湖南省长郡中学2020-2021学年高一上学期模块检测数学试题

合集下载

湖南省长郡中学2020-2021学年高一入学分班考试数学试题 答案和解析

湖南省长郡中学2020-2021学年高一入学分班考试数学试题 答案和解析

湖南省长郡中学2020-2021学年高一入学分班考试数学试题答案和解析湖南省长郡中学高一入学分班考试数学试题一、单选题1.已知方程组$\begin{cases} x+y=-7-a \\ x-y=1+3a\end{cases}$的解x为非正数,y为非负数,则a的取值范围是()。

A。

$-2<a\leq3$ B。

$-2\leq a<3$ C。

$-2<a<3$ D。

$a\leq-2$2.已知$a^2+b^2=6ab$,且$a>b>0$,则$\dfrac{a+b}{a-b}$的值为()。

A。

2 B。

$\pm2$ C。

$2\sqrt{2}$ D。

$\pm2\sqrt{2}$3.经过某十字路口的汽车,它可能继续直行,也可能向左或向右转,若这三种可能性大小相同,则两辆汽车经过该十字路口全部继续直行的概率为()。

A。

$\dfrac{1}{3}$ B。

$\dfrac{2}{3}$ C。

$\dfrac{1}{9}$ D。

$\dfrac{1}{6}$4.在日常生活中如取款、上网等都需要密码,有一种用“因式分解”法产生的密码记忆方便,原理是:如对于多项式$x-y$,因式分解的结果是$(x-y)(x+y)(x^2+y^2)$,若取$x=9$,$y=9$时,则各个因式的值是:$x-y=0$,$xy=81$,$x^2+y^2=162$,于是就可以把“”作为一个六位数的密码,对于多项式$x-xy$,取$x=20$,$y=10$时,用上述方法产生的密码不可能是()。

A。

B。

C。

D。

5.如果四个互不相同的正整数$m,n,p,q$,满足$(5-m)(5-n)(5-p)(5-q)=4$,那么$m+n+p+q=$()。

A。

24 B。

21 C。

20 D。

226.若$x_1,x_2$($x_1<x_2$)是方程$(x-a)(x-b)=1$($a<b$)的两个根,则实数$x_1,x_2,a,b$的大小关系为()。

湖南省长沙市长郡中学2020-2021学年高一上学期第二次模块检测数学试题 答案和解析

湖南省长沙市长郡中学2020-2021学年高一上学期第二次模块检测数学试题 答案和解析
A.2B.奇数C.偶数D.至少是2
6.如图所示,在平行四边形 中, 等于( )
A. B.
C. D.
7.方程 的根的个数是( )
A.7B.8C.9D.10
8.已知 的三个顶点 、 、 及平面内一点 ,若 ,则点 与 的位置关系是( )
A. 在 边上B. 在 边上或其延长线上
C. 在 外部D. 在 内部
【详解】
由题意得, ,则
.故选C.
【点睛】
不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.
2.D
【解析】
因为 = ,
所以四边形ABCD是平行四边形,
所以AC,BD互相平分,
所以 = .
即 与 是相等的向量.选D.
3.C
【分析】
本题也可用直接法,因为 ,所以 ,当 时, ,知A错,因为 是增函数,所以 ,故B错;因为幂函数 是增函数, ,所以 ,知C正确;取 ,满足 , ,知D错.
则y=f(x)在区间(a,b)上至少有一个零点,
在(b,c)上至少有一个零点,而f(b)≠0,
所以y=f(x)在区间(a,c)上的零点个数为至少2个.
故选:D.
【点睛】
本题考查零点的存在性定理,正确理解零点的存在性定理的条件和结论是解决本题的关键.
(1)若函数 是“ 型函数”,且 ,求出满足条件的实数对 ;
(2)已知函数 .函数 是“ 型函数”,对应的实数对 为 ,当 时, .若对任意 时,都存在 ,使得 ,试求 的取值范围.
参考答案
1.C
【分析】
本题考查集合的交集和一元二次不等式的解法,渗透了数学运算素养.采取数轴法,利用数形结合的思想解题.
9.下列函数中,既是偶函数,又是在区间 上单调递减的函数为()

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期期中考试数学试题高一期中考试本试卷分第Ⅰ卷﹙选择题﹚和第Ⅱ卷﹙非选择题﹚两部分。

满分150分,考试时间120分钟。

第Ⅰ卷第一部分:听力(共两小节,满分30分)该部分分为第一、第二两节,注意,做题时,请先将答案标在试卷上,该部分录音内容结束后,你将有两分钟的时间将你的答案转涂到客观题答题卡上。

第一节(共5题:每小题1.5分,满分7.5分)听下面5段对话。

每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,井标在试卷的相应位置。

听完每段对话后,你都有 10 秒钟的时间来回答有关小题和阅读下一小题,每段对话仅读一遍。

1. What programs does the woman prefer?A. Talk shows.B. Sports programs.C. Cooking programs.2. What does the woman ask the man to do?A. Have dinner.B. Pick up a gift.C. Look at a piece of jewelry.3. What does the man usually take with him on vacation?A. A suitcase.B. A backpack.C.A sports bag.4. How does Anna feel about chemistry?A. Worried.B. Confident.C. Hopeless.5. Why did the man choose the guitar?A. He needs a cheap instrument.B. He wants to be like his friends.C. He thinks it is cool to play the guitar.第二节(共15题;每小题1.5分,满分22.5分)听下面5段对话或独白。

人教A版数学必修一湖南省长沙市长郡中学高一上学期第一次模块检测试题.docx

人教A版数学必修一湖南省长沙市长郡中学高一上学期第一次模块检测试题.docx

高中数学学习材料马鸣风萧萧*整理制作长郡中学高一第一学期第一次模块检测卷数 学时量:120分钟 满分:150分一、选择题:本大题共I5小题,每小题3分.共45分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.A {x |x 410x N }B {x |x 20m m N }++=∈==∈已知集合是与的公倍数,,,, 则A 与B 的关系是( )A 、AB B 、B AC 、A =BD 、A ∩B =2.已知S={X|X 是平行四边形或梯形},A={X|X 是平行四边形},B={X|X 是菱形},C={X|X 是矩形},下列式子不成立的是A 、BC x1x ⋂={是正方形}B 、∁A B={x|邻边不相等的平行四边形},C 、∁S A={x|x 是梯形}.D 、A B C ⋃= 3.2U 3U R A {x |}B {x |x 12x 200}7x x -==≤=-+<⋃-,已知集合0,,则(A B )=ð A 、{}x |x 210x ≤>或 B 、{}x |x 210x ≤≥或C 、{}x |x 27x <≥或D 、{}x |x 37x ≤>或4、下列每组函数中f (x )与g (x )相同的是A.2x f x 1g x 1x x=-=-(),() B. 33f x g x ()x x ==(),() C. 0f x 1g x x ==(),() D. 3361x f x g x x x==(),() 5.已知f(x)=x 2+bx+c,且f(1)=f(3)=0,则f(x)的单调递减区间为( )6、已知函数f(x)是定义在上的奇函数,当x>0时,()2f x (1)x x =-那么方程f(x)=0的实数跟个数为A 、1B 、2C 、3D 、47、已知集合2{1}A x x ==,{ax 10}B x ==-若A B A =,则实数a 的取值为A 、1B 、-1C 、-1,1D 、-1,0,18、已知13-33,x +x =x x -+=则A 、85B 、35C 、18D 、35±9、化简2222(2)()a a a a ---+÷-的结果为A 、1B 、-1C 、2211a a -+D 、2211a a +- 10、函数y 3x =与1y 3x=-的图像关于 A 、x 轴对称 B 、y 轴对称 C 、原点对称 D 、直线y =x 对称11、已知函数,则实数a 的取值范围是A 、(,1)(2,)-∞-+∞B 、(1,2)-C 、(2,1)-D 、(,2)(1,)-∞-+∞12、设函数f(x)x ∈(R )为奇函数,()1f 12=,()()()f x+2f x f 2=+,则()f 5= A 、0 B 、1 C 、52D 、513、若二次函数()2f x 21ax ax =++在[]3,2-上有最大值4,则实数a 的值为A 、-3B 、38C 、D 、 14、已知集合{y ()0}A x x y x =+=(,),{y 1}B x y ==(,),则A B =A 、{(1,1),(1,1)}--B 、{(1,1)}-C 、{(1,1),(0,1),(0,1),(1,1)}---D 、{(1,1),(0,1),(0,1)}--15、定义在(0,)+∞上的函数f(x)满足()()f 2x 2f x =,且当[)1,2x ∈时,f(x)=2-x ,x 1、x 2是方程f(x)=a (0<a 《1)的两个实根,则x 1-x 2不可能是A 、30B 、56C 、80D 、112二、填空题:本大题共5小题,每小题3分,共15分,把答案填写在题中的横线上16、已知函数()24x f x 1x +-=,则它的定义域为 17、已知集合,当A 为非空集合时a 的取值范围是18、一种产品的产量原来为a ,在今后m 年内,计划使产量每年比上一年增加p %,则产量y 随年数x 变化的函数解析式为 ,定义域为 。

2020-2021学年长沙市长郡中学高一上学期期末数学试卷(含解析)

2020-2021学年长沙市长郡中学高一上学期期末数学试卷(含解析)

