二次根式和一元二次方程
初三数学目录
初三数学(上下)目录第一章二次根式
第一节二次根式
第二节二次根式的乘除
第三节二次根式的加减
第二章二元一次方程]
第一节一元二次方程
第二节降次—二元一次方程
1 配方法
2 公式法
3 因式分解法
第三节实际问题与二元一次方程第三章旋转
第一节图形的旋转]
第三节中心对称
1 中心对称
2 中心对称图形
3 关于原点对称的点的图表
第四章圆
第一节圆
1 圆
2 垂直于弦的直径
3 弧弦圆心角]
4 圆周角]
第二节与圆有关的位置关系
1 点和圆的位置关系]
2 直线和圆的位置关系
3 圆和圆的位置关系
第三节正多边形和圆
第四节弧长和扇形面积
1 弧长和扇形面积
2 圆锥的侧面积和全面积
第五章概率初步
第一节概率
1 随机事件
2 概率的定义
第二节用举例法求概率]
第二节利用频率估计概率
第六章二次函数
第一节二次函数
第二节用函数观点看一元二次方程第四节实际问题与二次函数
第七章相似
第一节图形的相似
第二节相似三角形
1 相似三角形的判定
2 相似三角形的应用
3 相似三角形的周长与面积
第三节位似
第八章锐角三角函数
第一节锐角三角函数
第二节直角三角形
第九章投影与视图
第一节投影
第二节三视图。
二次根式及一元二次方程复习及练习
二次根式小结与复习基础盘点1.二次根式的定义:一般地,我们把形如a (a ___0)的式子叫做二次根式,“”称为二次根式.定义诠释:(1)二次根式的定义是以形式界定的,如4是二次根式; (2)形如a b (a ≥0)的式子也叫做二次根式;(3)二次根式a 中的被开方数a ,可以是数,也可以是单项式、多项式、分式,但必须满足a ≥0. 2.二次根式的基本性质(1)a _____0(a ___0);(2)()2a =_____(a ___0);(3)a a =2=()()⎩⎨⎧0_____0_____a a ;(4)=_________(a ___0,b ___0);(5=_________(a ___0,b ___0).3.最简二次根式必须满足的条件为:(1)被开方数中不含___;(2)被开方数中所有因式的幂的指数都_____.4.二次根式的乘、除法则:(1)=______(a ___0,b ___0);(2)=_______(a ___0,b ___0).复习提示:(1)进行乘法运算时,若结果是一个完全平方数,则应利用==a a 2()()⎩⎨⎧<-≥00a aa a 进行化简,即将根号内能够开的尽方的数移到根号外; (2)进行除法运算时,若除得的商的被开方数中含有完全平方数因数,应运用积的算术平方根的性质将其进行化简.5.同类二次根式:几个二次根式化成______后,如果_____相同,这几个二次根式就叫做同类二次根式.6.二次根式的加减法则:二次根式加减时,可以先将二次根式化成_____,然后把_______进行合并. 复习提示:(1)二次根式的加减分为两个步骤:第一步是_____,第二步是____,在合并时,只需将根号外的因式进行加减,被开方数和根指数不变;(2)不是同类二次根式的不能合并,如:53+≠8;(3)在求含二次根式的代数式的值时,常用整体思想来计算. 7.二次根式的混合运算(1)二次根式的混合运算顺序与实数中的运算顺序一致,也是先_,再__,最后__,有括号的先_内的. 复习提示:(1)在运算过程中,有理数(式)中的运算律,在二次根式中仍然适用,有理数(式)中的乘法公式在二次根式中仍然适用; (2)二次根式的运算结果可能是有理式,也可能是二次根式,若是二次根式,一定要化成最简二次根式. 8.二次根式的实际应用利用二次根式的运算解决实际问题,主要从实际问题中列出算式,然后根据运算的性质进行计算,注意最后的结果有时需要取近似值.1 二次根式有意义的条件例1 若式子43-x 在实数范围内有意义,则x 的取值范围是( )A.x ≥34B.x >34C.x ≥43D.x >43方法总结:判断含有字母的二次根式是否有意义,就是看根号内的被开方数是不是非负数,如果是,就有意义,否则就没有意义,当二次根式含有分母时,分母不能为0.2 二次根式的性质例2 下列各式中,正确的是( )A.()332-=- B.332-=- C.()332±=± D.332±=方法总结:()a a =2成立的条件是a ≥0,而在化简()2a 时,先要判断a 的正负情况.3 二次根式的非负性例3 已知32552--+-=x x y ,则xy 2的值为( )A.—15B.15C.215-D.215 方法总结:二次根式a (a ≥0)具有双重非负性,即a ≥0、a ≥0. 4 最简二次根式例4 下列二次根式中,最简二次根式是( )A.51B.5.0C.5D.50 方法总结:在进行二次根式化简时,一些同学不知道化到什么程度为止,切记,一定要化到最简二次根式为止. 5 二次根式的运算 例5 计算1824-×31=____.方法总结:二次根式的加减运算,一定要先化简才能得知算式中哪些二次根式可以合并,除法运算先化为乘法再运算,混合运算时要正确使用运算法则.6 二次根式的化简求值例6若120142013-=m,则34520132mmm--的值是_____.方法总结:解决此类问题应注意代数式的变形和整体思想的运用.一元二次方程1、一元二次方程:只含有一个未知数,并且未知数的最高次数是2的整式方程。
二次根式知识点总结
二次根式知识点总结二次根式是高中数学中重要的知识点之一,它在解决一元二次方程、求解勾股定理以及图形的面积计算等问题中起到了重要的作用。
本文将对二次根式的定义、性质以及相关的数学运算进行总结,并探讨其在实际问题中的应用。
一、二次根式的定义二次根式是指形如√a的代数式,其中a为非负实数。
它可以表示为一个单独的根号表达式,也可以是两个或多个二次根式之间的运算。
二、二次根式的性质1. 二次根式与有理数的关系:二次根式可以是有理数或无理数。
当根号内的数可以化简为有理数时,二次根式即为有理数;否则,二次根式为无理数。
2. 二次根式的相等性:两个二次根式相等的条件是它们的被开方数相等。
3. 二次根式的大小比较:对于非负实数a和b,若a > b,则有√a >√b。
4. 二次根式的运算性质:对于非负实数a和b,有以下运算性质:- 加法:√a + √b = √(a + b)- 减法:√a - √b = √(a - b),其中a ≥ b- 乘法:√a * √b = √(a * b)- 除法:√a / √b = √(a / b),其中b ≠ 0三、二次根式的化简当二次根式存在可以化简的情况时,可以通过以下方法进行化简:1. 提取因子法:将根号内的数分解为两个数的乘积,其中一个数是完全平方数,并提取出完全平方数的根号作为整体。
2. 有理化分母法:对于含有二次根式的分数,可以通过有理化分母的方法化简,即将分母有理化为一个有理数或二次根式。
四、二次根式的应用1. 解一元二次方程:一元二次方程的形如ax^2 + bx + c = 0,其中a ≠ 0。
通过二次根式的求解方法,可以求得方程的解,并通过图像分析得到方程的根的性质。
2. 求解勾股定理:在平面几何中,勾股定理是指在直角三角形中,直角边的平方等于两个其他边的平方之和。
通过二次根式的运算,可以准确计算出直角三角形的边长。
3. 计算图形的面积:在几何问题中,经常需要计算图形的面积,而某些图形的面积计算涉及到二次根式。
高一数学第二章知识点笔记
高一数学第二章知识点笔记一、整式及其运算1. 整式的定义:只包含有限个代数式并且每个代数式的系数都是整数的代数式称为整式。
2. 幂的运算法则:a^m * a^n = a^(m+n),(a^m)^n = a^(mn),(ab)^m = a^m * b^m,(a/b)^m = a^m / b^m。
3. 四则运算法则:- 加法法则:多项式相加,合并同类项,即将同类项的系数相加。
- 减法法则:多项式相减,将减数中每一项改变符号,再按加法法则合并同类项。
- 乘法法则:多项式相乘,将每一项乘以另一多项式的每一项,并合并同类项。
- 除法法则:多项式相除,除法的基本法则是“左除”,即将被除式从左至右地除以除式。
二、一元一次方程与不等式1. 一元一次方程的定义:形如ax + b = 0(a≠0)的方程称为一元一次方程。
2. 一元一次方程的解法:对于方程ax + b = 0,解为x = -b/a。
3. 一元一次不等式的解法:对于不等式ax + b > 0,解为x > -b/a;对于不等式ax + b < 0,解为x < -b/a。
4. 绝对值不等式的解法:- 对于不等式|ax + b| > c,解为x < (-b-c)/a 或 x > (c-b)/a。
- 对于不等式|ax + b| < c,解为(-c-b)/a < x < (c-b)/a。
- 对于不等式|ax + b| ≥ c,解为x ≤ (-b-c)/a 或x ≥ (c-b)/a。
- 对于不等式|ax + b| ≤ c,解为(-c-b)/a ≤ x ≤ (c-b)/a。
三、二次根式和二次方程1. 二次根式的定义:形如√a的根式称为二次根式。
2. 二次根式的化简:将二次根式化为简化形式,包括去除平方因子、合并同类项、有理化分母等。
3. 二次方程的定义:形如ax^2 + bx + c = 0(a≠0)的方程称为二次方程。
二次根式和一元二次方程测试题(附完整答案及解析)
二次根式和一元二次方程测试题一.选择题(36分)1。
下列式子中二次根式的个数有 ( )⑴31;⑵3-;⑶12+-x ;⑷38;⑸231)(-;⑹)(11>-x x ;⑺322++x x . A .2个 B .3个 C .4个 D .5个2。
当22-+a a 有意义时,a 的取值范围是 ( )A .a≥2B .a >2C .a≠2D .a≠-23.下列二次根式:2xy ,8,a b 2,35x y ,x y +,12,其中最简二次根式共有( ) A 。
2个 B. 3个 C 。
4个 D 。
5个4。
化简二次根式a a a -+12的结果是 ( ) A 。
--a 1 B 。
---a 1C 。
a -1D 。
--a 1 5. 式子错误!+错误!有意义的条件是 ( )A 。
x ≥0B 。
x ≤0且x ≠-2C 。
x ≠-2D 。
x ≤0 6。
计算abab b a 1⋅÷等于 ( ) A .ab ab 21 B .ab ab 1 C .ab b1 D .ab b 7。
下列方程中,一元二次方程是( ) (A )221xx +(B)bx ax +2(C )()()121=+-x x (D )052322=--y xy x 8。
已知21x x 、是方程122+=x x 的两个根,则2111x x +的值为( ) (A )21- (B)2 (C)21 (D)-2 9.若关于x 的一元二次方程0962=+-x kx 有两个不相等的实数根,则k 的取值范围( )(A) k <1 (B )k ≠0 (C )k <1且k ≠0 (D ) k >110某超市一月份的营业额为100万元,第一季度的营业额共800万元,如果平均每月增长率为x ,则所列方程应为( )A .100(1+x)2=800B 。
100+100×2x=800C .100+100×3x=800 D.100[1+(1+x)+(1+x)2]=80011。
《二次根式与一元二次方程》专题练习含解析
《二次根式及一元二次方程》一、选择题1.估算的值〔〕A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间2.要使+有意义,那么x应满足〔〕A.≤x≤3 B.x≤3且x≠ C.<x<3 D.<x≤33.方程x2+bx+a=0有一个根是﹣a〔a≠0〕,那么以下代数式的值恒为常数的是〔〕A.ab B.C.a+b D.a﹣b4.a,b,c分别是三角形的三边,那么方程〔a+b〕x2+2cx+〔a+b〕=0的根的情况是〔〕A.没有实数根 B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根5.市2016年国生产总值〔GDP〕比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,假设这两年GDP年平均增长率为x%,那么x%满足的关系是〔〕A.12%+7%=x% B.〔1+12%〕〔1+7%〕=2〔1+x%〕C.12%+7%=2•x% D.〔1+12%〕〔1+7%〕=〔1+x%〕26.以下各式计算正确的选项是〔〕A.B.〔a<1〕C.D.7.关于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满足〔〕A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠58.设a,b是方程x2+x﹣2016=0的两个实数根,那么a2+2a+b的值为〔〕A.2014 B.2017 C.2015 D.20169.方程〔x﹣3〕〔x+1〕=x﹣3的解是〔〕A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=010.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,那么这个三角形的周长为〔〕A.12 B.12或15 C.15 D.不能确定11.