四川理工学院大学物理第四章习题答案

合集下载

大学物理第四五六章习题参考答案

大学物理第四五六章习题参考答案

第4章机械振动4.1基本要求1.掌握描述简谐振动的振幅、周期、频率、相位和初相位的物理意义及之间的相互关系2.掌握描述简谐振动的解析法、旋转矢量法和图线表示法,并会用于简谐振动规律的讨论和分析3.掌握简谐振动的基本特征,能建立一维简谐振动的微分方程,能根据给定的初始条件写出一维简谐振动的运动方程,并理解其物理意义4.理解同方向、同频率简谐振动的合成规律,了解拍和相互垂直简谐振动合成的特点4.2基本概念1.简谐振动离开平衡位置的位移按余弦函数(或正弦函数)规律随时间变化的运动称为简谐振动。

简谐振动的运动方程cos()x A t ωϕ=+2.振幅A 作简谐振动的物体的最大位置坐标的绝对值。

3.周期T 作简谐振动的物体完成一次全振动所需的时间。

4.频率ν单位时间内完成的振动次数,周期与频率互为倒数,即1T ν=5.圆频率ω作简谐振动的物体在2π秒内完成振动的次数,它与频率的关系为22Tπωπν== 6.相位和初相位简谐振动的运动方程中t ωϕ+项称为相位,它决定着作简谐振动的物体状态;t=0时的相位称为初相位ϕ7.简谐振动的能量作简谐振动的系统具有动能和势能。

弹性势能222p 11cos ()22E kx kA t ωϕ==+ 动能[]22222k 111sin()sin ()222E m m A t m A t ωωϕωωϕ==-+=+v弹簧振子系统的机械能为222k p 1122E E E m A kA ω=+==8.阻尼振动振动系统因受阻尼力作用,振幅不断减小。

9.受迫振动系统在周期性外力作用下的振动。

周期性外力称为驱动力。

10.共振驱动力的角频率为某一值时,受迫振动的振幅达到极大值的现象。

4.3基本规律1.一个孤立的简谐振动系统的能量是守恒的物体做简谐振动时,其动能和势能都随时间做周期性变化,位移最大时,势能达到最大值,动能为零;物体通过平衡位置时,势能为零,动能达到最大值,但其总机械能却保持不变,且机械能与振幅的平方成正比。

大学物理第四章习题答案

大学物理第四章习题答案

大学物理第四章习题答案大学物理第四章习题答案大学物理是一门让许多学生感到头疼的学科,尤其是对于那些对数学和计算不太擅长的学生来说。

而第四章是大学物理中的一个重要章节,涵盖了许多关于力学和运动的基本概念和原理。

在这篇文章中,我将为大家提供一些大学物理第四章习题的答案,希望能够帮助到那些正在学习这门课程的学生。

1. 一个物体以10 m/s的速度沿着水平方向运动,受到一个10 N的水平力的作用,求物体在2秒钟内的位移。

根据牛顿第二定律,物体的加速度可以通过力和质量的比值来计算。

在这个问题中,物体的质量未知,但我们可以通过已知的力和加速度来计算出质量。

由于力和加速度的关系是F = ma,我们可以将已知的力和加速度代入这个公式,解出物体的质量。

然后,我们可以使用物体的质量和已知的力来计算物体的加速度。

最后,我们可以使用物体的初始速度、加速度和时间来计算物体的位移。

2. 一个物体以5 m/s的速度沿着斜坡上升,斜坡的倾角为30度。

求物体在10秒钟内上升的高度。

在这个问题中,我们需要使用三角函数来计算物体在斜坡上升时的垂直位移。

首先,我们可以使用已知的速度和斜坡的倾角来计算物体在斜坡上的水平速度。

然后,我们可以使用已知的时间和水平速度来计算物体在斜坡上的水平位移。

最后,我们可以使用已知的斜坡的倾角和物体在斜坡上的水平位移来计算物体在斜坡上升时的垂直位移。

3. 一个物体以10 m/s的速度竖直向上抛出,求物体在2秒钟内的最大高度和总的飞行时间。

在这个问题中,我们需要使用物体的初速度和重力加速度来计算物体在竖直抛物线运动中的最大高度和总的飞行时间。

首先,我们可以使用已知的初速度和时间来计算物体在竖直方向上的位移。

然后,我们可以使用已知的初速度和重力加速度来计算物体在竖直方向上的最大高度。

最后,我们可以使用已知的重力加速度来计算物体在竖直方向上的总的飞行时间。

这些问题只是大学物理第四章中的一小部分,但它们涵盖了一些基本的概念和原理。

大学物理五第四章习题答案

大学物理五第四章习题答案

第四章 振动学基础习题答案1、根据ω=2T πω=,如果考虑弹簧质量,那么m 增大,ω就减小,因此弹簧振子的周期就增大。

2、措施(1)采用方法(3);措施(2)采用方法(5);措施(3)采用方法(2);措施(4)采用方法(4);措施(5)采用方法(1);措施(6)采用方法(1);3、解:由运动方程101cos()x A t ωα=+,202cos()y A t ωα=+,消去参数t 得到合振动的轨迹方程,22221212212122cos()sin ()x y xy A A A A αααα+--=-, 当212παα-=,上式变为2222121x y A A +=, 这是个正椭圆方程,再由相位差的象限可以确定质点沿着正椭圆轨迹做顺时针运动。

4、利用ω=2224T k T m πωπ=⇒= ,因此我们可以把物体挂在弹簧上让其振动,然后测出其振荡频率,再根据上式就可以测出物体的质量。

5、荡秋千是一种振动运动形式,它有由系统决定的固有频率,对于会荡秋千的人,其能粗略地根据这个固有频率用脚去蹬地,这样就能达到共振的条件,因此其可以越荡越高。

6、解:由质点的运动方程50.1cos()23x t ππ=+,可得 (1) 角频率52ωπ=,周期0.8T s =,频率1524f s ωπ-==,振幅0.1A m =,初相位03πϕ=。

(2) 把2t s =代入运动方程得到 位移0.1cos(5)0.053x m ππ=+=-,速度222550.1sin()/223t t t dx v t s dt πππ=====-⋅+=, 加速度222222255550.1cos()/222316t t t d x a t m s dt πππππ=====-⋅⋅+=。

7、解:首先由胡克定律F kx =-得到弹簧的倔强系数210200/510F k N m x -=-==⋅, 则弹簧振子的角频率为/s ω===, 因此弹簧振子的振动周期2T πω==。

大学物理 答案(四川理工学院)

大学物理 答案(四川理工学院)

物理学
第五版
( 2)
衍射角
L
P
Q

o
f
光栅方程:
a bsin k
k 0, 1 , 2, 明条纹
分别代入k=1和对应的 可求得相应的 1 和 2
2 和 1
由 x ftg 可以求得对应的
x x2 和 1
17
于是:
x 1.8cm
大学物理 教程
物理学
第五版 P633 26
OP DP

2
h h cos 2 sin sin 2
k
12
大学物理 教程
物理学
第五版
P点探测出第一个极大值时,波程差:
h h cos 2 sin sin 2


1 求解上式:h(1 cos 2 ) sin 2 1 2 h.2 sin sin 2 sin 0.105 4h
t 0时, x 0.1m 初始条件,以向下为正:
2 A x0 2 v0
v0
由旋转矢量:
0
3