2020-2021学年长沙市长郡中学高一上学期期末数学试卷一、单选题(本大题共12小题,共36.0分) 1.已知集合A ={0,1,2},B ={x|x 2+x −2≤0},则A ∩B =( )A. {0}B. {0,1}C. {1,2}D. {0,1,2}2.下列语句不是全称量词命题的是( )A. 任何一个实数乘以零都等于零B. 自然数都是正整数C. 高一(1)班绝大多数同学是团员D. 每一个实数都有大小3.若tanα=3,则4sin 2α−sinαcosα+cos 2α的值为( )A. −175B. 175C. 3D. −34.已知条件p:不等式的解集为R ;条件q:指数函数为增函数,则p 是q 的( )A. 充要条件B. 必要不充分条件C. 充分不必要条件D. 既不充分也不必要条件5.与函数y =x 是同一函数的函数是( )A. y =√x 2B. y =√x 33C. y =(√x)2D. y =x2x6.函数g(x)=lnx −1x 的零点所在区间是( )A. (0,1)B. (1,2)C. (2,3)D. (3,4)7.若角的终边上有一点,则的值是( )A.B.C.D.8.函数的部分图象大致是如图所示的四个图象中的一个,根据你的判断,a 可能的取值是( )A. 12B. 32C. 2D. 49.函数f(x)=Asin(ωx +φ)(A >0,ω>0,|φ|<π2)的部分图象如图所示,要得到函数g(x)=2sin(2x +π4)的图象,只需将函数f(x)的图象( )A. 向右平移π12长度单位 B. 向左平移π24长度单位 C. 向左平移π12长度单位D. 向右平移π24长度单位10. 设,且,则= ( )A. 100B. 20C. 10D.11. 已知二次函数f(x)的图象如图所示,则其导函数f′(x)的图象大致是( )A.B.C.D. 图象大致形状是( )12. 若x +4x−1≥m 2−2am −3对所有的x ∈[2,4]和a ∈[−1,1]恒成立,则实数m 的取值范围是( )A. [−4,2]B. [−2,4]C. [−2,2]D. [−4,4]二、多选题(本大题共3小题,共9.0分)13. 在平面直角坐标系xOy 中,如图放置的边长为2的正方形ABCD 沿x 轴滚动(无滑动滚动),点D 恰好经过坐标原点,设顶点B (x,y )的轨迹方程是y =f (x ),则对函数y =f (x )的判断正确的是( )A. 函数y =f (x )是奇函数B. 对任意的x ∈R ,都有f (x +4)=f (x −4)C. 函数y =f (x )的值域为[0,2√2]D. 函数y =f (x )在区间[6,8]上单调递增14. 已知实数a ,b ,c 满足a >b >c 且abc <0,则下列不等关系一定正确的是( )A. ac >bcB. c a >cbC. b a +ab >2D. aln|c|>bln|c|15. 下列关于函数y =tan(−2x +π3)的说法正确的是( )A. 在区间(−π3,−π12)上单调递增 B. 最小正周期是π2C. 图象关于点(5π12,0)成中心对称D. 图象关于直线x =−π12成轴对称三、单空题(本大题共5小题,共15.0分)16. 计算2log 214−(827)23+lg 1100+(√2−1)lg1的值为______. 17. 周长为6的等腰△ABC 中,当顶角A =π3时,S △ABC 的最大值为√3,周长为4的扇形OAB 中,则当圆心角α,|α|=∠AOB = ______ (弧度)时,S 扇形△AOB 的最大值是1. 18. 设4a =5b =m ,且1a +2b =1,则m =______.19. 广州市出租车收费标准如下:在3km 以内路程按起步价9元收费,超过3km 以外的路程按2元/km收费,另每次收燃油附加费1元,则收费额Q 关于路程s 的函数关系是______ .20. 已知x 1,x 2是一元二次方程x 2−x −1=0的两实数根,则x 12+x 22= ______ .四、解答题(本大题共5小题,共40.0分)21. (1)1.513×(−76)0+80.25×√24+(√23×√3)6−√(23)23; (2)12lg3249−43lg8+lg √245.22. 为了防止洪水泛滥,保障人民生命财产安全,去年冬天,某水利工程队在河边选择一块矩形农田,挖土以加固河堤,为了不影响农民收入,挖土后的农田改造成面积为10 000 m 2的矩形鱼塘,其四周都留有宽2 m 的路面,问所选的农田的长和宽各为多少时,才能使占有农田的面积最小.23. (本小题满分12分) 向量(1)若a 为任意实数,求g(x)的最小正周期; (2)若g(x)在[o,)上的最大值与最小值之和为7,求a 的值,24. 某公司拟设计一个扇环形状的花坛(如图所示),该扇环是由以点O 为圆心的两个同心圆弧和延长后通过点AD 的两条线段围成.设圆弧AB ⏜、CD ⏜所在圆的半径分别为f(x)、R 米,圆心角为θ(弧度).(1)若θ=π3,r 1=3,r 2=6,求花坛的面积;(2)设计时需要考虑花坛边缘(实线部分)的装饰问题,已知直线部分的装饰费用为60元/米,弧线部分的装饰费用为90元/米,预算费用总计1200元,问线段AD 的长度为多少时,花坛的面积最大?25.已知函数f(x)是定义在R上的偶函数,当x>0时,f(x)=log2x.(1)求当x<0时函数f(x)的解析式;(2)解不等式f(x2−1)>2.参考答案及解析1.答案:B解析:解:∵集合A={0,1,2},B={x|x2+x−2≤0}={x|−2≤x≤1},∴A∩B={0,1}.故选:B.先分别求出集合A和B,由此能求出A∩B.本题考查交集的求法,是基础题,解题时要认真审题,注意交集定义的合理运用.2.答案:C解析:根据全称量词命题与存在量词命题的定义,直接判断即可.本题考查了全称量词命题与存在量词命题的定义,属于基础题.解:A,B,D中含有“任何一个”“都是”“每一个”,是含有全称量词的全称量词命题,而C中命题可以改写为:高一(1)班存在部分同学是团员,所以C不是全称量词命题,故选:C.3.答案:B解析:先利用同角三角函数的基本关系把1换成sin2α+cos2α,分子分母同时除以cos2α,最后把tanα的值代入即可求得答案.本题主要考查了三角函数的化简求值.解题的关键是把原式中的弦转化成切,利用已知条件求得问题的解决.解:∵tanα=3,则4sin2α−sinαcosα+cos2α=4sin2α−sinαcosα+cos2αsin2α+cos2α=4tan2α−tanα+1 tan2α+1=4×9−3+19+1=175故选B.4.答案:C。

2020-2021长沙市长郡双语实验学校高中必修一数学上期末第一次模拟试题(及答案)

2020-2021长沙市长郡双语实验学校高中必修一数学上期末第一次模拟试题(及答案)