定义:如果一元二次方程ax2+bx+c=0〔a≠0〕满足a+b+c=0,那么我们称这个方程为“凤凰〞方程.ax2+bx+c=0〔a≠0〕是“凤凰〞方程,且有两个相等的实数根,那么以下结论正确的选项是〔〕A.a=c B.a=b C.b=c D.a=b=c12.如图,双曲线y=〔k<0〕经过直角三角形OAB斜边OA的中点D,且与直角边AB 相交于点C.假设点A的坐标为〔﹣6,4〕,那么△AOC的面积为〔〕A.12 B.9 C.6 D.4二、填空题13.化简=.14.计算的结果是.15.计算: +=.16.如果方程ax2+2x+1=0有两个不等实根,那么实数a的取值围是.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,那么x12+3x1x2+x22的值为.18.x=1是一元二次方程x2+mx+n=0的一个根,那么m2+2mn+n2的值为.19.请你写出一个有一根为1的一元二次方程:.〔答案不唯一〕20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,那么〔x1﹣x2〕2的值是.21.假设把代数式x2﹣2x﹣3化为〔x﹣m〕2+k的形式,其中m,k为常数,那么m+k=.22.将根号外面的因式移进根号后等于.23.假设正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.假设正方形OABC的面积为1,那么k的值为;点E的坐标为.三、解答题24.计算:.25.用配方法解方程:2x2+1=3x.26.关于x的一元二次方程x2﹣〔2k+1〕x+4k﹣3=0.〔1〕求证:无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.27.一元二次方程x2﹣2x+m=0.〔1〕假设方程有两个实数根,求m的围;〔2〕假设方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.28.关于x的一元二次方程x2=2〔1﹣m〕x﹣m2的两实数根为x1,x2〔1〕求m的取值围;〔2〕设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.《二次根式及一元二次方程》参考答案与试题解析一、选择题1.估算的值〔〕A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间【考点】估算无理数的大小.【专题】应用题.【分析】首先利用平方根的定义估算31前后的两个完全平方数25和36,从而判断的围,再估算的围即可.【解答】解:∵5<<6∴3<<4应选C.【点评】此题主要考察了利用平方根的定义来估算无理数的大小,解题关键是估算的整数局部和小数局部.2.要使+有意义,那么x应满足〔〕A.≤x≤3 B.x≤3且x≠C.<x<3 D.<x≤3【考点】二次根式有意义的条件;分式有意义的条件.【分析】根据被开方数大于等于0,分母不等于0列式计算即可得解.【解答】解:由题意得,,解不等式①得,x≤3,解不等式②的,x>,所以,<x≤3.应选:D.【点评】此题考察的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.3.方程x2+bx+a=0有一个根是﹣a〔a≠0〕,那么以下代数式的值恒为常数的是〔〕A.ab B.C.a+b D.a﹣b【考点】一元二次方程的解.【分析】此题根据一元二次方程的根的定义,把x=﹣a代入方程,即可求解.【解答】解:∵方程x2+bx+a=0有一个根是﹣a〔a≠0〕,∴〔﹣a〕2+b〔﹣a〕+a=0,又∵a≠0,∴等式的两边同除以a,得a﹣b+1=0,故a﹣b=﹣1.故此题选D.【点评】此题考察的重点是方程根的定义,分析问题的方向比拟明确,就是由入手推导、发现新的结论.4.a,b,c分别是三角形的三边,那么方程〔a+b〕x2+2cx+〔a+b〕=0的根的情况是〔〕A.没有实数根 B.可能有且只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式;三角形三边关系.【分析】由于这个方程是一个一元二次方程,所以利用根的判别式可以判断其根的情况.能够根据三角形的三边关系,得到关于a,b,c的式子的符号.【解答】解:∵△=〔2c〕2﹣4〔a+b〕2=4[c2﹣〔a+b〕2]=4〔a+b+c〕〔c﹣a﹣b〕,根据三角形三边关系,得c﹣a﹣b<0,a+b+c>0.∴△<0.∴该方程没有实数根.应选A.【点评】此题是方程与几何的综合题.主要考察了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对〔2c〕2﹣4〔a+b〕〔a+b〕进展因式分解.5.市2016年国生产总值〔GDP〕比2015年增长了12%,由于受到国际金融危机的影响,预计今年比2016年增长7%,假设这两年GDP年平均增长率为x%,那么x%满足的关系是〔〕A.12%+7%=x% B.〔1+12%〕〔1+7%〕=2〔1+x%〕C.12%+7%=2•x% D.〔1+12%〕〔1+7%〕=〔1+x%〕2【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】增长率问题,一般用增长后的量=增长前的量×〔1+增长率〕,然后用平均增长率和实际增长率分别求出今年的国生产总值,由此可得到一个方程,即x%满足的关系式.【解答】解:假设设2015年的国生产总值为y,那么根据实际增长率和平均增长率分别得到2010年和今年的国生产总值分别为:2016年国生产总值:y〔1+x%〕或y〔1+12%〕,所以1+x%=1+12%,今年的国生产总值:y〔1+x%〕2或y〔1+12%〕〔1+7%〕,所以〔1+x%〕2=〔1+12%〕〔1+7%〕.应选D.【点评】此题主要考察增长率问题,然后根据增长率和条件抽象出一元二次方程.6.以下各式计算正确的选项是〔〕A.B.〔a<1〕C.D.【考点】二次根式的混合运算;立方根.【分析】A、根据二次根式的乘法运算法那么的逆运算直接计算就可以;B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;C、先将被开方数进展乘方运算再合并最后化简就可以了;D、先进展分母有理化,再进展合并同类二次根式就可以了.【解答】解:A、≠,本答案错误;B、〔a<1〕,本答案正确;C、,本答案错误;D、==4≠2,本答案错误.应选B.【点评】此题考察了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.7.关于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么a满足〔〕A.a≥1 B.a>1且a≠5 C.a≥1且a≠5 D.a≠5【考点】根的判别式.【专题】判别式法.【分析】由于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根,那么分两种情况:〔1〕当a﹣5=0时,方程一定有实数根;〔2〕当a﹣5≠0时,方程成为一元二次方程,利用判别式即可求出a的取值围.【解答】解:分类讨论:①当a﹣5=0即a=5时,方程变为﹣4x﹣1=0,此时方程一定有实数根;②当a﹣5≠0即a≠5时,∵关于x的方程〔a﹣5〕x2﹣4x﹣1=0有实数根∴16+4〔a﹣5〕≥0,∴a≥1.∴a的取值围为a≥1.应选:A.【点评】此题考察了一元二次方程ax2+bx+c=0〔a≠0〕的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.8.设a,b是方程x2+x﹣2016=0的两个实数根,那么a2+2a+b的值为〔〕A.2014 B.2017 C.2015 D.2016【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.【分析】由于a2+2a+b=〔a2+a〕+〔a+b〕,故根据方程的解的意义,求得〔a2+a〕的值,由根与系数的关系得到〔a+b〕的值,即可求解.【解答】解:∵a是方程x2+x﹣2016=0的根,∴a2+a=2016;由根与系数的关系得:a+b=﹣1,∴a2+2a+b=〔a2+a〕+〔a+b〕=2016﹣1=2015.应选:C.【点评】此题综合考察了一元二次方程的解的定义及根与系数的关系,要正确解答此题还要能对代数式进展恒等变形.9.方程〔x﹣3〕〔x+1〕=x﹣3的解是〔〕A.x=0 B.x=3 C.x=3或x=﹣1 D.x=3或x=0【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.【分析】此题可以采用因式分解法,此题的公因式为〔x﹣3〕,提公因式,降次即可求得.【解答】解:∵〔x﹣3〕〔x+1〕=x﹣3∴〔x﹣3〕〔x+1〕﹣〔x﹣3〕=0∴〔x﹣3〕〔x+1﹣1〕=0∴x1=0,x2=3.应选D.【点评】此题考察了学生的计算能力,注意把x﹣3当作一个整体,直接提公因式较简单,选择简单正确的解题方法可以到达事半功倍的效果.10.方程x2﹣9x+18=0的两个根是等腰三角形的底和腰,那么这个三角形的周长为〔〕A.12 B.12或15 C.15 D.不能确定【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.【解答】解:解方程x2﹣9x+18=0,得x1=6,x2=3∵当底为6,腰为3时,由于3+3=6,不符合三角形三边关系∴等腰三角形的腰为6,底为3∴周长为6+6+3=15应选C.【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.11.定义:如果一元二次方程ax2+bx+c=0〔a≠0〕满足a+b+c=0,那么我们称这个方程为“凤凰〞方程.ax2+bx+c=0〔a≠0〕是“凤凰〞方程,且有两个相等的实数根,那么以下结论正确的选项是〔〕A.a=c B.a=b C.b=c D.a=b=c【考点】根的判别式.【专题】压轴题;新定义.【分析】因为方程有两个相等的实数根,所以根的判别式△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得〔﹣a﹣c〕2﹣4ac=0,化简即可得到a与c的关系.【解答】解:∵一元二次方程ax2+bx+c=0〔a≠0〕有两个相等的实数根,∴△=b2﹣4ac=0,又a+b+c=0,即b=﹣a﹣c,代入b2﹣4ac=0得〔﹣a﹣c〕2﹣4ac=0,即〔a+c〕2﹣4ac=a2+2ac+c2﹣4ac=a2﹣2ac+c2=〔a﹣c〕2=0,∴a=c.应选A【点评】一元二次方程根的情况与判别式△的关系:〔1〕△>0⇔方程有两个不相等的实数根;〔2〕△=0⇔方程有两个相等的实数根;〔3〕△<0⇔方程没有实数根.12.如图,双曲线y=〔k<0〕经过直角三角形OAB斜边OA的中点D,且与直角边AB 相交于点C.假设点A的坐标为〔﹣6,4〕,那么△AOC的面积为〔〕A.12 B.9 C.6 D.4【考点】反比例函数系数k的几何意义.【专题】压轴题.【分析】△AOC的面积=△AOB的面积﹣△BOC的面积,由点A的坐标为〔﹣6,4〕,根据三角形的面积公式,可知△AOB的面积=12,由反比例函数的比例系数k的几何意义,可知△BOC的面积=|k|.只需根据OA的中点D的坐标,求出k值即可.【解答】解:∵OA的中点是D,点A的坐标为〔﹣6,4〕,∴D〔﹣3,2〕,∵双曲线y=经过点D,∴k=﹣3×2=﹣6,∴△BOC的面积=|k|=3.又∵△AOB的面积=×6×4=12,∴△AOC的面积=△AOB的面积﹣△BOC的面积=12﹣3=9.应选B.【点评】此题考察了一条线段中点坐标的求法及反比例函数的比例系数k与其图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.二、填空题13.化简= 0 .【考点】二次根式有意义的条件.【分析】由1﹣x≥0,x﹣1≥0,得出x﹣1=0,从而得出结果.【解答】解:∵1﹣x≥0,x﹣1≥0,∴x﹣1=0,∴=0.【点评】二次根式的意义和性质.概念:式子〔a≥0〕叫二次根式.性质:二次根式中的被开方数必须是非负数,否那么二次根式无意义.14.计算的结果是 4 .【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.【解答】解: ==4.故答案为:4.【点评】此题主要考察了算术平方根的定义,此题易错点在于符号的处理.15.计算: += 3.【考点】二次根式的加减法.【分析】此题考察了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.【解答】解:原式=2+=3.【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数一样的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数一样的二次根式进展合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.16.如果方程ax2+2x+1=0有两个不等实根,那么实数a的取值围是a<1且a≠0 .【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足以下条件:〔1〕二次项系数不为零;〔2〕在有不相等的实数根下必须满足△=b2﹣4ac>0.