2
0.1m
物体的振动方程为 x 0.1cos(7.07t )
大学物理 教程
(2)物体在平衡位置上方5cm时,所受合力为: d 2x f ma m 2 dt
第五版
物理学
m0.1 7.07 cos(7.07t )

解:方法一 2 2 E m c m c 根据相对论动能关系: k 0
Ek m0 c m c2
,
2
u
c E k2 2 E k m0 c 2 E k m0 c 2

《大学物理》习题册题目及答案第4单元 能量守恒定律

《大学物理》习题册题目及答案第4单元 能量守恒定律

第四章 能量守恒定律序号 学号 姓名 专业、班级一 选择题[ D ]1. 如图所示,一劲度系数为k 的轻弹簧水平放置,左端固定,右端与桌面上一质量 为m 的木块连接,用一水平力F 向右拉木块而使其处于静止状态,若木块与桌面间的静摩擦系 数为μ,弹簧的弹性势能为 p E ,则下列关系式中正确的是(A) p E =k mg F 2)(2μ-(B) p E =kmg F 2)(2μ+(C) KF E p 22=(D) k mg F 2)(2μ-≤p E ≤kmg F 2)(2μ+[ D ]2.一个质点在几个力同时作用下的位移为:)SI (654k j i r+-=∆其中一个力为恒力)SI (953k j i F+--=,则此力在该位移过程中所作的功为(A )-67 J (B )91 J (C )17 J(D )67 J[ C ]3.一个作直线运动的物体,其速度v与时间t的关系曲线如图所示。

设时刻1t 至2t 间外力做功为1W ;时刻2t 至3t 间外力作的功为2W ;时刻3t 至4t 间外力做功为3W ,则(A )0,0,0321<<>W W W (B )0,0,0321><>W W W (C )0,0,0321><=W W W (D )0,0,0321<<=W W W[ C ]4.对功的概念有以下几种说法:(1) 保守力作正功时,系统内相应的势能增加。

(2) 质点运动经一闭合路径,保守力对质点作的功为零。

(3) 作用力和反作用力大小相等、方向相反,所以两者所作的功的代数和必然为零。

在上述说法中: (A )(1)、(2)是正确的 (B )(2)、(3)是正确的 (C )只有(2)是正确的(D )只有(3)是正确的。

[ C ]5.对于一个物体系统来说,在下列条件中,那种情况下系统的机械能守恒? (A )合外力为0 (B )合外力不作功 (C )外力和非保守内力都不作功 (D )外力和保守力都不作功。

大学物理第四章课后答案

大学物理第四章课后答案

I = 625N ∆t
-4-
自治区精品课程—大学物理学
题库
2. 解: (1)由动量守恒定律
Mυ 2 − mυ1 = 0
(2)由动量定理:
υ 2 = 2.5 m s
方向与子弹飞行方向相反。
F=
Mυ 2 Mυ 2 = = 300 N t 0.05
3.
m , dt 时间内链条长 L 度变化为 dl ,即有 dl 长度的链条在 dt 时间内堆在地
自治区精品课程—大学物理学
题库
第四章 动量定理
一、 填空 1. 2. 3. 4. 是表示力在空间上累积作用的物理量, 是表示力在时间上累 积作用的物理量。 质点动量定理的微分形式是 。 质点动量定理的积分形式是 。 对于质点系来说,内力 ( “改变”或“不改变” )质点系中各个质点 的动量,但 ( “改变”或“不改变” )质点系的总动量。 若质点系沿某坐标方向所受的合外力为零,则 守恒。 如果两物体碰撞过程中,动能完全没有损失,这种碰撞称为 ,否则 就称为 ;如果碰撞后两物体以相同的速度运动,这种碰撞称 为 。 , 其中 υ10 ,υ1 是某一物
l
m M v0 V v
. 如图所示,在一铅直面内有一光滑的轨道,左边是一个上升的曲线,右边是 13 13. 足够长的水平直线, 两者平滑连接, 现有 A , B 两个质点, B 在水平轨道上静止, A 在曲 线部分高 h 处由静止滑下,与 B 发生完全弹 性碰撞, 碰后 A 仍可返回上升到曲线轨道某 处,并再度滑下,已知 A , B 两质点的质量 分别为 m A 和 m B 。求 A , B 至少发生两次碰 撞的条件。 14. 如图所示,两车厢质量均为 M ,左边车厢地板上放一质量为 M 的货箱,它 们共同以 υ 0 的速度向右运动。 另一车厢以 2υ 0 从相反方向向左运动并与左车厢碰

四川理工2012级大学物理练习题参考答案

四川理工2012级大学物理练习题参考答案

个质点正在最大正位移处,则第二个质点的
振动方程为( B)
A,
x2
A c os (t
2
);
B,
x2
A c os (t
2
);
C,
x2
A c os (t
3
2
);
D, x2 Acos(t ).
解: 用旋转矢量法
A1
A2
O
2012级专升本练习题解答
x
x2比x1落后 2或超前3 2
应选 B
2012级专升本练习题解答
A
AO
2
x
A
2
O
A
x
A
B
C
D
解: 由题意
应选 D
2012级专升本练习题解答
P185:6.2.7 有两个沿X轴做简谐振动的质点, 其频率、振幅都相同,当第一个质点自平衡位
置向负方向运动时,第二个质点在x=-A/2处(A
为振幅)也向负方向运动,则两者的相差2 1
为( C) A, ;
2
B, 2 ;
3
C, ;
2012级专升本练习题解答
一 选择题
P220: 1 如右图所示,质量为m的 物体,由劲度 系数为k1 和 k2的两个轻弹簧连接到固定端,在
水平光滑导轨上做微小振动,其振动频率为( D)
A, 2 k1 k2 ;
m B, 1 k1 k2 ;
2 m
k1
k2
m
2012级专升本练习题解答
C, 1 k1 k2 ; 2 mk1k2
400 2
2012级专升本练习题解答
解:
由上题可知,O点的初相为
2
所以O点的振动方程为

大学物理第四章课后思考题详解

大学物理第四章课后思考题详解
--- Bernara Shaw
谐振动:
X. J. Feng,
1. 力学特征: 线性恢复力(力矩)
F kx
F mg
2.动力学方程:
d 2x dt 2
02 x

0
M mgb 思考: 拍皮球时球的往
3.运动学方程: x Acos(0t ) 复运动是否是谐振动?
v 0 Asin( 0t )
m

Px
X. J. Feng,
M 0t
Px
X. J. Feng,
M
P
x
M P
Xபைடு நூலகம் J. Feng,
x
X. J. Feng,
M
P
x
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
P x
M
X. J. Feng,
M Px
突然速度为0的质点m0轻粘在m上,求:m0粘上后振动系统
周期和振幅
m0
解: 两弹簧的等效系数:2k
km k
(请同学们课后自己证明)
m0粘上前系统振动的圆频率: 0
2k m
v 2l0
m0粘上后系统振动的圆频率:
2k
m m0
T 2 m m0
2k
A
x0