2020-2021长沙市长郡双语实验学校高中必修一数学上期末第一次模拟试题(及答案)一、选择题1.设4log 3a =,8log 6b =,0.12c =,则( )A .a b c >>B .b a c >>C .c a b >>D .c b a >>2.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]3.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<4.设f(x)=()2,01,0x a x x a x x ⎧-≤⎪⎨++>⎪⎩若f(0)是f(x)的最小值,则a 的取值范围为( ) A .[-1,2] B .[-1,0] C .[1,2]D .[0,2]5.设函数()f x 的定义域为R ,满足(1) 2 ()f x f x +=,且当(0,1]x ∈时,()(1)f x x x =-.若对任意(,]x m ∈-∞,都有8()9f x ≥-,则m 的取值范围是 A .9,4⎛⎤-∞ ⎥⎝⎦B .7,3⎛⎤-∞ ⎥⎝⎦C .5,2⎛⎤-∞ ⎥⎝⎦D .8,3⎛⎤-∞ ⎥⎝⎦6.下列函数中,值域是()0,+∞的是( ) A .2y x = B .211y x =+ C .2x y =-D .()lg 1(0)y x x =+>7.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.98.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( ) A .{1,2} B .{1,4} C .{1,2,3,4}D .{1,4,16,64}9.已知函数()2x xe ef x --=,x ∈R ,若对任意0,2πθ⎛⎤∈ ⎥⎝⎦,都有()()sin 10f f m θ+->成立,则实数m 的取值范围是( )A .()0,1B .()0,2C .(),1-∞D .(]1-∞, 10.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,211.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 12.已知()f x =22x x -+,若()3f a =,则()2f a 等于 A .5B .7C .9D .11二、填空题13.已知log log log 22a a ax yx y +-=,则x y的值为_________________. 14.已知函数()21311log 12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,()()2ln 21xg x a x x =+++()a R ∈,若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,则实数k 的取值范围是__________.15.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________.16.已知函数()()1123121x a x a x f x x -⎧-+<=⎨≥⎩的值域为R ,则实数a 的取值范围是_____.17.对数式lg 25﹣lg 22+2lg 6﹣2lg 3=_____. 18.若函数()(21)()xf x x x a =+-为奇函数,则(1)f =___________.19.已知函数()232,11,1x x f x x ax x ⎧+<=⎨-+≥⎩,若()()02f f a =,则实数a =________________.20.已知函数()f x 为R 上的增函数,且对任意x ∈R 都有()34x f f x ⎡⎤-=⎣⎦,则()4f =______. 三、解答题21.已知函数()21log 1x f x x +=-. (1)判断()f x 的奇偶性并证明; (2)若对于[]2,4x ∈,恒有()2log (1)(7)mf x x x >-⋅-成立,求实数m 的取值范围.22.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值. 23.已知函数()2()log 21xf x kx =+-为偶函数. (1)求实数k 的值; (2)若不等式1()2f x a x >-恒成立,求实数a 的取值范围; (3)若函数1()2()24f x x x h x m +=+⋅,[1,2]x ∈,是否存在实数m ,使得()h x 的最小值为2,若存在,请求出m 的值;若不存在,请说明理由. 24.已知函数22()log (3)log (1)f x x x =-++. (1)求该函数的定义域;(2)若函数()y f x m =-仅存在两个零点12,x x ,试比较12x x +与m 的大小关系. 25.已知集合{}24A x x =-≤≤,函数()()2log 31xf x =-的定义域为集合B .(1)求A B U ;(2)若集合{}21C x m x m =-≤≤+,且()C A B ⊆⋂,求实数m 的取值范围. 26.设函数()()2log xxf x a b=-,且()()211,2log 12f f ==.(1)求a b ,的值; (2)求函数()f x 的零点;(3)设()xxg x a b =-,求()g x 在[]0,4上的值域.【参考答案】***试卷处理标记,请不要删除一、选择题1.D 解析:D 【解析】 【分析】由对数的运算化简可得2log 3a =,32log 6b =,结合对数函数的性质,求得1a b <<,又由指数函数的性质,求得0.121c =>,即可求解,得到答案.【详解】由题意,对数的运算公式,可得24222log 31log 3log 3log 3log 42a ====, 328222log 61log 6log 6log 6log 83b ====, 又由3362<<,所以3222log 3log 6log 21<<=,即1a b <<,由指数函数的性质,可得0.10221c =>=, 所以c b a >>. 故选D. 【点睛】本题主要考查了对数函数的图象与性质,以及指数函数的图象与性质的应用,其中解答中熟练应用指数函数与对数函数的图象与性质,求得,,a b c 的范围是解答的关键,着重考查了推理与运算能力,属于基础题.2.B解析:B 【解析】 由f(1)=得a 2=, ∴a=或a=-(舍), 即f(x)=(.由于y=|2x-4|在(-∞,2]上单调递减,在[2,+∞)上单调递增,所以f(x)在(-∞,2]上单调递增,在[2,+∞)上单调递减,故选B.3.D解析:D 【解析】 【分析】 可以得出11ln 32,ln 251010a c ==,从而得出c <a ,同样的方法得出a <b ,从而得出a ,b ,c 的大小关系. 【详解】()ln 2ln 322210a f ===, ()1ln 255ln 5510c f ===,根据对数函数的单调性得到a>c,()ln 333b f ==,又因为()ln 2ln8226a f ===,()ln 3ln 9336b f ===,再由对数函数的单调性得到a<b,∴c <a ,且a <b ;∴c <a <b . 故选D . 【点睛】 考查对数的运算性质,对数函数的单调性.比较两数的大小常见方法有:做差和0比较,做商和1比较,或者构造函数利用函数的单调性得到结果.4.D解析:D 【解析】 【分析】由分段函数可得当0x =时,2(0)f a =,由于(0)f 是()f x 的最小值,则(,0]-∞为减函数,即有0a ≥,当0x >时,1()f x x a x=++在1x =时取得最小值2a +,则有22a a ≤+,解不等式可得a 的取值范围.【详解】因为当x≤0时,f(x)=()2x a -,f(0)是f(x)的最小值, 所以a≥0.当x >0时,1()2f x x a a x=++≥+,当且仅当x =1时取“=”. 要满足f(0)是f(x)的最小值,需22(0)a f a +>=,即220a a --≤,解得12a -≤≤, 所以a 的取值范围是02a ≤≤, 故选D. 【点睛】该题考查的是有关分段函数的问题,涉及到的知识点有分段函数的最小值,利用函数的性质,建立不等关系,求出参数的取值范围,属于简单题目.5.B解析:B 【解析】 【分析】本题为选择压轴题,考查函数平移伸缩,恒成立问题,需准确求出函数每一段解析式,分析出临界点位置,精准运算得到解决. 【详解】(0,1]x ∈Q 时,()=(1)f x x x -,(+1)= ()f x 2f x ,()2(1)f x f x ∴=-,即()f x 右移1个单位,图像变为原来的2倍.如图所示:当23x <≤时,()=4(2)=4(2)(3)f x f x x x ---,令84(2)(3)9x x --=-,整理得:2945560x x -+=,1278(37)(38)0,,33x x x x ∴--=∴==(舍),(,]x m ∴∈-∞时,8()9f x ≥-成立,即73m ≤,7,3m ⎛⎤∴∈-∞ ⎥⎝⎦,故选B .【点睛】易错警示:图像解析式求解过程容易求反,画错示意图,画成向左侧扩大到2倍,导致题目出错,需加深对抽象函数表达式的理解,平时应加强这方面练习,提高抽象概括、数学建模能力.6.D解析:D 【解析】 【分析】利用不等式性质及函数单调性对选项依次求值域即可. 【详解】对于A :2y x =的值域为[)0,+∞;对于B :20x ≥Q ,211x ∴+≥,21011x ∴<≤+, 211y x ∴=+的值域为(]0,1; 对于C :2xy =-的值域为(),0-∞;对于D :0x >Q ,11x ∴+>,()lg 10x ∴+>,()lg 1y x ∴=+的值域为()0,+∞;故选:D . 【点睛】此题主要考查函数值域的求法,考查不等式性质及函数单调性,是一道基础题.7.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.8.D解析:D 【解析】 【分析】方程()()20mf x nf x p ++=不同的解的个数可为0,1,2,3,4.若有4个不同解,则可根据二次函数的图像的对称性知道4个不同的解中,有两个的解的和与余下两个解的和相等,故可得正确的选项. 【详解】设关于()f x 的方程()()20mfx nf x p ++=有两根,即()1f x t =或()2f x t =.而()2f x ax bx c =++的图象关于2bx a=-对称,因而()1f x t =或()2f x t =的两根也关于2b x a =-对称.而选项D 中41616422++≠.故选D .【点睛】对于形如()0f g x =⎡⎤⎣⎦的方程(常称为复合方程),通过的解法是令()t x g =,从而得到方程组()()0f tg x t ⎧=⎪⎨=⎪⎩,考虑这个方程组的解即可得到原方程的解,注意原方程的解的特征取决于两个函数的图像特征.9.D解析:D 【解析】试题分析:求函数f (x )定义域,及f (﹣x )便得到f (x )为奇函数,并能够通过求f′(x )判断f (x )在R 上单调递增,从而得到sinθ>m ﹣1,也就是对任意的0,2πθ⎛⎤∈ ⎥⎝⎦都有sinθ>m ﹣1成立,根据0<sinθ≤1,即可得出m 的取值范围. 详解:f (x )的定义域为R ,f (﹣x )=﹣f (x ); f′(x )=e x +e ﹣x >0; ∴f (x )在R 上单调递增;由f (sinθ)+f (1﹣m )>0得,f (sinθ)>f (m ﹣1); ∴sin θ>m ﹣1; 即对任意θ∈0,2π⎛⎤⎥⎝⎦都有m ﹣1<sinθ成立; ∵0<sinθ≤1; ∴m ﹣1≤0;∴实数m 的取值范围是(﹣∞,1]. 故选:D .点睛:本题考查函数的单调性与奇偶性的综合应用,注意奇函数的在对称区间上的单调性的性质;对于解抽象函数的不等式问题或者有解析式,但是直接解不等式非常麻烦的问题,可以考虑研究函数的单调性和奇偶性等,以及函数零点等,直接根据这些性质得到不等式的解集.10.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,()y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.11.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可.【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.12.B解析:B 【解析】因为()f x =22x x -+,所以()f a =223a a -+=,则()2f a =2222a a -+=2(22)2a a -+-=7.选B.二、填空题13.【解析】【分析】首先根据对数的运算性质化简可知:即解方程即可【详解】因为且所以即整理得:所以或因为所以所以故答案为:【点睛】本题主要考查对数的运算性质同时考查了学生的计算能力属于中档题解析:3+【解析】 【分析】首先根据对数的运算性质化简可知:2()2x y xy -=,即2()6()10x x y y -+=,解方程即可.【详解】 因为log log log 22a a ax yx y +-=,且x y >, 所以2log log ()2aa x y xy -=,即2()2x y xy -=. 整理得:2260x y xy +-=,2()6()10x xy y-+=.26432∆=-=,所以3x y =-3x y =+因为0x y >>,所以1xy >.所以3x y=+故答案为:3+【点睛】本题主要考查对数的运算性质,同时考查了学生的计算能力,属于中档题.14.【解析】【分析】若对任意的均有均有只需满足分别求出即可得出结论【详解】当当设当当当时等号成立同理当时若对任意的均有均有只需当时若若所以成立须实数的取值范围是故答案为;【点睛】本题考查不等式恒成立问题解析:3,4⎛⎤-∞- ⎥⎝⎦【解析】 【分析】若对任意的均有1x ,{}2,2x x x R x ∈∈>-,均有()()12f x g x ≤,只需满足max min ()()f x g x ≤,分别求出max min (),()f x g x ,即可得出结论.【详解】当()221121()24x f x x x k x k -<≤=-++=--++, 16()4k f x k ∴-<≤+, 当()1311,log 122x x f x >=-<-+, ()()2ln 21xg x a x x =+++, 设21xy x =+,当0,0x y ==, 当21110,,01122x x y y x x x>==≤∴<≤++,当1x =时,等号成立 同理当20x -<<时,102y -≤<, 211[,]122x y x ∴=∈-+, 若对任意的均有1x ,{}2,2x x x R x ∈∈>-, 均有()()12f x g x ≤,只需max min ()()f x g x ≤, 当2x >-时,ln(2)x R +∈, 若0,2,()a x g x >→-→-∞, 若0,,()a x g x <→+∞→-∞ 所以0a =,min 21(),()12x g x g x x ==-+, max min ()()f x g x ≤成立须,113,424k k +≤-≤-,实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.故答案为;3,4⎛⎤-∞- ⎥⎝⎦. 【点睛】本题考查不等式恒成立问题,转化为求函数的最值,注意基本不等式的应用,考查分析问题解决问题能力,属于中档题.15.【解析】根据题意当时为奇函数则故答案为解析:15-【解析】根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则 故答案为15-.16.【解析】【分析】根据整个函数值域为R 及分段函数右段的值域可判断出左段的函数为单调性递增且最大值大于等于1即可求得的取值范围【详解】当时此时值域为若值域为则当时为单调递增函数且最大值需大于等于1即解得 解析:10,2⎡⎫⎪⎢⎣⎭【解析】【分析】根据整个函数值域为R 及分段函数右段的值域,可判断出左段的函数为单调性递增,且最大值大于等于1,即可求得a 的取值范围.【详解】当1x ≥时,()12x f x -=,此时值域为[)1,+∞ 若值域为R ,则当1x <时.()()123f x a x a =-+为单调递增函数,且最大值需大于等于1 即1201231a a a ->⎧⎨-+≥⎩,解得102a ≤< 故答案为:10,2⎡⎫⎪⎢⎣⎭【点睛】本题考查了分段函数值域的关系及判断,指数函数的性质与一次函数性质的应用,属于中档题. 17.1【解析】【分析】直接利用对数计算公式计算得到答案【详解】故答案为:【点睛】本题考查了对数式的计算意在考查学生的计算能力解析:1【解析】【分析】直接利用对数计算公式计算得到答案.【详解】()()22522lg62lg3lg5lg2lg5lg2lg36lg9lg5lg2lg41lg -+=+-+-=-+=lg ﹣ 故答案为:1【点睛】本题考查了对数式的计算,意在考查学生的计算能力.18.【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值再将1代入即可求解【详解】∵函数为奇函数∴f (﹣x )=﹣f (x )即f (﹣x )∴(2x ﹣1)(x+a )=(2x+1)(x ﹣a )即2x2+(2 解析:23【解析】【分析】根据函数奇偶性的定义和性质建立方程求出a 的值,再将1代入即可求解【详解】∵函数()()()21xf x x x a =+-为奇函数, ∴f (﹣x )=﹣f (x ),即f (﹣x )()()()()2121x x x x a x x a -==--+--+-,∴(2x ﹣1)(x +a )=(2x +1)(x ﹣a ),即2x 2+(2a ﹣1)x ﹣a =2x 2﹣(2a ﹣1)x ﹣a ,∴2a ﹣1=0,解得a 12=.故2(1)3f = 故答案为23【点睛】本题主要考查函数奇偶性的定义和性质的应用,利用函数奇偶性的定义建立方程是解决本题的关键. 19.2【解析】【分析】利用分段函数分段定义域的解析式直接代入即可求出实数的值【详解】由题意得:所以由解得故答案为:2【点睛】本题考查了由分段函数解析式求复合函数值得问题属于一般难度的题解析:2【解析】【分析】利用分段函数分段定义域的解析式,直接代入即可求出实数a 的值.【详解】由题意得:()00323f =+=,()23331103f a a =-+=-, 所以由()()01032f f a a =-=, 解得2a =.故答案为:2.【点睛】本题考查了由分段函数解析式求复合函数值得问题,属于一般难度的题.20.【解析】【分析】采用换元法结合函数的单调性计算出的解析式从而即可求解出的值【详解】令所以又因为所以又因为是上的增函数且所以所以所以故答案为:【点睛】本题考查用换元法求解函数的解析式并求值难度一般已知 解析:82【解析】【分析】采用换元法结合函数的单调性计算出()f x 的解析式,从而即可求解出()4f 的值.【详解】令()3x f x t -=,所以()3xf x t =+, 又因为()4f t =,所以34t t +=,又因为34ty t =+-是R 上的增函数且1314+=,所以1t =,所以()31x f x =+,所以()443182f =+=. 故答案为:82.【点睛】本题考查用换元法求解函数的解析式并求值,难度一般.已知()()f g x 的解析式,可考虑用换元的方法(令()g x t =)求解出()f x 的解析式. 三、解答题21.(1)奇函数,证明见解析;(2)015m <<【解析】【分析】(1)先求出函数定义域,再利用函数奇偶性的定义判断即可;(2)由题意,101(1)(7)x m x x x +>>---对[]2,4x ∀∈恒成立,转化为0(1)(7)m m x x >⎧⎨<+-⎩恒成立,求出函数()()()17g x x x =+-的最小值进而得解.【详解】(1)因为101x x +>-,解得1x <-或1x >, 所以函数()f x 为奇函数,证明如下:由(1)知函数()f x 的定义域关于原点对称,又因为1222111()log log log ()111x x x f x f x x x x --+-+⎛⎫-====- ⎪--+-⎝⎭, 所以函数()f x 为奇函数;(2)若对于[]2,4x ∈,2()log (1)(7)m f x x x >--恒成立, 即221log log 1(1)(7)x m x x x +>---对[]2,4x ∈恒成立, 即101(1)(7)x m x x x +>>---对[]2,4x ∈恒成立, 因为[]2,4x ∈,所以107m x x +>>-恒成立, 即0(1)(7)m m x x >⎧⎨<+-⎩恒成立, 设函数()()()17g x x x =+-,求得()g x 在[]2,4上的最小值是15,所以015m <<.【点睛】本题考查函数奇偶性的判断及不等式的恒成立问题,考查分离变量法的运用,考查分析问题及解决问题的能力,难度不大.22.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m ≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m ≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值,当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意.综上所述,1m =.【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型.23.(1)12k =(2)0a ≤(3)存在,316m =- 【解析】【分析】(1)利用公式()()0f x f x --=,求实数k 的值;(2)由题意得()2log 21x a <+恒成立,求a 的取值范围;(3)()214x x h x m =++⋅,[1,2]x ∈,通过换元得21y mt t =++,[2,4]t ∈,讨论m 求函数的最小值,求实数m 的值.【详解】(1)f x ()是偶函数()()0f x f x ∴--=,()()22log 21log 210x x kx kx -∴++-++=,22112log (21)0210212x x kx x k x x R k k -+∴==∴-=∈∴-=∴=+Q . (2)由题意得()2log 21x a <+恒成立, ()2211log 2100x x a +>∴+>∴≤Q .(3)()214x x h x m =++⋅,[1,2]x ∈,令2x t =,则21y mt t =++,[2,4]t ∈,1°当0m =时,1y t =+的最小值为3,不合题意,舍去;2°当0m >时,21y mt t =++开口向上,对称轴为102t m=-<, 21y mt t ∴=++在[2,4]上单调递增min 432y m ∴=+=,104m ∴=-<,故舍去; 3°当0m <时,21y mt t =++开口向下,对称轴为102t m =->, 当132m -≤即16m ≤-时,y 在4t =时取得最小值, min 3165216y m m ∴=+=∴=-,符合题意; 当132m->即106m -<<时,y 在2t =时取得最小值, min 14324y m m ∴=+=∴=-,不合题意,故舍去;综上可知,316m =-. 【点睛】 本题考查复合型指,对数函数的性质,求参数的取值范围,意在考查分类讨论的思想,转化与化归的思想,以及计算能力,本题的难点是第三问,讨论m ,首先讨论函数类型,和二次函数开口方向讨论,即分0m =,0m >,和0m <三种情况,再讨论对称轴和定义域的关系,求最小值.24.(1)(1,3)- (2)12x x m +>【解析】【分析】(1)根据对数真数大于零列不等式组,解不等式组求得函数的定义域.(2)化简()f x 表达式为对数函数与二次函数结合的形式,结合二次函数的性质,求得12x x +以及m 的取值范围,从而比较出12x x +与m 的大小关系.【详解】(1)依题意可知301310x x x ->⎧⇒-<<⎨+>⎩,故该函数的定义域为(1,3)-; (2)2222()log (23)log ((1)4)f x x x x =-++=--+,故函数关于直线1x =成轴对称且最大值为2log 42=,∴122x x +=,2m <,∴12x x m +>.【点睛】本小题主要考查函数定义域的求法,考查对数型复合函数对称性和最值,属于基础题.25.(1){}2x x ≥-;(2)(]2,3【解析】【分析】(1)由对数函数指数函数的性质求出集合B ,然后由并集定义计算;(2)在(1)基础上求出A B I ,根据子集的定义,列出m 的不等关系得结论.【详解】(1)由310x ->,解得0x >, 所以{}0B x x =>. 故{}2A B x x ⋃=≥-.(2)由{}04A B x x ⋂=<≤.因为()C A B ⊆⋂,所以20,1 4.m m ->⎧⎨+≤⎩所以23m <≤,即m 的取值范围是(]2,3.【点睛】本题考查对数型复合函数的定义域,考查集合的交并集运算,考查集合的包含关系.正确求出函数的定义域是本题的难点.26.(1)4,2a b ==(2)21log 2x +=(3)()[]0,240g x ∈ 【解析】【分析】(1)由()()211,2log 12f f ==解出即可(2)令()0f x =得421x x -=,即()22210xx --=,然后解出即可 (3)()42x x g x =-,令2x t =,转化为二次函数【详解】(1)由已知得()()()()222221log 12log log 12f a b f a b ⎧=-=⎪⎨=-=⎪⎩,即22212a b a b -=⎧⎨-=⎩, 解得4,2a b ==;(2)由(1)知()()2log 42x x f x =-,令()0f x =得421x x -=,即()22210x x --=,解得122x =,又20,2x x >∴=,解得2log x = (3)由(1)知()42x x g x =-,令2x t =,则()221124g t t t t ⎛⎫=-=-- ⎪⎝⎭,[]1,16t ∈, 因为()g t 在[]1,16t ∈上单调递增 所以()[]0,240g x ∈,。