【解答】解:根据题意列出不等式组,解之得a<1且a≠0.故答案为:a<1且a≠0.【点评】此题考察了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.17.设x1,x2是一元二次方程x2﹣3x﹣2=0的两个实数根,那么x12+3x1x2+x22的值为7 .【考点】根与系数的关系.【分析】根据根与系数的关系,可求出x1+x2以及x1x2的值,然后根据x12+3x1x2+x22=〔x1+x2〕2+x1x2进一步代值求解.原式=〔x1+x2〕2+x1x2=9﹣2=7.故答案为:7.【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.18.x=1是一元二次方程x2+mx+n=0的一个根,那么m2+2mn+n2的值为 1 .【考点】一元二次方程的解;完全平方公式.【分析】首先把x=1代入一元二次方程x2+mx+n=0中得到m+n+1=0,然后把m2+2mn+n2利用完全平方公式分解因式即可求出结果.【解答】解:∵x=1是一元二次方程x2+mx+n=0的一个根,∴m+n+1=0,∴m+n=﹣1,∴m2+2mn+n2=〔m+n〕2=〔﹣1〕2=1.故答案为:1.【点评】此题主要考察了方程的解的定义,利用方程的解和完全平方公式即可解决问题.19.请你写出一个有一根为1的一元二次方程:x2=1 .〔答案不唯一〕【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.【解答】解:根据题意x=1得方程式x2=1.故此题答案不唯一,如x2=1等.【点评】此题属于开放性试题,主要考察一元二次方程的概念的理解与掌握.可以用因式分解法写出原始方程,然后化为一般形式即可,如〔y﹣1〕〔y+2〕=0,后化为一般形式为y2+y﹣2=0.20.关于x的一元二次方程x2﹣mx+2m﹣1=0的两个实数根分别是x1、x2,且x12+x22=7,那么〔x1﹣x2〕2的值是13 .【考点】根与系数的关系;根的判别式.【分析】首先根据根与系数的关系,得出x1+x2和x1x2的值,然后根据x12+x22的值求出m〔需注意m的值应符合此方程的根的判别式〕;然后再代值求解.那么:〔x1+x2〕2=x12+x22+2x1x2,即m2=7+2〔2m﹣1〕,解得m=﹣1,m=5;当m=5时,△=m2﹣4〔2m﹣1〕=25﹣4×9<0,不合题意;故m=﹣1,x1+x2=﹣1,x1x2=﹣3;∴〔x1﹣x2〕2=〔x1+x2〕2﹣4x1x2=1+12=13.【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.此题需注意的是在求出m值后,一定要用根的判别式来判断所求的m是否符合题意,以免造成多解、错解.21.假设把代数式x2﹣2x﹣3化为〔x﹣m〕2+k的形式,其中m,k为常数,那么m+k= ﹣3 .【考点】完全平方公式.【专题】配方法.【分析】根据完全平方公式的结构,按照要求x2﹣2x﹣3=x2﹣2x+1﹣4=〔x﹣1〕2﹣4,可知m=1.k=﹣4,那么m+k=﹣3.【解答】解:∵x2﹣2x﹣3=x2﹣2x+1﹣4=〔x﹣1〕2﹣4,∴m=1,k=﹣4,∴m+k=﹣3.故答案为:﹣3.【点评】此题主要考察完全平方公式的变形,熟记公式结构是解题的关键.完全平方公式:〔a±b〕2=a2±2ab+b2.22.将根号外面的因式移进根号后等于.【考点】二次根式的性质与化简.【专题】计算题.【分析】先根据二次根式定义得到a<0,然后根据二次根式的性质把﹣a转化为,再利用乘法公式运算即可.【解答】解:∵﹣≥0,∴a<0,∴原式=﹣〔﹣a〕•=﹣=﹣.故答案为﹣.【点评】此题考察了二次根式的性质与化简:〔a≥0〕为二次根式; =|a|;=•〔a≥0,b≥0〕等.23.假设正方形OABC的顶点B和正方形ADEF的顶点E都在函数的图象上.假设正方形OABC的面积为1,那么k的值为 1 ;点E的坐标为〔+,﹣〕.【考点】反比例函数系数k的几何意义.【分析】〔1〕根据正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1,得出B点坐标,即可得出反比例函数的解析式;〔2〕由于D点在反比例函数图象上,用a和正方形OABC的边长表示出来E点坐标,代入y=〔x>0〕求得a的值,即可得出D点坐标.【解答】解:∵正方形OABC和正方形AEDF各有一个顶点在一反比例函数图象上,且正方形OABC的边长为1.∴B点坐标为:〔1,1〕,设反比例函数的解析式为y=;∴xy=k=1,设正方形ADEF的边长为a,那么E〔1+a,a〕,代入反比例函数y=〔x>0〕得:1=〔1+a〕a,又a>0,解得:a=﹣.∴点E的坐标为:〔 +,﹣〕.【点评】此题考察了反比例函数与正方形性质结合的综合应用,考察了数形结合的思想,利用xy=k得出是解题关键.三、解答题24.计算:.【考点】二次根式的混合运算;负整数指数幂.【分析】此题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进展计算,然后根据实数的运算法那么求得计算结果.【解答】原式=3+4﹣2﹣2+=5﹣2+2﹣2=3.【点评】此题考察实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.25.用配方法解方程:2x2+1=3x.【考点】解一元二次方程﹣配方法.【专题】计算题.【分析】首先把方程的二次项系数变成1,然后等式的两边同时加上一次项系数的一半,那么方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.【解答】解:移项,得2x2﹣3x=﹣1,二次项系数化为1,得,配方,,由此可得,∴x=1,.1【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.此题考察用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即ax2+bx+c=0〔a≠0〕的形式,然后再配方求解.26.关于x的一元二次方程x2﹣〔2k+1〕x+4k﹣3=0.〔1〕求证:无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕当Rt△ABC的斜边长a=,且两条直角边b和c恰好是这个方程的两个根时,求△ABC的周长.【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.【分析】〔1〕根据△>0即可证明无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕根据勾股定理及根与系数的关系列出关于b,c的方程,解出b,c即可得出答案.【解答】解:〔1〕关于x的一元二次方程x2﹣〔2k+1〕x+4k﹣3=0,△=〔2k+1〕2﹣4〔4k﹣3〕=4k2﹣12k+13=4+4>0恒成立,故无论k取什么实数值,该方程总有两个不相等的实数根;〔2〕根据勾股定理得:b2+c2=a2=31①因为两条直角边b和c恰好是这个方程的两个根,那么b+c=2k+1②,bc=4k﹣3③,因为〔b+c〕2﹣2bc=b2+c2=31,即〔2k+1〕2﹣2〔4k﹣3〕=31,整理得:4k2+4k+1﹣8k+6﹣31=0,即k2﹣k﹣6=0,解得:k1=3,k2=﹣2,∵b+c=2k+1>0即k>﹣.bc=4k﹣3>0即k>,∴k2=﹣2〔舍去〕,那么b+c=2k+1=7,又因为a=,那么△ABC的周长=a+b+c=+7.【点评】此题考察了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙运用△>0恒成立证明〔1〕,再根据勾股定理和根与系数的关系列出方程组进展解答.27.一元二次方程x2﹣2x+m=0.〔1〕假设方程有两个实数根,求m的围;〔2〕假设方程的两个实数根为x1,x2,且x1+3x2=3,求m的值.【考点】根与系数的关系;根的判别式.【专题】压轴题.【分析】〔1〕一元二次方程x2﹣2x+m=0有两个实数根,△≥0,把系数代入可求m的围;〔2〕利用两根关系,x1+x2=2结合x1+3x2=3,先求x1、x2,再求m.【解答】解:〔1〕∵方程x2﹣2x+m=0有两个实数根,∴△=〔﹣2〕2﹣4m≥0,解得m≤1;〔2〕由两根关系可知,x1+x2=2,x1•x2=m,解方程组,解得,∴m=x1•x2=.【点评】此题考察了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.28.关于x的一元二次方程x2=2〔1﹣m〕x﹣m2的两实数根为x1,x2〔1〕求m的取值围;〔2〕设y=x1+x2,当y取得最小值时,求相应m的值,并求出最小值.【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.【分析】〔1〕假设一元二次方程有两不等根,那么根的判别式△=b2﹣4ac≥0,建立关于m的不等式,可求出m的取值围;〔2〕根据根与系数的关系可得出x 1+x 2的表达式,进而可得出y 、m 的函数关系式,根据函数的性质及〔1〕题得出的自变量的取值围,即可求出y 的最小值及对应的m 值. 【解答】解:〔1〕将原方程整理为x 2+2〔m ﹣1〕x+m 2=0; ∵原方程有两个实数根,∴△=[2〔m ﹣1〕]2﹣4m 2=﹣8m+4≥0,得m ≤;〔2〕∵x 1,x 2为一元二次方程x 2=2〔1﹣m 〕x ﹣m 2,即x 2+2〔m ﹣1〕x+m 2=0的两根, ∴y=x 1+x 2=﹣2m+2,且m ≤;因而y 随m 的增大而减小,故当m=时,取得最小值1.【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性质是解答〔2〕题的关键.。
第一讲 二次根式及一元二次方程
第一讲 二次根式及一元二次方程【知识回顾】1.二次根式:式子a (a ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件: ⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:(1)(a )2=a (a ≥0); (2)==a a 2⎩⎨⎧<-≥)0()0(a a a a 5.二次根式的运算:(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术平方根代替而移到根号外面;如果被开方数是代数和的形式,那么先分解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.a≥0,b≥0); =(b≥0,a>0). (4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算6.分母有理化(1)定义:把分母中的根号化去,叫做分母有理化。
(2)有理化因式:两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,就说这两个代数式互为有理化因式。
有理化因式确定方法如下:a =ba -与b a -等分别互为有理化因式。
②两项二次根式:利用平方差公式来确定。
如a a分别互为有理化因式。
(3)分母有理化的方法与步骤:(1)先将分子、分母化成最简二次根式;(2)将分子、分母都乘以分母的有理化因式,使分母中不含根式;(3)最后结果必须化成最简二次根式或有理式。
7、一元二次方程:(1)定义:在一个等式中,只含有一个未知数,且未知数的最高项的次数的和是2次的整式方程叫做一元二次方程。
二次根式与一元二次方程
1、最简二次根式的化简 2、同类二次根式的合并
a.b a b(a 0,b 0) a a (a 0,b 0) bb
1、加减乘除的运算法则 2、运算律的应用
2 18 1 18 1 32
2
4
3 1 3
27 3
(3 10)2017 (3 10)2017
一元二次方程部分
课标要求与中考说明
1、理解配方法,会用配方法解简单的数字系数 的一元二次方程。 2、能熟练地运用求根公式解一元二次方程。 3、会用因式分解法解一元二次方程。
1、会用一元二次方程根的判别 1、会用一元二次方程根的判别式判别方程是否
式判别方程是否有实根和两个 有实根和两个实根是否相等。
实根是否相等
2、清晰根与系数的关系,并会简单的变形应用
内容
课标要求
中考说明
一元二次方程的概念
知道一元二次方程的一般形式, 知道一元二次方程的一般形式,会把一个一元 会把一个一元二次方程化成一 二次方程化成一般形式。 般形式。
一元二次方程的解法
一元二次方程根与系数的 关系
一元二次方程的实际应用
理解配方法,能用配方法、公 式法、因式分解法解数字系数 的一元二次方程
4、面积问题
文字语言、符号语言、图形语言的相互转 化
5、几何动态问题 标注、生成、再生成的习惯培养
销售利润问题
新华商场销售某种水箱,每台进货价为2500元,市场调研 表明:当销售价为2900元时,平均每天能售出8台;而当销 售价每降低50元时,平均每天就能多售出4台.商场要想使 这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价 应为多少元?