v02
2
x0 0
x
M
M nm
l0
·m
(2).t Tn 2
Tn

2 n
n
k M nm
MO
l0

大学物理课后答案4-8

大学物理课后答案4-8

第四章刚体的转动4-1有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.对上述说法下述判断正确的是( )(A)只有(1)是正确的(B)(1)、(2)正确,(3)、(4)错误(C) (1)、(2)、(3)都正确,(4)错误 (D)(1)、(2)、(3)、(4)都正确分析与解力对轴之力矩通常有三种情况:其中两种情况下力矩为零:一是力的作用线通过转轴,二是力平行于转轴(例如门的重力并不能使门转).不满足上述情况下的作用力(含题述作用力垂直于转轴的情况)对轴之矩不为零,但同时有两个力作用时,只要满足两力矩大小相等,方向相反,两力矩对同一轴的合外力矩也可以为零,由以上规则可知(1)(2)说法是正确.对于(3)(4)两种说法,如作用于刚体上的两个力为共点力,当合力为零时,它们对同一轴的合外力矩也一定为零,反之亦然.但如这两个力为非共点力,则以上结论不成立,故(3)(4)说法不完全正确.综上所述,应选(B).4-2关于力矩有以下几种说法:(1)对某个定轴转动刚体而言,内力矩不会改变刚体的角加速度;(2)一对作用力和反作用力对同一轴的力矩之和必为零;(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的运动状态一定相同.对上述说法下述判断正确的是( )(A)只有(2)是正确的 (B)(1)、(2)是正确的(C)(2)、(3)是正确的 (D)(1)、(2)、(3)都是正确的分析与解刚体中相邻质元之间的一对内力属于作用力与反作用力,且作用点相同,故对同一轴的力矩之和必为零,因此可推知刚体中所有内力矩之和为零,因而不会影响刚体的角加速度或角动量等,故(1)(2)说法正确.对说法(3)来说,题述情况中两个刚体对同一轴的转动惯量因形状、大小不同有可能不同,因而在相同力矩作用下,产生的角加速度不一定相同,因而运动状态未必相同,由此可见应选(B).4-3 均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆到竖直位置的过程中,下述说法正确的是( )(A)角速度从小到大,角加速度不变(B)角速度从小到大,角加速度从小到大(C)角速度从小到大,角加速度从大到小(D)角速度不变,角加速度为零分析与解 如图所示,在棒下落过程中,重力对轴之矩是变化的,其大小与棒和水平面的夹角有关.当棒处于水平位置,重力矩最大,当棒处于竖直位置时,重力矩为零.因此在棒在下落过程中重力矩由大到小,由转动定律知,棒的角加速亦由大到小,而棒的角速度却由小到大(由机械能守恒亦可判断角速度变化情况),应选(C).4-4 一圆盘绕通过盘心且垂直于盘面的水平轴转动,轴间摩擦不计.如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,它们同时射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘和子弹系统的角动量L 以及圆盘的角速度ω的变化情况为( ) (A)L 不变,ω增大 (B)两者均不变 (C)L 不变,ω减小 (D)两者均不确定分析与解 对于圆盘一子弹系统来说,并无外力矩作用,故系统对轴O 的角动量守恒,故L 不变,此时应有下式成立,即ωJ ωJ d m d m =+-00v v式中mvd 为子弹对点O 的角动量0ω为圆盘初始角速度,J 为子弹留在盘中后系统对轴O 的转动惯量,J 0为子弹射入前盘对轴O 的转动惯量.由于J >J 0,则ω<0ω.故选(C).4-5 假设卫星环绕地球中心作椭圆运动,则在运动过程中,卫星对地球中心的( ) (A)角动量守恒,动能守恒 (B)角动量守恒,机械能守恒 (C)角动量不守恒,机械能守恒 (D)角动量不守恒,动量也不守恒 (E)角动量守恒,动量也守恒分析与解 由于卫星一直受到万有引力作用,故其动量不可能守恒,但由于万有引力一直指向地球中心,则万有引力对地球中心的力矩为零,故卫星对地球中心的角动星守恒,即r ³m v =恒量,式中r 为地球中心指向卫星的位矢.当卫星处于椭圆轨道上不同位置时,由于|r |不同,由角动量守恒知卫星速率不同,其中当卫星处于近地点时速率最大,处于远地点时速率最小,故卫星动能并不守恒,但由万有引力为保守力,则卫星的机械能守恒,即卫星动能与万有引力势能之和维持不变,由此可见,应选(B).4-6 一汽车发动机曲轴的转速在12 s 内由1.2³103r²min -1均匀的增加到2.7³103r²min -1.(1)求曲轴转动的角加速度;(2)在此时间内,曲轴转了多少转?分析 这是刚体的运动学问题.刚体定轴转动的运动学规律与质点的运动学规律有类似的关系,本题为匀变速转动.解 (1)由于角速度ω=2πn (n 为单位时间内的转数),根据角加速度的定义tωαd d =,在匀变速转动中角加速度为()200s rad 1.13π2-⋅=-=-=tn n t ωωα(2)发动机曲轴转过的角度为()t n n t t t 0020π221+=+=+=ωωαωθ在12 s 内曲轴转过的圈数为3902π20=+==t n n θN 圈 4-7 水分子的形状如图所示,从光谱分析知水分子对AA ′轴的转动惯量J AA′=1.93 ³10-47kg²m 2,对BB ′轴转动惯量J BB′=1.14 ³10-47kg²m 2,试由此数据和各原子质量求出氢和氧原子的距离D 和夹角θ.假设各原子都可当质点处理.题 4-7 图分析 如将原子视为质点,则水分子中的氧原子对AA ′轴和BB ′轴的转动惯量均为零,因此计算水分子对两个轴的转动惯量时,只需考虑氢原子即可. 解 由图可得θd m J H A A 22sin 2=' θd m J H B B 22cos 2='此二式相加,可得22d m J J H B B A A =+''则 m 1059.9211-''⨯=+=HB B A A m J J d由二式相比,可得 θJ J B B A A 2tan /=''则 o 3.521.141.93arctan arctan===''B B A A J J θ 4-8 一飞轮由一直径为30㎝,厚度为2.0㎝的圆盘和两个直径为10㎝,长为8.0㎝的共轴圆柱体组成,设飞轮的密度为7.8³103kg²m -3,求飞轮对轴的转动惯量.题 4-8 图分析 根据转动惯量的可叠加性,飞轮对轴的转动惯量可视为圆盘与两圆柱体对同轴的转动惯量之和;而匀质圆盘、圆柱体对轴的转动惯量的计算可查书中公式,或根据转动惯量的定义,用简单的积分计算得到. 解 根据转动惯量的叠加性,由匀质圆盘、圆柱体对轴的转动惯量公式可得2424122221121m kg 136.021π161 2212212⋅=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛⨯=+=ad ld ρd m d m J J J4-9 用落体观察法测定飞轮的转动惯量,是将半径为R 的飞轮支承在O 点上,然后在绕过飞轮的绳子的一端挂一质量为m 的重物,令重物以初速度为零下落,带动飞轮转动(如图).