2020-2021长沙市长郡中学高一数学上期末一模试题含答案

2020-2021长沙市长郡中学高一数学上期末一模试题含答案

2
8
是容易漏掉分界点 x 2 处的情况.
5.C
解析:C
【解析】
【分析】
根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型 0.7x 0.2 求
解. 【详解】
因为 1 小时后血液中酒精含量为(1-30%)mg/mL, x 小时后血液中酒精含量为(1-30%)x mg/mL 的, 由题意知 100mL 血液中酒精含量低于 20mg 的驾驶员可以驾驶汽车,
血液中酒精含量低于 20mg 的驾驶员可以驾驶汽车,酒精含量达到 20~79mg 的驾驶员即为
酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒
精含量上升到了 1mg/mL.如果在停止喝酒以后,他血液中酒精含量会以每小时 30%的速
度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg0.2≈﹣0.7,
A. f (x) 在(0,2)单调递增
B. f (x) 在(0,2)单调递减
C. y = f (x) 的图像关于直线 x=1 对称
D. y = f (x) 的图像关于点(1,0)对称
3.设集合 A x | 2x1 1 , B y | y log3 x, x A ,则 B A ( )
A. 0,1
,则
f ( f (0)) (
)
3x , x N *
A.0
B.-1
8.若 x0=cosx0,则( )
C. 1 3
D.1
A.x0∈( , ) B.x0∈( , ) C.x0∈( , ) D.x0∈(0, )
32
43
64
6
9.已知函数
f
x
log
2

湖南省长沙市长郡中学2020-2021学年高一上学期10月周末练习3数学试题

湖南省长沙市长郡中学2020-2021学年高一上学期10月周末练习3数学试题

,且每处理一吨二氧化碳得到可利用的化工
产品价值为 元. (1)该单位每月处理量为多少吨时,才能使每吨的平均处理成本最低? (2)该单位每月能否获利?如果获利,求出最大利润;如果不获利,则国家至少需要补贴多少元才能使该单位不亏损?
16. 已知集合
(1)当 =2时,求

(2)若
,求实数 的取值范围.
17. 已知函数
A.存在

B.对于一切实数
,都有
C.

D.

能被2整除是假命题
12. 设 A.当 C.当
其中 为参数.下列选项正确的是( )
时,
的最大值为4
B.当
时, 的最小值为9
D.当
时,
的最小值为4
时, 的最大值为3
三、填空题
13. 不等式
的解集是___________.
四、双空题
14. 在 _____,
中,
A.
B.
C.
D.
5. 设 为实数,

.若
,则 的取值范围为( )
A.
B.
C.
D.
6. 若函数 A. C.
是奇函数,且当
时,
,则当
时, B. D.
的解析式为( )
7. 一元二次方程ax2+2x+1=0(a≠0)有一个正根和一个负根的充分不必要条件是()
A.a <0
B.a >0
C.a <-1
D.a >1

的最小值为__________.
,点 为边 上一动点,且点 到边
的距离分别是 ,则
___________
五、解答题

长郡中学2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷(解析版)

长郡中学2024-2025学年高一上学期综合能力检测(入学分班考试)数学试卷(解析版)