二次根式与一元二次方程单元备课
讲解流程
基本题型与典例剖析
二次根式与一元二次方程复习
专练 1、关于 x 的方程(a-2)x + ax + 5 = 0 是一元二次方 程的条件是 。
m 1
2
2、 已知关于 x 的方程 mx 程,则 m =
2
(m 3) x 5 是一元二次方
2 2
。 + a -1 = 0 的一
3、关于 x 的一元二次方程(a-1)x 根是 0,则 a 的值为( (5) 3 2 48 )
第 21 章 (1) 6
3 2
复习巩固
2 1 1 3 (2) 3 2 12 2 2 5 3 2 3 1 3 1.7 6 2 6
第 22 章 一元二次方程 专讲知识点一:一元二次方程定义 1、把下列一元二次方程化成一般形式,并指出它的二次项 系数,一次项系数,常数项? (1)2(x -1)=3(x-1)
2
(2) (x-4) = 3x + 12
2
(3)x(3x-3)-2x(x-1)-2 = 0
(3) 3 8 54 5 2 6 (4) 6
3 1 1 8 2 5 2 2 3 4
(4) (1 3 x)( x 3) 2 x 1
18 4 3 (6)
2 3 1
2 3 1
A、1
B、-1
2
C、1 或-1
D、
1 2
4、如果关于 x 的方程 mx + (m-1)x + 5 =0 有一个解 为 2 ,则 m 的值是 。
5、已知 2 是关于 x 的方程 的值为 。
3 2 x -2a = 0 一个解,则 2a-1 2
(4) 2 x 2 3
根式方程解法
根式方程解法根式方程是指方程中含有根号的方程,方程中可能涉及一次、二次及更高次的根式。
根式方程经常出现于代数学中,它有许多解法,本文将介绍根式方程的解法。
1. 一次根式方程一次根式方程是最简单的根式方程,它的形式为√x + a = b,其中a、b为已知实数。
解这个方程时,需要将其转换为 x = (b -a)²,并检验所求得的解是否合法。
2. 二次根式方程二次根式方程的一般形式为√ax² + bx + c + d = 0,其中a、b、c、d 为已知实数,且a≠0。
解这个方程需要经过以下几个步骤:①将根式移项,得到√ax² + b x + c = -d②将方程两边平方,得到ax² + b x + c = d²③将d² 移至一边,得到ax² + b x + c - d² = 0④代入一般形式的二次方程求解公式,得到解x⑤检验所求得的解是否合法3. 多项式根式方程多项式根式方程即含有多个根式的方程,其解法难度相对较大,需要采用分离变量或消元的方法解决。
其中,分离变量法是将根式方程中含根的项移到一边,不含根的项移到另一边,然后多次进行平方,直至得到可解的方程求出解;消元法是将根式方程的根化为一个变量,然后通过消元的方式得到几个方程组成的新方程组,并通过代数运算求出解。
在解决根式方程的过程中,需要注意以下几点:1. 方程中可能存在解非实数的情况,需要进行检验;2. 二次根式方程可以通过配方法化简成一般的二次方程,并应用一般二次方程的求解公式求解;3. 多项式根式方程的求解需要理解并熟练掌握分离变量和消元的方法,并进行合理判断。
以上就是根式方程解法的分步骤阐述。
当然,如何选择合适的解法来解决根式方程还需要在实践中不断摸索和总结,才能得到更加完善的解法。
二次根式和一元二次方程复习题
二次根式和一元二次方程复习题一.选择题1.式子有意义,则x的取值范围是()A.x>1B.x<1C.x≥1D.x≤1 2.下列根式中,不是最简二次根式的是()A.B.C.D.3.在式子,,,中,x可以取1和2的是()A.B.C.D.4.方程(m+1)x|m﹣1|+mx+2=0是关于x的一元二次方程,则()A.m=﹣1或3B.m=3C.m=﹣1D.m≠﹣1 5.下列各式中属于最简二次根式的是()A.B.C.D.6.下列各式计算正确的是()A.B.C.=5D.=7.下面计算正确的是()A.+=B.×=C.=﹣3D.﹣=8.下列二次根式中,是最简二次根式的是()A.B.C.D.9.下列计算正确的是()A.B.C.D.10.要使代数式有意义,则x的()A.最大值是B.最小值是C.最大值是D.最小值是11.用配方法解方程x2+2x﹣3=0,下列配方结果正确的是()A.(x﹣1)2=2B.(x﹣1)2=4C.(x+1)2=2D.(x+1)2=4 12.方程x2+6x﹣5=0的左边配成完全平方后所得方程为()A.(x+3)2=14 B.(x﹣3)2=14C.(x+6)2=D.以上答案都不对13.用配方法解方程x2+4x+1=0,配方后的方程是()A.(x﹣2)2=5B.(x+2)2=5C.(x+2)2=3D.(x﹣2)2=3 14.已知最简二次根式与可以合并成一项,则a、b的值分别为()A.a=1,b=2B.a=﹣1,b=0C.a=1,b=0D.a=﹣1,b=2 15.若y=﹣3,则x+y=()A.1B.5C.﹣5D.﹣116.方程(2x+3)(x﹣1)=1的解的情况是()A.有两个不相等的实数根B.没有实数根C.有两个相等的实数根D.有一个实数根17.方程(x+1)(x﹣3)=0的根是()A.x=﹣1B.x=3C.x1=1,x2=3D.x1=﹣1,x2=3 18.若关于x的一元二次方程(m﹣1)x2+2x+m2﹣1=0有一个根为0,则m的值是()A.1B.﹣1C.±1D.±219.已知a是方程2x2﹣4x﹣3=0的一个根,则代数式2a2﹣4a的值等于()A.3B.2C.0D.120.方程(x﹣2)(x+1)=(x+1)的解是()A.x=3B.x=﹣1C.x1=3,x2=﹣1D.x1=﹣3,x2=1 21.方程x2+6x﹣9=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.有一个根为﹣1D.没有实数根22.如果关于x的方程x2+k2﹣16=0和x2﹣3k+12=0有相同的实数根,那么k的值是()A.﹣7B.﹣7或4C.7D.423.实数a在数轴上的位置如图所示,则化简后为()A.7B.﹣7C.2a﹣15D.无法确定24.已知m、n是方程x2+5x﹣2=0的两个实数根,则m2+6m+n﹣2mn的值为()A.1B.﹣1C.﹣5D.525.已知x、y为实数,且.则的值为()A.5B.6C.7D.8二.填空题26.计算的结果是.27.一元二次方程2x2=5x的解是.28.分解因式:2a2﹣4a+2=.29.关于x的一元二次方程(m+1)x2﹣x+m2=0有一个根为1,则m的值为.30.已知﹣=﹣,=,则a﹣b=.31.计算:=.32.若+|x﹣3|=0,则x+y的平方根为.33.已知三角形两边的长是2和3,第三边的长是方程x2﹣6x+8=0的根,则该三角形的周长是.34.计算:()2010•()2009=.35.若方程(m+3)x|m|﹣1+3mx=0是关于x的一元二次方程,求m=.36.要使代数式有意义,则x应该满足的条件是.37.若最简二次根式与可以合并,则x的值为.38.关于x的方程2x2+kx﹣1=0的一个根是﹣1,另一个根为.39.﹣()2=.40.已知﹣3是关于x的一元二次方程ax2﹣2x+3=0的一个解,则此方程的另一个解为.41.计算:=.42.已知x2+6x=﹣1可以配成(x+p)2=q的形式,则q=.43.已知x=2是一元二次方程x2+mx+6=0的一个根,则方程的另一个根是.三.解答题44.(1)计算:(2)解方程:2x2﹣5x﹣3=045.①计算:②解方程:9x2﹣6x+1=046.计算:(1)+|﹣7|+()0+()﹣1 (2)(+2)(﹣2)+(+1)2﹣47.计算:(1)2+6﹣3(2)﹣(2+)2(2﹣)248.用适当的方法解方程(1)3x2﹣x﹣4=0 (2)(x+3)2=16(2﹣x)2 (3)x2+4x=1249.解下列方程:(1)2x2+x﹣6=0;(2)(x﹣5)2=2(5﹣x).50.解方程.(1)2x(x﹣2)=3x﹣6 (2)x2﹣2x=2x+1 (3)3x2﹣x﹣4=0.51.先化简,再求值:(a﹣)(a+)+a(5﹣a),其中a=+1.52.先化简再计算:,其中x是一元二次方程x2﹣2x﹣2=0的正数根.53.已知:x=1﹣,y=1+,求x2+y2﹣xy﹣2x+2y的值.54.已知a=,b=,求的值.55.已知x1,x2是关于x的一元二次方程x2﹣2(m+1)x+m2+5=0的两个实数根.(1)求m的取值范围;(2)若(x1﹣1)(x2﹣1)=28,求m的值.56.已知关于x的方程x2﹣(2k+1)x+k2+1=0.(1)若方程有两个不相等的实数根,求k的取值范围;(2)若方程的两根恰好是一个矩形两邻边的长,且k=2,求该矩形的对角线L的长.57.已知关于x的方程mx2﹣(2m﹣1)x+m﹣2=0;(1)当m为何值时,方程有两个不相等的实数根;(2)若m为满足(1)的最小正整数,求此时方程的两个根x1,x2.58.已知关于x的一元二次方程x2+(m+1)x+﹣2=0.(1)若此方程有两个实数根,求m的最小整数值;(2)若此方程的两个实数根为x1,x2,且满足x12+x22+x1x2=18﹣,求m的值.。
二次根式和一元二次方程知识点整理
二次根式二、知识要点1、二次根式的概念a ≥0)的式子叫做二次根式。
注意:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a ≥0,2、取值范围(1)、二次根式有意义的条件:由二次根式的意义可知,当a ≧0时,根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。
(2)、二次根式无意义的条件:因负数没有算术平方根,所以当a ﹤03、二次根式a ≥0)的非负性a ≥0)表示a a ≥00(a≥0)。
注意:a ≥0)表示a 的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a ≥0)的算术平方根是非负数,即2(a ≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。
这个性质在解答题目时应用0=,则a=0,b=020b =,则a=0,b=020b =,则a=0,b=0。
4、二次根式2的性质:2a =(a ≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
注意:二次根式的性质公式2a =(a ≥0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:若a ≥0,则2a =,如:22=,212=。
5、二次根式的性质(0)(0)a aaa a≥⎧==⎨-<⎩描述为:一个数的平方的算术平方根等于这个数的绝对值。
注意:(1)、化简一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即(0)a a a==≥;若a是负数,则等于a的相反数-a,即1.414 1.7322.236≈≈;;;2、a的取值范围可以是任意实数,即不论a3a,再根据绝对值的意义来进行化简。
6、2与1、不同点:22表示一个正数a的算术平方根的平a的平方的算术平方根;在2中a可以是正实数,0,负实数。
但220≥0≥。
因而它的运算的结果是有差别的,2a=(a≥0)(0)(0)a aaa a≥⎧==⎨-<⎩2、相同点:当被开方数都是非负数,即a≥0时,2a<0时,2无意义,而a=-。
九年级上册数学《二次根式》知识点整理
九年级上册数学《二次根式》知识点整理二次根式本节研究指导:在研究二次根式时,我们不仅要研究它的概念,还要巩固平方根的知识。
这样有助于我们系统性研究,把零散的知识整合起来。
在本节中,我们需要掌握二次根式的有意义条件。
知识要点:1、二次根式的概念:形如a(a≥0)的式子叫做二次根式。
需要注意的是,被开方数可以是数、单项式、多项式、分式等代数式。
但是,a≥0是二次根式的前提条件。
例如,5、x2+1都是二次根式,而-5、-x2都不是二次根式。
2、取值范围:1)二次根式有意义的条件:由二次根式的意义可知,当a≥0时,a有意义,是二次根式。
因此,只要被开方数大于或等于零,就可以使二次根式有意义。
2)二次根式无意义的条件:由于负数没有算术平方根,所以当a<0时,a没有意义。
3、二次根式a(a≥0)的非负性:a(a≥0)表示a的算术平方根,也就是说,a(a≥0)是一个非负数,即a≥0.由于正数的算术平方根是正数,负数的算术平方根是不存在的,因此非负数的算术平方根也是非负数。
这个性质类似于绝对值、偶次方的性质,在解答题目时应用较多。
例如,如果a+b=0,则a=0,b=0;如果a-b=0,则a=0,b=0;如果a×b=0,则a=0,b=0.4、二次根式(a)的性质:a)=a(a≥0)描述为:一个非负数的算术平方根的平方等于这个非负数。
需要注意的是,这个性质公式(a)=a(a≥0)是逆用平方根的定义得出的结论。
上面的公式也可以反过来应用:如果a≥0,则a=(a)。