记下重物下落的距离和时间,就可算出飞轮的转动惯量.试写出它的计算式.(假设轴承间无摩擦).题 4-9 图分析 在运动过程中,飞轮和重物的运动形式是不同的.飞轮作定轴转动,而重物是作落体运动,它们之间有着内在的联系.由于绳子不可伸长,并且质量可以忽略.这样,飞轮的转动惯量,就可根据转动定律和牛顿定律联合来确定,其中重物的加速度,可通过它下落时的匀加速运动规律来确定.该题也可用功能关系来处理.将飞轮、重物和地球视为系统,绳子张力作用于飞轮、重物的功之和为零,系统的机械能守恒.利用匀加速运动的路程、速度和加速度关系,以及线速度和角速度的关系,代入机械能守恒方程中即可解得.解1 设绳子的拉力为T F ,对飞轮而言,根据转动定律,有αJ R F T = (1)而对重物而言,由牛顿定律,有ma F mg T =- (2)由于绳子不可伸长,因此,有αR a = (3)重物作匀加速下落,则有221at h =(4) 由上述各式可解得飞轮的转动惯量为⎪⎪⎭⎫⎝⎛-=1222h gt mR J解2 根据系统的机械能守恒定律,有0212122=++-ωJ m mgh v (1′)而线速度和角速度的关系为ωR =v (2′)又根据重物作匀加速运动时,有at =v (3′) ah 22=v (4′)由上述各式可得⎪⎪⎭⎫⎝⎛-=1222h gt mR J若轴承处存在摩擦,上述测量转动惯量的方法仍可采用.这时,只需通过用两个不同质量的重物做两次测量即可消除摩擦力矩带来的影响.4-10 一燃气轮机在试车时,燃气作用在涡轮上的力矩为2.03³103N²m,涡轮的转动惯量为25.0kg²m 2.当轮的转速由2.80³103r²min -1增大到1.12³104r²min -1时,所经历的时间t 为多少?分析 由于作用在飞轮上的力矩是恒力矩,因此,根据转动定律可知,飞轮的角加速度是一恒量;又由匀变速转动中角加速度与时间的关系,可解出飞轮所经历的时间.该题还可应用角动量定理直接求解. 解1 在匀变速转动中,角加速度t ωωα-=,由转动定律αJ M =,可得飞轮所经历的时间 ()s 8.10200=-=-=n n MJπJ M ωωt 解2 飞轮在恒外力矩作用下,根据角动量定理,有()0d ωωJ t M t-=⎰则 ()s 8.10π200=-=-=n n MJJ M ωωt 4-11 质量为m 1和m 2的两物体A 、B 分别悬挂在图(a)所示的组合轮两端.设两轮的半径分别为R 和r ,两轮的转动惯量分别为J 1和J 2,轮与轴承间、绳索与轮间的摩擦力均略去不计,绳的质量也略去不计.试求两物体的加速度和绳的张力.题 4-11 图分析 由于组合轮是一整体,它的转动惯量是两轮转动惯量之和,它所受的力矩是两绳索张力矩的矢量和(注意两力矩的方向不同).对平动的物体和转动的组合轮分别列出动力学方程,结合角加速度和线加速度之间的关系即可解得.解 分别对两物体及组合轮作受力分析,如图(b).根据质点的牛顿定律和刚体的转动定律,有111111a m F g m F P T T =-='- (1)222222a m g m F P F T T =-=-' (2)()αJ J r F R F T T 2121+=- (3) 11T T F F =',22T T F F =' (4)由角加速度和线加速度之间的关系,有αR a =1 (5) αr a =2 (6)解上述方程组,可得gR r m R m J J rm R m a 222121211+++-=gr r m R m J J rm R m a 222121212+++-=g m r m R m J J Rr m r m J J F T 1222121221211++++++=g m rm R m J J Rr m R m J J F T 2222121121212++++++= 4-12 如图所示装置,定滑轮的半径为r ,绕转轴的转动惯量为J ,滑轮两边分别悬挂质量为m 1和m 2的物体A 、B.A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ,若B 向下作加速运动时,求:(1)其下落加速度的大小;(2)滑轮两边绳子的张力.(设绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑.)题 4-12 图分析 这是连接体的动力学问题,对于这类问题仍采用隔离体的方法,从受力分析着手,然后列出各物体在不同运动形式下的动力学方程.物体A 和B 可视为质点,则运用牛顿定律.由于绳与滑轮间无滑动,滑轮两边绳中的张力是不同的,滑轮在力矩作用下产生定轴转动,因此,对滑轮必须运用刚体的定轴转动定律.列出动力学方程,并考虑到角量与线量之间的关系,即能解出结果来.解 作A 、B 和滑轮的受力分析,如图(b).其中A 是在张力F T1、重力P 1,支持力F N和摩擦力F f的作用下运动,根据牛顿定律,沿斜面方向有11111cos sin a m θg m μθg m F T =-- (1)而B 则是在张力F T2和重力P 2的作用下运动,有2222a m F g m T =- (2)由于绳子不能伸长、绳与轮之间无滑动,则有αr a a ==21 (3)对滑轮而言,根据定轴转动定律有αJ r F r F T T ='-'12 (4) 11T T F F =',22T T F F =' (5)解上述各方程可得22111221/cos sin r J m m g m g m g m a a ++--==θμθ()()22121211//cos sin cos sin 1r J m m r gJ m θμθθμθg m m F T ++++++=()22122212//cos sin 1rJ m m r gJ m θμθg m m F T +++++= 4-13 如图(a)所示,飞轮的质量为60kg ,直径为0.50m ,转速为1.0 ³103r²min -1.现用闸瓦制动使其在5.0s 内停止转动,求制动力F .设闸瓦与飞轮之间的摩擦因数 μ=0.40,飞轮的质量全部分布在轮缘上.题 4-13 图分析 飞轮的制动是闸瓦对它的摩擦力矩作用的结果,因此,由飞轮的转动规律可确定制动时所需的摩擦力矩.但是,摩擦力矩的产生与大小,是由闸瓦与飞轮之间的正压力F N决定的,而此力又是由制动力F 通过杠杆作用来实现的.所以,制动力可以通过杠杆的力矩平衡来求出. 解 飞轮和闸杆的受力分析,如图(b)所示.根据闸杆的力矩平衡,有()0121='-+l F l l F N而NNF F '=,则闸瓦作用于轮的摩擦力矩为 d μF l ll d μF d F M N 121f2212+=== (1) 摩擦力矩是恒力矩,飞轮作匀角加速转动,由转动的运动规律,有tnt ωt ωωαπ200==-=(2) 因飞轮的质量集中于轮缘,它绕轴的转动惯量4/2md J =,根据转动定律αJ M =,由式(1)、(2)可得制动力()N 1014.32211⨯=+=tl l nmdl F μπ4-14 如图所示,一通风机的转动部分以初角速度ω0绕其轴转动,空气的阻力矩与角速度成正比,比例系数C 为一常量.若转动部分对其轴的转动惯量为J ,问:(1)经过多少时间后其转动角速度减少为初角速度的一半?