变反应分子,但并不能总是生成低毒产物。 例如2,4—D酯类的水解作用就生成毒性更大的2,4-D酸, 而有些化合物的水解作用则生成低毒产物。水解产物可能比 原来化合物更易或更难挥发,与pH有关的离子化水解产物的 挥发性可能是零,而且水解产物一般比原来的化合物更易为 生物降解(虽然有少数例外)。