例如,2=(2),1=(1)。
5、二次根式的性质:a(a≥0)a2=a=___(a<0)描述为:一个数的平方的算术平方根等于这个数的绝对值。
需要注意的是:1)化简a2时,一定要弄明白被开方数的底数a是正数还是负数。
如果是正数或0,则等于a本身,即a2=a=a(a≥0);如果a是负数,则等于a的相反数-a,即2≈1.414,3≈1.732,5≈2.236,7≈2.646.2)a2中的a的取值范围可以是任意实数,即不论a取何值,a2一定有意义。
二次根式和一元二次方程知识点
二次根式1. 二次根式的概念:形如 的式子叫做二次根式.2. 二次根式的性质:(1)=2)(a (a ≥0);(2(3)⎪⎩⎪⎨⎧<=>==)0___()0___()0___(____2a a a a3. 二次根式的乘除:计算公式:___(0,0)___(0,0)a b a b ⎧≥≥⎪⎨=≥>⎪⎩4. 概念: 1.2.⎧⎨⎩最简二次根式:(1) (2) (3)同类二次根式:5. 二次根式的加减:(一化,二找,三合并 )(1)将每个二次根式化为最简二次根式;(2)找出其中的同类二次根式;(3)合并同类二次根式.6. 二次根式化简求值步骤:(1)“一分”:分解因数(因式)、平方数(式);(2)“二移”:根据算术平方根的概念,把根号内的平方数或者平方式移到根号外面;(3)“三化”:化去被开方数中的分母.7. 二次根式的混合运算:(1)二次根式的混合运算顺序与实数运算类似,先算乘方,再算乘除,最后算加减,有括号先算括号里面的.(2)对于二次根式混合运算,原来学过的所有运算律、运算法则及乘法公式仍然适用.(3)在二次根式混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.一元二次方程1. 一元二次方程:1) 一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程.2) 一元二次方程的一般形式:)0(02≠=++a c bx ax .它的特征:等式左边是一个关于未知数x 的二次多项式,等式右边是零.2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项.2. 一元二次方程的解法:1) 直接开平方法:利用平方根的定义直接开平方求一元二次方程的解的方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b <0时,方程没有实数根.2) 配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为1,再同时加上1次项的系数的一半的平方,最后配成完全平方公式.3) 公式法:公式法是用求根公式解一元二次方程的解的方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:)04(2422≥--±-=ac b a ac b b x 4) 因式分解法:因式分解法就是利用因式分解的手段,求出方程的解的方法.分解因式法的步骤:把方程右边化为0,然后看看是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,如果可以,就可以化为乘积的形式.3. 一元二次方程根的判别式:一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆.1) 当△>0时,一元二次方程有2个不相等的实数根;2) 当△=0时,一元二次方程有2个相同的实数根;3) 当△<0时,一元二次方程没有实数根.4. 韦达定理:如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么a b x x -=+21,ac x x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商.5. 一元二次方程的二次函数的关系:其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊情况,就是当y =0的时候就构成了一元二次方程了.那如果在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X 轴的交点,也就是该方程的解了.。
二次根式及一元二次方程
页眉内容22.3 二次根式的加减(1)教学内容:二次根式的加减教学目标:理解和掌握二次根式加减的方法.重难点关键:1.重点:二次根式化简为最简根式.2.难点关键:会判定是否是最简二次根式.教学过程:一、设疑自探——解疑合探自探(学生活动):计算下列各式.(1);(2);(3;(4)因此,二次根式的被开方数相同是可以合并的,如表面上看是不相同的,但它们可以合并吗?可以的.(板书)3+=3+2=5和3所以,二次根式加减时,可以先将二次根式化成最简二次根式,•再将被开方数相同的二次根式进行合并.合探1.计算:(1(2分析:第一步,将不是最简二次根式的项化为最简二次根式;第二步,将相同的最简二次根式进行合并.合探2.计算(1)(2)+二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!三、应用拓展+y-(x)的值.已知4x2+y2-4x-6y+10=0,求(2分析:本题首先将已知等式进行变形,把它配成完全平方式,得(2x-1)2+(y-3)2=0,1即x=,y=3.其次,根据二次根式的加减运算,先把各项化成最简二次根式,2•再合并同类二次根式,最后代入求值.四、归纳小结(师生共同归纳):本节课应掌握:(1)不是最简二次根式的,应化成最简二次根式;(2)相同的最简二次根式进行合并.五、作业设计(写在小黑板上)(一)、选择题1中,与是同类二次根式的是().A.①和②B.②和③C.①和④D.③和④2.下列各式:①②17;,其中错误的有( ). A .3个 B .2个 C .1个 D .0个 (二)、填空题1、二次根式的有________.2.计算二次根式的最后结果是________. (三)、综合提高题1 2.236-(结果精确到0.01)2.先化简,再求值.(-(,其中x=32,y=27.六、反思及感想:22.3 二次根式的加减(2)教学内容:利用二次根式化简的数学思想解应用题.教学目标:运用二次根式、化简解应用题.重难点关键:讲清如何解答应用题既是本节课的重点,又是本节课的难点、关键点.教学过程:一、设疑自探——解疑合探上节课,我们已经学习了二次根式如何加减的问题,我们把它归为两个步骤:第一步,先将二次根式化成最简二次根式;第二步,再将被开方数相同的二次根式进行合并,下面我们研究三道题以做巩固.自探1.如图所示的Rt△ABC中,∠B=90°,点P从点B开始沿BA边以1厘米/•秒的速度向点A移动;同时,点Q也从点B开始沿BC边以2厘米/秒的速度向点C移动.问:几秒后△PBQ的面积为35平方厘米?PQ的距离是多少厘米?(结果用最简二次根式表示)分析:设x秒后△PBQ的面积为35平方厘米,那么PB=x,BQ=2x,•根据三角形面积公式就可以求出x的值.解:设x 后△PBQ的面积为35平方厘米.则有PB=x,BQ=2x1依题意,得:2PBQ的面积为35平方厘米.===PBQ的面积为35平方厘米,PQ的距离为厘米.自探2.要焊接如图所示的钢架,大约需要多少米钢材(精确到0.1m)?解:由勾股定理,得===所需钢材长度为AB+BC+AC+BD =2+5+2 +7≈3×2.24+7≈13.7(m)答:要焊接一个如图所示的钢架,大约需要13.7m的钢材.)三、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下!四、应用拓展若最简根式3a是同类二次根式,求a、b的值.注:(•同类二次根式就是被开方数相同的最简二次根式)分析:同类二次根式是指几个二次根式化成最简二次根式后,被开方数相同;•事实上,根式不是最简二次根式,因此把化简成|b|3a-•b=•2,2a-b+6=4a+3b .由题意得432632ab a b a b +=-+⎧⎨-=⎩ ∴24632ab a b +=⎧⎨-=⎩ ∴a=1,b=1五、归纳小结(师生共同归纳):本节课应掌握运用最简二次根式的合并原理解决实际问题. 六、作业设计(写在小黑板上) (一)、选择题1.已知直角三角形的两条直角边的长分别为5和5,那么斜边的长应为( ).A .BC .D .以上都不对2.小明想自己钉一个长与宽分别为30cm 和20cm 的长方形的木框,•为了增加其稳定性,他沿长方形的对角线又钉上了一根木条,木条的长应为( )米.A .BC .D . (二)、填空题1.某地有一长方形鱼塘,已知鱼塘的长是宽的2倍,它的面积是1600m 2,•鱼塘的宽是_______m .2.已知等腰直角三角形的直角边的边长为,•那么这个等腰直角三角形的周长是________.(三)、综合提高题12n 是同类二次根式,求m 、n 的值.2.同学们,我们以前学过完全平方公式a 2±2ab+b 2=(a ±b )2,你一定熟练掌握了吧!现在,我们又学习了二次根式,那么所有的正数(包括0)都可以看作是一个数的平方,如3=2,5=2,你知道是谁的二次根式呢?下面我们观察:)2=2-2·12反之,+1=)2 ∴)2求:(1 (2;(3(4,则m 、n 与a 、b 的关系是什么?并说明理由.六、反思及感想:22.3 二次根式的加减(3)教学内容:含有二次根式的单项式与单项式相乘、相除;多项式与单项式相乘、相除;多项式与多项式相乘、相除;乘法公式的应用.教学目标:1、含有二次根式的式子进行乘除运算和含有二次根式的多项式乘法公式的应用. 2、复习整式运算知识并将该知识运用于含有二次根式的式子的乘除、乘方等运算.重难点关键:1、重点:二次根式的乘除、乘方等运算规律;2、难点关键:由整式运算知识迁移到含二次根式的运算.教学过程一、设疑自探——解疑合探 自探1.(学生活动):请同学们完成下列各题: 1.计算:(1)(2x+y )·zx (2)(2x 2y+3xy 2)÷xy 2.计算:(1)(2x+3y )(2x-3y ) (2)(2x+1)2+(2x-1)2 老师点评:这些内容是对八年级上册整式运算的再现.它主要有(1)•单项式×单项式;(2)单项式×多项式;(3)多项式÷单项式;(4)完全平方公式;(5)平方差公式的运用.如果把上面的x 、y 、z 改写成二次根式呢?以上的运算规律是否仍成立呢?•仍成立. 整式运算中的x 、y 、z 是一种字母,它的意义十分广泛,可以代表所有一切,•当然也可以代表二次根式,所以,整式中的运算规律也适用于二次根式.自探2.计算:(1) (2)( 分析:刚才已经分析,二次根式仍然满足整式的运算规律,•所以直接可用整式的运算规律.自探3. 计算:(1))( (2))分析:刚才已经分析,二次根式的多项式乘以多项式运算在乘法公式运算中仍然成立. 二、质疑再探:同学们,通过学习你还有什么问题或疑问?与同伴交流一下! 三、应用拓展:已知xb a-=2-x a b-,其中a 、b 是实数,且a+b ≠0,)=1,因此对代数式的化简,可先将分母有理化,再通过解含有字母系数的一元一次方程得到x 的值,代入化简得结果即可.解:原式2(1)x x +-(1)x x+- =(x+1)=4x+2∵x b a-=2-x a b- ∴b (x-b )=2ab-a (x-a ) ∴bx-b 2=2ab-ax+a 2∴(a+b )x=a 2+2ab+b 2 ∴(a+b )x=(a+b )2 ∵a+b ≠0 ∴x=a+b ∴原式=4x+2=4(a+b )+2四、归纳小结(师生共同归纳):本节课应掌握二次根式的乘、除、乘方等运算. 五、作业设计(写在小黑板上) (一)、选择题1. ).A .203B .23C .23D .2032 ).A .2 B .3 C .4 D .1(二)、填空题1.(-122)2的计算结果(用最简根式表示)是________.2.((-()2的计算结果(用最简二次根式表示)是_______.3.若,则x 2+2x+1=________.4.已知a 2b-ab 2=_________. (三)、综合提高题12.当的值.(结果用最简二次根式表示)六、反思及感想:23.1 一元二次方程教学目标:1、知道一元二次方程的定义,能熟练地把一元二次方程整理成一般形式02=++c bx ax(a≠0)2、在分析、揭示实际问题的数量关系并把实际问题转化为数学模型(一元二次方程)的过程中使学生感受方程是刻画现实世界数量关系的工具,增加对一元二次方程的感性认识。
二次根式和一元二次方程(教师版)