(2)在此时间内共转过多少转?题 4-14 图分析 由于空气的阻力矩与角速度成正比,由转动定律可知,在变力矩作用下,通风机叶片的转动是变角加速转动,因此,在讨论转动的运动学关系时,必须从角加速度和角速度的定义出发,通过积分的方法去解.解 (1)通风机叶片所受的阻力矩为M =-C ω,由转动定律M =J α,可得叶片的角加速度为JωC t ωα-==d d (1) 根据初始条件对式(1)积分,有t J Cωωt ωωd d 00⎰⎰-= 由于C 和J 均为常量,得J Ct e ωω/0-= (2)当角速度由ω0→21ω0时,转动所需的时间为2ln CJt =(2)根据初始条件对式(2)积分,有t eωθJCt tθd d /0-⎰⎰=即 CωJ θ20=在时间t 内所转过的圈数为CωJ θN π4π20==4-15 电风扇接通电源后一般经5s 后到达额定转速10min r 300-⋅=n ,而关闭电源后经16 s 后风扇停止转动,已知电风扇的转动惯量为2m kg 5.0⋅,设启动时电磁力矩M和转动时的阻力矩f M 均为常数,求启动时的电磁力矩M .分析 由题意知M 和f M 均为常数,故启动时电风扇在M 和f M 共同作用下,作匀加速转动,直至到达额定转速,关闭电源后,电风扇仅在f M 的作用下作匀减速转动.运用匀变速转动的运动学规律和转动定律既可求解.解 设启动时和关闭电源后,电风扇转动时的角加速度分别为1α和2α,则启动过程αJ M M =-f110t αω=关闭电源后 2fαJ M =-0220=+t αω联解以上各式并将6020n πω=以及0n 、1t 、2t 、J 值代入,得m N 12.4⋅=M4-16 一质量为m′、半径为R 的均匀圆盘,通过其中心且与盘面垂直的水平轴以角速度ω转动,若在某时刻,一质量为m 的小碎块从盘边缘裂开,且恰好沿垂直方向上抛,问它可能达到的高度是多少?破裂后圆盘的角动量为多大?分析 盘边缘裂开时,小碎块以原有的切向速度作上抛运动,由质点运动学规律可求得上抛的最大高度.此外,在碎块与盘分离的过程中,满足角动量守恒条件,由角动量守恒定律可计算破裂后盘的角动量.题 4-16 图解 (1)碎块抛出时的初速度为R ω=0v由于碎块竖直上抛运动,它所能到达的高度为gR ωg h 222220==v(2)圆盘在裂开的过程中,其角动量守恒,故有L L L '-=0式中ωR m L 221'=为圆盘未碎时的角动量;ωmR L 2='为碎块被视为质点时,碎块对轴的角动量;L 为破裂后盘的角动量.则ωR m m L 221⎪⎭⎫⎝⎛-'=4-17 在光滑的水平面上有一木杆,其质量m 1=1.0kg ,长l =40cm ,可绕通过其中点并与之垂直的轴转动.一质量为m 2=10g 的子弹,以v =2.0³102m² s -1的速度射入杆端,其方向与杆及轴正交.若子弹陷入杆中,试求所得到的角速度.题 4-17 图分析 子弹与杆相互作用的瞬间,可将子弹视为绕轴的转动.这样,子弹射入杆前的角速度可表示为ω,子弹陷入杆后,它们将一起以角速度ω′转动.若将子弹和杆视为系统,因系统不受外力矩作用,故系统的角动量守恒.由角动量守恒定律可解得杆的角速度. 解 根据角动量守恒定理()ωJ J ωJ '+=212式中()2222/l m J =为子弹绕轴的转动惯量,J 2ω为子弹在陷入杆前的角动量,ω=2v/l 为子弹在此刻绕轴的角速度.12/211l m J =为杆绕轴的转动惯量.可得杆的角速度为()1212212s 1.2936-=+=+='m m m J J ωJ ωv4-18 一质量为20.0kg 的小孩,站在一半径为3.00m 、转动惯量为450kg² m 2的静止水平转台的边缘上,此转台可绕通过转台中心的竖直轴转动,转台与轴间的摩擦不计.如果此小孩相对转台以1.00m²s -1的速率沿转台边缘行走,问转台的角速率有多大?分析 小孩与转台作为一定轴转动系统,人与转台之间的相互作用力为内力,沿竖直轴方向不受外力矩作用,故系统的角动量守恒.在应用角动量守恒时,必须注意人和转台的角速度ω、ω0都是相对于地面而言的,而人相对于转台的角速度ω1应满足相对角速度的关系式10ωωω+=.解 由相对角速度的关系,人相对地面的角速度为Rωωωωv +=+=010由于系统初始是静止的,根据系统的角动量守恒定律,有()010100=++ωωJ ωJ式中J 0为转台对转台中心轴的转动惯量,J 1=mR 2为人对转台中心轴的转动惯量.由式(1)、(2)可得转台的角速度为122020s 1052.9--⨯-=+-=RmR J mR ωv 式中负号表示转台转动的方向与人对地面的转动方向相反. 4-19 一转台绕其中心的竖直轴以角速度ω0=π1s rad -⋅转动,转台对转轴的转动惯量为J 0=4.0³10-3kg²m 2.今有砂粒以Q =2t (Q 在单位为g²s -1,t 的单位为s )的流量竖直落至转台,并粘附于台面形成一圆环,若环的半径为r =0.10m ,求砂粒下落t =10s 时,转台的角速度.分析 对转动系统而言,随着砂粒的下落,系统的转动惯量发生了改变.但是,砂粒下落对转台不产生力矩的作用,因此,系统在转动过程中的角动量是守恒的.在时间t 内落至台面的砂粒的质量,可由其流量求出,从而可算出它所引起的附加的转动惯量.这样,转台在不同时刻的角速度就可由角动量守恒定律求出. 解 在时间0→10s内落至台面的砂粒的质量为kg 10.0Qd 100==⎰t m根据系统的角动量守恒定律,有()ωmr J ωJ 2000+=则t =10s 时,转台的角速度12000s π8.0-=+=mrJ J ωω 4-20 为使运行中的飞船停止绕其中心轴的转动,可在飞船的侧面对称地安装两个切向控制喷管(如图所示),利用喷管高速喷射气体来制止旋转.若飞船绕其中心轴的转动惯量J =2.0³103kg² m 2,旋转的角速度ω=0.2r ad² s -1,喷口与轴线之间的距离r =1.5m ;喷气以恒定的流量Q =1.0kg²s -1和速率u =50m² s-1从喷口喷出,问为使该飞船停止旋转,喷气应喷射多长时间?分析 将飞船与喷出的气体作为研究系统,在喷气过程中,系统不受外力矩作用,其角动量守恒.在列出方程时应注意:(1)由于喷气质量远小于飞船质量,喷气前、后系统的角动量近似为飞船的角动量J ω;(2)喷气过程中气流速率u 远大于飞船侧面的线速度ωr ,因此,整个喷气过程中,气流相对于空间的速率仍可近似看作是 u ,这样,排出气体的总角动量()mur m r ωu m≈+⎰d .经上述处理后,可使问题大大简化.解 取飞船和喷出的气体为系统,根据角动量守恒定律,有0=-mur ωJ (1)因喷气的流量恒定,故有Qt m 2= (2)由式(1)、(2)可得喷气的喷射时间为s 67.22==QurωJ t题 4-20 图4-21 如图所示,长为l 、质量为m 的均质杆,可绕点O 在竖直平面内转动,令杆至水平位置由静止摆下,在竖直位置与质量为2m的物体发生完全非弹性碰撞,碰撞后物体沿摩擦因数为μ的水平面滑动,试求此物体滑过的距离s .分析 本题可分为三个过程,即细杆绕点O 的转动过程,细杆与物体的完全非弹性碰撞以及碰撞后物体在粗糙水平面上的滑动过程。