长郡中学2024级高一综合能力检测试卷数学时量:90分钟 满分100分一、选择题:本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一个选项是符题目要求的.1.《孙子算经》中记载:“凡大数之法,万万曰亿,万万亿日兆.”说明了大数之间的关系:1亿1=万1万,1兆1=万1×万1×亿.若1兆10m=,则m 的值为( ) A.4 B.8C.12D.16【答案】D 【解析】【分析】由指数幂的运算性质即可求解. 【详解】1万=410,所以1亿=810, 所以1兆=8816101010×=, 所以16m =. 故选:D2.二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒大寒),若从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为( )A.12B.112C.16D.14【答案】D 【解析】【分析】根据概率的计算公式即可求解.【详解】从二十四个节气中随机抽取一个节气,则抽到的节气在夏季的概率为61244=, 故选:D3.如图,矩形ABCD 中,3AB =,1AD =,AB 在数轴上,若以点A 为圆心,对角线AC 的长为半径作弧交数轴的正半轴于M ,则点M 所表示的数为( )A. 2B.1−C.D.1【答案】B 【解析】【分析】利用勾股定理和数轴的知识求得正确答案.【详解】由于AC =,所以点M所表示的数为)231+−=−.故选:B4. 若关于x 的不等式组()532223x x x x a + ≥−+<+恰好只有四个整数解,则a 的取值范围是( )A. 53a <−B. 5433a −≤<− C. 523a −<−≤D. 523a −<<−【答案】C 【解析】【分析】化简不等式组,由条件列不等式求a 的取值范围. 【详解】解不等式532x x +≥−,得11x ≤, 解不等式()223x x a +<+,得23x a >−, 由已知可得7238a ≤−<, 所以523a −<−≤.故选:C.5. 在ABC ,3AC =,4BC =,5AB =,点P 在ABC 内,分别以A ,B ,P 为圆心画圆,圆A 的半径为1,圆B 的半径为2,圆P 的半径为3,圆A 与圆P 内切,圆P 与圆B 的关系是( ) A. 内含 B. 相交 C. 外切 D. 相离【答案】B 【解析】【分析】由题意条件分析两圆圆心距与两半径和差的大小关系即可得. 【详解】由圆A 与圆P 内切,则312PA =−=,5AB =, 又点P 在ABC 内,则PA PB AB +>,且PB AB <, 所以523PB AB PA >−=−=,且5PB <, 则3232PB −<<+,由圆B 的半径为2,圆P 的半径为3, 所以圆P 与圆B 相交. 故选:B.6. 对于正整数k 定义一种运算:1()[][]44k k f k +=−,例:313(3)[][]44f +=−,[]x 表示不超过x 的最大整数,例:[3.9]3=,[ 1.8]2−=−.则下列结论错误的是( ) A. ()10f =B. ()0f k =或1C. ()()4f k f k +=D. ()()1f k f k +≥【答案】D 【解析】【分析】根据给定的定义,逐项计算判断即可.【详解】对于A ,11(1)[][]00024f =−=−=,A 正确; 对于B ,取4,1,2,3,4k n i i =+=,n 为自然数, 当4i =时,1()[1][1][1]044f k n n ++−+,当3i =时,33()[1][]1([])144f k n n n n =+−+=+−+=,当1,2i =时,11()[][][]([])04444i i i if k n n n n ++=+−+=+−+=,B 正确; 对于C ,11(4)[1][1]1[](1[])()4444k k k kf k f k +++=+−+=+−+=,C 正确; 对于D ,414313(31)[][]0,(3)[][]14444f f +++=−==−=,即(31)(3)f f +<,D 错误.故选:D7. 如图,点A 为反比例函数()10y x x=−<图象上的一点,连接AO ,过点O 作OA 的垂线与反比例函数()40yx x=>的图象交于点B ,则AO BO 的值( )A.12B.14C.D.13【答案】A 【解析】【分析】设121214,,,A x B x x x −,由,A B 两点分别做x 轴的垂线,垂足分别为,E F ,由AO BO ⊥,得∽∠ AOE OBF ,由==AEEO AO OFBF BO,可得答案. 【详解】设AA �xx 1,−1xx 1�,BB �xx 2,4xx 2�(xx <0,xx 2>0),由,A B 两点分别做x 轴的垂线,垂足分别为,E F , 且()()12,0,,0E x F x ,因为AO BO ⊥,所以,∠=∠∠=∠AOE OBF OAE BOF , 所以∽∠ AOE OBF ,所以AE EO OF BF =,可得112214−−=x x x x ,即22124x x =,所以122x x =−, 所以12121211==−==−=A Ex x x OA BO OFx.故选:A.8. 若二次函数的解析式为()()()2215y x m x m =−−≤≤,且函数图象过点(),p q 和点()4,p q +,则q 的取值范围是( ) A. 124q −≤≤ B. 50q −≤≤C. 54q −≤≤D. 123q −≤≤【答案】A 【解析】【分析】由二次函数解析式可求得对称轴为1x m =+,进而可得412p p m ++=+,由函数图象过点(),p q ,可得2(1)4q m =−−+,可求q 的取值范围.【详解】因为二次函数解析式为()()()2215y x m x m =−−≤≤, 所以二次函数的对称轴为1x m =+,函数图象过点(),p q 和点()4,p q +,故点(),p q 和点()4,p q +关于直线1x m =+对称, 所以412p p m ++=+,所以1[0,4]p m −∈, 又()()()()2222121223(1)4q p m p m m m m m m =−−=−−−−=−++=−−+, 当1m =,max 4q =,当5m =,min 12q =−,所以124q −≤≤. 故选:A.二、填空题:本题共4小题,每小题4分,共16分.9. 分解因式:432449a a a −+−=______. 【答案】2(23)(1)(3)a a a a −++− 【解析】【分析】根据给定条件,利用公式法及十字相乘法分解因式即可得解.【详解】43222222449(2)9(23)(23)(23)(1)(3)a a a a a a a a a a a a a −+−=−−=−+−−=−++−. 故答案为:2(23)(1)(3)a a a a −++−的10. 直线1:1l y x =−与x 轴交于点A ,将直线1l 绕点A 逆时针旋转15°,得到直线2l ,则直线2l 对应的函数表达式是______.【答案】y =【解析】【分析】先求得2l 的倾斜角,进而求得直线2l 对应的函数表达式. 【详解】直线1:1l y x =−与x 轴交于点 1,0A , 直线1:1l y x =−的斜率为1,倾斜角为45°,所以2l 的倾斜角为60°所以直线2l 对应的函数表达式是)1y x =−=.故答案为:y=−11. 若关于x 的分式方程22411x a x ax x −−+−=−+的解为整数,则整数a =______. 【答案】1± 【解析】【分析】由分式方程有意义可知1x ≠且1x ≠−,再化简方程求解2x a=,由,a x 均为整数可求.【详解】则方程241x a x −−−1x ≠且1x ≠−. 方程可化为222211x a x ax x −−+−=+−+,即2211a a x x −+=−+, 解得2x a=,由1x ≠且1x ≠−,所以2a ≠且2a ≠−.由a 为整数,且x 为整数,则当1a =−,2x =−,或当1a =,2x =时满足题意. 所以1a =±. 故答案为:1±.12. 如图,已知两条平行线1l ,2l ,点A 是1l 上的定点,2AB l ⊥于点B ,点C ,D 分别是1l ,2l 上的动点,且满足AC BD =,连接CD 交线段AB 于点E ,BH CD ⊥于点H ,则当BAH ∠最大时,sin BAH ∠的值为______.【答案】13【解析】【分析】因为BH CD ⊥于点H ,所以点 H 在以BE 为直径的圆上运动, 当 AH 与圆 O 相切时, BAH ∠ 最大,据此在OHA 求解即可. 【详解】12//,//,AC BD l l∴ 四边形 ACBD 是平行四边形 12AE BE AB ∴==A 为定点, 且 2//AB l AE ∴ 为定值,BH CD ⊥ 90BHE ∠∴=, 如图,取BE 的中点O ,则点 H 在以BE 为直径的圆上运动,此时 1123OE BE OA ==, 当 AH 与圆 O 相切时, BAH ∠ 最大1sin 3OH BAH OA ∠∴==故答案为:13.三、解答题:本题共4小题,共52分.应写出文字说明、证明过程或演算步骤.13. 某学校举办的“青春飞扬”主题演讲比赛分为初赛和决赛两个阶段.(1)初赛由10名教师评委和45名学生评委给每位选手打分(百分制),对评委给某位选手的打分进行整理、描述和分析下面给出了部分信息.a .教师评委打分:86 88 90 91 91 91 91 92 92 98b .学生评委打分的频数分布直方图如下(数据分6组:第1组8285x ≤<,第2组8588x ≤<,第3组8891x ≤<,第4组9194x ≤<,第5组9497x ≤<,第6组97100x ≤≤);平均数中位数众数教师评委 91 91 m 学生评委90.8n93c .评委打分的平均数、中位数、众数如上: 根据以上信息,回答下列问题:①m 的值为______,n 的值位于学生评委打分数据分组的第______组;②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x ,则x ______91(填“>”“=”或“<”);(2)决赛由5名专业评委给每位选手打分(百分制).对每位选手,计算5名专业评委给其打分的平均数和方差.平均数较大的选手排序靠前,若平均数相同,则方差较小的选手排序靠前,5名专业评委给进入决赛的甲、乙、丙三位选手的打分如下:评1评委2评委3评委4评委5甲 93 90 92 93 92 乙9192929292丙 90 94 90 94 k若丙在甲、乙、丙三位选手中的排序居中,则这三位选手中排序最靠前的是______,表中k (k 为整数)的值为______.【答案】(1)①91;4;②< (2)甲;92 【解析】【分析】(1)①根据众数以及中位数的定义解答即可;②根据算术平均数的定义求出8名教师评委打分的平均数,即可得出答案; (2)根据方差的定义和平均数的意义求解即可. 【小问1详解】①由题意得,教师评委打分中91出现次数最多,故众数91m =;45名学生评委打分数据的中位数是第23个数,故n 的值位于学生评委打分数据分组的第4组; ②若去掉教师评委打分中的最高分和最低分,记其余8名教师评委打分的平均数为x , 则1(8890919191919292)90.758x =×+++++++=,91x ∴<.【小问2详解】甲选手的平均数为1(9390929392)925×+++=, 乙选手的平均数为1(9192929292)91.85×++++=, 因为丙在甲、乙、丙三位选手中的排序居中,所以三位选手中排序最靠前的是甲,且丙的平均数大于或等于乙的平均数, 因为5名专业评委给乙选手的打分为91,92,92,92,92, 乙选手的方差2221[4(9291.8)(9191.8)]0.165S =××−+−=乙, 5名专业评委给丙选手的打分为90,94,90,94,k , 所以乙选手的方差小于丙选手的方差,所以丙选手的平均数大于乙选手的平均数,小于或等于甲选手的平均数,∴9390929392909490949192929292k ++++≥++++>++++,9291k ∴≥>, k 为整数,的k ∴的值为92.14. 根据以下素材,探索完成任务——如何设计摇椅的椅背和坐垫长度?素材一:某公司设计制作一款摇椅,图1为效果图,图2为其侧面设计图,其中FC 为椅背,EC 为坐垫,C ,D 为焊接点,且CD 与AB 平行,支架AC ,BD 所在直线交于圆弧形底座所在圆的圆心O .设计方案中,要求A ,B 两点离地面高度均为5厘米,A ,B 两点之间距离为70厘米;素材二:经研究,53OCF ∠=°时,舒适感最佳.现用来制作椅背FC 和坐垫EC 的材料总长度为160厘米,设计时有以下要求: (1)椅背长度小于坐垫长度;(2)为安全起见,摇椅后摇至底座与地面相切于点A 时(如图3),F 点比E 点在竖直方向上至少高出12厘米.(sin530.8°≈,cos530.6°≈,tan53 1.3°≈)任务:(1)根据素材求底座半径OA ; (2)计算图3中点B 距离地面的高度;(3)①求椅背FC 的长度范围;(结果精确到0.1m ) ②设计一种符合要求的方案. 【答案】(1)125厘米;(2)19.6厘米 (3)①64.580FC ≤<;②70cm ,90cm (答案不唯一). 【解析】【分析】(1)根据四边形AHNB 为矩形,35AG BG ==厘米,5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,由勾股定理求出r 即可得出答案;(2)由四边形ANBK 为矩形,进而得AK BN h ==,()125cm,125cm OK h OB =−=,然后在直角三角形中由勾股定理列出关于h 的方程,解方程求出h 即可得出答案;(3)①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,先求出cos cos 0.28QCD OAB ∠=∠=,设椅背FC x =厘米,则坐垫(160)EC x =−,即可得0.60.28(160)12x x −−≥,由此解得64.5x ≥,据此可得椅背FC 的长度范围;②在①中椅背FC 的长度范围任取一个FC 的值,再计算出EC 的值即可,例如取70FC =厘米,则1607090EC =−=(厘米);(答案不唯一,只要在FC 的长度范围内即可). 【小问1详解】过点A 作AH 垂直地面于H ,过点O 作OG AB ⊥于G ,OG 的延长线于地面交于点M ,如图所示:AB 平行于地面,∴四边形AHNB 为矩形,1352AG BG AB ===厘米, 5AH GM ==厘米,设底座半径OA r =厘米,则OM OA r ==厘米,(5)OG OM GM r ∴=−=−厘米,在Rt OAG ∆中,OA r =厘米,35AG =厘米,(5)OGr =−厘米, 由勾股定理得:222OA OG AG =+,即:222(5)35r r =−+, 解得:125r =,∴底座半径OA 的长度为125厘米;【小问2详解】过点B 作BN 垂直地面于N ,BK OA ⊥于K ,如图所示:设BN h =,底座与地面相切于点A ,OA ∴垂直地面于点A ,∴四边形ANBK 为矩形,AK BN h ∴==,由任务一可知:125cm,125OA OB OK OA AK h ==∴==--, 在Rt ABK △中,cm,=70cm AK h AB =, 由勾股定理得:2222270BK AB AK h =−=−,在Rt OBK 中,()125cm,125cm OK h OB =−=, 由勾股定理得:22222125(125)BK OB OK h =−=−−,222270125(125)h h ∴−=−−,解得:19.6h =,∴点B 距离地面的高度为19.6厘米;【小问3详解】①过F 作FP OA ⊥于P ,过点E 作EQ OA ⊥于Q ,如图所示://CD AB ,QCD OAB ∴∠=∠,由任务②可知:19.6AK h ==厘米,70AB =厘米, 在Rt ABK △中,19.6cos 0.2870AK OAB AB ∠===, cos cos 0.28QCD OAB ∴∠=∠=,椅背FC 和坐垫EC 的材料总长度为160厘米, ∴设椅背FC x =厘米,则坐垫(160)EC x =−, 椅背长度小于坐垫长度,160x x ∴<−,解得:80x <,在Rt CQE △中,cos 0.28CQQCD CE∠==, 0.280.28(160)CQ CE x ∴==−厘米,在Rt CFP △中,cos CPOCF CF∠=, cos cos530.6CP CF OCF x x ∴=⋅∠=⋅°≈(厘米), F 点比E 点在竖直方向上至少高出12厘米,12AP AN ∴−≥,即:()12AC CP AC CQ +−+≥,12CP CQ ∴−≥,0.60.28(160)12x x ∴−−≥,解得:64.5x ≥, 又80x < ,64.580x ∴≤≤,即:64.580FC ≤≤,∴椅背FC 的长度范围是:64.580FC ≤<;②由于64.580FC ≤<,故取70cm FC =,则1607090cm EC ==-.15. 定义:在平面直角坐标系中,直线x m =与某函数图象交点记为点P ,作该函数图象中点P 及点P 右侧部分关于直线x m =的轴对称图形,与原函数图象上的点P 及点P 右侧部分共同构成一个新函数的图象,称这个新函数为原函数关于直线x m =的“迭代函数”.例如:图1是函数1y x =+的图象,则它关于直线0x =的“迭代函数”的图象如图2所示,可以得出它的“迭代函数”的解析式为()()10,10.x x y x x +≥ =−+<(1)函数1y x =+关于直线1x =的“迭代函数”的解析式为______.(2)若函数243y x x =−++关于直线x m =的“迭代函数”图象经过()1,0−,则m =______.(3)已知正方形ABCD 的顶点分别为:(),A a a ,(),B a a −,(),C a a −−,(),D a a −,其中0a >.①若函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,求a 的值; ②若6a =,函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,求n 的取值范围.【答案】(1)1,13,1x x y x x +≥ =−+<(2)m =m =,(3)①3;②()5,1,12−∞−∪−. 【解析】【分析】(1)取点()2,3M ,()3,4N ,求两点关于1x =的对称点,利用待定系数法求左侧图象的解析式,由此可得结论;(2)判断点()1,0−与函数243y x x =−++的图象的关系,再求()1,0−关于直线x m =的对称点,由条件列方程求m 即可;(3)①求函数6y x=关于直线2x =−的“迭代函数”的解析式,作函数图象,观察图象确定a 的值; ②分别在0n >,0n =,0n <时求函数6y x=关于直线x n =的“迭代函数”解析式,讨论n ,由条件确定n 的范围.小问1详解】在函数1y x =+的图象上位于1x =右侧的部分上取点()2,3M ,()3,4N , 点()2,3M 关于直线1x =对称点为(0,3), 点()3,4N 关于直线1x =的对称点为()1,4−,设函数1y x =+,1x >的图象关于1x =对称的图象的解析式为,1y kx b x =+<, 则34b k b = −+=,解得13k b =− = ,所以函数1y x =+关于直线1x =的“迭代函数”的解析式为1,13,1x x y x x +≥ =−+<;【的【小问2详解】取1x =−可得,2431432y x x =−++=−−+=−, 故函数243y x x =−++的图象不过点()1,0−, 又点()1,0−关于直线x m =的对称点为()21,0m +, 由已知可得()()20214213m m =−++++,1m >−,所以m =或m =,【小问3详解】①当0x >或20x −≤<时,函数6y x =关于直线2x =−的“迭代函数”的图象的解析式为6y x =, 当2x <−时,设点EE (xx ,yy )在函数6y x=关于直线2x =−的“迭代函数”的图象上,则点()4,x y −−在函数6y x=的图象上,所以64y x=−−, 所以函数6y x =关于直线2x =−的“迭代函数”的解析式为[)()()6,2,00,6,,24x xy x x∞∞ ∈−∪+ =∈−− −− , 作函数6y x=关于直线2x =−的“迭代函数”的图象如下:观察图象可得3a =时,函数6y x=关于直线2x =−的“迭代函数”的图象与正方形ABCD 的边有3个公共点,②若0n >,当x n ≥时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当0x <或0x n <<时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上,则点()2,n x y −在函数6y x=的图象上,所以62y n x=−, 所以函数6y x =关于直线x n =“迭代函数”的解析式为()()()6,,6,,00,2x n xy x n n x∞∞ ∈+ =∈−∪ − , 当6n >时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,的当6n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当16n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有2个公共点,当1n =时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有3个公共点,当01n <<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当0n =时,函数6y x =关于直线xx =0的“迭代函数”的解析式为6,06,0x xy x x> =−< , 作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,若0n <,当0n x ≤<或0x >时,函数6y x =关于直线x n =的“迭代函数”的图象的解析式为6y x=, 当x n <时,设点EE (xx ,yy )在函数6y x=关于直线x n =的“迭代函数”的图象上, 则点()2,n x y −在函数6y x=的图象上, 所以62y n x=−,所以函数6y x =关于直线x n =的“迭代函数”的解析式为[)()()6,,00,6,,2x n xy x n n x ∞∞ ∈∪+ = ∈− −,当10n −<<时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当1n =−时,作函数6y x=关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有5个公共点,当512n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有6个公共点,当52n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有5个公共点,当7522n−<<−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当72n=−时,作函数6yx=关于直线x n=的“迭代函数”的图象可得,函数6yx=关于直线x n=的“迭代函数”的图象与正方形ABCD有4个公共点,当762n −<<−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n =−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,当6n <−时,作函数6y x =关于直线x n =的“迭代函数”的图象可得, 函数6y x=关于直线x n =的“迭代函数”的图象与正方形ABCD 有4个公共点,综上,n 的取值范围为()51,12∞−−∪−,. 【点睛】方法点睛:“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.16. 已知抛物线2y x bx c =−++与x 轴交于点()1,0A −,()3,0B .(1)如图1,抛物线与y 轴交于点C ,点P 为线段OC 上一点(不与端点重合),直线PA ,PB 分别交抛物线于点E ,D ,设PAD △面积为1S ,PBE △面积为2S ,求12S S 的值; (2)如图2,点K 是抛物线的对称轴与x 轴的交点,过点K 的直线(不与对称轴重合)与抛物线交于点M ,N ,过抛物线顶点G 作直线//l x 轴,点Q 是直线l 上一动点求QM QN +的最小值.【答案】(1)19(2)【解析】【分析】(1)把点()1,0A −,()3,0B 代入抛物线方程,解出抛物线的解析式,设(0,)P p ,求出直线AP 解析式为y px p =+,联立方程223y px p y x x =+ =−++, 可得2(3,4)E p p p −−+,同理可得234(,)393p p p D −−+,即可得1S ,2S ,化简可得结果; (2)作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,求出(1,0)K ,设直线MN解析式为y kx d =+,把点K 坐标代入即可知直线MN 的解析式y kx k =−,设2(,23)M m m m −++,2(,23)N n n n −++,求出2(,25)N n n n ′−+,可得QM QN QM QN MN ′′+=+≥,结合2(,23)F n m m −++,可得222421780MN MF N F k k =+=++′′,从而得到QM QN +的最小值. 【小问1详解】把点()1,0A −,()3,0B 代入抛物线方程2y x bx c =−++得:10930b c b c −−+= −++=, 解得:23b c = =, 所以抛物线方程为:223y x x =−++, 设(0,)P p ,直线AP 解析式为11y k x b =+, 把点()1,0A −,(0,)P p 代入得:1110k b b p −+= = , 所以线AP 解析式为y px p =+,联立223y px p y x x =+ =−++ ,解得:10x y =−=或234x p y p p =− =−+ , 所以2(3,4)E p p p −−+,设直线BP 解析式为22y k x b =+ 把点()3,0B ,(0,)P p 代入得:22230k b b p+= = , 直线BP 解析式为3py x p =−+ 联立2323p y x p y x x =−+ =−++ ,解得:30x y = = 或233493p x p p y − = =−+可得234(,)393p p p D −−+, 所以221142()2(3)2939ABD ABP D P p p S S S AB y y p p p =−=⋅−=−+−=− , ()2221()242(3)2ABE ABP E P S S S AB y y p p p p p =−=⋅−=−+−=− , 所以2122192(3)92(3)S p p S p p −=−= 【小问2详解】作点N 关于直线l 的对称点N ′,连接MN ′,过M 点作MF NN ′⊥于F ,如图:因为2223(1)4y x x x =−++=−−+,所以抛物线223y x x =−++的对称轴为1x =, 所以(1,0)K ,设直线MN 解析式为y kx d =+, 把点(1,0)K 代入得:=0k d +,所以=d k −,所以直线MN 的解析式为y kx k =− 设2(,23)M m m m −++,2(,23)N n n n −++,联立223y x x y kx k =−++ =−,可得2(2)30x k x k +−−−= 则2m n k +=−,3mn k =−−,因为N ,N ′关于直线l :4y =对称,所以2(,25)N n n n ′−+,则QM QN QM QN MN ′′+=+≥,又2(,23)F n m m −++, 所以222()2N F m n m n +−++′,FM m n =−, 在Rt MFN ′ 中,2222222()2()2MN MF N F m n m n m n =+=−++−++ ′ ′,222()4()22()2m n mn m n mn m n =+−++−−++222(2)4(3)(2)2(3)2(2)2k k k k k =−−−−+−−−−−−+ 421780k k =++所以当0k =时,2MN ′最小为80,此时MN ′=所以QM QN +≥,即QM QN +的最小值为。