学科教师辅导讲义学员姓名: 年 级: 初二 授课时间: 课时数:2 辅导科目: 数学 学科教师: 学科组长签名组长备注课题 二次根式、一元二次方程复习教学目标1.复习二次根式的概念和性质,灵活掌握二次根式的运用2.复习一元二次方程的解法和应用 重点 1.二次根式的运算2.一元二次方程的解法和应用 难点 一元二次方程的解法和应用 考点 1.二次根式的运算2.一元二次方程的解法和运用二次根式、一元二次方程复习【热身练习】1、下列根式中是同类二次根式的个数是 2(1)b a 32 (2)24ab (3)329b a (4)31225ab (5)b a 522、当x < 2时,化简二次根式442+-x x = 2-x .3、若2132n m n -+与6是同类最简二次根式,则m= 1 ;n = 32; 4、因式分解:2222x x y y --=1313222x y x y ⎛⎫⎛⎫+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭; 5、已知关于x 的一元二次方程2410x x -+=的两个实数根分别为x 1 、x 2,则1211x x += 4 ;2212x x += 14 ; 6、某进出口贸易公司2008年的出口商品利润比2007年增长12%,2009年比2008年增长7%,设这两年的平均增长率为x ,则x 满足的关系式为:()()()20000111217x +=++ 7、化简:221(0)a a ba ba ab a a b a b aa b+÷÷>>-+- 2211a a b a a b a b a a a ba b ab +-⨯⨯⨯⨯+-=原式=8、用配方法解方程:2212033x x +-= 解: 移项得 221233x x +=方程两边同时乘以32得 2132x x +=方程两边同时加上得 2111321616x x ++=+ 即 2149416x ⎛⎫+= ⎪⎝⎭ 两边开平方得 1744x +=±解得 123,22x x ==- 9、解含有字母系数的方程:()2220a xb c c a a b x b c b c -++++=解: 当a=0时,原方程化为 ()0b c x b c bc -++= 所以当bc=0时,x 为任意实数; 当0bc ≠时,()x b c =-+当0a ≠时,原方程化为 ()()20a xb c c a a b x b c b c -++++= 解得12,b c x b c x a=+=【知识精要】一、二次根式1、二次根式的概念:代数式()0a a ≥叫做二次根式。
完整版二次根式及一元二次方程专题练习含解析
《二次根式及一元二次方程》一、选择题1).估算的值(544 D23 C3A12 B之间和之间之间和.在.在.在.在和和之间x2)+有意义,则应满足(.要使3x3BxAx33x CxD≤<≤≤..≤<且.≠<.203xabxa=0a)≠).已知方程,则下列代数式的值恒为常数的是++(有一个根是﹣(bab DB Caab A﹣...+.2=0bbxa2cx4abca的根的情况是))+,+,+分别是三角形的三边,则方程((+.已知)(B A.可能有且只有一个实数根.没有实数根D C.有两个不相等的实数根.有两个相等的实数根12%201552016GDP,由于受到国际金融危.武汉市)比年国内生产总值(年增长了x%7%GDPx%2016满足,若这两年,则年增长年平均增长率为机的影响,预计今年比)的关系是(x%1=2A12%7%=x% B112%17%))++)(.(+.(+2x%7%=2?x% D17%=112%1C12%))+.(+++)(.(6).下列各式计算正确的是(A.1aB)<.(C.D.2a74x1=0a5xx))满足(﹣.关于﹣的方程(﹣有实数根,则5a5Daa511AaBaaC1≠.且..≥≥.>≠且≠22ba2a2016=0xba8x)++的值为(.设,是方程 +﹣的两个实数根,则20162017 B2014A2015 DC....页)18页(共1第3x1=x9x3)+ ).方程(﹣)(﹣的解是(x=0x=31 Ax=0 Bx=3 Cx=3x=D或﹣....或218=010x9x)的两个根是等腰三角形的底和腰,则这个三角形的周长为(﹣+ .方程DA12 B1215 C15 .不能确定或...2c=0ab011axbxc=0a,那么我们称这个方程.定义:如果一元二次方程++≠+)满足(+2”“axbxc=0a0“”方程,且有两个相等的实数根,则下≠++方程.已知凤凰(为)是凤凰)列结论正确的是(a=b=ca=b Cb=c DAa=cB....DOABOAy=12k0,且与直角斜边()经过直角三角形<的中点.如图,已知双曲线AOCAABC64)的面积为(,边相交于点.若点),则△的坐标为(﹣4CB9 6 D12 A....二、填空题=13..化简14.的结果是.计算=15.计算: +.22x1=0axa16的取值范围是 + +.如果方程.有两个不等实根,则实数222x3xx3x2=0x17xxx的值为﹣﹣+的两个实数根,则.设,+是一元二次方程.212211222n2mnmxn=0x=118xm的值为+ 的一个根,则.已知+是一元二次方程++.191的一元二次方程:.请你写出一个有一根为.(答案不唯一)222=7xxmx2m1=0xx20xx,+﹣,且﹣的两个实数根分别是+、.关于的一元二次方程22112xx的值是)则(.﹣2122kmkx3mmk=21x2x +的形式,其中+,为常数,则..若把代数式﹣﹣化为(﹣)22.将根号外面的因式移进根号后等于.第2页(共18页)E23OABCBADEF的图象上.都在函数和正方形.若正方形的顶点的顶点若EOABC1k.的面积为,则正方形;点的值为的坐标为三、解答题24.计算:.21=3x2x25.+.用配方法解方程:23=04k2k1xx26 x.﹣(﹣的一元二次方程++.已知关于)k1取什么实数值,该方程总有两个不相等的实数根;()求证:无论cbRtABCa=2恰好是这个方程的两个根时,△,且两条直角边)当的斜边长和(ABC 的周长.求△2m=027x2x..已知一元二次方程﹣+m1的范围;)若方程有两个实数根,求(m=3x2xx3x的值.)若方程的两个实数根为,+,且,求(211222xxmxmx28x=21,﹣的两实数根为﹣.已知关于的一元二次方程)(21m1的取值范围;)求(myx2y=x的值,并求出最小值.取得最小值时,求相应+()设,当21第3页(共18页)《二次根式及一元二次方程》参考答案与试题解析一、选择题1).估算的值(54 D3 C342A1 B2之间之间和之间.在.在.在和和之间.在和【考点】估算无理数的大小.【专题】应用题.363125,从而判断前后的两个完全平方数【分析】首先利用平方根的定义估算和的范围即可.的范围,再估算65<<【解答】解:∵43<∴<C.故选的【点评】此题主要考查了利用平方根的定义来估算无理数的大小,解题关键是估算整数部分和小数部分.x2)+.要使有意义,则应满足(3xB3x3xD3xAx C≤<<.≤且≠..≤.≤<【考点】二次根式有意义的条件;分式有意义的条件.00列式计算即可得解.【分析】根据被开方数大于等于,分母不等于,【解答】解:由题意得,3x,≤解不等式①得,x,>解不等式②的,3x.所以,≤<D.故选:0;二次根式的被开方数是非负【点评】本题考查的知识点为:分式有意义,分母不为数.页(共第418页)2bxa=0a3xa0),则下列代数式的值恒为常数的是(+ 有一个根是﹣(.已知方程)≠+bDa Cab Aab B﹣+....【考点】一元二次方程的解.ax=代入方程,即可求解.【分析】本题根据一元二次方程的根的定义,把﹣20aabxa=0x),+(+≠有一个根是﹣【解答】解:∵方程2a=0aab,∴(﹣))++(﹣0a,又∵≠1=0baa,∴等式的两边同除以﹣,得+1b=a.﹣故﹣D.故本题选【点评】本题考查的重点是方程根的定义,分析问题的方向比较明确,就是由已知入手推导、发现新的结论.2=0b2cxabxab4ac的根的情况是++)分别是三角形的三边,则方程(().已知+,,+)(BA .可能有且只有一个实数根.没有实数根DC .有两个不相等的实数根.有两个相等的实数根【考点】根的判别式;三角形三边关系.所以利用根的判别式可以判断其根的情况.【分析】由于这个方程是一个一元二次方程,cab的式子的符号.,,能够根据三角形的三边关系,得到关于2222bcab=4ac=2c4ab=4cba),]﹣【解答】解:∵△(()﹣)(+)()+[+﹣(﹣+ 0c0abbca.,+<+根据三角形三边关系,得﹣>﹣0.∴△<∴该方程没有实数根.A.故选【点评】本题是方程与几何的综合题.22c)主要考查了三角形三边关系、一元二次方程的根的判别式等知识点.重点是对(bbaa4)进行因式分解.)(++﹣(第5页(共18页)52016GDP201512%,由于受到国际金融危年国内生产总值(年增长了.武汉市)比20167%GDPx%x%满足年平均增长率为机的影响,预计今年比,则年增长,若这两年的关系是()A12%7%=x% B112%17%=21x%))((.++.(++)2x%17%= D112%1C12%7%=2?x%)).(++++)(.(【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.=1+增长率),然后用平均增增长前的量×(【分析】增长率问题,一般用增长后的量x%满足的长率和实际增长率分别求出今年的国内生产总值,由此可得到一个方程,即关系式.2015y,年的国内生产总值为【解答】解:若设2010年和今年的国内生产总值分别为:则根据实际增长率和平均增长率分别得到2016y1x%y112%),年国内生产总值:)或(++(1x%=112%,++所以2y112%17%y1x%),(今年的国内生产总值:)((+++)或2=112%x%117%).所以(++)+)((D.故选【点评】本题主要考查增长率问题,然后根据增长率和已知条件抽象出一元二次方程.6.下列各式计算正确的是()A.1aB)(.<C.D.【考点】二次根式的混合运算;立方根.A、根据二次根式的乘法运算法则的逆运算直接计算就可以;【分析】B、由条件可以判断出原式为负数再将根号外面的数移到根号里面化简求解就可以了;第6页(共18页)C、先将被开方数进行乘方运算再合并最后化简就可以了;D、先进行分母有理化,再进行合并同类二次根式就可以了.A,本答案错误;【解答】解:≠、1aB),本答案正确;(<、C,本答案错误;、2=4D=,本答案错误.、≠B.故选【点评】本题考查了二次根式的乘、除、加、减混合运算的运用及立方根的运用,在结算时注意运算的顺序和运算的符号是解答的关键.2a4x57xax1=0)﹣有实数根,则的方程(﹣)满足(.关于﹣5Aa1Ba5 Daa1a5C1a≠且且≠.≥..>≥.≠【考点】根的判别式.【专题】判别式法.2a1=0xa5x14x﹣有实数根,那么分两种情况:(﹣【分析】由于﹣的方程()当﹣)055=02a时,方程成为一元二次方程,利用判别式﹣时,方程一定有实数根;()当≠a的取值范围.即可求出【解答】解:分类讨论:1=0a5=0a=54x,此时方程一定有实数根;即﹣①当时,方程变为﹣﹣50aa5时,②当即﹣≠≠21=0x4xax5有实数根﹣)∵关于﹣的方程(﹣05a164,)≥∴﹣+(1a.≥∴1aa.∴的取值范围为≥A.故选:224acc=0axbxa0=b:当△(≠)的根的判别式△【点评】本题考查了一元二次方程﹣++00=0,方程,方程有两个相等的实数根;当△<>,方程有两个不相等的实数根;当△没有实数根;切记不要忽略一元二次方程二次项系数不为零这一隐含条件.第7页(共18页)222aabbxx2016=08a的值为( ++﹣的两个实数根,则.设+,)是方程A2014B2017C2015D2016....【考点】根与系数的关系;一元二次方程的解.【专题】压轴题.222abaaaa2ab=a)的值,+【分析】由于),故根据方程的解的意义,求得()+++((++ab)的值,即可求解.+由根与系数的关系得到(2x2016=0ax的根,+【解答】解:∵是方程﹣2a=2016a;∴+ab=1,+﹣由根与系数的关系得:22aab=2016aa2ab=1=2015.++(+()++﹣∴)C.故选:【点评】本题综合考查了一元二次方程的解的定义及根与系数的关系,要正确解答本题还要能对代数式进行恒等变形.9x3x1=x3的解是().方程(﹣﹣)(+)Ax=0 Bx=3 Cx=3x=1 Dx=3x=0或..﹣或..【考点】解一元二次方程﹣因式分解法.【专题】计算题;压轴题.x3),提公因式,降次即可求【分析】此题可以采用因式分解法,此题的公因式为(﹣得.x3x1=x3﹣﹣))(+【解答】解:∵(x3x1x3=0)+﹣∴(﹣)﹣()(x3x11=0)+∴(﹣﹣)(x=0x=3.,∴21D.故选x3当作一个整体,直接提公因式较简﹣【点评】此题考查了学生的计算能力,注意把单,选择简单正确的解题方法可以达到事半功倍的效果.29x18=010x的两个根是等腰三角形的底和腰,则这个三角形的周长为().方程﹣+第8页(共18页)A12 B1215 C15 D.不能确定...或【考点】等腰三角形的性质;解一元二次方程﹣因式分解法;三角形三边关系.