大学物理及实验 4-6章习题及答案

大学物理及实验 4-6章习题及答案

第四章习题44-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=1.3g /L 。

容器与大气相通排出一部分气体后,气压下降了0.78atm 。

若温度不变,求排出气体的质量。

解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。

由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV LP ⨯=则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。

根据题意pV RT ν=,可得:m pV RT M =,1V p RT p M m ρ==4-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。

如果其中的一边装有0.1kg 某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少? 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O HH Om m M M =,代入数据有: 1.6O m kg = 。

4-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。

用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。

要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少?解:已知氮气和氧气质量相同,水银滴停留在管的正中央,则体积和压强相同,如图。

由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。

大学物理教程第4章习题答案

大学物理教程第4章习题答案

思 考 题4.1 阿伏伽德罗定律指出:在温度和压强相同的条件下,相同体积中含有的分子数是相等的,与气体的种类无关。

试用气体动理论予以说明。

答: 据压强公式 p nkT = ,当压强和温度相同时,n 也相同,与气体种类无关; 4.2 对一定量的气体来说,当温度不变时,气体的压强随体积的减小而增大。

当体积不变时,压强随温度的升高而增大。

从微观角度看,两种情况有何区别。

答:气体压强是器壁单位面积上受到大量气体分子频繁地碰撞而产生的平均作用力的结果。

当温度不变时,若体积减小,分子数密度增大,单位时间内碰撞器壁的分子数增加,从而压强增大;而当体积不变时,若温度升高,分子的平均平动动能增大,分子碰撞器壁的力度变大,从而压强增大;4.3 从气体动理论的观点说明:(1)当气体的温度升高时,只要适当地增大容器的容积,就可使气体的压强保持不变。

(2)一定量理想气体在平衡态(p 1,V 1,T 1)时的热动平衡状况与它在另一平衡态(p 2,V 2,T 2)时相比有那些不同?设气体总分子数为N ,p 2< p 1,V 2< V 1。

(3)气体在平衡状态下,则222213x y z v v v v ===, 0x y z v v v ===。

(式中x v 、y v 、z v ,是气体分子速度v 的三个分量)。

答:(1)由p nkT = 可知,温度升高时,n 适当地减小,可使压强不变;(2) 在平衡态(2p ,2V ,2T )时分子的平均平动动能较在平衡态(1p ,1V ,1T )时小,但分子数密度较大;(3) 因分子向各方向运动的概率相同,并且频繁的碰撞,速度的平均值为零,速度平方的平均值大小反映平均平动动能的大小,所以各分量平方平均值相等;4.4 有人说“在相同温度下,不同气体分子的平均平动动能相等,氧分子的质量比氢分子的大,所以氢分子的速率一定比氧分子大”。

这样讲对吗?答:不对,只能说氢分子的速率平方平均值比氧分子的大。

大学物理课后答案第四章

大学物理课后答案第四章

第四章 气体动理论一、基本要求1.理解平衡态的概念。

2.了解气体分子热运动图像和理想气体分子的微观模型,能从宏观和统计意义上理解压强、温度、内能等概念。

3.初步掌握气体动理论的研究方法,了解系统的宏观性质是微观运动的统计表现。

4.理解麦克斯韦速率分布律、速率分布函数和速率分布曲线的物理意义,理解气体分子运动的最概然速率、平均速率、方均根速率的意义,了解玻尔兹曼能量分布律。

5.理解能量按自由度均分定理及内能的概念,会用能量均分定理计算理想气体的内能。

6.了解气体分子平均碰撞频率及平均自由程的意义及其简单的计算。

二、基本内容1. 平衡态在不受外界影响的条件下,一个系统的宏观性质不随时间改变的状态。

2. 理想气体状态方程在平衡态下,理想气体各参量之间满足关系式pV vRT =或 n k T p =式中v 为气体摩尔数,R 为摩尔气体常量 118.31R J mol K --=⋅⋅,k 为玻尔兹曼常量 2311.3810k J K --=⨯⋅3. 理想气体压强的微观公式21233t p nm n ε==v4. 温度及其微观统计意义温度是决定一个系统能否与其它系统处于热平衡的宏观性质,在微观统计上32t kT ε=5. 能量均分定理在平衡态下,分子热运动的每个自由度的平均动能都相等,且等于2kT 。

以i 表示分子热运动的总自由度,则一个分子的总平均动能为2t i kT ε=6. 速率分布函数()dNf Nd =v v麦克斯韦速率分布函数232/22()4()2m kT m f e kTππ-=v v v7. 三种速率最概然速率p =≈v 平均速率==≈v 方均根速率==≈8. 玻尔兹曼分布律平衡态下某状态区间(粒子能量为ε)的粒子数正比于kT e /ε-。

重力场中粒子数密度按高度的分布(温度均匀):kT m gh e n n /0-=9. 范德瓦尔斯方程采用相互作用的刚性球分子模型,对于1mol 气体RT b V V ap m m=-+))((2 10. 气体分子的平均自由程λ==11. 输运过程 内摩擦dS dz du df z 0)(η-=, 1133mn ηλρλ==v v 热传导dSdt dz dT dQ z 0)(κ-= 13v c κρλ=v 扩散dSdt dz d D dM z 0)(ρ-= 13D λ=v三、习题选解4-1 一根铜棒的两端分别与冰水混合物和沸水接触,经过足够长的时间后,系统也可以达到一个宏观性质不随时间变化的状态。

《大学物理讲义》 习题答案

《大学物理讲义》 习题答案

dr i dt
v0 v0 r 2 h 2


-
r
1 2 r h2 2
3 2



2rv0 i
2 2 2 v0 r h

- r
1 2
2
h2

r 2 i
2 2 2 2 r h -r v0 i 2 2 3 ( r h )
船的加速度矢量为
d dx d a i v0 [r r 2 h 2 dt dt dt


-
1 2
]i
4
《大学物理讲义》习题解答
dr v0 r 2 h 2 dt


-
1 2
-r
1 2
1 2 r h2 2



3 2
2r
3 2
3i 54 j i 2 j 2i 52 j i 26 jm / s
2 2
t 1s






1 ~ 3s 内的平均加速度为 v t 3 s v a 3 1
i 54 j i 6 j 24 jm / s
x2 x3 x2 2 1 1m
a
t 2s O
1
习题 1-1 解答图
t 0 5 x/m
前 3s 内它的路程
S x1 x2 4 1 5m
前 3s 内它的位移
x x1 x2 4 1 3m
1-2 有一质点沿 x 轴作直线运动,t 时刻的坐标为
dr v i 6t 2 j m / s dt

《大学物理》第4单元课后答案 高等教育出版社

《大学物理》第4单元课后答案 高等教育出版社
2
过 240°时的切向加速度 at 0.15m / s ,法向加速度 an 1.26m / s 。 8. 质量为 m 的均质杆,长为 l,以角速度绕过杆的端点,垂直于杆的水平轴转动,杆绕转动轴的动
1 2 2 1 ml ,角动量为 L0 ml 2 。 6 3
da
(C) J A =J B .
9.一均匀细直棒,可绕通过其一端的光滑固定轴在竖直平面内转动.使棒从水平位置自由下摆,棒作 匀角加速转动。 【 错 】
10.一根质量为 m、长为 l 的均匀细杆,可在水平桌面上绕通过其一端的竖直固定轴转动.已知细杆与
11.两根均匀棒,长均为 l,质量分别为 m 和 2m,可绕通过其一端且与其垂直的固定轴在竖直面内自 由转动.开始时棒静止在水平位置,当它们自由下摆时,它们的角示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物
不计滑轮轴的摩擦,则两滑轮所受力矩方向是_________ ;滑轮转动方向为 _________。则 a 和 b 的关系是 【 C 】答案:垂直纸面向里,顺时针方向 转动 (A) A = B . (C) A < B . (B) A > B .
Page22 《大学物理习题集》 (下册)
w.
2 600 20rad / s , t 10 s 60
1 R 1 2r 4 MR 2 mr 2 2m( ) 2 , J O M ( R 2 r 2 2 ) 2 2 2 R
案 网
211 210 900rad , N1 1 450 圈 21 2
(1) 圆柱体的角加速度
=a / r=4 rad / s2
(2) 根据 t 0 t ,此题中 0 = 0 ,则
那么圆柱体的角速度