湖南省长沙市长郡中学2024-2025学年高一上学期10月月考数学试题

湖南省长沙市长郡中学2024-2025学年高一上学期10月月考数学试题

湖南省长沙市长郡中学2024-2025学年高一上学期10月月考数学试题一、单选题1.已知集合{}26A x x =≤<,{}240B x x x =-<,则A B =I ( )A .()0,6B .()4,6C .[)2,4D .()[),02,-∞⋃+∞2.命题“x ∃∈R ,2220x x -+≤”的否定是( ) A .x ∃∈R ,2220x x -+≥ B .x ∃∈R ,2220x x -+> C .x ∀∈R ,2220x x -+≤ D .x ∀∈R ,2220x x -+>3.设a ∈R ,则“1a >”是“11a<”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件4.下列各组函数中,表示同一个函数的是( )A .2(),()x f x x g x x ==B .()(),()()f x x x R g x x x Z =∈=∈C .,0(),(),0x x f x x g x x x ≥⎧==⎨-<⎩D .2(),()f x x g x ==5.函数1xy x=+的大致图象是( ) A . B .C .D .6.若x A ∈且1A x ∈就称A 是伙伴关系集合,集合111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭的所有非空子集中,具有伙伴关系的集合个数为( ) A .15B .16C .64D .1287.某班有学生56人,同时参加了数学小组和英语小组的学生有32人,同时参加了英语小组和语文小组的学生有22人,同时参加了数学小组和语文小组的学生有25人.已知该班学生每人至少参加了1个小组,则该班学生中只参加了数学小组、英语小组和语文小组中的一个小组的人数最多是( ) A .20B .21C .23D .258.已知集合P ,Q 中都至少有两个元素,并且满足下列条件:①集合P ,Q 中的元素都为正数;②对于任意(),a b Q a b ∈≠,都有aP b∈;③对于任意(),a b P a b ∈≠,都有ab Q ∈;则下列说法正确的是( )A .若P 有2个元素,则Q 有3个元素B .若P 有2个元素,则P Q ⋃有4个元素C .若P 有2个元素,则P Q ⋂有1个元素D .存在满足条件且有3个元素的集合P9.如果0a b <<,那么下列不等式成立的是( ) A .11a b< B .2ab b < C .2ab a -<-D .11a b-<-二、多选题10.已知关于x 的不等式20ax bx c ++≥的解集为{}34x x -≤≤∣,则下列说法正确的是( )A .0a <B .不等式20cx bx a -+<的解集为1143xx ⎧⎫-<<⎨⎬⎩⎭∣ C .0a b c ++< D .2342cb ++的最小值为4- 11.已知0x >,0y >且3210x y +=,则下列结论正确的是( )A.xy 的最大值为625B C .32x y +的最小值为52D .22x y +的最大值为10013三、填空题12.若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是.13.已知函数()f x =R ,则实数a 的取值范围是.14.已知函数()()2462f x x a x a =-++-,若集合(){}N 0A x f x =∈<中有且只有两个元素,则实数a 的取值范围是四、解答题15.已知集合{}121A x m x m =-≤≤-,集合()(){}230B x x x =-+<. (1)若2m =,求A B U ; (2)若A B ⊆,求实数m 的范围.16.如图所示,某学校要建造一个一面靠墙的无盖长方体垃圾池,垃圾池的容积为360m ,为了合理利用地形,要求垃圾池靠墙一面的长为6m ,如果池底每平方米的造价为200元,池壁每平方米的造价为180元(不计靠墙一面的造价),设垃圾池的高为m x ,墙高5m ,(1)试将垃圾池的总造价y (元)表示为(m)x 的函数,并指出x 的取值范围; (2)怎样设计垃圾池能使总造价最低?最低总造价是多少? 17.已知()24xf x x =+,()2,2x ∈-. (1)求证:函数()f x 在区间()2,2-上是增函数; (2)求函数()f x 在区间()2,2-上的值域. 18.已知函数()11mx f x =++,()()21g x x x a =++. (1)当0a =,1m =-时,解关于x 的不等式()()f x g x ≥;(2)当0m =时,对任意[)1,x ∞∈+,关于x 的不等式()()f x g x ≤恒成立,求实数m 的取值范围;(3)当0m <,0a <时,若点()111,P x y ,()222,P x y 均为函数()y f x =与函数()y g x =图象的公共点,且12x x ≠,求证:()1221223a x x --<+<.19.已知集合A 为非空数集.定义:{}|,,,{|,,}S x x a b a b A T x x a b a b A ==+∈==-∈ (1)若集合{1,3}A =,直接写出集合S ,T ;(2)若集合{}12341234,,,,,A x x x x x x x x =<<<且T A =.求证:423x x =;(3)若集合{}|02024,N ,A x x x S T ⊆≤≤∈⋂=∅,记A 为集合A 中元素的个数,求A 的最大值.。