【专题】分类讨论.【分析】先解一元二次方程,由于未说明两根哪个是腰哪个是底,故需分情况讨论,从而得到其周长.29x18=0xx=6x=3,+﹣,得【解答】解:解方程216333=6,不符合三角形三边关系,腰为+时,由于∵当底为63,底为∴等腰三角形的腰为663=15+∴周长为+C.故选【点评】此题是一元二次方程的解结合几何图形的性质的应用,注意分类讨论.2bxc=0a0ab11axc=0,那么我们称这个方程+)满足(.定义:如果一元二次方程+≠++2bxc=0a0““”ax”方程,且有两个相等的实数根,则下+为)是凤凰(方程.已知凤凰≠+列结论正确的是()Aa=c Ba=b Cb=c Da=b=c....【考点】根的判别式.【专题】压轴题;新定义.24ac=0abc=0=b,﹣+,又【分析】因为方程有两个相等的实数根,所以根的判别式△+224ac=0ac4ac=0acbb=ac的关系.﹣﹣得(﹣与即﹣﹣,化简即可得到﹣),代入2bxc=0aax0)有两个相等的实数根,【解答】解:∵一元二次方程+≠+(24ac=0=b,∴△﹣abc=0b=ac,+﹣+﹣,即又224ac=0c4ac=0ba,得(﹣)代入﹣﹣﹣222222=0c=2acc4ac=aa2accac4ac=a,+(﹣)即(+﹣)﹣+﹣+a=c.∴A故选【点评】一元二次方程根的情况与判别式△的关系:10?方程有两个不相等的实数根;)△>(2=0?方程有两个相等的实数根;()△第9页(共18页)03方程没有实数根.)△<?(D0OABOA12y=k,且与直角)经过直角三角形的中点<.如图,已知双曲线斜边(AOC64ABCA),边),则△相交于点.若点的面积为(的坐标为(﹣4D12 B9 C6 A....k的几何意义.【考点】反比例函数系数【专题】压轴题.4=AOBBOCA6AOC),△的坐标为(﹣【分析】△的面积﹣△的面积的面积,由点,kAOB=12的几何意的面积根据三角形的面积公式,可知△,由反比例函数的比例系数kOAD=BOCk值即可.的中点.只需根据|的坐标,求出|义,可知△的面积46DOAA),的坐标为(﹣的中点是,点,【解答】解:∵23D),(﹣∴,Dy=,∵双曲线经过点62=k=3,×∴﹣﹣=3=kBOC.|的面积|∴△4=12AOB=6,又∵△×的面积×3=9=12=AOCAOBBOC.∴△的面积的面积△﹣的面积﹣△B.故选k与其图象上的本题考查了一条线段中点坐标的求法及反比例函数的比例系数【点评】S的关系,即点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积kS=.||二、填空题0=13..化简页)18页(共10第【考点】二次根式有意义的条件.1=010x1x0x,从而得出结果.≥﹣≥,,得出【分析】由﹣﹣0x11x0,﹣﹣,≥≥【解答】解:∵1=0x,﹣∴=0.∴0a【点评】二次根式的意义和性质.概念:式子()叫二次根式.性质:二次根式≥中的被开方数必须是非负数,否则二次根式无意义.414.的结果是.计算【考点】算术平方根.【专题】常规题型.【分析】根据算术平方根的定义解答即可.==4.【解答】解:4.故答案为:【点评】此题主要考查了算术平方根的定义,本题易错点在于符号的处理.3=15. +.计算:【考点】二次根式的加减法.【分析】本题考查了二次根式的加减运算,应先化为最简二次根式,再合并同类二次根式.=2=3.【解答】解:原式+【点评】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并.合并同类二次根式的实质是合并同类二次根式的系数,根指数与被开方数不变.22x1=0aa1a016ax≠的取值范围是<.且.如果方程++有两个不等实根,则实数【考点】根的判别式.【分析】在与一元二次方程有关的求值问题中,必须满足下列条件:第11页(共18页)1)二次项系数不为零;(20=b4ac2.>)在有不相等的实数根下必须满足△(﹣,【解答】解:根据题意列出不等式组0aa1.解之得<≠且0aa1.<故答案为:≠且【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.2227xx3xx17xxx3x2=0. +则,是一元二次方程的值为+﹣﹣.设的两个实数根,221112【考点】根与系数的关系.22=xx3xxxxxxxx)【分析】根据根与系数的关系,可求出(++以及+的值,然后根据+22122111122xx进一步代值求解.+21xx=3xx=2;﹣+,【解答】解:由题意,得:21122xx=92=7=xx.+原式)(﹣+21217.故答案为:【点评】熟记一元二次方程根与系数的关系是解答此类题的关键.22212mnmxn=0mx=118xn ++的一个根,则..已知是一元二次方程+的值为+【考点】一元二次方程的解;完全平方公式.222n1=0m2mnx=1xn=0mxmn+代入一元二次方程,然后把++【分析】首先把+中得到++利用完全平方公式分解因式即可求出结果.2mxn=0x=1x的一个根,是一元二次方程【解答】解:∵++mn1=0,+∴+mn=1,∴﹣+2222=11=m2mnnm=n.+)+)(﹣∴(+1.故答案为:【点评】此题主要考查了方程的解的定义,利用方程的解和完全平方公式即可解决问题.2=1119x的一元二次方程:.(答案不唯一).请你写出一个有一根为第12页(共18页)【考点】一元二次方程的解.【专题】开放型.【分析】可以用因式分解法写出原始方程,然后化为一般形式即可.22=1xx=1x=1等.得方程式【解答】解:根据题意.故本题答案不唯一,如【点评】本题属于开放性试题,主要考查一元二次方程的概念的理解与掌握.可以用因y1y2=0,后化为一般式分解法写出原始方程,然后化为一般形式即可,如(+﹣))(2y2=0y.+形式为﹣222=7xxmx2m1=0xx20xx,+、﹣+﹣的两个实数根分别是.关于,且的一元二次方程2112213xx.﹣的值是)则(21【考点】根与系数的关系;根的判别式.22xxxxxx的值求出【分析】首先根据根与系数的关系,得出的值,然后根据++和211122mm的值应符合此方程的根的判别式);然后再代值求解.(需注意xx=mxx=2m1;【解答】解:由题意,得:﹣+,21212222xxx=xxx,)则:(+++ 2121212=722mm1),即+﹣(m=1m=5;解得,﹣242m1=254m=5=m90,不合题意;﹣当×时,△)<﹣﹣(m=1xx=1xx=3;故,﹣﹣,﹣+2121224xx=112=13=xxxx.﹣()﹣)++∴(221211【点评】此题用到的知识点有:根与系数的关系、根的判别式、完全平方公式等知识.本mm是否符合题意,以值后,一定要用根的判别式来判断所求的题需注意的是在求出免造成多解、错解.222x3xmmmk21kxk=3.,﹣则﹣+化为(﹣﹣)+的形式,.为常数,若把代数式其中【考点】完全平方公式.【专题】配方法.2224x12x14=x2x3=x,﹣﹣+﹣【分析】根据完全平方公式的结构,按照要求﹣﹣(﹣)m=1k=4mk=3..﹣+,则可知﹣2224x4=13=xx2x12x,﹣)【解答】解:∵﹣﹣﹣﹣+﹣(第13页(共18页)4m=1k=,∴﹣,3mk=.∴﹣+3.故答案为:﹣【点评】本题主要考查完全平方公式的变形,熟记公式结构是解题的关键.完全平方公222b=a2abab.±±+式:()22.根号外面的因式移进根号后等于.将【考点】二次根式的性质与化简.【专题】计算题.a0a转化为,【分析】先根据二次根式定义得到,<然后根据二次根式的性质把﹣再利用乘法公式运算即可.0,≥【解答】解:∵﹣0a,∴<=?==a.﹣∴原式﹣﹣(﹣).故答案为﹣=aa0 【点评】本题考查了二次根式的性质与化简:(≥|)为二次根式;;|=?a0b0)等.,(≥≥23OABCBADEFE都在函数的图象上.的顶点若和正方形.若正方形的顶点E1OABC1k﹣).;点的坐标为(+正方形的面积为,,则的值为k的几何意义.【考点】反比例函数系数1OABCAEDF各有一个顶点在一反比例函数图象上,【分析】(和正方形)根据正方形OABC1B点坐标,即可得出反比例函数的解析式;且正方形的边长为,得出2DaOABCE点坐标,点在反比例函数图象上,用和正方形的边长表示出来()由于第14页(共18页)Day=x0点坐标.(>的值,即可得出)求得代入AEDFOABC各有一个顶点在一反比例函数图象上,且和正方形【解答】解:∵正方形1OABC.的边长为正方形11B),∴,点坐标为:(y=;设反比例函数的解析式为xy=k=1,∴aaADEFaE1),的边长为,,则设正方形+(0aaay=x01=1,)代入反比例函数,又(+>)得:>(a=.解得:﹣E的坐标为:( +,﹣).∴点考查了数形结合的思想,【点评】本题考查了反比例函数与正方形性质结合的综合应用,xy=k得出是解题关键.利用三、解答题24..计算:【考点】二次根式的混合运算;负整数指数幂.【分析】本题涉及分数指数幂、负整数指数幂、乘方、二次根式化简四个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.22=34+﹣【解答】原式+﹣2=522﹣﹣+=3.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是理解分数指数幂的意义,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算.21=3x2x25.+.用配方法解方程:【考点】解一元二次方程﹣配方法.第15页(共18页)【专题】计算题.1,首先把方程的二次项系数变成然后等式的两边同时加上一次项系数的一半,【分析】则方程的左边就是完全平方式,右边是常数的形式,再利用直接开平方的方法即可求解.23x=2x1,﹣﹣【解答】解:移项,得1,二次项系数化为,得,配方,,由此可得=1x.∴,1【点评】配方法是一种重要的数学方法,是中考的一个重要考点,我们应该熟练掌握.本题考查用配方法解一元二次方程,应先移项,整理成一元二次方程的一般形式,即20bxaxc=0a)的形式,然后再配方求解.(+≠+23=04k1x26 xx2k.)的一元二次方程﹣﹣(.已知+关于+k1取什么实数值,该方程总有两个不相等的实数根;)求证:无论(cb2RtABCa=恰好是这个方程的两个根时,和△的斜边长(,且两条直角边)当ABC的周长.求△【考点】根与系数的关系;根的判别式;勾股定理.【专题】计算题.k10取什么实数值,该方程总有两个不相等的实数【分析】(即可证明无论)根据△>根;ccb2b即可得出答案.(的方程,解出)根据勾股定理及根与系数的关系列出关于,,23=01xx1x4k2k,+的一元二次方程)﹣(﹣【解答】解:(+)关于22013=4=4k12k431=2k44k恒成立,﹣>)(++)﹣(﹣+△k取什么实数值,该方程总有两个不相等的实数根;故无论222=31b2c=a①()根据勾股定理得:+cb恰好是这个方程的两个根,因为两条直角边和第16页(共18页)bc=2k1bc=4k3③,+②,+则﹣222=312bc=bbcc,因为(++﹣)224k32k1=31,即((+))﹣﹣22kk6=018k64k31=04k,﹣﹣+整理得:,即﹣+﹣+k=3k=2,,解得:﹣21k3kbc=4k0bc=2k10,>﹣∵.+﹣+即>>即>2k=(舍去),∴﹣21=7bc=2k,则++a=,又因为c=ABC7=ab+的周长+则△.+【点评】本题考查了根与系数的关系和根的判别式及勾股定理,难度较大,关键是巧妙10),再根据勾股定理和根与系数的关系列出方程组进行解答.运用△>恒成立证明(2m=02x27x..已知一元二次方程﹣+m1的范围;()若方程有两个实数根,求m=3x3x2xx的值.+)若方程的两个实数根为,求,(,且2112【考点】根与系数的关系;根的判别式.【专题】压轴题.2m01xm=02x的有两个实数根,△≥【分析】(﹣)一元二次方程+,把系数代入可求范围;mx3x=3xx=22xx.+、)利用两根关系,已知,先求+,再求结合(2112212m=0x2x1有两个实数根,﹣+【解答】解:()∵方程202=4m,≥)﹣∴△(﹣1m;解得≤=m?x=2x2xx,()由两根关系可知,+,2121,解方程组第17页(共18页),解得=?xm=x.∴21【点评】本题考查了一元二次方程根的判别式,两根关系的运用,要求熟练掌握.22xxm28xxx=21m,.已知关于﹣的一元二次方程﹣的两实数根为)(21m1的取值范围;()求my=xxy2的值,并求出最小值.+取得最小值时,求相应)设,当(21【考点】根与系数的关系;根的判别式;一次函数的性质.【专题】综合题.2m4ac01=b,建立关于)若一元二次方程有两不等根,则根的判别式△﹣【分析】(≥m的取值范围;的不等式,可求出mxy2x的函数关系式,根的表达式,进而可得出+(、)根据根与系数的关系可得出21m1y值.)题得出的自变量的取值范围,即可求出据函数的性质及(的最小值及对应的22=0m1xx1m2;﹣++)【解答】解:()将原方程整理为(∵原方程有两个实数根,22m42m104m=8m=;(﹣≥)]∴△[≤﹣+,得﹣2222=0xm=21mxmxm21xx2x的两根,(﹣()﹣)﹣()∵,为一元二次方程,即++21mxy=x=2m2;∴≤+,且﹣+211m=ym.因而时,取得最小值随的增大而减小,故当【点评】此题是根的判别式、根与系数的关系与一次函数的结合题.牢记一次函数的性2)题的关键.质是解答(第18页(共18页)。