大学物理第四章课后答案

大学物理第四章课后答案
习题四 4-1 符合什么规律的运动才是谐振动?分别分析下列运动是不是谐振动: (1)拍皮球时球的运动; (2)如题4-1图所示,一小球在一个半径很大的光滑凹球面内滚动(设小球所经过的弧线很 短).
题4-1图 解:要使一个系统作谐振动,必须同时满足以下三个条件:一 ,描述系统的各种参量,如 质量、转动惯量、摆长……等等在运动中保持为常量;二,系统 是在 自己的稳定平衡位置 附近作往复运动;三,在运动中系统只受到内部的线性回复力的作用. 或者说,若一个系 统的运动微分方程能用
(3)由于谐振动中能量守恒,故在任一位置处或任一时刻的系统的总能量均为
4-7 有一轻弹簧,下面悬挂质量为 1.0g 的物体时,伸长为 4.9cm .用这个弹簧和一个质量 为 8.0g 的小球构成弹簧振子,将小球由平衡位置向下拉开 1.0cm 后 ,给予向上的初速度
v0 = 5.0cm ⋅ s −1 ,求振动周期和振动表达式.
d2 x mg sin θ − T1 = m 2 dt

T1 R − T2 R = Iβ
d2 x = Rβ dt 2

T2 = k ( x 0 + x )

式中 x0 = mg sin θ / k ,为静平衡时弹簧之伸长量,联立以上三式,有
I d2x (mR + ) 2 = − kxR R dt
令 则有
7
∴ 故其角振幅
Байду номын сангаас
2 A = x0 +(
v0 2 v 0 0.01 ) = = = 3.2 × 10 −3 m ω ω 3.13 A = 3.2 × 10 −3 rad l
Θ=
小球的振动方程为
∆φ = ω (t 2 − t1 ) = 8π (5 − 1) = 32π

大学物理学课后习题4第四章答案

大学物理学课后习题4第四章答案

x 轴正方向运动,代表此简谐振动的旋转矢量图为
()
[答案:B]
(2)两个同周期简谐振动曲线如图所示,振动曲线 1 的相位比振动曲线 2
的相位 (

(A)落后
2
(B)超前
2
(C)落后
(D)超前
[答案: B]
习题 4.1(2)图
(3)一质点作简谐振动的周期是 T,当由平衡位置向 x 轴正方向运动时,从
E
1 2
mvm2
3.16 102 J
E p E k 1 E 1.58102 J 2
当 Ek E p 时,有 E 2E p ,

1 kx 2 1 ( 1 kA2 )
2
22

x 2 A 2m
2
20
(3)
(t2 t1 ) 8 (5 1) 32
4.4 一个沿 x 轴作简谐振动的弹簧振子,振幅为 A ,周期为T ,其振动 方程用余弦函数表示.如果 t 0 时质点的状态分别是:
的单位是 s,则 (A)波长为 5m
向传播 [答案:C]
(B)波速为 10ms-1
(C)周期为 1 s 3
(D)波沿 x 正方
(8)如图所示,两列波长为 的相干波在 p 点相遇。波在 S1 点的振动初相是 1 ,点 S1 到点 p 的距离是 r1。波在 S2 点的振动初相是2 ,点 S2 到点 p 的距离是
(A)它的动能转化为势能. (B)它的势能转化为动能. (C)它从相邻的一段质元获得能量其能量逐渐增大. (D)它把自己的能量传给相邻的一段质元,其能量逐渐减小.
[答案:D]
4.2 填空题 (1)一质点在 X 轴上作简谐振动,振幅 A=4cm,周期 T=2s,其平衡位置

大学物理习题精选答案

大学物理习题精选答案
光电技术系物理教研室二七年二月第一章质点运动学第二章牛顿运动定律第三章动量和能量10第四章刚体力学15第五章机械振动19第六章机械波22第七章热力学28第八章气体动理论33第九章静电场36第十章静电场中的导体和介质42第十一章稳恒磁场46第十二章电磁感应53第十三章波动光学61第十四章狭义相对论68第十五章量子物理基础第一章质点运动学一选择题变速率曲线运动变速率直线运动
v 2 cos 2 v 0 2 cos 又 因 an g c o
2
v0
P

θ v
故 s



因为 , 所以地面上方的轨道各点均有 cos cos ,上式的分母在 处最小,在 0 处最大, 2 故 max v 0 / g cos
v v 0e Kt / m
K dv dt m v 0 v0
t
v
(2) 求最大深度
dx 解法一: v dt
d x v0e
Kt / m
Kt / m
dt
d x v e
0 0 0
x
t
Kt / m
dt
∴ x (m / K )v 0 (1 e
)
xmax mv 0 / K dv dv d x dv 解法二: Kv m m( )( ) mv dt d x dt dx xm a x 0 m m ∴ dx dv d x dv K K 0 v0
0 0

v a0 t
a0 2 t 2
由 v = ds /dt , ds = v dt
ds v dt (a t 2 t
0 0 0 0
s

大学物理第四章习题及答案

大学物理第四章习题及答案

大学物理第四章习题及答案大学物理第四章习题及答案第四章是大学物理课程中的重要章节,主要涉及力学和运动学的内容。

在这一章中,学生将学习到关于运动的基本概念和原理,以及如何应用这些知识解决实际问题。

为了帮助学生更好地理解和掌握这一章节的知识,以下是一些常见的习题及其答案。

习题一:一个物体以10 m/s的速度从10 m高的斜面上滑下,滑到底部时的速度是多少?解答:根据能量守恒定律,物体在滑下过程中,其机械能守恒。

由于没有外力做功,物体的机械能在滑下过程中保持不变。

因此,物体在滑到底部时的机械能等于初始机械能。

初始机械能 = 动能 + 重力势能= 1/2 mv^2 + mgh根据题目给出的条件,可得:1/2 mv^2 + mgh = 1/2 m(10)^2 + m(10)(10)= 50m + 100m= 150m因此,滑到底部时的速度为10 m/s。

习题二:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的时间是多少?解答:根据运动学中的运动方程,可以求解物体滑下斜面所用的时间。

在这个问题中,物体的初速度为0,加速度为重力加速度g,位移为斜面的长度L。

根据运动方程:S = ut + 1/2 at^2L = 0 + 1/2 gt^22L = gt^2t^2 = 2L/gt = sqrt(2L/g)根据题目给出的条件,斜面的长度L为10 m,重力加速度g为10 m/s^2,代入上述公式可得:t = sqrt(2(10)/10)= sqrt(2)≈ 1.414 s因此,滑到底部时的时间约为1.414秒。

习题三:一个物体以10 m/s的速度从斜面上滑下,滑到底部时的加速度是多少?解答:根据牛顿第二定律,物体在斜面上滑动时受到的合力等于物体的质量乘以加速度。

在这个问题中,物体的质量为m,斜面的倾角为θ,重力加速度为g。

合力 = m * 加速度m * g * sinθ = m * 加速度加速度= g * sinθ根据题目给出的条件,斜面的倾角θ为30度,重力加速度g为10 m/s^2,代入上述公式可得:加速度= 10 * sin(30°)≈ 5 m/s^2因此,滑到底部时的加速度约为5 m/s^2。