2021新教材人教版高中数学A版必修第一册模块练习题--4.2.2 指数函数的图象和性质

2021新教材人教版高中数学A版必修第一册模块练习题--4.2.2 指数函数的图象和性质

4.2.2指数函数的图象和性质基础过关练题组一指数函数的图象特征1.(2020山西大学附中高一上期中)在同一坐标系中,函数y=ax+a与y=a x的图象大致是()2.(2020北京丰台高一上期中联考)函数y=(12)|x|的图象是()3.(2020湖南衡阳八中高一上期中)设a,b,c,d均大于0,且均不等于1,y=a x,y=b x,y=c x,y=d x在同一坐标系中的图象如图,则a,b,c,d的大小顺序为()A.a<b<c<dB.a<b<d<cC.b<a<d<cD.b<a<c<d4.(2020山西长治二中高一上期中)函数f(x)=a x-2+1(a>0,且a ≠1)的图象恒过定点( ) A.(2,2) B.(2,1) C.(3,1) D.(3,2)5.已知函数f(x)=ax,g(x)=(1a)x(a>0,且a ≠1), f(-1)=12.(1)求f(x)和g(x)的函数解析式;(2)在同一坐标系中画出函数f(x)和g(x)的图象; (3)若f(x)<g(x),请直接写出x 的取值范围.题组二 指数函数的单调性及其应用 6.方程4x -3×2x +2=0的解构成的集合为( ) A.{0} B.{1} C.{0,1} D.{1,2}7.(2020山东师大附中高一上第一次学分认定考试)设y1=40.9,y2=80.61,y3=(12)-1.5,则()A.y1>y2>y3B.y2>y1>y3C.y1>y3>y2D.y3>y2>y18.(2020广东湛江一中高一上第一次大考)若f(x)=-x2+2ax与g(x)=(a+1)1-x在区间[1,2]上都是减函数,则a的取值范围是()A.(12,1] B.(0,12]C.[0,1]D.(0,1]9.若不等式2x2+1≤(14)x-2的解集是函数y=2x的定义域,则函数y=2x的值域是()A.[18,2) B.[18,2]C.(-∞,18] D.[2,+∞)10.(2020广东珠海高一上期末)已知函数f(x)满足f(x+1)的定义域是[0,31),则f(2x)的定义域是()A.[1,32)B.[-1,30)C.[0,5)D.(-∞,30]11.(2020甘肃兰州一中高一月考)函数y=(12)8-2x-x2的单调递增区间为.12.(2020浙江嘉兴一中高一上期中)已知集合A={x|12≤2x-4< 4},B={x|x2-11x+18<0}.(1)求∁R(A∩B);(2)已知C={x|a<x<a+1},若C⊆B,求实数a的取值集合.题组三指数函数性质的综合应用13.(2020浙江温州十五校联合体高一上期中联考)函数f(x)=√x+12x-1的定义域为()A.[-1,0)∪(0,+∞)B.(-1,+∞)C.[-1,+∞)D.(0,+∞)14.已知函数f(x)=3x-(13)x,则f(x)是()A.奇函数,且在R上是增函数B.偶函数,且在R上是增函数C.奇函数,且在R上是减函数D.偶函数,且在R上是减函数15.(2019湖南醴陵一中高一上期中)函数f(x)=13x+1+a是奇函数,则实数a的值是()A.0B.12C.-12D.116.已知a>0,且a≠1,若函数f(x)=2a x-4在区间[-1,2]上的最大值为10,则a=.17.(2020浙江杭州高级中学高一上期末)函数y=(14)-|x|+1的单调递增区间为;奇偶性为(填“奇函数”“偶函数”或“非奇非偶函数”).18.(2020山东泰安一中高一上期中)已知函数f(x)=a+22x-1.(1)求函数f(x)的定义域;(2)若f(x)为奇函数,求a的值,并求f(x)的值域.能力提升练题组一指数函数的图象特征1.(2020福建厦外高一上期中,)已知函数f(x)=(x-a)(x-b)(其中a>b)的图象如图所示,则函数g(x)=a x+b的图象是()2.(2020陕西西安中学高一上期中,)已知实数a,b满足等式2019a=2 020b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有()A.1个B.2个C.3个D.4个3.(2020河北唐山一中高一上期中,)若函数y=(12)|1-x|+m的图象与x轴有公共点,则m的取值范围是.题组二指数函数的单调性及其应用4.(2020湖南长郡中学高一上模块检测,)已知a=√0.3,b=20.3,c=0.30.2,则a,b,c三者的大小关系是()A.b>c>aB.b>a>cC.a>b>cD.c>b>a5.()函数f(x)=-a2x-1+5a x-8(a>0,且a≠1)在[2,+∞)上单调递减,则实数a 的取值范围为(易错)A.(0,1)∪[52,+∞) B.[45,1)∪(1,+∞) C.(0,1)∪(1,52] D.(1,52]6.()若函数f(x)=√2x 2+2ax -a -1的定义域为R,则实数a 的取值范围是 .7.(2020黑龙江大庆实验中学高一上月考,)已知函数f(x)=ba x (其中a,b 为常数,a>0,且a ≠1)的图象经过A(1,6),B(2,18)两点.若不等式(2a )x +(1b )x-m ≥0在x ∈(-∞,1]上恒成立,则实数m 的最大值为 .8.(2020福建福州八县(市)一中高一上期末联考,)已知定义在R 上的偶函数f(x)满足:当x ≥0时, f(x)=2x +a 2x , f(1)=52. (1)求实数a 的值;(2)用定义法证明f(x)在(0,+∞)上是增函数; (3)求函数f(x)在[-1,2]上的值域.题组三 指数函数性质的综合应用 9.(2020安徽安庆高一上期末,)某数学课外兴趣小组对函数f(x)=2|x-1|的图象与性质进行了探究,得到下列四条结论:①函数f(x)的值域为(0,+∞);②函数f(x)在区间[0,+∞)上单调递增;③函数f(x)的图象关于直线x=1对称;④函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点.则其中正确结论的个数为(深度解析)A.1B.2C.3D.410.(2020浙江温州十五校联合体高一上期中联考,)已知a>0,设函数f(x)=2 019x+1+32 019x+1(x∈[-a,a])的最大值为M,最小值为N,那么M+N=()A.2025B.2022C.2020D.201911.(2020浙江浙北G2高一上期中联考,)已知实数a>0,定义域为R的函数f(x)=3xa +a3x是偶函数.(1)求实数a的值;(2)判断函数f(x)在(0,+∞)上的单调性并用定义证明;(3)是否存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立?若存在,求出m的取值范围;若不存在,请说明理由.答案全解全析 基础过关练1.B 函数y=ax+a 的图象经过(-1,0)和(0,a)两点,选项D 错误;在图A 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得0<a<1,选项A 错误;在图B 中,由指数函数y=a x 的图象得a>1,由y=ax+a 的图象得a>1,选项B 正确;在图C 中,由指数函数y=a x 的图象得0<a<1,由y=ax+a 的图象得a>1,选项C 错误.故选B.2.D y=(12)|x|={(12)x,x ≥0,2x ,x <0.因此,当x ≥0时,y=(12)|x|的图象与y=(12)x的图象相同;当x<0时,y=(12)|x|的图象与y=2x 的图象相同,故选D. 3.C 作出直线x=1,如图所示.直线x=1与四个函数图象的交点从下到上依次为(1,b),(1,a),(1,d),(1,c),因此a,b,c,d 的大小顺序是b<a<d<c,故选C. 4.A ∵a 0=1,∴令x-2=0,得y=a 0+1=2, ∴x=2时,y=2,因此函数f(x)的图象恒过定点(2,2),故选A. 5.解析 (1)因为f(-1)=a -1=1a =12,所以a=2,所以f(x)=2x,g(x)=(12)x.(2)在同一坐标系中画出函数f(x)和g(x)的图象如图所示:(3)由图象知,当f(x)<g(x)时,x 的取值范围是{x|x<0}.6.C 令2x =t,则4x =(2x )2=t 2,原方程可化为t 2-3t+2=0,解得t=1或t=2. 当t=1时,2x =1=20,解得x=0, 当t=2时,2x =2=21,解得x=1.因此原方程的解构成的集合为{0,1}. 故选C.7.B 由题意知,y 1=40.9=22×0.9=21.8,y 2=80.61=23×0.61=21.83,y 3=(12)-1.5=21.5,∵y=2x 在R 上是增函数,∴y 2>y 1>y 3.故选B.8.D 由f(x)=-x 2+2ax=-(x-a)2+a 2在区间[1,2]上是减函数得a ≤1;由g(x)=(a+1)1-x=(1a+1)x -1在区间[1,2]上是减函数得0<1a+1<1,因此a+1>1,解得a>0.因此a 的取值范围是(0,1],故选D. 9.B 由2x 2+1≤(14)x -2得2x 2+1≤2-2x+4,即x 2+1≤-2x+4,解得-3≤x ≤1,∴函数y=2x 的定义域为[-3,1].由于函数y=2x 在R 上单调递增,故当x=-3时取得最小值18,当x=1时取得最大值2,所以函数的值域为[18,2].故选B.10.C ∵f(x+1)的定义域是[0,31),即0≤x<31,∴1≤x+1<32,∴f(x)的定义域是[1,32),∴f(2x )有意义必须满足20=1≤2x <32=25,∴0≤x<5. 11.答案 [-1,+∞)解析 设t=8-2x-x 2,则y=(12)t,易知y=(12)t在R 上单调递减,又知t=8-2x-x 2在(-∞,-1]上单调递增,在[-1,+∞)上单调递减, 所以由y=(12)t与t=8-2x-x 2复合而成的函数y=(12)8-2x -x 2的单调递增区间为[-1,+∞).12.解析 由12≤2x-4<4得2-1≤2x-4<22,∴-1≤x-4<2,即3≤x<6,∴A=[3,6).由x 2-11x+18<0得2<x<9,∴B=(2,9).(1)∵A=[3,6),B=(2,9), ∴A ∩B=[3,6),∴∁R (A ∩B)=(-∞,3)∪[6,+∞).(2)由C ⊆B 得{a ≥2,a +1≤9,解得2≤a ≤8,故实数a 的取值集合为{a|2≤a ≤8}.13.A 依题意得{x +1≥0,2x -1≠0,即{x ≥-1,x ≠0.故函数f(x)的定义域为[-1,0)∪(0,+∞),故选A.14.A 由题知x ∈R,且f(-x)=3-x-(13)-x=(13)x-3x =-f(x),所以f(x)是奇函数;又y=3x是增函数,且y=(13)x是减函数,所以f(x)=3x-(13)x是R 上的增函数,故选A. 15.C 函数f(x)=13x +1+a 的定义域为R,且f(x)是奇函数,因此f(0)=0,即130+1+a=0,解得a=-12.此时f(x)=13x +1-12=1-3x2(3x +1)符合题意,故选C.16.答案 √7或17解析 若a>1,则函数y=a x 在区间[-1,2]上是单调递增的,当x=2时, f(x)取得最大值,则f(2)=2a 2-4=10,即a 2=7,又a>1,所以a=√7. 若0<a<1,则函数y=a x 在区间[-1,2]上是单调递减的, 当x=-1时, f(x)取得最大值,则f(-1)=2a -1-4=10,所以a=17.综上所述,a 的值为√7或17.17.答案 [0,+∞);偶函数 解析 设u=-|x|+1,则y=(14)u.易知u=-|x|+1的单调递减区间为[0,+∞),y=(14)u是减函数,∴y=(14)-|x|+1的单调递增区间为[0,+∞).∵f(-x)=(14)-|-x|+1=(14)-|x|+1=f(x),∴f(x)是偶函数.18.解析 (1)由2x -1≠0,可得x ≠0, ∴函数f(x)的定义域为{x|x ≠0}. (2)∵f(x)为奇函数,∴f(-x)=-f(x). 又∵f(-x)=a+22-x -1=a+2×2x 1-2x=a-2(2x -1)+22x -1=(a-2)-22x -1,-f(x)=-a-22x -1,∴a-2=-a,解得a=1. 因此f(x)=1+22x -1.∴当x>0时,2x -1>0,f(x)>1; 当x<0时,-1<2x -1<0,f(x)<-1. ∴f(x)的值域为(-∞,-1)∪(1,+∞).能力提升练1.A 由函数f(x)的图象知,b<-1<0<a<1. ∴g(x)=a x +b 的图象是单调递减的.又g(0)=a 0+b=1+b<0,∴图象与y 轴交于负半轴,故选A.2.B 在同一平面直角坐标系中作出y=2 019x 与y=2 020x 的图象如图所示.设2 020b =2 019a =t, 当t>1时,0<b<a,①正确; 当t=1时,a=b=0,⑤正确;当0<t<1时,a<b<0,②正确,③④不成立. 故选B.3.答案 [-1,0) 解析 作出函数g(x)=(12)|1-x|={(12)x -1,x ≥1,2x -1,x <1的图象如图所示.由图象可知0<g(x)≤1,则m<g(x)+m ≤1+m,即m<f(x)≤1+m, 要使函数y=(12)|1-x|+m 的图象与x 轴有公共点,则{1+m ≥0,m <0,解得-1≤m<0. 故答案为[-1,0). 4.A a=√0.3=0.30.5.∵f(x)=0.3x 在R 上单调递减, ∴0.30.5<0.30.2<0.30⇒a<c<1. 又b=20.3>20=1,∴a<c<b,故选A.5.A 设y=f(x)=-1a ·a 2x +5a x -8,令a x =u(u>0),则y=-1a u 2+5u-8=-1a (u -5a2)2+25a4-8(u>0).∴y=-1au 2+5u-8在(0,5a2]上单调递增,在[5a2,+∞)上单调递减.①当0<a<1时,u=a x 是减函数, ∵x ≥2,∴0<u ≤a 2<5a2,此时y=-1au 2+5u-8是增函数,从而f(x)是减函数,符合题意. ②当a>1时,u=a x 是增函数, ∵x ≥2,∴u ≥a 2,由f(x)在[2,+∞)上单调递减,得a 2≥5a2,又a>0,∴a ≥52,即当a ≥52时,f(x)是减函数.综上所述,实数a 的取值范围是(0,1)∪[52,+∞),故选A.易错警示 解决与指数函数有关的复合函数的单调性问题时,一要注意底数的取值对单调性的影响,必要时进行分类讨论;二要注意中间变量的取值范围. 6.答案 [-1,0] 解析 依题意得2x2+2ax -a-1≥0恒成立,即x 2+2ax-a ≥0恒成立.∴Δ=4a 2+4a ≤0,解得-1≤a ≤0, 故实数a 的取值范围是[-1,0]. 7.答案 76解析 由已知可得{ba =6,ba 2=18,解得{a =3,b =2,则不等式(23)x+(12)x-m ≥0在x ∈(-∞,1]上恒成立,设g(x)=(23)x+(12)x-m,显然函数g(x)=(23)x+(12)x-m 在(-∞,1]上单调递减,∴g(x)≥g(1)=23+12-m=76-m,故76-m ≥0,即m ≤76,∴实数m 的最大值为76.8.解析 (1)由题意得f(1)=2+a 2=52,∴a=1.(2)证明:由(1)知a=1,∴f(x)=2x +12x ,任取x 1,x 2∈(0,+∞),且x 1<x 2,则f(x 1)-f(x 2)=(2x 1+12x 1)-(2x 2+12x 2)=(2x 1-2x 2)+2x 2-2x 12x 1·2x 2=(2x 1-2x 2)·(2x 1+x 2-1)2x 1+x 2.∵0<x 1<x 2,∴1<2x 1<2x 2,2x 1+x 2>1, ∴f(x 1)-f(x 2)<0,∴f(x 1)<f(x 2),∴f(x)在(0,+∞)上是增函数.(3)易得f(0)=2, f(2)=174, f(-1)=52, f(x)在[-1,0]上为减函数,在[0,2]上为增函数,∴f(x)的值域为[2,174].9.B 函数f(x)的值域为[1,+∞),①错误;函数f(x)在区间[0,1)上单调递减,在[1,+∞)上单调递增,②错误;函数f(x)的图象关于直线x=1对称,③正确;因为y=-a 2≤0,所以函数f(x)的图象与直线y=-a 2(a ∈R)不可能有交点,④正确.正确结论的个数为2,故选B.解题模板 研究指数型复合函数的性质,借助图象是常见的手段,画出简图很多问题可迎刃而解. 10.B f(x)=2 019x+1+2 019-2 0162 019x +1=2 019-2 0161+2 019x,∴f(-x)=2 019-2 0161+2 019-x=2 019-2 016×2 019x 2 019x +1.因此f(x)+f(-x) =4 038-2 016(11+2 019x+2 019x2 019x +1)=4 038-2 016=2 022. 又f(x)在[-a,a]上是增函数,∴M+N=f(a)+f(-a)=2 022,故选B.11.解析 (1)定义域为R 的函数f(x)=3xa+a3x 是偶函数,则f(-x)=f(x)恒成立,即3-xa+a3-x =3xa+a 3x ,故(1a-a)(3x -3-x )=0恒成立.因为3x -3-x 不可能恒为0,所以当1a-a=0时,f(-x)=f(x)恒成立,而a>0,所以a=1.(2)函数f(x)=3x +13x 在(0,+∞)上单调递增,证明如下:设任取x 1,x 2∈(0,+∞),且x 1<x 2,则 f(x 1)-f(x 2)=(3x 1+13x 1)-(3x 2+13x 2)=(3x 1-3x 2)+(13x 1-13x 2)=(3x 1-3x 2)+3x 2-3x 13x 1·3x 2=(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2.因为0<x 1<x 2,所以3x 1<3x 2,3x 1>1,3x 2>1, 所以(3x 1-3x 2)(3x 1·3x 2-1)3x 1·3x 2<0,即f(x 1)-f(x 2)<0,即f(x 1)<f(x 2), 故函数f(x)=3x +13x 在(0,+∞)上单调递增.(3)不存在.理由如下:由(2)知函数f(x)在(0,+∞)上单调递增,而函数f(x)是偶函数,则函数f(x)在(-∞,0)上单调递减.若存在实数m,使得对任意的t∈R,不等式f(t-2)<f(2t-m)恒成立,则|t-2|<|2t-m|恒成立,即(t-2)2<(2t-m)2,即3t2-(4m-4)t+m2-4>0对任意的t∈R恒成立,则Δ=[-(4m-4)]2-12(m2-4)<0,得到(m-4)2<0,故m∈⌀,所以不存在.。