二次根式与一元二次方程与二次函数
二次根式知识点归纳定义:一般的,式子a ( a ≥ 0 ) 叫做二次根式。
其中“”叫做二次根号,二次根号下的a 叫做被开方数。
性质:2、a b=ab(a ≥0,b >0) 数的平方根与二次根式的区别:①4的平方根为±2,算术平方根为2;②4=2,二次根式即是算术平方根一元二次方程和二次函数知识点汇总2.二次函数2ax y =的性质(1)抛物线2ax y =)(0≠a 的顶点是原点,对称轴是y 轴.(2)函数2ax y =的图像与a 的符号关系:①当0>a 时⇔抛物线开口向上⇔顶点为其最低点;②当0<a 时⇔抛物线开口向下⇔顶点为其最高点3.二次函数 c bx ax y ++=2的图像是对称轴平行于(包括重合)y 轴的抛物线.4.二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.5.抛物线c bx ax y ++=2的三要素:开口方向、对称轴、顶点. ①a 决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 越小,抛物线的开口越大,a 越大,抛物线的开口越小。
②对称轴为平行于y 轴(或重合)的直线,记作h x =.特别地,y 轴记作直线0=x . ③定点是抛物线的最值点[最大值(0<a 时)或最小值(0>a 时)],坐标为(h ,k )。
6.求抛物线的顶点、对称轴的方法(1)公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线abx 2-=.(2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是h x =.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2中,c b a ,,的作用(1)a 决定开口方向及开口大小,这与2ax y =中的a 完全一样.(2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2的对称轴是直线ab x 2-=,故:①0=b 时,对称轴为y 轴;②0>ab 时,对称轴在y 轴左侧;③0<ab 时,对称轴在y 轴右侧.(3)c 的大小决定抛物线c bx ax y ++=2与y 轴交点的位置.当0=x 时,c y =,∴抛物线c bx ax y ++=2与y 轴有且只有一个交点(0,c ): ① 0=c ,抛物线经过原点; ②0>c ,与y 轴交于正半轴;③0<c ,与y 轴交于负半轴. 以上三点中,当结论和条件互换时仍成立.如抛物线的对称轴在y 轴右侧,则 0<ab .8. 二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.图像特征如下:函数解析式开口方向对称轴顶点坐标 2ax y = 当0>a 时 开口向上 当0<a 时 开口向下0=x (y 轴)(0,0) k ax y +=20=x (y 轴) (0, k ) ()2h x a y -=h x = (h ,0) ()k h x a y +-=2h x = (h ,k )c bx ax y ++=2ab x 2-=(ab ac a b 4422--,)9.用待定系数法求二次函数的解析式(1)一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式. (2)顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.(3)交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=. 10.直线与抛物线的交点(或称二次函数与一次函数关系) (1)y 轴与抛物线c bx ax y ++=2得交点为(c ,0)(2)与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2). (3)抛物线与x 轴的交点二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. (4)平行于x 轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.而根的存在情况仍如(3)一样由根的判别式判定。
高中数学二次根式方程解题技巧
高中数学二次根式方程解题技巧在高中数学中,二次根式方程是一个重要的知识点,也是数学竞赛中经常出现的题型。
解二次根式方程需要掌握一些解题技巧,本文将介绍一些常见的解题方法,并通过具体的例子来说明。
一、基本概念回顾在解题之前,我们需要回顾一下二次根式方程的基本概念。
二次根式方程是指形如√(ax^2+bx+c)=0的方程,其中a、b、c是已知实数,x是未知数。
解二次根式方程的目标是求出方程的解x。
二、分离变量法分离变量法是解二次根式方程的一种常用方法。
通过将方程两边进行平方运算,可以将方程转化为一个一次方程或二次方程来求解。
例1:解方程√(x+4)=2解法:将方程两边进行平方运算,得到x+4=4。
然后将方程两边同时减去4,得到x=0。
所以方程的解为x=0。
通过这个例子可以看出,通过分离变量法可以将二次根式方程转化为一次方程,从而更容易求解。
三、配方法配方法是解二次根式方程的另一种常用方法。
通过对方程进行适当的变形,使得方程中含有一个完全平方的项,从而方便求解。
例2:解方程√(x+1)-√(x-3)=2解法:首先,我们可以将方程两边的根号去掉,得到x+1-(x-3)=4。
然后将方程进行整理,得到4x=8。
最后,将方程两边同时除以4,得到x=2。
所以方程的解为x=2。
通过这个例子可以看出,通过配方法可以将二次根式方程转化为一个一次方程,从而更容易求解。
四、提取公因式法提取公因式法是解二次根式方程的一种常用方法。
通过提取方程中的公因式,可以简化方程的形式,从而更容易求解。
例3:解方程√(2x^2+8x)=4√(2x)解法:首先,我们可以将方程两边进行平方运算,得到2x^2+8x=16x。
然后将方程进行整理,得到2x^2+8x-16x=0。
接下来,我们可以提取公因式,得到2x(x+4-8)=0。
最后,根据零乘法,得到x=0或x=4。
所以方程的解为x=0或x=4。
通过这个例子可以看出,通过提取公因式法可以简化方程的形式,从而更容易求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次根式全章练习 姓名
一、认真填一填:
1、当x 时,根式1-x 有意义。
2、在实数范围内,因式分解a 2 – 3 =
3、化简:=8 ,=971
, 4、如果化简后的二次根式 —
7535321-+x x 与 是同类二次根式,则x= 5、(1)()2π3-= ,(2)若a >b ,则 2)(a b - = 6、如果5-a +2-b = 0,那么以a ,b 为边长的等腰三角形的周长是
7、计算:(20072007)154()415-⋅+=
8、小明和小芳在解答题目:“先化简下式,再求值:a+221a a +-,其中a=9”时,得出了不同答案,小明的解答是:原式=a+2)1(a -=a+(1-a )= 1;小芳的解答是:原式=a+2)1(a -=a+a+1=2a-1=2×9-1=17。
则 的解答错误,错误的
原因是 。
二、精心选一选:
9、下列各式属于最简二次根式的是( ) A 、12+x B 、32y x C 、12 D 、5.0
10、下列各组二次根式中,是同类二次根式的是( ) A 、122与 B 、183与 C 、182与 D 、93与 11、10的整数部分是x ,小数部分是y ,则y (x+10)的值是( )
A 、1
B 、2
C 、3
D 、4
12、把a
a 1-根号外的因式移到根号内,所得的结果正确的是( ) A 、a B 、-a C 、-a - D 、a -
三、耐心解一解:
13、计算
(1)375-12532272-+ (2))21218(3+-⨯
(3)x
x x x 1246932-+ (4)(2)23()12)(12-+-+
14、王师傅有一根长45米的钢材,他想将它锯断后焊成三个面积分别为2米2,18米2,32米2的正方形铁框,问王师傅的钢材够用吗?请通过计算说明理由。
15、已知y=41221+-+-x x
(1)求x 、y 的值。
(2)计算xy y x 1624-+
16、已知x=2+ 3 ,y=2- 3 , 17、已知x +1x =4,求x -1x
的值。
求x 2-xy+y 2的值。
一元二次方程全章练习
一、选择题
1.已知一元二次方程ax2+bx+c=0,若a+b+c=0,则该方程一定有一个根为( )
A.0
B.1
C.-1
D.2
2.用配方法解方程x2-2x-5=0时,原方程应变形为( )
A.(x+1)2=6
B.(x-1)2=6
C.(x+2)2=9
D.(x-2)2=9
3.若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则k的取值范围是( )
A.k>-1
B.k>-1且k≠0
C. k<1
D.k<-1且k≠0
4.方程x2-9x+18=0的两个根是等腰三角形的两边,则这个三角形的周长为( )
A.12
B.12或15
C.15
D.不能确定
5.下面是某同学在一次数学测验中解答的填空题,其中答对的是( )
A.若x2=4,则x=2
B.若3x2=6x,则x=2
C. x2+x-k=0的一个根是1,则k=2
D.若分式x(x-2)x的值为零,则x=2
6.在创建“国家园林县城”工作中,荣昌县的园林绿化得到了发展。
到2010年,该县绿化覆盖率达到48.85%,计划2012年实现绿化覆盖率达到53%。
设从2010年起该县绿化覆盖率的年平均增长率为x,则可列方程( )
A.48.85(1+2x)=53%
B.48.85(1+2x)=5
C.48.85(1+x)2=53%
D.48.85(1+x)2=53%
7.一元二次方程(m-1)x2+m2+2m-3=0的一个根为0,则m的值为( )
A.-3
B.-1
C.1或-3
D.-4或2
8.设a,b是方程x2+x-2009=0的两个实数根,则a2+2a+b的值为( )
A.2006
B.2007
C.2008
D.2009
二、填空题
9.一元二次方程x2=16的解是 .
10.若关于x的一元二次方程x2+(k+3)x+k=0的一个根是-2,则另一个根是 .
11.方程(x-1)2+3x=52化为一元二次方程的一般形式是_________________________,它的一次项系数是______.
12.如果2x2+1与4x2-2x-5互为相反数,则x的值为_______________.
13.已知代数式x2+3x+5的值是7,则代数式3x2+9x-2的值是
14.若(x2+y2)2-5(x2+y2)-6=0,则x2+y2=________________.
三、解答题
15.解方程
(1)x2-4x-3=0 (2)(x-3)2+2x-3=0
(3)(x-1)(x-3)=8 (4)x(2x+3 )=4x+6
四、解答题
16.已知关于x的方程x2-(2k+1)x+4k-12=0.若等腰ΔABC的一边长a=4,另两边长b、c恰好是这个方程的两个实数根,求ΔABC的周长.
17.某农场要建一个长方形的养鸡场,鸡场的一边靠墙,另外三边用木栏围成.木栏长40m,墙长25m。
(1)若养鸡场面积为200m2,求鸡场靠墙的一边长(2)养鸡场面积能达到250m2吗?如果能,请给出设计方案,如不能,请说明理由。
18.奥运会前夕,某超市在销售中发现:吉祥物福娃平均每天可售出20套,每件盈利40元。
为了迎接奥运会,商场决定采取适当的降价措施,尽快减少库存。
经市场调查发现:如果每套降价4元,那么平均每天就可多售出8套。
要想平均每天在销售吉祥物上盈利1200元,那么每套应降价多少?
19.某楼盘准备以5000元/m2的均价销售.为了加快资金周转,开发商对价格经过两次下调后,决定以4050元/m2的均价开盘销售.(1)求平均每次下调的百分率(2)某人准备以开盘均价购买一套100m2的房子.开发商给的哪种方案更优惠?[①打9.8折销售;②不打折,送两年物业管理费.物业管理费是1.5元/m2.月]。