(2024年)大学物理习题练习及答案

(2024年)大学物理习题练习及答案
04
14
稳恒电流与磁场
电流与电阻
理解电流、电阻的概念,掌握 欧姆定律及其应用。
2024/3/26
磁场及其性质
理解磁场的概念和性质,掌握 磁感线的分布规律。
安培环路定律
理解安培环路定律,掌握其应 用方法。
洛伦兹力与霍尔效应
理解洛伦兹力和霍尔效应的概 念,掌握其计算方法和应用。
15
电磁感应与电磁波
法拉第电磁感应定律
2024/3/26
习题3
分析单缝衍射和双缝衍射的特点,并 比较其异同。
习题4
讨论光栅衍射的原理和应用,如光谱 分析、光栅测长等。
20
光的偏振与色散
习题1
解释什么是光的偏振现象,并说明偏振光的产生和检测方法。
习题2
阐述马吕斯定律和布儒斯特定律的原理和应用。
习题3
分析光的色散现象,如棱镜色散、光栅色散等,并给出相关公式。
11
气体动理论
理想气体的微观模型
了解理想气体的微观模型,理解气体分子运动的无规则性和统计规律性。
压强和温度的微观解释
掌握压强和温度的微观解释,理解气体压强与分子平均动能、分子数密度的关系。
2024/3/26
气体动理论的应用
能够运用气体动理论解释宏观现象,如扩散、热传导、黏滞性等。同时,了解气体动理论在科学技术中的应 用,如真空技术、气体激光器等。
习题4
讨论白光通过三棱镜后的色散现象和光谱分布。
2024/3/26
21
激光与光纤通信
习题1
解释什么是激光,并说明激光器的原理和构 造。
习题3
分析光纤通信的原理和优点,并说明光纤的 结构和传输模式。
2024/3/26
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:由题意当m下落到绳拉直时,m、M一相同速率 运动,同时系统(m和M)的动量守恒。即
mv0 (m M )v
m 在自由下落过程中,他和地球构成的 系统机械能守恒(设桌面为零势能点)
T a
T a
o
1 2 mv0 mgh 2 m 联立上两式:v mM
y
mg
Mg m
2 gh
h

在两物运动的过程中,m和M受力及运动如图所示,则有 对m : T -mg ma 对M : Mg T Ma ( M m) g 联立可得:a mM
5.1(km/h)
;如果人从前面跳上车,小车速度应变
为多大 -1.77(km/h) 。 解:根据动量守恒定律 1)人从后跳上小车
m1v1 m2v2 (m1 m2 ) v
80 2.9 60 8 (80 60) v
v 5.1(km / h)
2)人从前跳上小车 m1v1 m2 (v2 ) (m1 m2 ) v
解:m和M相碰的过程中,系统动量守恒。
v0 m M 40cm K
mv0 (m M )v
弹簧被压缩的过程中,由功能原理有
1 1 2 (M m) g x E2 E1 k x (M m)v 2 2 2 联立上两式得:v0 74m s 1
A B, KA KB
A
B,
EKA EKB

(C)
LA LB, EKA EKB
(D)
LA LB, EKA EKB
人造地球卫星绕地球做椭圆轨道运动,受地球引力 (有心力),对地球中心的力矩为零,角动量守恒
LA LB , l A mvA lB mvB 1 2 1 2 l A lB v A vb mv A mvB D 2 2
0
I dI Fdt (400
0
t
40t )dt 3
这道题有问题,子弹到枪口的时间无法计算
20 2 400t t 2 120 t 2 t 3 I mv 0, m= 300 90
20 2 I 400t t 3
4.1.7质量为60kg的人以8km/h的速率从后面跳上质量为 80kg速率为2.9km/h的小车,试问:小车运动速度变为多大
4.1.3 子弹在枪管内击发时,受到随时间变化的火药爆炸推力 大小为F=400-4/3X10t的作用,其中F的单位为N,t的单位为S, 子弹从枪口飞出时的速度为300m/s,试问 2)子弹的质量
解:
20 2 400 t t 1)子弹受到的爆炸力冲量的为 3


dI Fdt
120t 2t 2 90 t
4.3.12 如图所示,水平面上放置一匀质三棱柱A,此三棱柱 上又放置一匀质三棱柱B,两个三棱柱的横截面都是直角三 角形,三棱柱A比三棱柱B重二倍,设三棱柱与水平面都是 光滑的,试求:当三棱柱B沿三棱柱A滑下至水平时,三棱 柱A移动的距离? 解:在地面上建立一维坐标系OX,系统在 X方向不受外力,该方向动量守恒,B的位 移为x1,则X方向的分速度为:
解:小球下落到四分之一圆环最低处,系统的 机械能守恒(设B点为零重力势能点)
A m1 R m2 B x
1 2 m1vB m1 gR 2
当两球相碰时,其动量守恒
y
H
m1vB (m1 m2 )v
之后两球黏在一起做平抛运动,则
x方向:s vt 1 2 y方向:H= gt 2
S
联立上四式可得:S=4m
解:
M R F 0, L不变
o
R m
L Rmv, R减小, v增大 故,动量动能均增大 D
4.3.8 如图所示,一不能伸长的轻质细绳跨过一定滑轮,两边 分别系着质量为m及M的物体,如果 M > m,M静止在桌面上, 抬高m使得绳子处于松弛状态,当m自由下落h高度后,绳才 被拉紧,试求:此时二物的速率及M所能上升的最大高度
设M 上升的高度H:2(-a)H 0 v 2 m2 可得:H= h 2 2 M m
或者:M 上升过程用动能道理,则: 1 mgH MgH =0- ( M m)v 2 2 ( M m)v 2 m2 H h 2 2 2( M m) g M m
4.3.10 如图所示,有一小球质量为m1=50g,沿半径R=1m的四 分之一圆环从静止在A点无摩擦地下滑,至最低点时与质量为 m2=50g的静止物体发生完全非弹性碰撞。如果圆环最低点距 地面高度为H=一小块物体置于光滑的水平桌面上,有 一细绳其一端系于此小物体上,另一端穿过桌面的中心一个 小孔,该物体原以角速度 W 在距孔R的圆周上转动。今将绳 子从小孔缓慢下拉,则物体:( D ) (A) 动能不变,动量改变;(B)动量不变,动能改变(C) 角动量不变,动量不变(D)角动量不变,动能和动量改变

X a b
0
mdx1
X
0
a b a b 3mdx2 0, 解得:X=, 即A向后退 4 4
4.3.16 如图所示,一质量为10g的子弹射入一个静止在水平
面上的质量为990g的木板内,木块右方连接一轻质弹簧, 木块被子弹击中后,向右运动压缩弹簧40cm而停止。设弹 簧的劲度系数为1N/m,木块与水平面的摩擦系数为0.05, 试求子弹的初速度v0的大小?
b m
dx1 vx , A的位移为x2 dt dx2 斜面在x方向的速度为Vx , dt
0
A
M
0
a
dx1 dx2 m 3m 0, 即mdx1 3mdx2 0, (默认两物体运动同向) dt dt 上式两边积分,令A的最大位移为X, 则B的最大位移为X+a-b,(牵连运动+相对运动) 得:
80 2.9 60 8 (80 60) v
v 1.77(km / h)
4.2.8人造地球卫星绕地球做椭圆轨道运动,卫星轨道近地点和 远地点分别为A,B,角动量分别为LA和LB,动能分别为EAK和 EBK,在卫星绕地心运动的过程中,则( D (A) L L E E (B) L L
相关文档
最新文档