2021-2022学年度长郡中学高一第一学期入学考试数学试题(答案解析)

2021-2022学年度长郡中学高一第一学期入学考试数学试题(答案解析)
"&!-!@AJcef.eg0+hef.eg0,+-"1")"+)+,+1,+-&1""))+++4,1,+ 3-"1-&! 2#$$i#$%$$i$%%'$i%'3-"$-$3-"1-&$-$>? -!
"$!.!@A2.1"" 0/0""001""000/0""00/01""00//000000/"0/01"3.1" "00//000000//001" j711/"00//0000000//001""00//000000//001" 3.11!>? .!
-h+,- { / -c + , - N / - u
D'c+,-h+,-uD%c+,-{ /-uD'c+,- [Aa/-~"$Dc+,-!0"$4'1() h+,-~&'Dc+,-!0&'4%1"+% {/-~#Dc+,-!0#4'1$+
c+,-!0"$ 3N}~c+,-!0()0"+%0$+0"$1&&#
3AyD0(#4&(&)#1&'>? ,!
BCD*+*,#-*.-*$/,"#/!
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
15.已知函数 的定义域为 ,则实数 的取值范围是__________.
16.关于函数 的性质描述,正确的是__________.① 的定义域为 ;② 的值域为 ;③ 的图象关于原点对称;④ 在定义域上是增函数.
三、解答题
17.(1)计算: ;
(2)已知 ,求 的值.
18.已知函数 .
(1)判断 的奇偶性;
对于C,f(x) 2=x+2(x≠0),与g(x)=2+x(x∈R)的定义域不同,不是相等函数;
对于D,f(x) x﹣1(x≠0),与g(x) 1=x﹣1(x≠0)的定义域相同,对应关系也相同,是相等函数.
故选:D.
【点睛】
本题考查了判断两个函数是否为相等函数的应用问题,是基础题.
3.C
【分析】
根据奇偶性与单调性判断选择.
A. B. C. D.
12.设集合 , 都是 的含两个元素的子集,且满足:对任意的 , ( ),都有 ( 表示两个数 , 中的较大者),则 的最大值是( )
A. B. C. D.
二、填空题
13.已知集合 ,且 ,则实数 的值为___________.
14.定义在 上的奇函数 满足:当 ,则 __________.
本题考查集合的表示以及点与圆的位置关系,解题时需注意集合A的元素为两坐标均为整数的点,本题属于基础题.
6.B
【分析】
根据题设条件令 ,求出 ,再令 , ,得出 ,即可得出 的值.
【详解】
由题意令 ,则有 ,故得
令 , ,则有
又 ∴ ∴
故选:B
【点睛】
本题主要考查了抽象函数求函数值,属于基础题.
7.B
(1)求出y与x之间的函数关系式;
(2)请你预算:公司此次培训的总费用最多需要多少元?
21.已知指数函数 满足 ,定义域为 的函数 是奇函数.
(1)求函数 , 的解析式;
(2)若对任意的 ,不等式 恒成立,求实数 的取值范围.
22.定义对于函数 ,若在定义域内存在实数 ,满足 ,则称 为“局部奇函数”.
(2)写出 的单调递增区间,并用定义证明.
19.已知全集 ,集合 , , .
(1)求 ;
(2)若 ,求实数 的取值范围.
20.某公司共有60位员工,为提高员工的业务技术水平,公司拟聘请专业培训机构进行培训.培训的总费用由两部分组成:一部分是给每位参加员工支付400元的培训材料费;另一部分是给培训机构缴纳的培训费.若参加培训的员工人数不超过30人,则每人收取培训费1000元;若参加培训的员工人数超过30人,则每超过1人,人均培训费减少20元.设公司参加培训的员工人数为x人,此次培训的总费用为y元.
5.D
【分析】
集合A的元素代表圆周及其内部的点,即可得到结论
【详解】
根据题意:A={(x,y)|x2+y2≤2,x,y∈Z}={(﹣1,﹣1),(﹣1,0),(﹣1,1),(0,﹣1),(0,0)(0,1),(1,﹣1),(1,0),(1,1)}共9个元素,是平面直角坐标系中9个点.
故选:D.
【点睛】
A. B. C. D.
8.已知 ,记 , ,则 ()
A. B.10C. D.9
9.已知函数 (其中 的图象如图所示,则函数 的图象是()
A. B.
C. D.
10.若不等式 的解集为 ,则二次函数 在区间 上的最大值、最小值分别为().
A. B.
C. D.
11.高斯是德国著名的数学家,近代数学奠基者之一,享有数学王子的美誉,他和阿基米德,牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设 ,用 表示不超过 的最大整数,则 称为高斯函数,例如 , .已知函数 ,则函数 的值域为( )
(1)已知二次函数 ,试判断 是否为定义域 上的“局部奇函数”若是,求出满足 的 的值;若不是,请说明理由;
(2)若 是定义在区间 上的“局部奇函数”,求实数 的取值范围.
参考答案
1.A
【分析】
先解一元二次不等式得集合B,再根据交并补运算求阴影部分表示的集合.
【详解】
图中的阴影部分表示的集合为
故选:A
【详解】
在定义域 内是奇函数,但不是减函数,在区间 和 上都是减函数
在定义域 内是奇函数,但不是减函数,在区间 和 上都是减函数
在定义域 内既是奇函数又是减函数
在定义域 内不是奇函数(因为 ),
综上选C.
【点睛】
本题考查函数奇偶性与单调性,考查基本分析判断能力,属基础题.
4.A
【解析】
因为 < ,所以 ,选A.
C. , D. ,
3.在定义域内既是奇函数又是减函数的是()
A. B.
C. D.
4.已知 , 则 三者的大小关系是( )
A. B. C. D.
5.已知集合 ,则 中元素的个数为( )
A. B. C. D.
6.设定义在R上的函数 对任意实数x,y满足 ,且 ,则 的值为()
A. B. C.0D.4
7.已知集合 , ,若 中恰好含有 个整数,则实数 的取值范围是( )
【分析】
可根据题意得出∁RB={x|﹣4<x≤a},根据条件得出A∩(∁RB)={x|﹣4<x<﹣3或1<x≤a},从而可得出a的取值范围.
【详解】
根据题意,a>﹣4,则∁RB={x|﹣4<x≤a},
又A={x|x<﹣3或x>1},A∩(∁RB)中恰好含有2个整数,
∴A∩(∁RB)={x|﹣4<x<﹣3或1<x≤a},
湖南省长郡中学【最新】高一上学期模块检测数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知全集 ,集合 , ,则图中的阴影部分表示的集合为()
A. B.
C. D.
2.下列各组函数中, 与 相等的是( )
A. , B. ,
【点睛】
本题考查解一元二次不等式、交并补运算,考查基本分析求解能力,属基础题.
2.D
【解析】
【分析】
根据两个函数的定义域相同,解析式也相)=2﹣x,与g(x)=2﹣|x|的解析式不同,不是相等函数;
对于B, ,与g(x) x的解析式不同,不是相等函数;
∴3≤a<4.
故选:B.
【点睛】
本题考查描述法的定义,以及交集、补集的运算,注意数轴法的应用及端点值问题,是易错题
8.C
【分析】
由 ,可求得 的值
【详解】
解:因为 ,
, ,
所以 ,
故选:C
【点睛】
此题考查函数求值问题,解题的关键是求出 ,属于中档题
相关文档
最新文档